[go: up one dir, main page]

CN115642297A - Halide solid electrolyte and method for preparing same - Google Patents

Halide solid electrolyte and method for preparing same Download PDF

Info

Publication number
CN115642297A
CN115642297A CN202110814672.6A CN202110814672A CN115642297A CN 115642297 A CN115642297 A CN 115642297A CN 202110814672 A CN202110814672 A CN 202110814672A CN 115642297 A CN115642297 A CN 115642297A
Authority
CN
China
Prior art keywords
halide
electrolyte
preparation
solid electrolyte
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110814672.6A
Other languages
Chinese (zh)
Inventor
谭迎宾
李铮铮
王婧洁
徐丽敏
杨兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baowu Carbon Technology Co ltd
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN202110814672.6A priority Critical patent/CN115642297A/en
Publication of CN115642297A publication Critical patent/CN115642297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

The invention discloses a halide solid electrolyte and a preparation method thereof, wherein the chemical general formula of the halide solid electrolyte is Li 3‑x In 1‑x Zr x Cl 6 Wherein, X =0.01-0.5; the preparation method comprises the following steps: step 1: halide electrolyte halogen salts LiCl and InCl 3 And ZrCl 4 Dispersing in alcohol solution to obtain mixed solution; step 2: stirring the mixed solution to completely dissolve halide electrolyte halogen salt and completely volatilize the alcohol solution to obtain a halide electrolyte precursor; and step 3: and carrying out heat treatment on the halide electrolyte precursor to obtain the halide solid electrolyte. The method realizes the rapid preparation of the halide solid electrolyte by combining the solution method and the low-temperature heat treatment method, the preparation process is simple, and the prepared halide solid electrolyte has higher lithium ion conductivity and can meet the performance requirements and large-scale production requirements of different all-solid-state lithium batteries.

Description

卤化物固态电解质及其制备方法Halide solid electrolyte and preparation method thereof

技术领域technical field

本发明涉及一种电池材料及其制备方法,尤其涉及一种卤化物固态电解质及其制备方法。The invention relates to a battery material and a preparation method thereof, in particular to a halide solid electrolyte and a preparation method thereof.

背景技术Background technique

固态电解质作为一种具有较高安全性的电池材料,已经逐渐取代了传统的易燃的液体电解质应用于全固态锂电池(ASSLB)等储能系统中。在各种类的无机固体电解质中,能应用于ASSLB的电池材料包括氧化物固态电解质、硫化物固态电解质和卤化物固态电解质,其中,氧化物固态电解质和硫化物固态电解质的离子电导率超过1mS/cm,而被认为是最有希望用于ASSLB的候选材料。As a battery material with high safety, solid-state electrolyte has gradually replaced the traditional flammable liquid electrolyte in energy storage systems such as all-solid-state lithium batteries (ASSLB). Among various types of inorganic solid electrolytes, battery materials that can be applied to ASSLB include oxide solid electrolytes, sulfide solid electrolytes, and halide solid electrolytes, among which the ionic conductivity of oxide solid electrolytes and sulfide solid electrolytes exceeds 1mS /cm, which is considered to be the most promising candidate material for ASSLB.

对于氧化物固态电解质,其整个合成过程都需要很高的烧结温度(通常>700℃)来促进电极材料和固态电解质之间的接触,而且制备过程繁琐、烧结时间长,制造成本提高,还有可能导致界面副反应。For oxide solid electrolytes, the entire synthesis process requires a high sintering temperature (usually >700°C) to promote the contact between the electrode material and the solid electrolyte, and the preparation process is cumbersome, the sintering time is long, and the manufacturing cost is increased. May cause interface side reactions.

对于硫化物固态电解质,其对环境要求苛刻,由于其遇水不稳定性,在合成过程中容易导致有害硫化氢气体释放,并使锂离子电导率的大幅度下降。As for the sulfide solid-state electrolyte, it has strict requirements on the environment. Due to its instability with water, it is easy to cause harmful hydrogen sulfide gas to be released during the synthesis process, and the conductivity of lithium ions is greatly reduced.

对于卤化物固态电解质,卤化物固态电解质结构是基于离子键的离子堆叠构建,通过这些离子键构架的结构使得锂离子(Li+)在卤化物固态电解质中迁移时具有不同的现象和扩散机制。卤化物固态电解质具有电化学窗口较宽、对电极稳定等特点,因此,卤化物固态电解质适合应用于全固态锂电池,并具有优异的电化学性能的潜力。现有技术的卤化物固态电解质的合成方法一般采用高能机械球磨法,其存在合成周期较长、制备过程繁琐、烧结温度高、烧结时间长、成本高等问题。For halide solid-state electrolytes, the structure of halide solid-state electrolytes is based on the ion stacking of ionic bonds. Through the structure of these ionic bond frameworks, lithium ions (Li+) have different phenomena and diffusion mechanisms when migrating in halide solid-state electrolytes. Halide solid-state electrolytes have the characteristics of wide electrochemical window and stable counter electrode. Therefore, halide solid-state electrolytes are suitable for all-solid-state lithium batteries and have the potential for excellent electrochemical performance. The synthesis method of the halide solid electrolyte in the prior art generally adopts the high-energy mechanical ball milling method, which has problems such as long synthesis period, cumbersome preparation process, high sintering temperature, long sintering time, and high cost.

中国发明专利申请CN201910843405.4公开了一种电极、电解质薄层及其制备方法,并具体公开了:固态电解质材料为LiaMXb,M为Al、Ga、In、Sc、Y、La系中的一种或者几种,X为F、Cl、Br中的一种或者多种,0≤a≤10,1≤b≤13。该制备方法采用卤化物电解质包覆正极材料的方式提高正极材料的锂离子导电性,制备方法复杂。Chinese invention patent application CN201910843405.4 discloses an electrode, an electrolyte thin layer and its preparation method, and specifically discloses that: the solid electrolyte material is Li a MX b , and M is Al, Ga, In, Sc, Y, La X is one or more of F, Cl, Br, 0≤a≤10, 1≤b≤13. In the preparation method, the positive electrode material is coated with a halide electrolyte to improve the lithium ion conductivity of the positive electrode material, and the preparation method is complicated.

中国发明专利申请CN202011629509.4公开了一种固体电解质材料及其制备方法和固态锂电池,并具体公开了:卤化物固体电解质材料的化学通式为LiaMeXbOc,其中:Me选自元素Mg、Ca、Sr、Ba、Zn、Al、Ga、In、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Bi、Zr、Hf、Ti、Nb或Ta中的至少一种;X为F、Cl或Br中的至少一种;2.0≤a≤4.0;4.5≤b≤7.5;0<c≤0.1。该电解质材料在引入氧化剂时容易产生Me-O-X杂相化合物,导致卤化物固体电解质材料的离子电导率降低,同时引入O元素后会导致热处理温度提高,比如热处理温度为300-650℃,从而导致成本提高。Chinese invention patent application CN202011629509.4 discloses a solid electrolyte material and its preparation method and solid-state lithium battery, and specifically discloses: the chemical formula of the halide solid electrolyte material is Li a MeX b O c , wherein: Me is selected from Elements Mg, Ca, Sr, Ba, Zn, Al, Ga, In, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc , Bi, Zr, Hf, Ti, Nb or Ta; X is at least one of F, Cl or Br; 2.0≤a≤4.0; 4.5≤b≤7.5; 0<c≤0.1. The electrolyte material is easy to produce Me-OX heterophase compound when the oxidant is introduced, resulting in a decrease in the ionic conductivity of the halide solid electrolyte material. At the same time, the introduction of O element will lead to an increase in the heat treatment temperature, such as a heat treatment temperature of 300-650 ° C, resulting in Increased costs.

发明内容Contents of the invention

本发明的目的之一在于提供一种卤化物固态电解质,具有较高的锂离子电导率,适用于全固态锂电池。One of the objects of the present invention is to provide a halide solid-state electrolyte, which has high lithium ion conductivity and is suitable for all-solid-state lithium batteries.

本发明的目的之二在于提供一种卤化物固态电解质的制备方法,简化了制备过程,缩短了制备时间,降低了制备难度,易于大规模生产。The second object of the present invention is to provide a method for preparing a halide solid electrolyte, which simplifies the preparation process, shortens the preparation time, reduces the difficulty of preparation, and is easy for large-scale production.

本发明是这样实现的:The present invention is achieved like this:

一种卤化物固态电解质,所述的卤化物固态电解质的化学通式为Li3-xIn1-xZrxCl6,其中,X=0.01-0.5。A halide solid electrolyte, the general chemical formula of the halide solid electrolyte is Li 3-x In 1-x Zr x Cl 6 , where X=0.01-0.5.

一种卤化物固态电解质的制备方法,包括以下步骤:A method for preparing a halide solid electrolyte, comprising the following steps:

步骤1:将卤化物电解质卤盐LiCl、InCl3和ZrCl4分散于醇溶液中,得到混合溶液;Step 1: Disperse the halide electrolyte halide salts LiCl, InCl 3 and ZrCl 4 in the alcohol solution to obtain a mixed solution;

步骤2:搅拌混合溶液,使卤化物电解质卤盐完全溶解,且醇溶液完全挥发,得到卤化物电解质前驱体;Step 2: Stir the mixed solution to completely dissolve the halogen salt of the halide electrolyte, and completely volatilize the alcohol solution to obtain a precursor of the halide electrolyte;

步骤3:热处理卤化物电解质前驱体,得到卤化物固态电解质Li3-xIn1-xZrxCl6,其中,X=0.01-0.5。Step 3: heat-treating the halide electrolyte precursor to obtain a halide solid electrolyte Li 3-x In 1-x Zr x Cl 6 , where X=0.01-0.5.

所述的步骤1中,醇溶液为甲醇溶液、乙醇溶液、异丙醇溶液、正丁醇溶液中的一种或几种混合。In the step 1, the alcohol solution is one or a mixture of methanol solution, ethanol solution, isopropanol solution and n-butanol solution.

所述的步骤1中,卤化物电解质卤盐LiCl、InCl3和ZrCl4的比例范围为(2.5-2.99):(0.5-0.99):(0.01-0.5)。In the step 1, the ratio range of the halide electrolyte halide salt LiCl, InCl 3 and ZrCl 4 is (2.5-2.99):(0.5-0.99):(0.01-0.5).

所述的步骤2中,搅拌的温度为50-80℃。In the step 2, the stirring temperature is 50-80°C.

所述的搅拌的速率为100-1500转/分钟。The stirring rate is 100-1500 rpm.

所述的步骤3中,热处理为真空气氛热处理。In the step 3, the heat treatment is vacuum atmosphere heat treatment.

所述的热处理的温度范围为100-300℃。The temperature range of the heat treatment is 100-300°C.

所述的热处理的升温速率为1-20℃/分钟。The heating rate of the heat treatment is 1-20° C./minute.

所述的热处理的保温时间为1-12小时。The heat preservation time of the heat treatment is 1-12 hours.

本发明与现有技术相比,具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1、本发明的卤化物固态电解质引入锆元素取代一部分铟元素,锂离子电导率较高,适用于全固态锂电池,并能通过对锆元素的含量控制达到具有不同锂离子电导率的卤化物固态电解质,以满足全固态锂电池的性能要求,且降低了卤化物固态电解质的原料成本。1. The halide solid electrolyte of the present invention introduces zirconium element to replace a part of indium element, has high lithium ion conductivity, is suitable for all-solid lithium batteries, and can achieve halides with different lithium ion conductivity by controlling the content of zirconium element A solid-state electrolyte to meet the performance requirements of an all-solid-state lithium battery and reduce the raw material cost of a halide solid-state electrolyte.

2、本发明的制备方法结合了溶液法和低温热处理法,无需机械球磨合成、烧结等工序,简化了制备过程,避免了繁琐的制备工序,无需提供较高的烧结温度和较长的烧结时间,制备成本和制备时间均大大降低,且使制备得到的卤化物固态电解质具有较高的锂离子电导率,可满足大规模生产的要求。2. The preparation method of the present invention combines the solution method and low-temperature heat treatment method, without the need for mechanical ball milling synthesis, sintering and other processes, which simplifies the preparation process, avoids tedious preparation procedures, and does not need to provide higher sintering temperature and longer sintering time , the preparation cost and preparation time are greatly reduced, and the prepared halide solid electrolyte has high lithium ion conductivity, which can meet the requirements of large-scale production.

本发明通过溶液法和低温热处理法的结合实现了卤化物固态电解质的快速制备,制备过程简单,且制备得到的卤化物固态电解质具有较高的锂离子电导率,能满足不同的全固态锂电池的性能要求和大规模生产要求。The present invention realizes the fast preparation of the halide solid electrolyte through the combination of the solution method and the low-temperature heat treatment method, the preparation process is simple, and the prepared halide solid electrolyte has high lithium ion conductivity, which can meet different all-solid lithium batteries performance requirements and mass production requirements.

具体实施方式Detailed ways

一种卤化物固态电解质,所述的卤化物固态电解质的化学通式为Li3-xIn1-xZrxCl6,其中,X=0.01-0.5。A halide solid electrolyte, the general chemical formula of the halide solid electrolyte is Li 3-x In 1-x Zr x Cl 6 , where X=0.01-0.5.

一种卤化物固态电解质的制备方法,包括以下步骤:A method for preparing a halide solid electrolyte, comprising the following steps:

步骤1:将卤化物电解质卤盐LiCl、InCl3和ZrCl4分散于醇溶液中,得到混合溶液。Step 1: Disperse the halide electrolyte halide salts LiCl, InCl 3 and ZrCl 4 in the alcohol solution to obtain a mixed solution.

所述的醇溶液为甲醇溶液、乙醇溶液、异丙醇溶液、正丁醇溶液中的一种或几种混合。The alcohol solution is one or a combination of methanol solution, ethanol solution, isopropanol solution and n-butanol solution.

所述的卤化物电解质卤盐LiCl、InCl3和ZrCl4的比例范围为(2.5-2.99):(0.5-0.99):(0.01-0.5),对Zr的添加量进行限制,避免Zr添加量过大而导致的卤化物相不纯和LiCl残留。The ratio range of the halide electrolyte halogen salt LiCl, InCl 3 and ZrCl 4 is (2.5-2.99):(0.5-0.99):(0.01-0.5), and the addition amount of Zr is limited to avoid excessive addition of Zr Large resulting halide phase impurity and LiCl residue.

步骤2:搅拌混合溶液,使卤化物电解质卤盐完全溶解,且醇溶液完全挥发,得到卤化物电解质前驱体。Step 2: Stir the mixed solution to completely dissolve the halogen salt of the halide electrolyte and completely volatilize the alcohol solution to obtain a precursor of the halide electrolyte.

所述的搅拌的温度为50-80℃,确保醇溶液能够挥发。The stirring temperature is 50-80° C. to ensure that the alcohol solution can volatilize.

所述的搅拌的速率为100-1500转/分钟,有利于醇溶液的挥发。The stirring speed is 100-1500 rpm, which is beneficial to the volatilization of the alcohol solution.

步骤3:热处理卤化物电解质前驱体,得到卤化物固态电解质Li3-xIn1-xZrxCl6,其中,X=0.01-0.5。Step 3: heat-treating the halide electrolyte precursor to obtain a halide solid electrolyte Li 3-x In 1-x Zr x Cl 6 , where X=0.01-0.5.

所述的热处理可采用真空气氛热处理等方式。The heat treatment can be carried out in vacuum atmosphere heat treatment and the like.

所述的热处理的温度范围为100-300℃,确保热处理后能得到纯相的卤化物固态电解质,避免温度过高而导致卤化物固态电解质氧化分解,温度过低而导致卤化物固态电解质锂离子导电性差。The temperature range of the heat treatment is 100-300°C, to ensure that a pure-phase halide solid electrolyte can be obtained after the heat treatment, avoiding the oxidative decomposition of the halide solid electrolyte caused by too high temperature, and the halide solid electrolyte lithium ion caused by too low temperature. Poor electrical conductivity.

所述的热处理的升温速率为1-20℃/分钟,升温至所需温度后在该温度进行保温。The heating rate of the heat treatment is 1-20° C./minute, and the temperature is kept at the required temperature after being raised to the desired temperature.

所述的热处理的保温时间为1-12小时,确保得到纯相的卤化物固态电解质。The holding time of the heat treatment is 1-12 hours to ensure that a pure-phase halide solid electrolyte is obtained.

实施例1:Example 1:

将按照2.9:0.9:0.1的比例取卤化物电解质卤盐LiCl、InCl3和ZrCl4并将其分散在乙醇溶液中,得到混合溶液。在60℃温度下以300转/分钟的速率搅拌混合溶液24小时,使乙醇溶液完全挥发,得到卤化物电解质前驱体。将卤化物电解质前驱体置于管式炉中进行真空气氛热处理,真空气氛热处理的温度为280℃,升温速率为2℃/分钟,升温至280℃后保温4小时,得到卤化物固态电解质Li2.9In0.9Zr0.1Cl6,即X=0.1。The halide electrolyte halogen salts LiCl, InCl 3 and ZrCl 4 will be taken according to the ratio of 2.9:0.9:0.1 and dispersed in the ethanol solution to obtain a mixed solution. Stir the mixed solution at a rate of 300 rpm at a temperature of 60° C. for 24 hours to completely volatilize the ethanol solution to obtain a halide electrolyte precursor. The halide electrolyte precursor was placed in a tube furnace for heat treatment in a vacuum atmosphere. The temperature of the vacuum atmosphere heat treatment was 280°C, and the heating rate was 2°C/min. After the temperature was raised to 280°C, it was kept for 4 hours to obtain a halide solid electrolyte Li 2.9 In 0.9 Zr 0.1 Cl 6 , that is, X=0.1.

实施例2:Example 2:

将按照2.8:0.8:0.2的比例取卤化物电解质卤盐LiCl、InCl3和ZrCl4并将其分散在甲醇溶液中,得到混合溶液。在60℃温度下以600转/分钟的速率搅拌混合溶液24小时,使甲醇溶液完全挥发,得到卤化物电解质前驱体。将卤化物电解质前驱体置于管式炉中进行真空气氛热处理,真空气氛热处理的温度为100℃,升温速率为3℃/分钟,升温至100℃后保温3小时,得到卤化物固态电解质Li2.8In0.8Zr0.2Cl6,即X=0.2。The halide electrolyte halide salts LiCl, InCl 3 and ZrCl 4 will be taken in a ratio of 2.8:0.8:0.2 and dispersed in methanol solution to obtain a mixed solution. Stir the mixed solution at a rate of 600 rpm at a temperature of 60°C for 24 hours to completely volatilize the methanol solution to obtain a halide electrolyte precursor. The halide electrolyte precursor was placed in a tube furnace for heat treatment in a vacuum atmosphere. The temperature of the vacuum atmosphere heat treatment was 100°C, and the heating rate was 3°C/min. After the temperature was raised to 100°C, it was kept for 3 hours to obtain a halide solid electrolyte Li 2.8 In 0.8 Zr 0.2 Cl 6 , that is, X=0.2.

实施例3:Example 3:

将按照2.7:0.7:0.3的比例取卤化物电解质卤盐LiCl、InCl3和ZrCl4并将其分散在异丙醇溶液中,得到混合溶液。在60℃温度下以500转/分钟的速率搅拌混合溶液24小时,使异丙醇溶液完全挥发,得到卤化物电解质前驱体。将卤化物电解质前驱体置于管式炉中进行真空气氛热处理,真空气氛热处理的温度为300℃,升温速率为5℃/分钟,升温至300℃后保温4小时,得到卤化物固态电解质Li2.7In0.7Zr0.3Cl6,即X=0.3。The halide electrolyte halide salts LiCl, InCl 3 and ZrCl 4 will be taken according to the ratio of 2.7:0.7:0.3 and dispersed in the isopropanol solution to obtain a mixed solution. Stir the mixed solution at a rate of 500 rpm at a temperature of 60°C for 24 hours to completely volatilize the isopropanol solution to obtain a halide electrolyte precursor. The halide electrolyte precursor was placed in a tube furnace for heat treatment in a vacuum atmosphere. The temperature of the vacuum atmosphere heat treatment was 300°C, and the heating rate was 5°C/min. After the temperature was raised to 300°C, it was kept for 4 hours to obtain a halide solid electrolyte Li 2.7 In 0.7 Zr 0.3 Cl 6 , that is, X=0.3.

实施例4:Example 4:

将按照2.6:0.6:0.4的比例取卤化物电解质卤盐LiCl、InCl3和ZrCl4并将其分散在乙醇溶液中,得到混合溶液。在60℃温度下以400转/分钟的速率搅拌混合溶液24小时,使乙醇溶液完全挥发,得到卤化物电解质前驱体。将卤化物电解质前驱体置于管式炉中进行真空气氛热处理,真空气氛热处理的温度为280℃,升温速率为10℃/分钟,升温至280℃后保温3小时,得到卤化物固态电解质Li2.6In0.6Zr0.4Cl6,即X=0.4。The halide electrolyte halogen salts LiCl, InCl 3 and ZrCl 4 will be taken according to the ratio of 2.6:0.6:0.4 and dispersed in the ethanol solution to obtain a mixed solution. Stir the mixed solution at a rate of 400 rpm at a temperature of 60°C for 24 hours to completely volatilize the ethanol solution to obtain a halide electrolyte precursor. The halide electrolyte precursor was placed in a tube furnace for heat treatment in a vacuum atmosphere. The temperature of the vacuum atmosphere heat treatment was 280°C, and the heating rate was 10°C/min. After the temperature was raised to 280°C, it was kept for 3 hours to obtain the halide solid electrolyte Li 2.6 In 0.6 Zr 0.4 Cl 6 , that is, X=0.4.

实施例5:Example 5:

将按照2.5:0.5:0.5的比例取卤化物电解质卤盐LiCl、InCl3和ZrCl4并将其分散在正丁醇溶液中,得到混合溶液。在60℃温度下以500转/分钟的速率搅拌混合溶液24小时,使正丁醇溶液完全挥发,得到卤化物电解质前驱体。将卤化物电解质前驱体置于管式炉中进行真空气氛热处理,真空气氛热处理的温度为300℃,升温速率为15℃/分钟,升温至300℃后保温2小时,得到卤化物固态电解质Li2.5In0.5Zr0.5Cl6,即X=0.5。The halide electrolyte halide salts LiCl, InCl 3 and ZrCl 4 will be taken in a ratio of 2.5:0.5:0.5 and dispersed in n-butanol solution to obtain a mixed solution. Stir the mixed solution at a rate of 500 rpm at a temperature of 60° C. for 24 hours to completely volatilize the n-butanol solution to obtain a halide electrolyte precursor. The halide electrolyte precursor was placed in a tube furnace for heat treatment in a vacuum atmosphere. The temperature of the vacuum atmosphere heat treatment was 300 °C, and the heating rate was 15 °C/ min . In 0.5 Zr 0.5 Cl 6 , that is, X=0.5.

实施例6:Embodiment 6:

将按照2.99:0.99:0.01的比例取卤化物电解质卤盐LiCl、InCl3和ZrCl4并将其分散在乙醇溶液中,得到混合溶液。在60℃温度下以500转/分钟的速率搅拌混合溶液24小时,使乙醇溶液完全挥发,得到卤化物电解质前驱体。将卤化物电解质前驱体置于管式炉中进行真空气氛热处理,真空气氛热处理的温度为270℃,升温速率为20℃/分钟,升温至270℃后保温2小时,得到卤化物固态电解质Li2.99In0.99Zr0.01Cl6,即X=0.01。The halide electrolyte halide salts LiCl, InCl 3 and ZrCl 4 will be taken according to the ratio of 2.99:0.99:0.01 and dispersed in the ethanol solution to obtain a mixed solution. Stir the mixed solution at a rate of 500 rpm at a temperature of 60°C for 24 hours to completely volatilize the ethanol solution to obtain a halide electrolyte precursor. Put the halide electrolyte precursor in a tube furnace for heat treatment in a vacuum atmosphere. The temperature of the vacuum atmosphere heat treatment is 270°C, and the heating rate is 20°C/min. After the temperature is raised to 270°C, it is kept for 2 hours to obtain the halide solid electrolyte Li 2.99 In 0.99 Zr 0.01 Cl 6 , that is, X=0.01.

实施例7:Embodiment 7:

将按照2.95:0.95:0.05的比例取卤化物电解质卤盐LiCl、InCl3和ZrCl4并将其分散在乙醇溶液中,得到混合溶液。在60℃温度下以500转/分钟的速率搅拌混合溶液24小时,使乙醇溶液完全挥发,得到卤化物电解质前驱体。将卤化物电解质前驱体置于管式炉中进行真空气氛热处理,真空气氛热处理的温度为300℃,升温速率为5℃/分钟,升温至300℃后保温2小时,得到卤化物固态电解质Li2.95In0.95Zr0.05Cl6,即X=0.05。The halide electrolyte halide salts LiCl, InCl 3 and ZrCl 4 will be taken according to the ratio of 2.95:0.95:0.05 and dispersed in the ethanol solution to obtain a mixed solution. Stir the mixed solution at a rate of 500 rpm at a temperature of 60°C for 24 hours to completely volatilize the ethanol solution to obtain a halide electrolyte precursor. Place the halide electrolyte precursor in a tube furnace for heat treatment in a vacuum atmosphere. The temperature of the vacuum atmosphere heat treatment is 300°C, and the heating rate is 5°C/min. After the temperature is raised to 300°C, it is kept for 2 hours to obtain the halide solid electrolyte Li 2.95 In 0.95 Zr 0.05 Cl 6 , that is, X=0.05.

实施例1-7制备的卤化物固态电解质Li3-xIn1-xZrxCl6在30℃时锂离子电导率如表1所示。Table 1 shows the lithium ion conductivity of the halide solid electrolyte Li 3-x In 1-x Zr x Cl 6 prepared in Examples 1-7 at 30°C.

表1实施例1-7制备的卤化物固态电解质及其锂离子电导率和现有技术固态电解质及其锂离子电导率Table 1 The halide solid-state electrolyte prepared by Example 1-7 and its lithium ion conductivity and the prior art solid electrolyte and its lithium ion conductivity

实施例Example 电解质化学式Electrolyte chemical formula 锂离子电导率(mS/cm)Lithium ion conductivity (mS/cm) 实施例1Example 1 Li<sub>2.9</sub>In<sub>0.9</sub>Zr<sub>0.1</sub>Cl<sub>6</sub>Li<sub>2.9</sub>In<sub>0.9</sub>Zr<sub>0.1</sub>Cl<sub>6</sub> 2.3152.315 实施例2Example 2 Li<sub>2.8</sub>In<sub>0.8</sub>Zr<sub>0.2</sub>Cl<sub>6</sub>Li<sub>2.8</sub>In<sub>0.8</sub>Zr<sub>0.2</sub>Cl<sub>6</sub> 2.4562.456 实施例3Example 3 Li<sub>2.7</sub>In<sub>0.7</sub>Zr<sub>0.3</sub>Cl<sub>6</sub>Li<sub>2.7</sub>In<sub>0.7</sub>Zr<sub>0.3</sub>Cl<sub>6</sub> 2.3022.302 实施例4Example 4 Li<sub>2.6</sub>In<sub>0.6</sub>Zr<sub>0.4</sub>Cl<sub>6</sub>Li<sub>2.6</sub>In<sub>0.6</sub>Zr<sub>0.4</sub>Cl<sub>6</sub> 2.0142.014 实施例5Example 5 Li<sub>2.5</sub>In<sub>0.5</sub>Zr<sub>0.5</sub>Cl<sub>6</sub>Li<sub>2.5</sub>In<sub>0.5</sub>Zr<sub>0.5</sub>Cl<sub>6</sub> 1.8671.867 实施例6Example 6 Li<sub>2.99</sub>In<sub>0.99</sub>Zr<sub>0.01</sub>Cl<sub>6</sub>Li<sub>2.99</sub>In<sub>0.99</sub>Zr<sub>0.01</sub>Cl<sub>6</sub> 1.6251.625 实施例7Example 7 Li<sub>2.95</sub>In<sub>0.9</sub>Zr<sub>0.05</sub>Cl<sub>6</sub>Li<sub>2.95</sub>In<sub>0.9</sub>Zr<sub>0.05</sub>Cl<sub>6</sub> 1.9321.932 现有技术current technology Li<sub>3</sub>InCl<sub>6</sub>Li<sub>3</sub>InCl<sub>6</sub> 1.5471.547

从表1可知,卤化物固态电解质Li3-xIn1-xZrxCl6在30℃时锂离子电导率随着锆(Zr)掺杂量的升高先升高后降低,其中Li2.8In0.8Zr0.2Cl6展现出最高的锂离子电导率2.456mS/cm。同时,相比现有技术中固态电解质Li3InCl6,本发明制备的Li3-xIn1-xZrxCl6的锂离子电导率有明显的提高。It can be seen from Table 1 that the lithium ion conductivity of the halide solid electrolyte Li 3-x In 1-x Zr x Cl 6 at 30°C increases first and then decreases with the increase of zirconium (Zr) doping amount, among which Li 2.8 In 0.8 Zr 0.2 Cl 6 exhibited the highest Li-ion conductivity of 2.456 mS/cm. At the same time, compared with the solid electrolyte Li 3 InCl 6 in the prior art, the lithium ion conductivity of the Li 3-x In 1-x Zr x Cl 6 prepared by the present invention is significantly improved.

Claims (10)

1.一种卤化物固态电解质,其特征是:所述的卤化物固态电解质的化学通式为Li3- xIn1-xZrxCl6,其中,X=0.01-0.5。1. A halide solid electrolyte, characterized in that: the general chemical formula of the halide solid electrolyte is Li 3- x In 1-x Zr x Cl 6 , where X=0.01-0.5. 2.一种权利要求1所述的卤化物固态电解质的制备方法,其特征是:包括以下步骤:2. A preparation method of the halide solid electrolyte as claimed in claim 1, characterized in that: comprising the following steps: 步骤1:将卤化物电解质卤盐LiCl、InCl3和ZrCl4分散于醇溶液中,得到混合溶液;Step 1: Disperse the halide electrolyte halide salts LiCl, InCl 3 and ZrCl 4 in the alcohol solution to obtain a mixed solution; 步骤2:搅拌混合溶液,使卤化物电解质卤盐完全溶解,且醇溶液完全挥发,得到卤化物电解质前驱体;Step 2: Stir the mixed solution to completely dissolve the halogen salt of the halide electrolyte, and completely volatilize the alcohol solution to obtain a precursor of the halide electrolyte; 步骤3:热处理卤化物电解质前驱体,得到卤化物固态电解质Li3-xIn1-xZrxCl6,其中,X=0.01-0.5。Step 3: heat-treating the halide electrolyte precursor to obtain a halide solid electrolyte Li 3-x In 1-x Zr x Cl 6 , where X=0.01-0.5. 3.根据权利要求2所述的制备方法,其特征是:所述的步骤1中,醇溶液为甲醇溶液、乙醇溶液、异丙醇溶液、正丁醇溶液中的一种或几种混合。3. The preparation method according to claim 2, characterized in that: in the step 1, the alcohol solution is one or more mixtures of methanol solution, ethanol solution, isopropanol solution and n-butanol solution. 4.根据权利要求2所述的制备方法,其特征是:所述的步骤1中,卤化物电解质卤盐LiCl、InCl3和ZrCl4的比例范围为(2.5-2.99):(0.5-0.99):(0.01-0.5)。4. the preparation method according to claim 2 is characterized in that: in described step 1, the ratio scope of halide electrolyte halide salt LiCl, InCl 3 and ZrCl 4 is (2.5-2.99):(0.5-0.99) :(0.01-0.5). 5.根据权利要求2所述的制备方法,其特征是:所述的步骤2中,搅拌的温度为50-80℃。5. The preparation method according to claim 2, characterized in that: in said step 2, the stirring temperature is 50-80°C. 6.根据权利要求2或5所述的制备方法,其特征是:所述的搅拌的速率为100-1500转/分钟。6. The preparation method according to claim 2 or 5, characterized in that: the stirring speed is 100-1500 rpm. 7.根据权利要求2所述的制备方法,其特征是:所述的步骤3中,热处理为真空气氛热处理。7. The preparation method according to claim 2, characterized in that: in the step 3, the heat treatment is vacuum atmosphere heat treatment. 8.根据权利要求2或7所述的制备方法,其特征是:所述的热处理的温度范围为100-300℃。8. The preparation method according to claim 2 or 7, characterized in that: the temperature range of the heat treatment is 100-300°C. 9.根据权利要求2或7所述的制备方法,其特征是:所述的热处理的升温速率为1-20℃/分钟。9. The preparation method according to claim 2 or 7, characterized in that: the heating rate of the heat treatment is 1-20°C/min. 10.根据权利要求2或7所述的制备方法,其特征是:所述的热处理的保温时间为1-12小时。10. The preparation method according to claim 2 or 7, characterized in that: the holding time of the heat treatment is 1-12 hours.
CN202110814672.6A 2021-07-19 2021-07-19 Halide solid electrolyte and method for preparing same Pending CN115642297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110814672.6A CN115642297A (en) 2021-07-19 2021-07-19 Halide solid electrolyte and method for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110814672.6A CN115642297A (en) 2021-07-19 2021-07-19 Halide solid electrolyte and method for preparing same

Publications (1)

Publication Number Publication Date
CN115642297A true CN115642297A (en) 2023-01-24

Family

ID=84940061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110814672.6A Pending CN115642297A (en) 2021-07-19 2021-07-19 Halide solid electrolyte and method for preparing same

Country Status (1)

Country Link
CN (1) CN115642297A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116588969A (en) * 2023-03-13 2023-08-15 蜂巢能源科技(无锡)有限公司 Liquid-phase ultrasonic preparation method of solid electrolyte and obtained solid electrolyte
CN116799294A (en) * 2023-08-16 2023-09-22 有研(广东)新材料技术研究院 An inorganic solid electrolyte material with high fluorine content and its preparation and application
CN118281308A (en) * 2024-06-04 2024-07-02 深圳欣界能源科技有限公司 Halide solid electrolyte material, preparation method thereof, solid electrolyte membrane and lithium ion battery
WO2024174452A1 (en) * 2023-02-23 2024-08-29 苏州清陶新能源科技有限公司 Solid electrolyte material, preparation method, electrode, and lithium ion battery
CN120637581A (en) * 2025-08-12 2025-09-12 浙江绿色智行科创有限公司 Solid-state battery, halide solid-state electrolyte for solid-state battery, and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467074A (en) * 2019-09-06 2021-03-09 国联汽车动力电池研究院有限责任公司 Electrode, electrolyte thin layer and preparation method thereof
CN113097559A (en) * 2021-04-09 2021-07-09 浙江大学山东工业技术研究院 Halide solid electrolyte, preparation method and application thereof, and all-solid-state lithium ion battery
CN113130979A (en) * 2021-04-20 2021-07-16 清华大学深圳国际研究生院 Solid electrolyte, preparation method thereof and solid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467074A (en) * 2019-09-06 2021-03-09 国联汽车动力电池研究院有限责任公司 Electrode, electrolyte thin layer and preparation method thereof
CN113097559A (en) * 2021-04-09 2021-07-09 浙江大学山东工业技术研究院 Halide solid electrolyte, preparation method and application thereof, and all-solid-state lithium ion battery
CN113130979A (en) * 2021-04-20 2021-07-16 清华大学深圳国际研究生院 Solid electrolyte, preparation method thereof and solid battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024174452A1 (en) * 2023-02-23 2024-08-29 苏州清陶新能源科技有限公司 Solid electrolyte material, preparation method, electrode, and lithium ion battery
CN116588969A (en) * 2023-03-13 2023-08-15 蜂巢能源科技(无锡)有限公司 Liquid-phase ultrasonic preparation method of solid electrolyte and obtained solid electrolyte
CN116799294A (en) * 2023-08-16 2023-09-22 有研(广东)新材料技术研究院 An inorganic solid electrolyte material with high fluorine content and its preparation and application
CN116799294B (en) * 2023-08-16 2024-02-02 有研(广东)新材料技术研究院 Inorganic solid electrolyte material with high fluorine content and preparation and application thereof
CN118281308A (en) * 2024-06-04 2024-07-02 深圳欣界能源科技有限公司 Halide solid electrolyte material, preparation method thereof, solid electrolyte membrane and lithium ion battery
CN118281308B (en) * 2024-06-04 2024-08-16 深圳欣界能源科技有限公司 Halide solid electrolyte material and preparation method thereof, solid electrolyte membrane and lithium ion battery
CN120637581A (en) * 2025-08-12 2025-09-12 浙江绿色智行科创有限公司 Solid-state battery, halide solid-state electrolyte for solid-state battery, and method for producing same

Similar Documents

Publication Publication Date Title
CN115642297A (en) Halide solid electrolyte and method for preparing same
CN112397776B (en) Ga and Al co-doped LLZO solid electrolyte, multi-element solid battery and preparation method thereof
CN107887640A (en) A kind of garnet structure solid electrolyte material and preparation method thereof
CN110233244A (en) A kind of nickelic tertiary cathode material particle surface stabilization treatment method
US20250070230A1 (en) Sulfide solid electrolyte, and preparation method and use thereof
Feng et al. Low temperature synthesis and ion conductivity of Li7La3Zr2O12 garnets for solid state Li ion batteries
CN111048772B (en) Mixed conductor, electrode, electrochemical device and method for preparing mixed conductor
CN115332618B (en) High-entropy halide solid electrolyte material, and preparation method and application thereof
US20120171562A1 (en) Solid lithium ion conducting electrolytes and methods of preparation
CN108793987B (en) Lithium ion conductive oxide solid electrolyte and preparation method thereof
CN113224378B (en) Lithium battery, solid electrolyte, and preparation method and application thereof
CN110534802A (en) Solid electrolyte and its preparation method and application
CN110620259A (en) High-grain-boundary conductivity perovskite solid electrolyte for lithium battery and preparation method thereof
CN116960441A (en) Halide solid electrolyte and preparation method thereof
CN111092229B (en) Mixed conductor, electrochemical device including the same, and method for preparing the mixed conductor
CN106887604A (en) A kind of cathode material for solid-oxide fuel cell
CN119133621A (en) Preparation method of interface modification layer between lithium metal electrode and garnet solid electrolyte and solid-state lithium metal battery
CN114335494A (en) Composite lithium and solid-state lithium battery
US20150010829A1 (en) Method of preparing oxide-based solid electrolyte
CN113073309A (en) Surface treatment method of Rb-doped garnet-type solid electrolyte
EP4296234A1 (en) Solid-state electrolyte material and solid-state battery utilizing the same
CN118040057A (en) Composite solid electrolytes and their preparation and application in lithium batteries
CN116190773B (en) Rare earth element doped lithium germanium phosphorus sulfur solid electrolyte and its preparation method and application
CN117410484A (en) Composite lithium anode material and preparation method and application thereof
CN114447421B (en) Solid electrolyte capable of transmitting ions through interface layer and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230309

Address after: 1800 Tongji Road, Baoshan District, Shanghai, 201999

Applicant after: Baowu Carbon Technology Co.,Ltd.

Applicant after: BAOSHAN IRON & STEEL Co.,Ltd.

Address before: 201900 Fujin Road, Baoshan District, Shanghai 885

Applicant before: BAOSHAN IRON & STEEL Co.,Ltd.