[go: up one dir, main page]

CN115714127A - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN115714127A
CN115714127A CN202110970620.8A CN202110970620A CN115714127A CN 115714127 A CN115714127 A CN 115714127A CN 202110970620 A CN202110970620 A CN 202110970620A CN 115714127 A CN115714127 A CN 115714127A
Authority
CN
China
Prior art keywords
layer
forming
interlayer dielectric
gate
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110970620.8A
Other languages
Chinese (zh)
Inventor
陈卓凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN202110970620.8A priority Critical patent/CN115714127A/en
Publication of CN115714127A publication Critical patent/CN115714127A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor structure and a method of forming the same, the method comprising: providing a substrate, wherein a grid structure is formed on the substrate, active drain doping layers are formed in the substrate on two sides of the grid structure, side walls are formed on the side walls of the grid structure, an etching stop layer is formed on the side walls of the side walls, a first interlayer dielectric layer is formed on the substrate exposed out of the grid structure, and the first interlayer dielectric layer covers the side walls of the etching stop layer; forming a first protective layer on the top of the gate structure, the side wall and the etching stop layer; after the first protective layer is formed, forming a second interlayer dielectric layer covering the first interlayer dielectric layer and the top of the first protective layer; after the second interlayer dielectric layer is formed, forming a first opening penetrating through the second interlayer dielectric layer and the first interlayer dielectric layer on the top of the source drain doping layer; and forming a source drain plug in the first opening. The method is favorable for ensuring the covering capability of the etching stop layer on the side wall, so that the risk of damage to the side wall due to exposure is reduced, and the performance of the semiconductor structure is improved.

Description

半导体结构及其形成方法Semiconductor structures and methods of forming them

技术领域technical field

本发明实施例涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。Embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.

背景技术Background technique

随着集成电路制造技术的不断发展,人们对集成电路的集成度和性能的要求变得越来越高。为了提高集成度,降低成本,元器件的关键尺寸不断变小,集成电路内部的电路密度越来越大,这种发展使得晶圆表面无法提供足够的面积来制作所需要的互连线。With the continuous development of integrated circuit manufacturing technology, people's requirements for the integration and performance of integrated circuits are becoming higher and higher. In order to improve integration and reduce costs, the critical dimensions of components are getting smaller and the circuit density inside integrated circuits is increasing. This development makes the surface of the wafer unable to provide enough area to make the required interconnection lines.

为了满足关键尺寸缩小过后的互连线所需,目前不同金属层或者金属层与基底的导通是通过互连结构实现的。互连结构包括互连线和形成于接触开口内的接触孔插塞。接触孔插塞与半导体器件相连接,互连线实现接触孔插塞之间的连接,从而构成电路。晶体管结构内的接触孔插塞包括位于栅极结构表面的栅极接触孔插塞,用于实现栅极结构与外部电路的连接,还包括位于源漏掺杂层表面的源漏接触孔插塞,用于实现源漏掺杂层与外部电路的连接。In order to meet the requirements of the interconnection line after the critical dimension is reduced, at present, the conduction between different metal layers or between the metal layer and the substrate is realized through the interconnection structure. The interconnection structure includes interconnection lines and contact hole plugs formed in the contact openings. The contact hole plugs are connected to the semiconductor devices, and the interconnection wires realize the connection between the contact hole plugs, thereby constituting a circuit. The contact hole plugs in the transistor structure include gate contact hole plugs located on the surface of the gate structure for realizing the connection between the gate structure and external circuits, and also include source-drain contact hole plugs located on the surface of the source-drain doped layer , used to realize the connection between the source-drain doped layer and the external circuit.

发明内容Contents of the invention

本发明实施例解决的问题是提供一种半导体结构及其形成方法,有利于进一步提高半导体结构的性能。The problem solved by the embodiments of the present invention is to provide a semiconductor structure and a method for forming the same, which is beneficial to further improving the performance of the semiconductor structure.

为解决上述问题,本发明实施例提供一种半导体结构,包括:基底;栅极结构,位于所述基底上,所述栅极结构包括栅介质层、以及覆盖所述栅介质层的栅电极层;源漏掺杂层,位于所述栅极结构两侧的基底中;侧墙,覆盖所述栅极结构的侧壁;刻蚀停止层,位于所述侧墙的侧壁;保护层,位于所述栅极结构、侧墙和刻蚀停止层的顶部;层间介质层,位于所述栅极结构侧部的基底上并覆盖源漏掺杂层,所述层间介质层还覆盖所述保护层的顶部;源漏插塞,贯穿位于源漏掺杂层顶部的所述层间介质层,所述源漏插塞的底部和所述源漏掺杂层的顶部电连接;栅极插塞,贯穿所述栅极结构顶部的所述层间介质层和保护层,所述栅极插塞的底部与所述栅极结构的顶部电连接。In order to solve the above problems, an embodiment of the present invention provides a semiconductor structure, including: a substrate; a gate structure located on the substrate, the gate structure includes a gate dielectric layer, and a gate electrode layer covering the gate dielectric layer ; The source-drain doped layer is located in the substrate on both sides of the gate structure; the sidewall covers the sidewall of the gate structure; the etch stop layer is located on the sidewall of the sidewall; the protection layer is located on the sidewall of the gate structure The top of the gate structure, sidewalls and etching stop layer; an interlayer dielectric layer, located on the substrate at the side of the gate structure and covering the source-drain doped layer, and the interlayer dielectric layer also covers the The top of the protection layer; the source-drain plug, which penetrates the interlayer dielectric layer at the top of the source-drain doped layer, and the bottom of the source-drain plug is electrically connected to the top of the source-drain doped layer; the gate plug A plug penetrates through the interlayer dielectric layer and the protection layer on the top of the gate structure, and the bottom of the gate plug is electrically connected to the top of the gate structure.

相应的,本发明实施例还提供一种半导体结构的形成方法,包括:提供基底,所述基底上形成有栅极结构,所述栅极结构两侧的基底中形成有源漏掺杂层,所述栅极结构的侧壁形成有侧墙,所述侧墙的侧壁形成有刻蚀停止层,所述栅极结构露出的所述基底上形成有第一层间介质层,所述第一层间介质层覆盖所述刻蚀停止层的侧壁;在所述栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层;形成所述第一保护层后,形成覆盖在所述第一层间介质层和第一保护层顶部的第二层间介质层;形成所述第二层间介质层之后,在所述源漏掺杂层的顶部形成贯穿所述第二层间介质层和第一层间介质层的第一开口;在所述第一开口中形成源漏插塞。Correspondingly, an embodiment of the present invention also provides a method for forming a semiconductor structure, including: providing a substrate on which a gate structure is formed, and doped source and drain layers are formed in the substrate on both sides of the gate structure, A side wall of the gate structure is formed with a side wall, an etching stop layer is formed on the side wall of the side wall, a first interlayer dielectric layer is formed on the substrate exposed by the gate structure, and the first interlayer dielectric layer is formed on the side wall of the side wall. An interlayer dielectric layer covers the sidewall of the etch stop layer; a first protective layer is formed on the top of the gate structure, sidewalls and etch stop layer; after forming the first protective layer, forming a covering The first interlayer dielectric layer and the second interlayer dielectric layer on top of the first protective layer; after forming the second interlayer dielectric layer, forming a second interlayer dielectric layer on the top of the source-drain doped layer The first opening of the inter-dielectric layer and the first inter-layer dielectric layer; forming a source-drain plug in the first opening.

与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:

本发明实施例提供一种半导体结构的形成方法,在栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层,由于所述第一保护层能够对所述侧墙和刻蚀停止层的顶部起到保护作用,在源漏掺杂层的顶部形成贯穿所述第二层间介质层和第一层间介质层的第一开口的过程中,相关刻蚀工艺对所述刻蚀停止层的顶部造成损伤的概率下降,有利于确保刻蚀停止层的完整性,相应的,有利于确保所述刻蚀停止层对侧墙的覆盖能力,在所述刻蚀停止层和保护层的共同保护下,使得所述侧墙因被暴露而受到损伤的风险也下降,从而提高了半导体结构的性能。An embodiment of the present invention provides a method for forming a semiconductor structure. A first protection layer is formed on top of the gate structure, sidewalls and etch stop layer. The top of the layer plays a protective role. During the process of forming the first opening through the second interlayer dielectric layer and the first interlayer dielectric layer on the top of the source-drain doped layer, the related etching process will The probability of damage caused by the top of the stop layer is reduced, which is conducive to ensuring the integrity of the etch stop layer. Under the common protection of the above, the risk of the sidewall being damaged due to exposure is also reduced, thereby improving the performance of the semiconductor structure.

附图说明Description of drawings

图1至图3是一种半导体结构的形成方法中各步骤对应的结构示意图;1 to 3 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure;

图4是本发明半导体结构一实施例的结构示意图;4 is a schematic structural view of an embodiment of a semiconductor structure of the present invention;

图5至图17是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。5 to 17 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

具体实施方式Detailed ways

目前半导体结构的性能有待提高。现结合一种半导体结构的形成方法分析其性能有待提高的原因。The performance of current semiconductor structures needs to be improved. Combining with a method of forming a semiconductor structure, the reason why its performance needs to be improved is analyzed.

图1至图3是一种半导体结构的形成方法中各步骤对应的结构示意图。1 to 3 are structural schematic diagrams corresponding to each step in a method for forming a semiconductor structure.

参考图1,提供基底,所述基底包括衬底10以及凸立于所述衬底10上的鳍部12,所述基底上形成有栅极结构19,所述栅极结构19两侧的基底中形成有源漏掺杂层18,所述栅极结构19的顶部形成有栅极盖帽层17,所述栅极结构19和栅极盖帽层17的侧壁形成有侧墙16,所述侧墙16的侧壁形成有刻蚀停止层15,所述刻蚀停止层15覆盖所述栅极结构19和栅极盖帽层17露出的侧墙16表面,所述栅极结构19露出的所述基底上形成有第一层间介质层13,所述第一层间介质层13覆盖所述刻蚀停止层15的侧壁,且所述第一层间介质层13的顶部与所述刻蚀停止层15的顶部相齐平。Referring to FIG. 1 , a base is provided, the base includes a substrate 10 and fins 12 protruding from the substrate 10, a gate structure 19 is formed on the base, and the bases on both sides of the gate structure 19 A source-drain doped layer 18 is formed in the center, a gate capping layer 17 is formed on the top of the gate structure 19, sidewalls 16 are formed on the sidewalls of the gate structure 19 and the gate capping layer 17, and the sidewalls An etch stop layer 15 is formed on the sidewall of the wall 16, and the etch stop layer 15 covers the surface of the side wall 16 exposed by the gate structure 19 and the gate capping layer 17, and the exposed portion of the gate structure 19 A first interlayer dielectric layer 13 is formed on the substrate, the first interlayer dielectric layer 13 covers the sidewall of the etch stop layer 15, and the top of the first interlayer dielectric layer 13 is in contact with the etched The top of the stop layer 15 is flush.

参考图2,在所述第一层间介质层13、刻蚀停止层15、侧墙16和栅极盖帽层17的顶部形成第二层间介质层20。Referring to FIG. 2 , a second interlayer dielectric layer 20 is formed on top of the first interlayer dielectric layer 13 , the etch stop layer 15 , the sidewall 16 and the gate cap layer 17 .

参考图3,在所述源漏掺杂层18的顶部形成贯穿所述第一层间介质层13和第二层间介质层20的开口26,所述开口26露出所述刻蚀停止层15的顶部和侧壁。Referring to FIG. 3 , an opening 26 penetrating through the first interlayer dielectric layer 13 and the second interlayer dielectric layer 20 is formed on the top of the source-drain doped layer 18 , and the opening 26 exposes the etch stop layer 15 top and side walls.

经研究发现,在所述源漏掺杂层18的顶部形成贯穿所述第一层间介质层13和第二层间介质层20的开口26的过程中,在形成开口26的过程中,受到对准偏差(overlay shift)或开口26的尺寸偏差的影响,容易出现所述开口26露出所述刻蚀停止层15的顶部的情况,从而导致形成所述开口26采用的刻蚀工艺对所述开口26露出的所述刻蚀停止层15的顶部容易造成损伤(如图3中虚线圈中所示),使得所述刻蚀停止层15的形貌完整性受到破坏,相应的,所述刻蚀停止层15对所述侧墙16的覆盖能力下降,容易导致所述侧墙16被暴露的概率大大提高,从而使得所述侧墙16因被暴露而受到损伤的风险提高,进而降低了半导体结构的性能。It has been found through research that during the process of forming the opening 26 penetrating through the first interlayer dielectric layer 13 and the second interlayer dielectric layer 20 on the top of the source-drain doped layer 18, during the process of forming the opening 26, the Due to the influence of the overlay shift or the size deviation of the opening 26, it is easy for the opening 26 to expose the top of the etch stop layer 15, thus causing the etching process used to form the opening 26 to affect the The top of the etching stop layer 15 exposed by the opening 26 is easy to cause damage (as shown in the dotted circle in FIG. 3 ), so that the topography of the etching stop layer 15 is damaged. The ability of the etch stop layer 15 to cover the sidewall 16 is reduced, which easily leads to a greatly increased probability of the sidewall 16 being exposed, thereby increasing the risk of damage to the sidewall 16 due to exposure, thereby reducing the semiconductor performance of the structure.

为了解决所述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供基底,所述基底上形成有栅极结构,所述栅极结构两侧的基底中形成有源漏掺杂层,所述栅极结构的侧壁形成有侧墙,所述侧墙的侧壁形成有刻蚀停止层,所述栅极结构露出的所述基底上形成有第一层间介质层,所述第一层间介质层覆盖所述刻蚀停止层的侧壁;在所述栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层;形成所述第一保护层后,形成覆盖在所述第一层间介质层和第一保护层顶部的第二层间介质层;形成所述第二层间介质层之后,在所述源漏掺杂层的顶部形成贯穿所述第二层间介质层和第一层间介质层的第一开口;在所述第一开口中形成源漏插塞。In order to solve the above technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate on which a gate structure is formed, and active-drain doping is formed in the substrate on both sides of the gate structure. The sidewall of the gate structure is formed with a sidewall, the sidewall of the sidewall is formed with an etching stop layer, and a first interlayer dielectric layer is formed on the substrate exposed by the gate structure, The first interlayer dielectric layer covers the sidewalls of the etch stop layer; a first protective layer is formed on top of the gate structure, sidewalls and etch stop layer; after forming the first protective layer, forming a second interlayer dielectric layer covering the top of the first interlayer dielectric layer and the first protective layer; after forming the second interlayer dielectric layer, forming a The second interlayer dielectric layer and the first opening of the first interlayer dielectric layer; forming source and drain plugs in the first opening.

本发明实施例提供的形成方法中,在栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层,由于所述第一保护层能够对所述侧墙和刻蚀停止层的顶部起到保护作用,在源漏掺杂层的顶部形成贯穿所述第二层间介质层和第一层间介质层的第一开口的过程中,相关刻蚀工艺对所述刻蚀停止层的顶部造成损伤的概率下降,有利于确保刻蚀停止层的完整性,相应的,有利于确保所述刻蚀停止层对侧墙的覆盖能力,在所述刻蚀停止层和保护层的共同保护下,使得所述侧墙因被暴露而受到损伤的风险也下降,从而提高了半导体结构的性能。。In the forming method provided by the embodiment of the present invention, the first protective layer is formed on the top of the gate structure, the sidewall and the etch stop layer, because the first protective layer can protect the top of the sidewall and the etch stop layer. Playing a protective role, during the process of forming the first opening through the second interlayer dielectric layer and the first interlayer dielectric layer on the top of the source-drain doped layer, the related etching process will affect the etching stop layer The probability of damage caused by the top is reduced, which is conducive to ensuring the integrity of the etch stop layer, and correspondingly, it is beneficial to ensure the covering ability of the etch stop layer to the sidewall, and the joint protection of the etch stop layer and the protective layer Therefore, the risk of the sidewall being damaged due to exposure is also reduced, thereby improving the performance of the semiconductor structure. .

为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the embodiments of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图4是本发明半导体结构一实施例的结构示意图。FIG. 4 is a structural schematic diagram of an embodiment of the semiconductor structure of the present invention.

所述半导体结构包括:基底;栅极结构209,位于所述基底上,所述栅极结构209包括栅介质层(图未示)、以及覆盖所述栅介质层的栅电极层(图未示);源漏掺杂层208,位于所述栅极结构209两侧的基底中;侧墙206,覆盖所述栅极结构209的侧壁;刻蚀停止层205,位于所述侧墙206的侧壁;保护层228,位于所述栅极结构209、侧墙206和刻蚀停止层205的顶部;层间介质层260,位于所述栅极结构209侧部的基底上并覆盖源漏掺杂层208,所述层间介质层260还覆盖所述保护层228的顶部;源漏插塞230,贯穿位于源漏掺杂层208顶部的所述层间介质层260,所述源漏插塞230的底部和所述源漏掺杂层208的顶部电连接;栅极插塞226,贯穿所述栅极结构209顶部的所述层间介质层260和保护层228,所述栅极插塞230的底部与所述栅极结构209的顶部电连接。The semiconductor structure includes: a substrate; a gate structure 209 located on the substrate, the gate structure 209 includes a gate dielectric layer (not shown in the figure), and a gate electrode layer (not shown in the figure) covering the gate dielectric layer ); the source-drain doped layer 208, located in the substrate on both sides of the gate structure 209; the sidewall 206, covering the sidewall of the gate structure 209; the etching stop layer 205, located on the sidewall 206 Sidewall; protective layer 228, located on the top of the gate structure 209, sidewall 206 and etch stop layer 205; interlayer dielectric layer 260, located on the substrate at the side of the gate structure 209 and covering the source and drain doping impurity layer 208, the interlayer dielectric layer 260 also covers the top of the protection layer 228; source and drain plugs 230, through the interlayer dielectric layer 260 at the top of the source and drain doped layer 208, the source and drain plugs The bottom of the plug 230 is electrically connected to the top of the source-drain doped layer 208; the gate plug 226 runs through the interlayer dielectric layer 260 and the protective layer 228 on the top of the gate structure 209, and the gate plug The bottom of the plug 230 is electrically connected to the top of the gate structure 209 .

所述基底用于为后续工艺制程提供工艺平台。The substrate is used to provide a process platform for subsequent process steps.

本实施例中,所述基底用于形成鳍式场效应晶体管(FinFET)。所述基底包括衬底200以及凸出于衬底200的鳍部202。在其他实施例中,当基底用于形成平面型场效应晶体管时,基底相应为平面型衬底。In this embodiment, the substrate is used to form a Fin Field Effect Transistor (FinFET). The base includes a substrate 200 and fins 202 protruding from the substrate 200 . In other embodiments, when the substrate is used to form a planar field effect transistor, the substrate is a planar substrate.

本实施例中,所述鳍部202的材料与所述衬底200的材料相同,均为硅。在其他实施例中,所述衬底的材料还可以为锗、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the material of the fin portion 202 is the same as that of the substrate 200 , both being silicon. In other embodiments, the material of the substrate may also be germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon-on-insulator substrate or a germanium-on-insulator substrate.

本实施例中,所述半导体结构还包括:隔离层201,位于所述鳍部202露出的所述衬底200上,所述隔离层201覆盖所述鳍部202的部分侧壁。In this embodiment, the semiconductor structure further includes: an isolation layer 201 located on the substrate 200 where the fin 202 is exposed, and the isolation layer 201 covers part of the sidewall of the fin 202 .

在器件工作时,所述栅极结构209用于控制导电沟道的开启或关断。When the device is working, the gate structure 209 is used to control the conduction channel to be turned on or off.

本实施例中,所述栅极结构209位于衬底200上,所述栅极结构209横跨所述鳍部202且覆盖所述鳍部202的部分顶部和部分侧壁。In this embodiment, the gate structure 209 is located on the substrate 200 , the gate structure 209 crosses the fin 202 and covers part of the top and part of the sidewall of the fin 202 .

本实施例中,所述栅极结构209包括栅介质层(图未示)、以及覆盖所述栅介质层的栅电极层(图未示)。In this embodiment, the gate structure 209 includes a gate dielectric layer (not shown in the figure) and a gate electrode layer (not shown in the figure) covering the gate dielectric layer.

所述栅介质层用于隔离栅电极层和沟道。所述栅介质层的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、SiO2和La2O3中的一种或多种。The gate dielectric layer is used to isolate the gate electrode layer and the channel. The material of the gate dielectric layer includes one or more of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, Al 2 O 3 , SiO 2 and La 2 O 3 .

所述栅电极层用于后续与外部互连结构电连接。所述栅电极层的材料包括TiN、TaN、Ta、Ti、TiAl、W、Al、TiSiN和TiAlC中的一种或多种。The gate electrode layer is used for subsequent electrical connection with an external interconnection structure. The material of the gate electrode layer includes one or more of TiN, TaN, Ta, Ti, TiAl, W, Al, TiSiN and TiAlC.

作为一种示例,栅电极层可以包括功函数层、以及位于所述功函数层上的电极层,其中,功函数层用于调节晶体管的阈值电压。在其他实施例中,栅电极层也可以仅包括功函数层。As an example, the gate electrode layer may include a work function layer and an electrode layer located on the work function layer, wherein the work function layer is used to adjust the threshold voltage of the transistor. In other embodiments, the gate electrode layer may also only include a work function layer.

本实施例中,所述半导体结构还包括:栅极盖帽层207,位于所述栅极结构209的顶部。In this embodiment, the semiconductor structure further includes: a gate capping layer 207 located on the top of the gate structure 209 .

所述栅极盖帽层207用于对栅极结构209的顶部起到保护作用,在半导体结构的形成工艺中,在形成所述源漏插塞230的过程中,降低栅极结构209的顶部受损、以及所述源漏插塞230与栅极结构209发生短接的概率。The gate capping layer 207 is used to protect the top of the gate structure 209. In the formation process of the semiconductor structure, in the process of forming the source-drain plug 230, the top of the gate structure 209 is reduced from being affected. loss, and the probability of shorting between the source-drain plug 230 and the gate structure 209 .

栅极盖帽层207选用与侧墙206和第二层间介质层217具有刻蚀选择性的材料,从而有利于保证栅极盖帽层207能够对栅极结构209的顶部起到保护作用。The gate capping layer 207 is selected from a material having etching selectivity to the sidewall 206 and the second interlayer dielectric layer 217 , so as to ensure that the gate capping layer 207 can protect the top of the gate structure 209 .

栅极盖帽层207的材料包括SiC、SiCO、SiN和SiCN中的一种或几种。本实施例中,所述栅极盖帽层207的材料为SiN。The material of the gate capping layer 207 includes one or more of SiC, SiCO, SiN and SiCN. In this embodiment, the material of the gate capping layer 207 is SiN.

所述源漏掺杂层208用于作为晶体管的源区和漏区。The source-drain doped layer 208 is used as a source region and a drain region of a transistor.

当形成NMOS晶体管时,所述源漏掺杂层208包括掺杂有N型离子的应力层,所述应力层的材料为Si、SiC或SiP,所述应力层为NMOS晶体管的沟道区提供拉应力作用,从而有利于提高NMOS晶体管的载流子迁移率,其中,所述N型离子为P离子、As离子或Sb离子;当形成PMOS晶体管时,所述源漏掺杂层208包括掺杂有P型离子的应力层,所述应力层的材料为Si或SiGe,所述应力层为PMOS晶体管的沟道区提供压应力作用,从而有利于提高PMOS晶体管的载流子迁移率,其中,所述P型离子为B离子、Ga离子或In离子。When forming an NMOS transistor, the source-drain doped layer 208 includes a stress layer doped with N-type ions, the material of the stress layer is Si, SiC or SiP, and the stress layer provides a channel region for the NMOS transistor. The effect of tensile stress is beneficial to improve the carrier mobility of NMOS transistors, wherein the N-type ions are P ions, As ions or Sb ions; when forming a PMOS transistor, the source-drain doped layer 208 includes doped A stress layer doped with P-type ions, the material of the stress layer is Si or SiGe, and the stress layer provides a compressive stress effect for the channel region of the PMOS transistor, thereby helping to improve the carrier mobility of the PMOS transistor, wherein , the P-type ions are B ions, Ga ions or In ions.

所述侧墙206用于保护栅极结构209的侧壁。所述侧墙206可以为单层结构或叠层结构,所述侧墙206的材料包括氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,所述侧墙206为单层结构,所述侧墙206的材料为氧化硅。The sidewalls 206 are used to protect the sidewalls of the gate structure 209 . The sidewall 206 can be a single-layer structure or a laminated structure, and the material of the sidewall 206 includes silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, boron nitride and one or more of boron carbonitride. In this embodiment, the sidewall 206 is a single-layer structure, and the material of the sidewall 206 is silicon oxide.

本实施例中,在所述半导体结构的形成过程中,在去除部分厚度的栅极结构209后,在侧墙206和剩余栅极结构209围成的空间内形成栅极盖帽层207,因此,所述侧墙206还覆盖栅极盖帽层207的侧壁。In this embodiment, during the formation of the semiconductor structure, after removing part of the thickness of the gate structure 209, the gate capping layer 207 is formed in the space enclosed by the sidewall 206 and the remaining gate structure 209. Therefore, The sidewall 206 also covers the sidewall of the gate capping layer 207 .

所述刻蚀停止层205用于保护所述侧墙层206的侧壁,在半导体结构的形成工艺中,在形成源漏插塞230的过程中,降低相关刻蚀工艺对所述侧墙层206的侧壁造成损伤的概率。The etch stop layer 205 is used to protect the sidewall of the sidewall layer 206, and in the formation process of the semiconductor structure, in the process of forming the source and drain plug 230, it reduces the impact of the related etching process on the sidewall layer. The probability of damage to the sidewall of 206.

所述刻蚀停止层205的材料包括氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。作为一种示例,所述刻蚀停止层205的材料为氮化硅。The material of the etching stop layer 205 includes one or more of silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride and boron carbonitride. As an example, the material of the etching stop layer 205 is silicon nitride.

所述层间介质层260用于对相邻器件起到隔离作用,还用于对所述栅极插塞226之间和源漏插塞230之间起到电隔离作用。The interlayer dielectric layer 260 is used for isolating adjacent devices, and is also used for electrically isolating between the gate plugs 226 and between the source and drain plugs 230 .

本实施例中,所述层间介质层260包括:第一层间介质层203,位于所述栅极结构209侧部的基底上并覆盖源漏掺杂层208,所述第一层间介质层209覆盖所述保护层228露出的刻蚀停止层205的部分侧壁;第二层间介质层217,覆盖所述第一层间介质层203和保护层228顶部。In this embodiment, the interlayer dielectric layer 260 includes: a first interlayer dielectric layer 203, located on the substrate at the side of the gate structure 209 and covering the source-drain doped layer 208, the first interlayer dielectric layer The layer 209 covers part of the sidewall of the etching stop layer 205 exposed by the protection layer 228 ; the second interlayer dielectric layer 217 covers the first interlayer dielectric layer 203 and the top of the protection layer 228 .

所述第一层间介质层203用于对相邻器件起到隔离作用,还用于对源漏插塞230之间起到电隔离作用。The first interlayer dielectric layer 203 is used to isolate adjacent devices, and is also used to electrically isolate the source and drain plugs 230 .

本实施例中,所述第一层间介质层209覆盖所述保护层228露出的刻蚀停止层205的部分侧壁,以便在半导体结构的形成过程中,能够在第一层间介质层209的顶部形成牺牲层,并采用选择性沉积工艺在所述牺牲层露出的所述栅极结构、侧墙和刻蚀停止层的顶部形成保护层。In this embodiment, the first interlayer dielectric layer 209 covers the part of the sidewall of the etching stop layer 205 exposed by the protective layer 228, so that during the formation of the semiconductor structure, the first interlayer dielectric layer 209 can A sacrificial layer is formed on the top of the sacrificial layer, and a protective layer is formed on the top of the gate structure, sidewalls and etching stop layer exposed by the sacrificial layer by using a selective deposition process.

所述第一层间介质层203的材料为绝缘材料,第一层间介质层203的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。作为一种示例,所述第一层间介质层203的材料为氧化硅。The material of the first interlayer dielectric layer 203 is an insulating material, and the material of the first interlayer dielectric layer 203 includes silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, and silicon oxycarbonitride. one or more of . As an example, the material of the first interlayer dielectric layer 203 is silicon oxide.

所述第二层间介质层217对所述栅极插塞226之间和源漏插塞230之间起到电隔离作用。The second interlayer dielectric layer 217 plays an electrical isolation role between the gate plugs 226 and between the source and drain plugs 230 .

所述第二层间介质层217的材料为绝缘材料,第二层间介质层217的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。作为一种示例,所述第二层间介质层217的材料为氧化硅。The material of the second interlayer dielectric layer 217 is an insulating material, and the material of the second interlayer dielectric layer 217 includes silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride and silicon oxycarbonitride. one or more of . As an example, the material of the second interlayer dielectric layer 217 is silicon oxide.

所述保护层228能够对所述侧墙206和刻蚀停止层205的顶部起到保护作用,在源漏掺杂层208的顶部形成贯穿所述层间介质层260的源漏插塞230的过程中,采用的刻蚀工艺对所述刻蚀停止层205的顶部造成损伤的概率下降,有利于确保刻蚀停止层205容貌的完整性,相应的,有利于确保所述刻蚀停止层205对侧墙206的覆盖能力,在所述刻蚀停止层和保护层的共同保护下,使得所述侧墙206因被暴露而受到损伤的风险也下降,从而提高了半导体结构的性能。The protection layer 228 can protect the top of the sidewall 206 and the etch stop layer 205, and form the source and drain plug 230 penetrating through the interlayer dielectric layer 260 on the top of the source and drain doped layer 208. During the process, the probability of the etching process used to cause damage to the top of the etching stop layer 205 is reduced, which is conducive to ensuring the integrity of the appearance of the etching stop layer 205, and correspondingly, is conducive to ensuring that the etching stop layer 205 The covering capability of the sidewall 206, under the common protection of the etching stop layer and the protective layer, reduces the risk of the sidewall 206 being damaged due to exposure, thereby improving the performance of the semiconductor structure.

本实施例中,栅极盖帽层207位于所述栅极结构209的顶部,所述保护层228相应还位于所述栅极盖帽层207的顶部。为了保证贯穿所述层间介质层260和保护层228的相邻所述栅极插塞226的深度一致,在形成栅极插塞226的过程中,以所述栅极结构209顶部的保护层228定义出刻蚀层间介质层260的刻蚀停止的位置,然后再继续刻蚀所述栅极盖帽层207。In this embodiment, the gate capping layer 207 is located on the top of the gate structure 209 , and the protective layer 228 is also located on the top of the gate capping layer 207 . In order to ensure that the depths of the adjacent gate plugs 226 passing through the interlayer dielectric layer 260 and the protective layer 228 are consistent, in the process of forming the gate plugs 226, the protective layer on the top of the gate structure 209 228 defines the etching stop position for etching the interlayer dielectric layer 260 , and then continues to etch the gate capping layer 207 .

本实施例中,所述保护层228还延伸覆盖所述刻蚀停止层205的部分侧壁。In this embodiment, the protection layer 228 also extends to cover part of the sidewall of the etch stop layer 205 .

通过所述保护层228延伸覆盖所述刻蚀停止层205的部分侧壁,在源漏掺杂层208的顶部形成源漏插塞230的半导体形成工艺中,所述保护层228能够起到自对准的效果,降低了所述刻蚀停止层205的顶部和侧壁受到损伤的概率,相应的,提高了所述刻蚀停止层205的形貌完整性,从而使得所述侧墙206因被暴露而受到损伤的风险下降,进而提高了半导体结构的性能。The protective layer 228 extends to cover part of the sidewall of the etching stop layer 205, and in the semiconductor formation process of forming the source-drain plug 230 on the top of the source-drain doped layer 208, the protective layer 228 can function as a self- The alignment effect reduces the probability that the top and sidewalls of the etch stop layer 205 are damaged, and correspondingly improves the shape integrity of the etch stop layer 205, so that the sidewalls 206 are The risk of damage from exposure is reduced, thereby improving the performance of the semiconductor structure.

需要说明的是,所述保护层228的厚度不宜过大,也不宜过小。如果所述保护层228的厚度过大,在所述栅极结构209的顶部形成栅极插塞226的半导体结构的形成工艺中,增大了去除所述栅极结构209的顶部的保护层228的工艺难度,影响了工艺效率,同时,也使得形成所述栅极插塞226的工艺窗口变小,增大了形成所述栅极插塞226的工艺难度,此外,当所述保护层228还延伸覆盖所述刻蚀停止层205的部分侧壁时,所述保护层228的厚度过大,还容易导致形成源漏插塞230的工艺窗口变小,从而影响半导体结构的性能;如果所述保护层228的厚度过小,则容易降低所述保护层228对所述刻蚀停止层205的顶部起到的保护作用,在源漏掺杂层208的顶部形成源漏插塞230的半导体结构形成工艺中,增大了刻蚀工艺对刻蚀停止层205的顶部造成损伤的概率,相应的,也增大了所述侧墙206因被暴露而受到损伤的风险,从而影响了半导体结构的性能。为此,本实施例中,所述保护层228的厚度为3纳米至4纳米。It should be noted that the thickness of the protective layer 228 should not be too large, nor should it be too small. If the thickness of the protection layer 228 is too large, in the formation process of the semiconductor structure forming the gate plug 226 on the top of the gate structure 209, the protection layer 228 on the top of the gate structure 209 needs to be removed. The difficulty of the process affects the process efficiency. At the same time, it also makes the process window for forming the gate plug 226 smaller, which increases the process difficulty of forming the gate plug 226. In addition, when the protective layer 228 When extending and covering part of the sidewall of the etch stop layer 205, the thickness of the protective layer 228 is too large, and it is easy to cause the process window for forming the source and drain plugs 230 to become smaller, thereby affecting the performance of the semiconductor structure; if the If the thickness of the protective layer 228 is too small, the protective effect of the protective layer 228 on the top of the etching stop layer 205 will be easily reduced, and the semiconductor source and drain plug 230 will be formed on the top of the source and drain doped layer 208. In the structure formation process, the probability of the etching process causing damage to the top of the etching stop layer 205 is increased, and correspondingly, the risk of the sidewall 206 being damaged due to exposure is also increased, thereby affecting the semiconductor structure. performance. Therefore, in this embodiment, the protective layer 228 has a thickness of 3 nm to 4 nm.

还需要说明的是,当所述保护层228还延伸覆盖所述刻蚀停止层205的部分侧壁时,所述保护层228覆盖所述刻蚀停止层205的高度不宜过小,也不宜过大。如果所述保护层228覆盖所述刻蚀停止层205的高度过大,则导致在所述源漏掺杂层208的顶部形成的源漏插塞230尺寸不能满足工艺要求,使得所述源漏插塞230与所述源漏掺杂层208之间的接触电阻增大,从而影响半导体结构的性能;如果所述保护层228覆盖所述刻蚀停止层205的高度过小,则容易导致所述保护层228对所述刻蚀停止层205侧壁的保护效果下降,增大了所述侧墙206受损的概率,从而影响半导体结构的性能。为此,本实施例中,所述保护层228覆盖所述刻蚀停止层205的高度为2纳米至5纳米。例如,所述保护层228覆盖所述刻蚀停止层205的高度为3纳米或4纳米。It should also be noted that when the protective layer 228 also extends to cover part of the sidewall of the etching stop layer 205, the height of the protective layer 228 covering the etching stop layer 205 should not be too small, nor should it be too high. big. If the height of the protective layer 228 covering the etching stop layer 205 is too large, the size of the source and drain plugs 230 formed on the top of the source and drain doped layer 208 cannot meet the process requirements, so that the source and drain The contact resistance between the plug 230 and the source-drain doped layer 208 increases, thereby affecting the performance of the semiconductor structure; if the height of the protective layer 228 covering the etching stop layer 205 is too small, it is easy to cause the The protection effect of the protective layer 228 on the sidewall of the etching stop layer 205 is reduced, which increases the probability of damage to the sidewall 206 , thereby affecting the performance of the semiconductor structure. Therefore, in this embodiment, the protective layer 228 covers the etching stop layer 205 at a height of 2 nm to 5 nm. For example, the protection layer 228 covers the etching stop layer 205 with a height of 3 nm or 4 nm.

本实施例中,所述保护层228的材料包括TiO2和HfO2中的一种或多种。In this embodiment, the material of the protection layer 228 includes one or more of TiO 2 and HfO 2 .

通过选用TiO2和HfO2中的一种或多种,在半导体结构的形成工艺中,能够采用选择性沉积工艺形成所述保护层228,使得保护层228的材料与选择性沉积工艺相兼容。具体地,在形成所述保护层228之前,会使用H2等离子体对牺牲层(图未示)的表面进行钝化处理,使得牺牲层的表面改性为悬挂键(C-H),从而在形成所述保护层228的过程中,牺牲层难以和沉积工艺采用的前驱物发生反应,即增大了所述保护层228在表面钝化过的牺牲层的顶部沉积的难度。By selecting one or more of TiO 2 and HfO 2 , in the formation process of the semiconductor structure, the protective layer 228 can be formed by a selective deposition process, so that the material of the protective layer 228 is compatible with the selective deposition process. Specifically, before forming the protective layer 228, the surface of the sacrificial layer (not shown) will be passivated using H2 plasma, so that the surface of the sacrificial layer is modified into dangling bonds (CH), so that During the process of the protective layer 228 , it is difficult for the sacrificial layer to react with the precursor used in the deposition process, which increases the difficulty of depositing the protective layer 228 on the top of the sacrificial layer whose surface has been passivated.

而且,所述TiO和HfO2的材料硬度较大,且不易于和蚀刻常用的碳氟类气体反应,在所述源漏掺杂层208的顶部形成源漏插塞230的形成工艺中,所述保护层228被去除的速率低于所述层间介质层260被去除的速率,使得所述保护层228能够对所述侧墙206和刻蚀停止层205的顶部起到很好的保护作用。Moreover, the materials of TiO and HfO 2 have relatively high hardness and are not easy to react with fluorocarbon gases commonly used in etching. The removal rate of the protective layer 228 is lower than the removal rate of the interlayer dielectric layer 260, so that the protective layer 228 can play a good role in protecting the top of the sidewall 206 and the etch stop layer 205 .

所述源漏插塞230用于实现所述源漏掺杂层208与外部电路或其他互连结构之间的电连接。The source-drain plug 230 is used to realize the electrical connection between the source-drain doped layer 208 and external circuits or other interconnection structures.

本实施例中,源漏插塞230的材料为钨。钨的电阻率较低,有利于改善后段RC的信号延迟,提高芯片的处理速度,同时还有利于降低源漏插塞230的电阻,相应降低了功耗。在其他实施例中,源漏插塞的材料还可以为钼或钌等导电材料。In this embodiment, the material of the source-drain plug 230 is tungsten. The lower resistivity of tungsten is beneficial to improve the signal delay of the back-stage RC and improve the processing speed of the chip, and also helps to reduce the resistance of the source-drain plug 230, thereby reducing power consumption accordingly. In other embodiments, the material of the source and drain plugs may also be conductive materials such as molybdenum or ruthenium.

栅极插塞226用于实现栅极结构209与外部电路或其他互连结构之间的电连接。The gate plug 226 is used to realize the electrical connection between the gate structure 209 and external circuits or other interconnection structures.

本实施例中,在所述半导体结构的形成工艺中,所述源漏插塞230与所述栅极插塞226在同一步骤中形成,因此,所述栅极插塞226的材料与所述源漏插塞230的材料相同,为此,所述栅极插塞226的材料为钨。在其他实施例中,源漏插塞的材料还可以为钼或钌等导电材料。In this embodiment, in the formation process of the semiconductor structure, the source-drain plug 230 and the gate plug 226 are formed in the same step, therefore, the material of the gate plug 226 is the same as that of the gate plug 226 The material of the source and drain plugs 230 is the same, therefore, the material of the gate plug 226 is tungsten. In other embodiments, the material of the source and drain plugs may also be conductive materials such as molybdenum or ruthenium.

本实施例中,所述栅极插塞226还贯穿位于所述栅极结构209顶部的所述栅极盖帽层207。In this embodiment, the gate plug 226 also penetrates through the gate capping layer 207 on top of the gate structure 209 .

所述栅极插塞226贯穿位于所述栅极结构209顶部的所述栅极盖帽层207,使得所述栅极插塞226与所述栅极结构209的顶部相电连接,从而达到对所述栅极插塞226的电性要求。The gate plug 226 penetrates through the gate capping layer 207 at the top of the gate structure 209, so that the gate plug 226 is electrically connected to the top of the gate structure 209, so as to achieve the The electrical requirements of the gate plug 226 are described above.

图5至图17是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。5 to 17 are structural schematic diagrams corresponding to each step in an embodiment of the method for forming a semiconductor structure of the present invention.

参考图5,提供基底,所述基底上形成有栅极结构109,所述栅极结构109两侧的基底中形成有源漏掺杂层108,所述栅极结构109的侧壁形成有侧墙106,所述侧墙106的侧壁形成有刻蚀停止层105,所述栅极结构109露出的所述基底上形成有第一层间介质层103,所述第一层间介质层103覆盖所述刻蚀停止层105的侧壁。Referring to FIG. 5 , a substrate is provided, on which a gate structure 109 is formed, source and drain doped layers 108 are formed in the substrate on both sides of the gate structure 109, and sidewalls of the gate structure 109 are formed with sidewalls. Wall 106, the side wall of the sidewall 106 is formed with an etch stop layer 105, the substrate exposed by the gate structure 109 is formed with a first interlayer dielectric layer 103, and the first interlayer dielectric layer 103 Covering the sidewalls of the etch stop layer 105 .

所述基底用于为后续工艺制程提供工艺平台。The substrate is used to provide a process platform for subsequent process steps.

本实施例中,所述基底用于形成鳍式场效应晶体管(FinFET)。所述基底包括衬底100以及凸出于衬底100的鳍部102。在其他实施例中,当基底用于形成平面型场效应晶体管时,基底相应为平面型衬底。In this embodiment, the substrate is used to form a Fin Field Effect Transistor (FinFET). The base includes a substrate 100 and fins 102 protruding from the substrate 100 . In other embodiments, when the substrate is used to form a planar field effect transistor, the substrate is a planar substrate.

本实施例中,所述鳍部102的材料与所述衬底100的材料相同,均为硅。在其他实施例中,所述衬底的材料还可以为锗、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the material of the fin portion 102 is the same as that of the substrate 100 , both being silicon. In other embodiments, the material of the substrate may also be germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon-on-insulator substrate or a germanium-on-insulator substrate.

本实施例中,所述半导体结构的形成方法还包括:在形成所述鳍部102后,在所述鳍部102露出的衬底100上形成隔离层101,所述隔离层101覆盖鳍部102的部分侧壁。In this embodiment, the method for forming the semiconductor structure further includes: after forming the fin 102 , forming an isolation layer 101 on the substrate 100 exposed by the fin 102 , and the isolation layer 101 covers the fin 102 part of the side wall.

所述隔离层101用于隔离相邻器件。所述隔离层101的材料可以为氧化硅、氮化硅或氮氧化硅。本实施例中,所述隔离层101的材料为氧化硅。The isolation layer 101 is used to isolate adjacent devices. The material of the isolation layer 101 may be silicon oxide, silicon nitride or silicon oxynitride. In this embodiment, the material of the isolation layer 101 is silicon oxide.

在器件工作时,所述栅极结构109用于控制导电沟道的开启或关断。When the device is working, the gate structure 109 is used to control the conduction channel to be turned on or off.

本实施例中,所述栅极结构109位于衬底100上,所述栅极结构109横跨所述鳍部102且覆盖所述鳍部102的部分顶部和部分侧壁。In this embodiment, the gate structure 109 is located on the substrate 100 , the gate structure 109 crosses the fin 102 and covers part of the top and part of the sidewall of the fin 102 .

本实施例中,所述栅极结构109包括栅介质层(图未示)、以及覆盖所述栅介质层的栅电极层(图未示)。In this embodiment, the gate structure 109 includes a gate dielectric layer (not shown in the figure) and a gate electrode layer (not shown in the figure) covering the gate dielectric layer.

所述栅介质层用于隔离栅电极层和沟道。所述栅介质层的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、SiO2和La2O3中的一种或多种。The gate dielectric layer is used to isolate the gate electrode layer and the channel. The material of the gate dielectric layer includes one or more of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, Al 2 O 3 , SiO 2 and La 2 O 3 .

所述栅电极层用于后续与外部互连结构电连接。所述栅电极层的材料包括TiN、TaN、Ta、Ti、TiAl、W、Al、TiSiN和TiAlC中的一种或多种。The gate electrode layer is used for subsequent electrical connection with an external interconnection structure. The material of the gate electrode layer includes one or more of TiN, TaN, Ta, Ti, TiAl, W, Al, TiSiN and TiAlC.

作为一种示例,栅电极层可以包括功函数层、以及位于所述功函数层上的电极层,其中,功函数层用于调节晶体管的阈值电压。在其他实施例中,栅电极层也可以仅包括功函数层。As an example, the gate electrode layer may include a work function layer and an electrode layer located on the work function layer, wherein the work function layer is used to adjust the threshold voltage of the transistor. In other embodiments, the gate electrode layer may also only include a work function layer.

所述源漏掺杂层108用于作为晶体管的源区和漏区。The source-drain doped layer 108 is used as a source region and a drain region of a transistor.

当形成NMOS晶体管时,所述源漏掺杂层108包括掺杂有N型离子的应力层,所述应力层的材料为Si或SiC,所述应力层为NMOS晶体管的沟道区提供拉应力作用,从而有利于提高NMOS晶体管的载流子迁移率,其中,所述N型离子为P离子、As离子或Sb离子;当形成PMOS晶体管时,所述源漏掺杂层108包括掺杂有P型离子的应力层,所述应力层的材料为Si或SiGe,所述应力层为PMOS晶体管的沟道区提供压应力作用,从而有利于提高PMOS晶体管的载流子迁移率,其中,所述P型离子为B离子、Ga离子或In离子。When forming an NMOS transistor, the source-drain doped layer 108 includes a stress layer doped with N-type ions, the material of the stress layer is Si or SiC, and the stress layer provides tensile stress for the channel region of the NMOS transistor. role, thereby helping to improve the carrier mobility of NMOS transistors, wherein the N-type ions are P ions, As ions or Sb ions; when forming a PMOS transistor, the source-drain doped layer 108 includes doped A stress layer of P-type ions, the material of the stress layer is Si or SiGe, and the stress layer provides a compressive stress effect for the channel region of the PMOS transistor, thereby helping to improve the carrier mobility of the PMOS transistor. The P-type ions are B ions, Ga ions or In ions.

所述侧墙106用于保护栅极结构109的侧壁。所述侧墙106可以为单层结构或叠层结构,所述侧墙106的材料包括氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,所述侧墙106为单层结构,所述侧墙106的材料为氧化硅。The sidewalls 106 are used to protect sidewalls of the gate structure 109 . The sidewall 106 can be a single-layer structure or a laminated structure, and the material of the sidewall 106 includes silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, boron nitride and one or more of boron carbonitride. In this embodiment, the sidewall 106 is a single-layer structure, and the material of the sidewall 106 is silicon oxide.

所述刻蚀停止层105用于保护所述侧墙106的侧壁,降低后续形成第一开口的过程中,相关刻蚀工艺对所述侧墙106的侧壁造成损伤的概率。The etch stop layer 105 is used to protect the sidewalls of the sidewalls 106 and reduce the probability of damage to the sidewalls of the sidewalls 106 caused by related etching processes during the subsequent formation of the first opening.

所述刻蚀停止层105的材料包括氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。作为一种示例,所述刻蚀停止层105的材料为氮化硅。The material of the etching stop layer 105 includes one or more of silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride and boron carbonitride. As an example, the material of the etching stop layer 105 is silicon nitride.

所述第一层间介质层103用于对相邻器件起到隔离作用,还用于为后续形成的源漏插塞和第二保护层占据了空间位置。The first interlayer dielectric layer 103 is used to isolate adjacent devices, and is also used to occupy a space position for a source-drain plug and a second protective layer formed later.

所述第一层间介质层103的材料为绝缘材料,第一层间介质层103的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。作为一种示例,所述第一层间介质层103的材料为氧化硅。The material of the first interlayer dielectric layer 103 is an insulating material, and the material of the first interlayer dielectric layer 103 includes silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, and silicon oxycarbonitride. one or more of . As an example, the material of the first interlayer dielectric layer 103 is silicon oxide.

本实施例中,所述提供基底的步骤中,所述栅极结构109的顶部还形成有栅极盖帽层107。In this embodiment, in the step of providing the substrate, a gate capping layer 107 is further formed on the top of the gate structure 109 .

所述栅极盖帽层107用于对栅极结构109的顶部起到保护作用,从而在后续形成源漏插塞的过程中,降低栅极结构109受损、以及源漏插塞与栅极结构109发生短接的概率。The gate capping layer 107 is used to protect the top of the gate structure 109, so as to reduce the damage of the gate structure 109 and the source-drain plug and gate structure in the subsequent process of forming the source-drain plug. 109 probability of short circuit.

栅极盖帽层107选用与侧墙106和后续形成的第二层间介质层具有刻蚀选择性的材料,从而有利于保证栅极盖帽层107能够对栅极结构109的顶部起到保护作用。The gate capping layer 107 is selected from a material having etch selectivity to the sidewall 106 and the subsequently formed second interlayer dielectric layer, so as to ensure that the gate capping layer 107 can protect the top of the gate structure 109 .

栅极盖帽层107的材料包括SiC、SiCO、SiN和SiCN中的一种或几种。本实施例中,所述栅极盖帽层107的材料为SiN。The material of the gate cap layer 107 includes one or more of SiC, SiCO, SiN and SiCN. In this embodiment, the material of the gate capping layer 107 is SiN.

参考图6,去除部分厚度的所述第一层间介质层103,形成由所述刻蚀停止层105的侧壁和剩余第一层间介质层103的顶部围成的凹槽110。Referring to FIG. 6 , part of the thickness of the first interlayer dielectric layer 103 is removed to form a groove 110 surrounded by the sidewalls of the etch stop layer 105 and the top of the remaining first interlayer dielectric layer 103 .

所述凹槽110为后续形成牺牲层和保护层提供空间位置。The groove 110 provides a space for the subsequent formation of a sacrificial layer and a protective layer.

本实施例中,回刻蚀部分厚度的第一层间介质层103,从而去除部分厚度的所述第一层间介质层103。In this embodiment, the partial thickness of the first interlayer dielectric layer 103 is etched back, thereby removing the partial thickness of the first interlayer dielectric layer 103 .

具体地,采用的刻蚀的工艺包括干法刻蚀工艺。Specifically, the etching process used includes a dry etching process.

所述干法刻蚀工艺包括各向异性的干法刻蚀工艺,所述各项异性的干法刻蚀工艺具有各向异性刻蚀的特性。即纵向刻蚀速率大于横向刻蚀速率,能够去除部分厚度的所述第一层间介质层103的同时,保证所述凹槽110侧壁的形貌质量。The dry etching process includes an anisotropic dry etching process, and the anisotropic dry etching process has characteristics of anisotropic etching. That is, the longitudinal etching rate is greater than the lateral etching rate, which can remove part of the thickness of the first interlayer dielectric layer 103 while ensuring the quality of the topography of the sidewall of the groove 110 .

需要说明的是,所述凹槽110的深度不宜过大,也不宜过小。如果所述凹槽110的深度过大,后续在所述凹槽110中形成的牺牲层的厚度也就过大,由于后续在所述凹槽110的侧壁形成第二保护层,使得后续去除所述牺牲层的工艺窗口变小,增大了去除所述牺牲层的工艺难度,从而影响半导体结构的性能,而且,还容易造成不必要的过量刻蚀,从而导致工艺成本的浪费;如果所述凹槽110的深度过小,后续在所述凹槽110中形成满足工艺尺寸要求的牺牲层之后,预留给所述第二保护层的空间位置过小,使得所述第二保护层的尺寸要求不符合工艺要求,从而影响所述第二保护层在形成第一开口的过程中起到的自对准的作用。为此,本实施例中,所述凹槽110的深度为10纳米至20纳米。It should be noted that the depth of the groove 110 should neither be too large nor too small. If the depth of the groove 110 is too large, the thickness of the sacrificial layer subsequently formed in the groove 110 is also too large, because the second protective layer is subsequently formed on the sidewall of the groove 110, making subsequent removal The process window of the sacrificial layer becomes smaller, which increases the process difficulty of removing the sacrificial layer, thereby affecting the performance of the semiconductor structure, and also easily causes unnecessary excessive etching, resulting in waste of process cost; if the The depth of the groove 110 is too small, and after forming a sacrificial layer in the groove 110 that meets the process size requirements, the space reserved for the second protective layer is too small, so that the second protective layer The size requirement does not meet the process requirement, thereby affecting the self-alignment function of the second protective layer in the process of forming the first opening. Therefore, in this embodiment, the depth of the groove 110 is 10 nm to 20 nm.

参考图7至图8,在所述凹槽110中形成牺牲层112。Referring to FIGS. 7 to 8 , a sacrificial layer 112 is formed in the groove 110 .

具体地,在所述凹槽中形成牺牲层112,使得所述牺牲层112露出所述刻蚀停止层105、侧墙106和栅极盖帽层107的顶部,利于后续在所述刻蚀停止层105、侧墙106和栅极盖帽层107的顶部形成第一保护层,同时,在后续形成所述第一保护层的沉积工艺中,通过选用在所述牺牲层112的顶部沉积效果较差的材料作为所述牺牲层112的材料,降低在所述牺牲层112的顶部形成第一保护层的概率,从而能够省去去除所述牺牲层112顶部形成的第一保护层的工艺步骤,进而简化工艺步骤、降低了工艺成本。Specifically, a sacrificial layer 112 is formed in the groove, so that the sacrificial layer 112 exposes the tops of the etch stop layer 105, the sidewall 106 and the gate cap layer 107, which is beneficial to the subsequent formation of the etch stop layer. 105. A first protection layer is formed on the top of the sidewall 106 and the gate cap layer 107, and at the same time, in the subsequent deposition process for forming the first protection layer, by selecting the top of the sacrificial layer 112 The material used as the material of the sacrificial layer 112 reduces the probability of forming the first protective layer on the top of the sacrificial layer 112, so that the process step of removing the first protective layer formed on the top of the sacrificial layer 112 can be omitted, thereby simplifying the process steps, reducing the process cost.

本实施例中,所述牺牲层112的顶部低于所述刻蚀停止层105的顶部,且所述牺牲层112露出所述刻蚀停止层105的部分侧壁。In this embodiment, the top of the sacrificial layer 112 is lower than the top of the etch stop layer 105 , and the sacrificial layer 112 exposes part of the sidewall of the etch stop layer 105 .

所述牺牲层112露出所述刻蚀停止层105的部分侧壁,便于后续在所述牺牲层112露出的所述刻蚀停止层105的侧壁形成第二保护层,从而后续在所述源漏掺杂层108的顶部形成第一开口的过程中,所述第二保护层能够起到自对准的效果,降低了形成所述第一开口的相关刻蚀工艺对所述栅极结构和侧墙的顶部造成损伤的概率,从而提高了半导体结构的性能。The sacrificial layer 112 exposes a part of the sidewall of the etch stop layer 105, which facilitates subsequent formation of a second protection layer on the sidewall of the etch stop layer 105 exposed by the sacrificial layer 112, so that the source In the process of forming the first opening on the top of the drain doped layer 108, the second protection layer can play a self-alignment effect, reducing the impact of the etching process related to forming the first opening on the gate structure and The probability of damage to the top of the sidewall is caused, thereby improving the performance of the semiconductor structure.

需要说明的是,所述牺牲层112顶部至刻蚀停止层105顶部的距离不宜过小,也不宜过大。如果所述牺牲层112的顶部至所述刻蚀停止层105顶部的距离过大,则容易导致后续在所述刻蚀停止层105侧壁形成的第二保护层的高度过大,相应的,导致后续在所述源漏掺杂层108的顶部形成的源漏插塞尺寸不能满足工艺要求,使得所述源漏插塞与所述源漏掺杂层108之间的接触电阻增大,从而影响半导体结构的性能;如果所述牺牲层112的顶部至所述刻蚀停止层105顶部的距离过小,则容易导致后续在所述刻蚀停止层105侧壁形成的第二保护层的高度过小,相应的,导致所述第二保护层对所述刻蚀停止层105侧壁的保护效果下降,增大了所述侧墙106受损的概率,同时,后续在所述源漏掺杂层108的顶部形成第一开口的过程中,也影响了所述第二保护层起到的刻蚀停止的作用,从而影响了半导体结构的性能。为此,本实施例中,所述牺牲层112顶部至刻蚀停止层105顶部的距离为10纳米至20纳米。It should be noted that the distance between the top of the sacrificial layer 112 and the top of the etching stop layer 105 should not be too small, nor should it be too large. If the distance from the top of the sacrificial layer 112 to the top of the etch stop layer 105 is too large, it is easy to cause the height of the second protective layer formed on the sidewall of the etch stop layer 105 to be too large. Correspondingly, As a result, the size of the source-drain plugs subsequently formed on the top of the source-drain doped layer 108 cannot meet the process requirements, so that the contact resistance between the source-drain plugs and the source-drain doped layer 108 increases, thereby Affect the performance of the semiconductor structure; if the distance from the top of the sacrificial layer 112 to the top of the etch stop layer 105 is too small, it will easily lead to the height of the second protective layer formed on the sidewall of the etch stop layer 105 subsequently. Correspondingly, the protective effect of the second protection layer on the sidewall of the etch stop layer 105 is reduced, which increases the probability of damage to the sidewall 106. The process of forming the first opening on the top of the impurity layer 108 also affects the etching stop function of the second protection layer, thereby affecting the performance of the semiconductor structure. Therefore, in this embodiment, the distance from the top of the sacrificial layer 112 to the top of the etching stop layer 105 is 10 nm to 20 nm.

本实施例中,在所述凹槽110中形成牺牲层112的步骤包括:如图7所示,在所述凹槽110中形成牺牲材料层111,所述牺牲材料层111还覆盖所述栅极结构109、侧墙106和刻蚀停止层105的顶部;如图8所示,去除所述栅极结构109、侧墙106和刻蚀停止层105顶部的牺牲材料层111、以及所述凹槽110中部分厚度的所述牺牲材料层111,所述凹槽110中剩余的所述牺牲材料层111作为所述牺牲层112,所述牺牲层112露出所述刻蚀停止层105的部分侧壁。In this embodiment, the step of forming the sacrificial layer 112 in the groove 110 includes: as shown in FIG. 7 , forming a sacrificial material layer 111 in the groove 110, and the sacrificial material layer 111 also covers the gate pole structure 109, sidewall 106 and the top of etch stop layer 105; as shown in FIG. Partial thickness of the sacrificial material layer 111 in the groove 110, the remaining sacrificial material layer 111 in the groove 110 is used as the sacrificial layer 112, and the sacrificial layer 112 exposes part of the side of the etching stop layer 105 wall.

在其他实施例中,根据工艺需求,牺牲层顶部也可以和刻蚀停止层顶部相齐平,从而使得第一保护层仅形成在所述栅极结构、侧墙和刻蚀停止层的顶部。In other embodiments, according to process requirements, the top of the sacrificial layer may also be flush with the top of the etch stop layer, so that the first protection layer is only formed on top of the gate structure, sidewalls and etch stop layer.

本实施例中,在所述凹槽110中形成牺牲层112的步骤中,所述牺牲层112的材料包括无定型碳和旋涂碳中的一种或两种。In this embodiment, in the step of forming the sacrificial layer 112 in the groove 110 , the material of the sacrificial layer 112 includes one or both of amorphous carbon and spin-on carbon.

所述无定型碳和旋涂碳材料具有材料硬度小的特性,有利于后续通过灰化工艺或者湿法刻蚀工艺去除所述牺牲层112,降低了去除所述牺牲层112的工艺难度。The amorphous carbon and spin-on carbon materials have the characteristics of low material hardness, which is beneficial to the subsequent removal of the sacrificial layer 112 through an ashing process or a wet etching process, and reduces the process difficulty of removing the sacrificial layer 112 .

同时,后续在形成所述第一保护层之前,会使用H2等离子体对所述牺牲层112的表面进行钝化处理,使得所述牺牲层112的表面改性为悬挂键(C-H),从而在形成所述第一保护层的过程中,所述牺牲层112难以和沉积工艺采用的前驱物发生反应,即增大了所述第一保护层在表面钝化过的牺牲层112的顶部沉积的难度。为此,所述无定型碳和旋涂碳材料具有不易沉积的特性,后续在栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层的过程中,形成所述第一保护层的材料不易沉积在所述牺牲层112的顶部,从而减少了去除所述牺牲层112的顶部形成第一保护层的工艺步骤,降低了工艺成本。At the same time, before forming the first protective layer, H2 plasma will be used to passivate the surface of the sacrificial layer 112, so that the surface of the sacrificial layer 112 is modified into dangling bonds (CH), thereby In the process of forming the first protective layer, the sacrificial layer 112 is difficult to react with the precursor used in the deposition process, which increases the deposition of the first protective layer on the top of the sacrificial layer 112 after surface passivation. difficulty. For this reason, the amorphous carbon and spin-on carbon materials are not easy to be deposited. In the process of forming the first protective layer on the top of the gate structure 109, the spacer 106 and the etch stop layer 105, the first protective layer is formed. The material of a protective layer is not easily deposited on the top of the sacrificial layer 112 , thereby reducing the process steps of removing the top of the sacrificial layer 112 to form the first protective layer, and reducing the process cost.

本实施例中,在所述凹槽110中形成牺牲材料层111的工艺包括化学气相沉积工艺。In this embodiment, the process of forming the sacrificial material layer 111 in the groove 110 includes a chemical vapor deposition process.

所述化学气相沉积具有沉积速率快、填充效果好等特征,在所述凹槽110中形成的牺牲层112与所述刻蚀停止层105的侧壁能够紧密贴合,从而使得后续仅在所述牺牲层112露出的所述刻蚀停止层105的侧壁形成第二保护层。The chemical vapor deposition has the characteristics of fast deposition rate and good filling effect, and the sacrificial layer 112 formed in the groove 110 can closely adhere to the sidewall of the etch stop layer 105, so that only in the subsequent The sidewall of the etching stop layer 105 exposed by the sacrificial layer 112 forms a second protection layer.

本实施例中,回刻蚀部分厚度的牺牲材料层111,从而去除所述栅极结构109、侧墙106和刻蚀停止层105顶部的牺牲材料层111、以及所述凹槽110中部分厚度的所述牺牲材料层111。In this embodiment, the partial thickness of the sacrificial material layer 111 is etched back, thereby removing the sacrificial material layer 111 on the top of the gate structure 109, the sidewall 106 and the etch stop layer 105, and a partial thickness of the groove 110. The sacrificial material layer 111.

具体地,采用的刻蚀工艺包括干法刻蚀工艺。Specifically, the etching process used includes a dry etching process.

由于所述栅极结构109、侧墙106和刻蚀停止层105,与所述牺牲材料层111具有较高的刻蚀选择比,所述干法刻蚀工艺具有各向异性的干法刻蚀特性,在去除所述栅极结构109、侧墙106和刻蚀停止层105顶部的牺牲材料层111、以及所述凹槽110中部分厚度的所述牺牲材料层111的过程中,选用干法刻蚀工艺能够降低对半导体结构其他膜层的损伤。Since the gate structure 109, the spacer 106 and the etch stop layer 105 have a higher etching selectivity than the sacrificial material layer 111, the dry etching process has an anisotropic dry etching characteristics, in the process of removing the sacrificial material layer 111 on the top of the gate structure 109, the spacer 106 and the etch stop layer 105, and the partial thickness of the sacrificial material layer 111 in the groove 110, the dry method is selected. The etching process can reduce damage to other layers of the semiconductor structure.

而且,干法刻蚀工艺具有各向异性刻蚀的特性,能够实现纵向的刻蚀,从而在降低牺牲材料层111厚度的同时,有利于提高牺牲层112的顶面平坦度和厚度均一性,从而提高后续第二保护层覆盖刻蚀停止层105的高度的均一性。Moreover, the dry etching process has the characteristics of anisotropic etching, and can realize vertical etching, so that while reducing the thickness of the sacrificial material layer 111, it is beneficial to improve the flatness and thickness uniformity of the top surface of the sacrificial layer 112, Therefore, the height uniformity of the subsequent second protection layer covering the etching stop layer 105 is improved.

参考图9,在所述栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层115。Referring to FIG. 9 , a first protective layer 115 is formed on top of the gate structure 109 , spacer 106 and etch stop layer 105 .

需要说明的是,在栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层115,由于所述第一保护层115能够对所述侧墙106和刻蚀停止层105的顶部起到保护作用,后续在所述源漏掺杂层108的顶部形成贯穿所述第二层间介质层和第一层间介质层的第一开口的过程中,相关刻蚀工艺对所述刻蚀停止层105的顶部造成损伤的概率下降,有利于确保刻蚀停止层105的完整性,相应的,有利于确保所述刻蚀停止层105对侧墙106的覆盖能力,使得所述侧墙106因被暴露而受到损伤的风险也下降,从而提高了半导体结构的性能。It should be noted that the first protection layer 115 is formed on the top of the gate structure 109, the spacer 106 and the etch stop layer 105, because the first protection layer 115 can protect the spacer 106 and the etch stop layer 105 The top of the doped source-drain layer 108 plays a protective role. In the subsequent process of forming the first opening through the second interlayer dielectric layer and the first interlayer dielectric layer on the top of the source and drain doped layer 108, the relevant etching process will The probability of damage caused by the top of the etch stop layer 105 is reduced, which is beneficial to ensure the integrity of the etch stop layer 105, and correspondingly, is beneficial to ensure the covering ability of the etch stop layer 105 to the sidewall 106, so that the The risk of damage to the sidewalls 106 due to exposure is also reduced, thereby improving the performance of the semiconductor structure.

本实施例中,在所述栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层115的步骤中,所述第一保护层115还覆盖所述栅极盖帽层107的顶部。In this embodiment, in the step of forming the first protection layer 115 on the top of the gate structure 109, the spacer 106 and the etch stop layer 105, the first protection layer 115 also covers the gate capping layer 107 the top of.

具体地,后续在所述栅极结构109的顶部形成第二开口的过程中,为了保证相邻所述第二开口的刻蚀深度一致,先以所述栅极盖帽层107顶部的第一保护层115作为刻蚀停止位置,然后再同时刻蚀所述栅极盖帽层107。Specifically, in the subsequent process of forming the second opening on the top of the gate structure 109, in order to ensure that the etching depths of the adjacent second openings are consistent, the first protective layer on the top of the gate capping layer 107 is used first. Layer 115 acts as an etch stop before simultaneously etching the gate cap layer 107 .

本实施例中,形成所述第一保护层115的步骤包括:采用选择性沉积(area-selective-deposition,ASD)工艺在所述牺牲层112露出的所述栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层115。In this embodiment, the step of forming the first protective layer 115 includes: using an area-selective-deposition (ASD) process to expose the gate structure 109, sidewalls 106 and A first protection layer 115 is formed on top of the etch stop layer 105 .

本实施例中,在所述选择性沉积工艺中,第一保护层115在牺牲层112表面的沉积难度大于在所述栅极结构109、侧墙106和刻蚀停止层105表面的沉积难度,从而能够选择性地在所述牺牲层112露出的所述栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层115。In this embodiment, in the selective deposition process, the difficulty of depositing the first protective layer 115 on the surface of the sacrificial layer 112 is greater than the difficulty of depositing the first protective layer 115 on the surface of the gate structure 109, the spacer 106 and the etching stop layer 105, Therefore, the first protection layer 115 can be selectively formed on the top of the gate structure 109 , the sidewall 106 and the etching stop layer 105 exposed by the sacrificial layer 112 .

具体地,采用H2等离子体对所述牺牲层112的表面进行钝化处理,在钝化处理后,择性地在所述牺牲层112露出的所述栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层115。Specifically, H2 plasma is used to passivate the surface of the sacrificial layer 112. After the passivation treatment, the gate structure 109, sidewalls 106 and etchings selectively exposed on the sacrificial layer 112 are A first protective layer 115 is formed on top of the etch stop layer 105 .

在形成所述第一保护层115之前,使用H2等离子体对所述牺牲层112的表面进行钝化处理,使得所述牺牲层112的表面改性为悬挂键(C-H),从而在形成所述第一保护层115的过程中,所述牺牲层112难以和沉积工艺采用的前驱物发生反应,即增大了所述第一保护层115在表面钝化过的牺牲层112的顶部沉积的难度。Before forming the first protective layer 115, use H2 plasma to passivate the surface of the sacrificial layer 112, so that the surface of the sacrificial layer 112 is modified into dangling bonds (CH), thereby forming the In the process of the first protective layer 115, the sacrificial layer 112 is difficult to react with the precursor used in the deposition process, that is, the deposition of the first protective layer 115 on the top of the sacrificial layer 112 after surface passivation is increased. difficulty.

具体地,所述选择性沉积工艺具有沉积灵活性等特征,其在不同材料上的沉积速率不同,从而满足所需要的工艺要求,采用选择性沉积工艺在所述牺牲层112露出的所述栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层115的过程中,第一保护层115在所述栅极结构109、侧墙106和刻蚀停止层105表面的沉积速率远远大于在所述牺牲层112表面的沉积速率,使得在所述牺牲层112的表面沉积少量的所述第一保护层115,同时在后续进行的清洗工艺中,所述牺牲层112表面形成的少量第一保护层115会被去除干净。Specifically, the selective deposition process has characteristics such as deposition flexibility, and its deposition rate on different materials is different, so as to meet the required process requirements. The gate exposed in the sacrificial layer 112 by the selective deposition process is In the process of forming the first protection layer 115 on the top of the pole structure 109, the sidewall 106 and the etch stop layer 105, the deposition of the first protection layer 115 on the surface of the gate structure 109, the sidewall 106 and the etch stop layer 105 The rate is much higher than the deposition rate on the surface of the sacrificial layer 112, so that a small amount of the first protective layer 115 is deposited on the surface of the sacrificial layer 112, and at the same time, in the subsequent cleaning process, the surface of the sacrificial layer 112 A small amount of the first protection layer 115 formed will be removed.

相应的,通过选用选择性沉积工艺,能够直接将第一保护层115形成在目标位置处,而无需进行图形化处理(例如,刻蚀处理),从而有利于降低形成第一保护层115的工艺对栅极结构109、侧墙106和刻蚀停止层105造成损伤的概率。Correspondingly, by selecting a selective deposition process, the first protective layer 115 can be directly formed at the target position without patterning treatment (for example, etching treatment), which is beneficial to reduce the process of forming the first protective layer 115. The probability of causing damage to the gate structure 109 , the spacer 106 and the etch stop layer 105 .

本实施例中,所述牺牲层112的顶部低于所述刻蚀停止层105的顶部,且所述牺牲层112露出所述刻蚀停止层105的部分侧壁,因此,采用选择性沉积工艺在所述牺牲层112露出的所述栅极结构109、侧墙106和刻蚀停止层105的顶部形成第一保护层115的步骤中,形成所述第一保护层115的材料还选择性沉积在所述牺牲层112露出的所述刻蚀停止层105的侧壁,在所述牺牲层112露出的所述刻蚀停止层105的侧壁形成第二保护层116,所述第二保护层116的顶部与所述第一保护层115的顶部相齐平,所述第二保护层116和第一保护层115构成保护层128。In this embodiment, the top of the sacrificial layer 112 is lower than the top of the etch stop layer 105, and the sacrificial layer 112 exposes part of the sidewall of the etch stop layer 105, therefore, a selective deposition process is used In the step of forming the first protective layer 115 on the top of the gate structure 109, spacer 106 and etch stop layer 105 exposed by the sacrificial layer 112, the material for forming the first protective layer 115 is also selectively deposited On the sidewall of the etching stop layer 105 exposed by the sacrificial layer 112, a second protective layer 116 is formed on the sidewall of the etching stop layer 105 exposed by the sacrificial layer 112, and the second protective layer The top of the protection layer 116 is flush with the top of the first protection layer 115 , and the second protection layer 116 and the first protection layer 115 form a protection layer 128 .

通过在所述牺牲层112露出的所述刻蚀停止层105的侧壁形成第二保护层116,后续在所述源漏掺杂层108的顶部形成第一开口的过程中,所述第二保护层116能够起到自对准的效果,降低了形成所述第一开口的刻蚀工艺对所述刻蚀停止层105的顶部和侧壁受到损伤的概率,相应的,提高了所述刻蚀停止层105的形貌完整性,从而使得所述侧墙106因被暴露而受到损伤的风险下降,进而提高了半导体结构的性能。By forming the second protective layer 116 on the sidewall of the etching stop layer 105 exposed by the sacrificial layer 112, and subsequently forming the first opening on the top of the source-drain doped layer 108, the second The protection layer 116 can play a self-alignment effect, which reduces the probability of damage to the top and sidewalls of the etching stop layer 105 during the etching process for forming the first opening, and accordingly improves the etching process. The integrity of the topography of the etch stop layer 105 reduces the risk of the sidewalls 106 being damaged due to exposure, thereby improving the performance of the semiconductor structure.

需要说明的是,所述第一保护层115的厚度不宜过大,也不宜过小。如果所述第一保护层115的厚度过大,后续在所述栅极结构109的顶部形成第二开口的过程中,增大了去除所述第一保护层115的工艺难度,影响了工艺效率,同时,也使得去除所述牺牲层112的工艺窗口变小,增大了去除所述牺牲层112的工艺难度,从而影响半导体结构的性能;如果所述第一保护层115的厚度过小,则容易降低所述第一保护层115对所述侧墙106和刻蚀停止层105的顶部起到的保护作用,后续在源漏掺杂层108的顶部形成第一开口的过程中,增大了刻蚀工艺对刻蚀停止层105的顶部造成损伤的概率,相应的,也增大了所述侧墙106因被暴露而受到损伤的风险,从而影响了半导体结构的性能。为此,本实施例中,所述第一保护层115的厚度为2纳米至5纳米。It should be noted that the thickness of the first protective layer 115 should not be too large, nor should it be too small. If the thickness of the first protective layer 115 is too large, the subsequent process of forming the second opening on the top of the gate structure 109 will increase the process difficulty of removing the first protective layer 115 and affect the process efficiency. At the same time, the process window for removing the sacrificial layer 112 is also reduced, which increases the difficulty of removing the sacrificial layer 112, thus affecting the performance of the semiconductor structure; if the thickness of the first protective layer 115 is too small, Then it is easy to reduce the protective effect of the first protection layer 115 on the top of the sidewall 106 and the etch stop layer 105, and subsequently increase the The probability of damage to the top of the etch stop layer 105 caused by the etching process is reduced, and correspondingly, the risk of the sidewall 106 being damaged due to exposure is also increased, thereby affecting the performance of the semiconductor structure. Therefore, in this embodiment, the thickness of the first protective layer 115 is 2 nm to 5 nm.

本实施例中,所述第一保护层115的材料包括TiO2和HfO2中的一种或多种。In this embodiment, the material of the first protection layer 115 includes one or more of TiO 2 and HfO 2 .

通过选用TiO2和HfO2中的一种或多种,能够采用选择性沉积工艺形成所述第一保护层115,使得第一保护层115的材料与选择性沉积工艺相兼容。同时,所述TiO2和HfO2的材料硬度较大,后续在所述源漏掺杂层108的顶部形成第一开口的过程中,所述第一保护层115被去除的速率低于后续形成的第二层间介质层被去除的速率,使得所述第一保护层115能够对所述侧墙106和刻蚀停止层105的顶部起到很好的保护作用。By selecting one or more of TiO 2 and HfO 2 , the first protection layer 115 can be formed by a selective deposition process, so that the material of the first protection layer 115 is compatible with the selective deposition process. At the same time, the material hardness of the TiO 2 and HfO 2 is relatively high, and in the subsequent process of forming the first opening on the top of the source-drain doped layer 108, the removal rate of the first protective layer 115 is lower than that of the subsequent formation. The rate at which the second interlayer dielectric layer is removed enables the first protective layer 115 to play a good role in protecting the spacer 106 and the top of the etch stop layer 105 .

需要说明的是,本实施例中,通过采用回刻蚀第一层间介质层103的方式形成凹槽,采用回刻蚀牺牲材料层111的方式形成牺牲层112,采用选择性沉积的方式形成第一保护层115,也就是说,回刻蚀第一层间介质层103的步骤、回刻蚀牺牲材料层111的步骤、以形成第一保护层115的步骤都无需额外采用光罩,因此,本实施例所述形成方法并未额外增加光罩,从而有利于降低工艺成本。It should be noted that, in this embodiment, the groove is formed by etching back the first interlayer dielectric layer 103, the sacrificial layer 112 is formed by etching back the sacrificial material layer 111, and the selective deposition method is used. The first protection layer 115, that is to say, the step of etching back the first interlayer dielectric layer 103, the step of etching back the sacrificial material layer 111, and the step of forming the first protection layer 115 do not require an additional photomask, so , the forming method described in this embodiment does not add additional photomasks, which is beneficial to reduce process costs.

参考图10,去除所述牺牲层112。Referring to FIG. 10 , the sacrificial layer 112 is removed.

去除所述牺牲层112,为后续形成覆盖在所述第一层间介质层103和第一保护层115顶部的第二层间介质层提供空间位置。The sacrificial layer 112 is removed to provide a space for subsequent formation of a second interlayer dielectric layer covering the tops of the first interlayer dielectric layer 103 and the first protection layer 115 .

同时,由于牺牲层112材料本身机械强度不够,不适合作为介质层的材料,因此,需要去除所述牺牲层112。At the same time, since the material of the sacrificial layer 112 itself has insufficient mechanical strength, it is not suitable as a material for the dielectric layer, therefore, the sacrificial layer 112 needs to be removed.

本实施例中,去除所述牺牲层112的工艺包括湿法刻蚀工艺。In this embodiment, the process of removing the sacrificial layer 112 includes a wet etching process.

所述湿法刻蚀工艺具有各向同性刻蚀工艺的特点,具有刻蚀目标性强,刻蚀效率高,横向刻蚀能力强等特点,能够在沿横向去除所述凹槽110侧壁的牺牲层112过程中,降低对所述凹槽110底部的第一层间介质层103和所述凹槽110侧壁的刻蚀停止层105的损伤。The wet etching process has the characteristics of an isotropic etching process, and has the characteristics of strong etching target, high etching efficiency, and strong lateral etching ability, and can remove the sidewall of the groove 110 along the lateral direction. During the sacrificial layer 112 process, the damage to the first interlayer dielectric layer 103 at the bottom of the groove 110 and the etch stop layer 105 on the sidewall of the groove 110 is reduced.

在其他实施例中,还可以采用灰化工艺去除所述牺牲层。In other embodiments, the sacrificial layer may also be removed by an ashing process.

参考图11,形成所述第一保护层115后,形成覆盖在所述第一层间介质层103和第一保护层115顶部的第二层间介质层117。Referring to FIG. 11 , after the first protective layer 115 is formed, a second interlayer dielectric layer 117 covering the top of the first interlayer dielectric layer 103 and the first protective layer 115 is formed.

所述第二层间介质层117为后续形成栅极插塞和源漏插塞提供工艺基础,同时,也对后续形成的栅极插塞和源漏插塞起到电隔离作用。The second interlayer dielectric layer 117 provides a process basis for the subsequent formation of gate plugs and source and drain plugs, and at the same time, also plays an electrical isolation role for the subsequently formed gate plugs and source and drain plugs.

本实施例中,形成所述第二层间介质层117的工艺包括化学气相沉积工艺。In this embodiment, the process of forming the second interlayer dielectric layer 117 includes a chemical vapor deposition process.

所述第二层间介质层117的材料为绝缘材料,第二层间介质层117的材料包括氧化硅、氮化硅、氮氧化硅、碳氧化硅、碳氮化硅和碳氮氧化硅中的一种或多种。作为一种示例,所述第二层间介质层117的材料为氧化硅。The material of the second interlayer dielectric layer 117 is an insulating material, and the material of the second interlayer dielectric layer 117 includes silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride, and silicon oxycarbonitride. one or more of . As an example, the material of the second interlayer dielectric layer 117 is silicon oxide.

参考图12,形成所述第二层间介质层117之后,在所述源漏掺杂层108的顶部形成贯穿所述第二层间介质层117和第一层间介质层103的第一开口120。Referring to FIG. 12 , after the second interlayer dielectric layer 117 is formed, a first opening through the second interlayer dielectric layer 117 and the first interlayer dielectric layer 103 is formed on the top of the source-drain doped layer 108 120.

所述第一开口120为后续形成源漏插塞提供空间位置。The first opening 120 provides a space for subsequent formation of source and drain plugs.

本实施例中,在所述源漏掺杂层108的顶部形成贯穿所述第二层间介质层117和第一层间介质层103的第一开口120的步骤包括:形成贯穿所述源漏掺杂层108顶部的第二层间介质层117的初始第一开口125;形成所述初始第一开口125后,以所述第二保护层116的侧壁作为横向刻蚀停位置,在相邻所述第二保护层116之间形成贯穿所述第一层间介质层103且露出所述源漏掺杂层108顶部的初始第二开口118,所述初始第二开口125和初始第一开口118构成所述第一开口120。In this embodiment, the step of forming the first opening 120 penetrating through the second interlayer dielectric layer 117 and the first interlayer dielectric layer 103 on the top of the source-drain doped layer 108 includes: forming a first opening 120 penetrating through the source-drain layer 108 the initial first opening 125 of the second interlayer dielectric layer 117 on the top of the doped layer 108; An initial second opening 118 penetrating through the first interlayer dielectric layer 103 and exposing the top of the source-drain doped layer 108 is formed adjacent to the second protection layer 116, and the initial second opening 125 and the initial first The opening 118 constitutes the first opening 120 .

具体地,所述保护层128与所述第二层间介质层117之间具有较大的刻蚀选择比,在形成所述第一开口120的过程中,由于所述保护层128被去除的速率较低,从而使得形成所述第一开口120的工艺窗口变大,进而降低了形成所述第一开口120的工艺难度。Specifically, there is a relatively large etching selectivity ratio between the protection layer 128 and the second interlayer dielectric layer 117. During the process of forming the first opening 120, due to the removal of the protection layer 128 The rate is lower, so that the process window for forming the first opening 120 becomes larger, thereby reducing the process difficulty of forming the first opening 120 .

需要说明的是,所述保护层128与所述第一层间介质层103之间也具有较大的刻蚀选择比,具体如前述所述,在此不再赘述。It should be noted that there is also a relatively large etching selectivity ratio between the protective layer 128 and the first interlayer dielectric layer 103 , as described above in detail, and will not be repeated here.

本实施例中,在所述源漏掺杂层108的顶部形成贯穿所述第二层间介质层117和第一层间介质层103的第一开口120的工艺包括干法刻蚀工艺。In this embodiment, the process of forming the first opening 120 penetrating through the second interlayer dielectric layer 117 and the first interlayer dielectric layer 103 on the top of the source-drain doped layer 108 includes a dry etching process.

参考图13,在所述第一开口120中形成填充层119。Referring to FIG. 13 , a filling layer 119 is formed in the first opening 120 .

在所述第一开口120中形成填充层119,后续在所述栅极结构109的顶部形成第二开口过程中,降低了选用的刻蚀工艺对所述第一开口120露出的所述源漏掺杂层108顶面的损伤,从而提高了半导体结构的性能。Form a filling layer 119 in the first opening 120, and subsequently form a second opening on the top of the gate structure 109 to reduce the source and drain exposed to the first opening 120 by the selected etching process. Damage to the top surface of the doped layer 108 improves the performance of the semiconductor structure.

本实施例中,在所述第一开口120中形成填充层119的步骤包括:在所述第二层间介质层117的顶部和所述第一开口120中形成填充材料层(图未示);以所述第二层间介质层117的顶部作为停止位置,对高于所述第二层间介质层117顶部的所述填充材料层进行平坦化处理,在所述第一开口120中剩余的所述填充材料层作为所述填充层119。In this embodiment, the step of forming the filling layer 119 in the first opening 120 includes: forming a filling material layer (not shown) on the top of the second interlayer dielectric layer 117 and in the first opening 120 ; using the top of the second interlayer dielectric layer 117 as a stop position, planarize the filling material layer higher than the top of the second interlayer dielectric layer 117, remaining in the first opening 120 The filling material layer is used as the filling layer 119.

本实施例中,在所述第一开口120中形成填充层119的工艺包括化学气相沉积工艺。在其他实施例中,在所述第一开口中形成填充层的工艺还可以包括原子层沉积工艺和物理气相沉积工艺中的一种或两种。In this embodiment, the process of forming the filling layer 119 in the first opening 120 includes a chemical vapor deposition process. In other embodiments, the process of forming the filling layer in the first opening may further include one or both of an atomic layer deposition process and a physical vapor deposition process.

为便于后续去除所述第一开口120中形成的所述填充层119,需要选用易于去除的材料作为所述填充层119的材料,为此,本实施例中,所述填充层119的材料包括ODL(organic dielectric layer,有机介电层)材料、旋涂碳(Spin-on carbon,SOC)和APF(Advanced Patterning Film,先进图膜)材料中的一种或多种。In order to facilitate the subsequent removal of the filling layer 119 formed in the first opening 120, it is necessary to select an easy-to-remove material as the material of the filling layer 119. Therefore, in this embodiment, the material of the filling layer 119 includes One or more of ODL (organic dielectric layer, organic dielectric layer) material, spin-on carbon (Spin-on carbon, SOC) and APF (Advanced Patterning Film, advanced pattern film) material.

参考图14至图16,在所述栅极结构109的顶部形成贯穿所述第二层间介质层117和第一保护层115的第二开口123。Referring to FIGS. 14 to 16 , a second opening 123 penetrating through the second interlayer dielectric layer 117 and the first passivation layer 115 is formed on the top of the gate structure 109 .

所述第二开口123为后续形成栅极插塞提供空间位置。The second opening 123 provides a space for subsequent formation of gate plugs.

本实施例中,在所述栅极结构109的顶部形成贯穿所述第二层间介质层117和第一保护层115的第二开口123的步骤包括:如图14所示,刻蚀所述栅极结构109顶部的所述第二层间介质层117,直至形成露出所述第一保护层115顶面的初始第三开口121;如图15至图16所示,刻蚀所述初始第三开口121露出的所述第一保护层115和栅极盖帽层107,形成露出所述栅极结构109顶部的初始第四开口122,所述初始第三开口121和初始第四开口122构成第二开口123。In this embodiment, the step of forming the second opening 123 penetrating through the second interlayer dielectric layer 117 and the first protective layer 115 on the top of the gate structure 109 includes: as shown in FIG. 14 , etching the The second interlayer dielectric layer 117 on the top of the gate structure 109 until an initial third opening 121 exposing the top surface of the first protection layer 115 is formed; as shown in FIGS. The first protection layer 115 and the gate capping layer 107 exposed by the three openings 121 form an initial fourth opening 122 exposing the top of the gate structure 109, and the initial third opening 121 and the initial fourth opening 122 constitute the first Two openings 123.

本实施例中,在所述栅极结构109的顶部形成贯穿所述第二层间介质层117和第一保护层115的第二开口123的步骤中,所述第二开口123贯穿位于所述栅极结构109顶部的所述栅极盖帽层107。In this embodiment, in the step of forming the second opening 123 penetrating through the second interlayer dielectric layer 117 and the first protection layer 115 on the top of the gate structure 109, the second opening 123 penetrates through the The gate capping layer 107 on top of the gate structure 109 .

所述第二开口123贯穿位于所述栅极结构109顶部的所述栅极盖帽层107,使得后续在所述第二开口123中形成的栅极插塞与所述栅极结构109能够实现电连接。The second opening 123 penetrates through the gate capping layer 107 at the top of the gate structure 109, so that the gate plug formed in the second opening 123 and the gate structure 109 can be electrically connected. connect.

需要说明的是,所述侧墙106与所述栅极盖帽层107之间具有刻蚀选择比,因此,在形成所述第二开口123的过程中,所述侧墙106能够起到自对准的作用,降低了对栅极结构109两侧的所述源漏掺杂层108的顶部造成损伤的概率。It should be noted that there is an etching selectivity ratio between the sidewall 106 and the gate capping layer 107, therefore, during the process of forming the second opening 123, the sidewall 106 can play a role of self-alignment. The function of alignment reduces the probability of damage to the top of the source-drain doped layer 108 on both sides of the gate structure 109 .

本实施例中,在所述栅极结构109的顶部形成贯穿所述第二层间介质层117和第一保护层115的第二开口123的工艺包括干法刻蚀工艺。In this embodiment, the process of forming the second opening 123 penetrating through the second interlayer dielectric layer 117 and the first protection layer 115 on the top of the gate structure 109 includes a dry etching process.

本实施例中,在所述源漏掺杂层108的顶部形成贯穿所述第二层间介质层117和第一层间介质层103的第一开口120之后,在所述栅极结构109的顶部形成贯穿所述第二层间介质层117和第一保护层115的第二开口123。In this embodiment, after the first opening 120 penetrating through the second interlayer dielectric layer 117 and the first interlayer dielectric layer 103 is formed on the top of the source-drain doped layer 108, the gate structure 109 A second opening 123 penetrating through the second interlayer dielectric layer 117 and the first protection layer 115 is formed at the top.

需要说明的是,先形成第一开口120,再形成第二开口123,省去了去除所述栅极结构109的顶部填充层的步骤,相应的,降低了所述栅极结构109的顶部受到损伤的概率,从而提高了半导体结构的性能,同时,通过在不同步骤中分别形成所述第一开口120和第二开口123,有利于减小由于所述栅极结构109和所述源漏掺杂层108之间的距离过小所带来的影响,也有利于减小受到套刻精度精度偏差的影响。It should be noted that the first opening 120 is formed first, and then the second opening 123 is formed, which omits the step of removing the top filling layer of the gate structure 109, and correspondingly reduces the impact on the top of the gate structure 109. damage probability, thereby improving the performance of the semiconductor structure, and at the same time, by forming the first opening 120 and the second opening 123 in different steps, it is beneficial to reduce the damage caused by the gate structure 109 and the source-drain doping The influence caused by the too small distance between the miscellaneous layers 108 is also beneficial to reduce the influence caused by deviations in overlay accuracy.

需要说明的是,本实施例中,在形成所述第二开口123之后,在后续形成源漏插塞和栅极插塞之前,还包括:去除所述第一开口120中的所述填充层119。It should be noted that, in this embodiment, after forming the second opening 123, before forming the source-drain plug and the gate plug, further include: removing the filling layer in the first opening 120 119.

本实施例中,去除所述填充层119的工艺包括湿法刻蚀工艺。In this embodiment, the process of removing the filling layer 119 includes a wet etching process.

参考图17,在所述第一开口120中形成源漏插塞130。Referring to FIG. 17 , source and drain plugs 130 are formed in the first opening 120 .

所述源漏插塞130用于实现所述源漏掺杂层108与外部电路或其他互连结构之间的电连接。The source-drain plug 130 is used to realize the electrical connection between the source-drain doped layer 108 and external circuits or other interconnection structures.

本实施例中,在所述第一开口120中形成源漏插塞130的步骤包括:在所述第一开口120中形成导电材料层(图未示),所述导电材料层还覆盖所述第二层间介质层117的顶部;以所述第二层间介质层117的顶部作为停止位置,平坦化处理高于所述第二层间介质层117顶部的导电材料层,剩余位于所述第一开口120中的导电材料层作为所述源漏插塞130。In this embodiment, the step of forming the source-drain plug 130 in the first opening 120 includes: forming a conductive material layer (not shown in the figure) in the first opening 120, and the conductive material layer also covers the The top of the second interlayer dielectric layer 117; using the top of the second interlayer dielectric layer 117 as a stop position, the conductive material layer higher than the top of the second interlayer dielectric layer 117 is planarized, and the rest located at the top of the second interlayer dielectric layer 117 The conductive material layer in the first opening 120 serves as the source-drain plug 130 .

本实施例中,平坦化处理高于所述第二层间介质层117顶部的导电材料层的工艺包括化学机械研磨工艺。In this embodiment, the process of planarizing the conductive material layer higher than the top of the second interlayer dielectric layer 117 includes a chemical mechanical polishing process.

本实施例中,源漏插塞130的材料为钨。钨的电阻率较低,有利于改善后段RC的信号延迟,提高芯片的处理速度,同时还有利于降低源漏插塞130的电阻,相应降低了功耗。在其他实施例中,源漏插塞的材料还可以为钼或钌等导电材料。In this embodiment, the material of the source-drain plug 130 is tungsten. The lower resistivity of tungsten is beneficial to improve the signal delay of the back-end RC and increase the processing speed of the chip, and at the same time, it is also beneficial to reduce the resistance of the source-drain plug 130 and reduce power consumption accordingly. In other embodiments, the material of the source and drain plugs may also be conductive materials such as molybdenum or ruthenium.

本实施例中,在所述第一开口120中形成源漏插塞130的步骤中,还在所述第二开口123中形成栅极插塞126。In this embodiment, in the step of forming the source-drain plug 130 in the first opening 120 , a gate plug 126 is also formed in the second opening 123 .

栅极插塞126用于实现栅极结构109与外部电路或其他互连结构之间的电连接。The gate plug 126 is used to realize the electrical connection between the gate structure 109 and external circuits or other interconnection structures.

具体地,在同一步骤中,形成所述源漏插塞130和栅极插塞126,减少了工艺步骤,降低了工艺成本。在其他实施例中,也可以先形成所述源漏插塞,再形成所述栅极插塞,或者,先形成所述栅极插塞,再形成所述源漏插塞。Specifically, the source-drain plug 130 and the gate plug 126 are formed in the same step, which reduces process steps and reduces process cost. In other embodiments, the source and drain plugs may also be formed first, and then the gate plugs, or, the gate plugs are formed first, and then the source and drain plugs are formed.

本实施例中,在同一步骤中,在所述第一开口120中形成源漏插塞130,在所述第二开口123中形成栅极插塞126,因此,所述栅极插塞126的材料与所述源漏插塞130的材料相同,为此,所述栅极插塞126的材料为钨。在其他实施例中,源漏插塞的材料还可以为钼或钌等导电材料。In this embodiment, in the same step, the source-drain plug 130 is formed in the first opening 120, and the gate plug 126 is formed in the second opening 123. Therefore, the gate plug 126 The material is the same as that of the source and drain plugs 130 , therefore, the material of the gate plug 126 is tungsten. In other embodiments, the material of the source and drain plugs may also be conductive materials such as molybdenum or ruthenium.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (21)

1.一种半导体结构,其特征在于,包括:1. A semiconductor structure, characterized in that, comprising: 基底;base; 栅极结构,位于所述基底上,所述栅极结构包括栅介质层、以及覆盖所述栅介质层的栅电极层;a gate structure located on the substrate, the gate structure comprising a gate dielectric layer and a gate electrode layer covering the gate dielectric layer; 源漏掺杂层,位于所述栅极结构两侧的基底中;a source-drain doped layer located in the substrate on both sides of the gate structure; 侧墙,覆盖所述栅极结构的侧壁;a side wall covering the side wall of the gate structure; 刻蚀停止层,位于所述侧墙的侧壁;an etch stop layer located on the sidewall of the sidewall; 保护层,位于所述栅极结构、侧墙和刻蚀停止层的顶部;a protective layer on top of the gate structure, sidewalls and etch stop layer; 层间介质层,位于所述栅极结构侧部的基底上并覆盖源漏掺杂层,所述层间介质层还覆盖所述保护层的顶部;an interlayer dielectric layer, located on the substrate at the side of the gate structure and covering the source-drain doped layer, and the interlayer dielectric layer also covers the top of the protection layer; 源漏插塞,贯穿位于源漏掺杂层顶部的所述层间介质层,所述源漏插塞的底部和所述源漏掺杂层的顶部电连接;a source-drain plug that penetrates the interlayer dielectric layer at the top of the source-drain doped layer, and the bottom of the source-drain plug is electrically connected to the top of the source-drain doped layer; 栅极插塞,贯穿所述栅极结构顶部的所述层间介质层和保护层,所述栅极插塞的底部与所述栅极结构的顶部电连接。A gate plug penetrates through the interlayer dielectric layer and the protection layer on the top of the gate structure, and the bottom of the gate plug is electrically connected to the top of the gate structure. 2.如权利要求1所述的半导体结构,其特征在于,所述保护层还延伸覆盖所述刻蚀停止层的部分侧壁。2 . The semiconductor structure according to claim 1 , wherein the passivation layer also extends to cover a part of the sidewall of the etch stop layer. 3 . 3.如权利要求1所述的半导体结构,其特征在于,所述半导体结构还包括:栅极盖帽层,位于所述栅极结构的顶部;3. The semiconductor structure according to claim 1, further comprising: a gate capping layer located on the top of the gate structure; 所述保护层位于所述栅极盖帽层的顶部;the protection layer is located on top of the gate capping layer; 所述栅极插塞还贯穿位于所述栅极结构顶部的所述栅极盖帽层。The gate plug also penetrates the gate capping layer on top of the gate structure. 4.如权利要求1所述的半导体结构,其特征在于,所述层间介质层包括:第一层间介质层,位于所述栅极结构侧部的基底上并覆盖源漏掺杂层,所述第一层间介质层覆盖所述保护层露出的刻蚀停止层的部分侧壁;4. The semiconductor structure according to claim 1, wherein the interlayer dielectric layer comprises: a first interlayer dielectric layer located on the substrate at the side of the gate structure and covering the source-drain doped layer, The first interlayer dielectric layer covers part of the sidewall of the etching stop layer exposed by the protection layer; 第二层间介质层,覆盖所述第一层间介质层和保护层顶部。The second interlayer dielectric layer covers the top of the first interlayer dielectric layer and the protective layer. 5.如权利要求1所述的半导体结构,其特征在于,所述保护层的厚度为2纳米至5纳米。5. The semiconductor structure according to claim 1, wherein the protective layer has a thickness of 2 nm to 5 nm. 6.如权利要求1所述的半导体结构,其特征在于,所述保护层的材料包括TiO2和HfO2中的一种或两种。6. The semiconductor structure according to claim 1, wherein the material of the protective layer comprises one or both of TiO 2 and HfO 2 . 7.如权利要求1所述的半导体结构,其特征在于,所述侧墙的材料包括氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。7. The semiconductor structure according to claim 1, wherein the material of the sidewall comprises silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, boron nitride and one or more of boron carbonitride. 8.如权利要求1所述的半导体结构,其特征在于,所述栅介质层的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、Al2O3、SiO2和La2O3中的一种或多种;所述栅电极层的材料包括TiN、TaN、Ta、Ti、TiAl、W、Al、TiSiN和TiAlC中的一种或多种。8. The semiconductor structure according to claim 1, wherein the material of the gate dielectric layer comprises HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, Al 2 O 3 , SiO 2 and La 2 One or more of O 3 ; the material of the gate electrode layer includes one or more of TiN, TaN, Ta, Ti, TiAl, W, Al, TiSiN and TiAlC. 9.一种半导体结构的形成方法,其特征在于,包括:9. A method for forming a semiconductor structure, comprising: 提供基底,所述基底上形成有栅极结构,所述栅极结构两侧的基底中形成有源漏掺杂层,所述栅极结构的侧壁形成有侧墙,所述侧墙的侧壁形成有刻蚀停止层,所述栅极结构露出的所述基底上形成有第一层间介质层,所述第一层间介质层覆盖所述刻蚀停止层的侧壁;A substrate is provided, a gate structure is formed on the substrate, source and drain doped layers are formed in the substrate on both sides of the gate structure, side walls of the gate structure are formed with side walls, and the side walls of the side walls An etch stop layer is formed on the wall, a first interlayer dielectric layer is formed on the substrate exposed by the gate structure, and the first interlayer dielectric layer covers the sidewall of the etch stop layer; 在所述栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层;forming a first protection layer on top of the gate structure, sidewalls and etch stop layer; 形成所述第一保护层后,形成覆盖在所述第一层间介质层和第一保护层顶部的第二层间介质层;After forming the first protective layer, forming a second interlayer dielectric layer covering the top of the first interlayer dielectric layer and the first protective layer; 形成所述第二层间介质层之后,在所述源漏掺杂层的顶部形成贯穿所述第二层间介质层和第一层间介质层的第一开口;After forming the second interlayer dielectric layer, forming a first opening through the second interlayer dielectric layer and the first interlayer dielectric layer on the top of the source-drain doped layer; 在所述第一开口中形成源漏插塞。A source-drain plug is formed in the first opening. 10.如权利要求9所述的半导体结构的形成方法,其特征在于,在所述第一开口中形成源漏插塞之前,还包括:在所述栅极结构的顶部形成贯穿所述第二层间介质层和第一保护层的第二开口;10 . The method for forming a semiconductor structure according to claim 9 , further comprising: forming a second plug on the top of the gate structure before forming a source-drain plug in the first opening. the second opening of the interlayer dielectric layer and the first protective layer; 在所述第一开口中形成源漏插塞的步骤中,还在所述第二开口中形成栅极插塞。In the step of forming a source-drain plug in the first opening, a gate plug is also formed in the second opening. 11.如权利要求9述的半导体结构的形成方法,其特征在于,在形成所述第一保护层之前,还包括:去除部分厚度的所述第一层间介质层,形成由所述刻蚀停止层的侧壁和剩余第一层间介质层的顶部围成的凹槽;11. The method for forming a semiconductor structure according to claim 9, further comprising: before forming the first protective layer, removing a part of the thickness of the first interlayer dielectric layer, forming a layer formed by the etching a groove enclosed by the sidewall of the stop layer and the top of the remaining first interlayer dielectric layer; 在所述凹槽中形成牺牲层;forming a sacrificial layer in the groove; 形成所述第一保护层的步骤包括:采用选择性沉积工艺在所述牺牲层露出的所述栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层。The step of forming the first protection layer includes: using a selective deposition process to form a first protection layer on top of the gate structure, sidewalls and etch stop layer exposed by the sacrificial layer. 12.如权利要求11所述的半导体结构的形成方法,其特征在于,在所述凹槽中形成牺牲层的步骤中,所述牺牲层的顶部低于所述刻蚀停止层的顶部,且所述牺牲层露出所述刻蚀停止层的部分侧壁;12. The method for forming a semiconductor structure according to claim 11, wherein in the step of forming a sacrificial layer in the groove, the top of the sacrificial layer is lower than the top of the etch stop layer, and The sacrificial layer exposes part of the sidewall of the etch stop layer; 采用选择性沉积工艺在所述牺牲层露出的所述栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层的步骤中,所述第一保护层的材料还选择性沉积在所述牺牲层露出的所述刻蚀停止层的侧壁,在所述牺牲层露出的所述刻蚀停止层的侧壁形成第二保护层,所述第二保护层的顶部与所述第一保护层的顶部相齐平,所述第二保护层和第一保护层构成保护层。In the step of forming a first protection layer on top of the gate structure, sidewalls and etch stop layer exposed by the sacrificial layer by using a selective deposition process, the material of the first protection layer is also selectively deposited on the The sidewall of the etching stop layer exposed by the sacrificial layer, a second protective layer is formed on the sidewall of the etching stop layer exposed by the sacrificial layer, and the top of the second protective layer is connected with the first The tops of the protective layers are flush with each other, and the second protective layer and the first protective layer constitute the protective layer. 13.如权利要求12所述的半导体结构的形成方法,其特征在于,在所述凹槽中形成牺牲层的步骤包括:在所述凹槽中形成牺牲材料层,所述牺牲材料层还覆盖所述栅极结构、侧墙和刻蚀停止层的顶部;13. The method for forming a semiconductor structure according to claim 12, wherein the step of forming a sacrificial layer in the groove comprises: forming a sacrificial material layer in the groove, and the sacrificial material layer also covers the top of the gate structure, sidewalls and etch stop layer; 去除所述栅极结构、侧墙和刻蚀停止层顶部的牺牲材料层、以及所述凹槽中部分厚度的所述牺牲材料层,所述凹槽中剩余的所述牺牲材料层作为所述牺牲层,所述牺牲层露出所述刻蚀停止层的部分侧壁。removing the sacrificial material layer on top of the gate structure, sidewalls and etch stop layer, and a partial thickness of the sacrificial material layer in the groove, and the remaining sacrificial material layer in the groove serves as the A sacrificial layer, the sacrificial layer exposing a part of the sidewall of the etching stop layer. 14.如权利要求12所述的半导体结构的形成方法,其特征在于,在所述源漏掺杂层的顶部形成贯穿所述第二层间介质层和第一层间介质层的第一开口的步骤包括:形成贯穿所述源漏掺杂层顶部的第二层间介质层的初始第一开口;形成所述初始第一开口后,以所述第二保护层的侧壁作为横向刻蚀停止位置,在相邻所述第二保护层之间形成贯穿所述第一层间介质层且露出所述源漏掺杂层顶部的初始第二开口,所述初始第二开口和初始第一开口构成所述第一开口。14. The method for forming a semiconductor structure according to claim 12, wherein a first opening penetrating through the second interlayer dielectric layer and the first interlayer dielectric layer is formed on the top of the source-drain doped layer The steps include: forming an initial first opening through the second interlayer dielectric layer at the top of the source-drain doped layer; after forming the initial first opening, using the sidewall of the second protection layer as a lateral etching stop position, an initial second opening that penetrates the first interlayer dielectric layer and exposes the top of the source-drain doped layer is formed between adjacent second protective layers, the initial second opening and the initial first An opening constitutes the first opening. 15.如权利要求10所述的半导体结构的形成方法,其特征在于,所述提供基底的步骤中,所述栅极结构的顶部还形成有栅极盖帽层;15. The method for forming a semiconductor structure according to claim 10, wherein in the step of providing a base, a gate cap layer is further formed on the top of the gate structure; 在所述栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层的步骤中,所述第一保护层还覆盖所述栅极盖帽层的顶部;In the step of forming a first protection layer on top of the gate structure, sidewalls and etch stop layer, the first protection layer also covers the top of the gate capping layer; 在所述栅极结构的顶部形成贯穿所述第二层间介质层和第一保护层的第二开口的步骤中,所述第二开口还贯穿位于所述栅极结构顶部的所述栅极盖帽层。In the step of forming a second opening through the second interlayer dielectric layer and the first protection layer on the top of the gate structure, the second opening also penetrates the gate located at the top of the gate structure Cap layer. 16.如权利要求10所述的半导体结构的形成方法,其特征在于,在所述源漏掺杂层的顶部形成贯穿所述第二层间介质层和第一层间介质层的第一开口之后,在所述栅极结构的顶部形成贯穿所述第二层间介质层和第一保护层的第二开口。16. The method for forming a semiconductor structure according to claim 10, wherein a first opening penetrating through the second interlayer dielectric layer and the first interlayer dielectric layer is formed on the top of the source-drain doped layer Afterwards, a second opening penetrating through the second interlayer dielectric layer and the first protection layer is formed on the top of the gate structure. 17.如权利要求10所述的半导体结构的形成方法,其特征在于,在所述源漏掺杂层的顶部形成第一开口之后,在所述栅极结构的顶部形成第二开口之前,还包括:在所述第一开口中形成填充层;17. The method for forming a semiconductor structure according to claim 10, wherein after forming the first opening on the top of the source-drain doped layer and before forming the second opening on the top of the gate structure, further comprising: forming a filling layer in the first opening; 在形成所述第二开口之后,在形成所述源漏插塞和栅极插塞之前,还包括:去除所述第一开口中的所述填充层。After forming the second opening and before forming the source-drain plug and the gate plug, the method further includes: removing the filling layer in the first opening. 18.如权利要求11所述的半导体结构的形成方法,其特征在于,在所述凹槽中形成牺牲层的步骤中,所述牺牲层的材料包括无定型碳和旋涂碳中的一种或两种。18. The method for forming a semiconductor structure according to claim 11, wherein in the step of forming a sacrificial layer in the groove, the material of the sacrificial layer includes one of amorphous carbon and spin-on carbon or two. 19.如权利要求11所述的半导体结构的形成方法,其特征在于,在所述栅极结构、侧墙和刻蚀停止层的顶部形成第一保护层之后,在形成所述第二层间介质层之前,还包括:去除所述牺牲层。19. The method for forming a semiconductor structure according to claim 11, wherein after forming a first protection layer on top of the gate structure, sidewalls and etch stop layer, after forming the second interlayer Before the dielectric layer, it also includes: removing the sacrificial layer. 20.如权利要求9所述的半导体结构的形成方法,其特征在于,所述第一保护层的材料包括TiO2和HfO2中的一种或多种。20. The method for forming a semiconductor structure according to claim 9, wherein the material of the first protective layer comprises one or more of TiO 2 and HfO 2 . 21.如权利要求9所述的半导体结构的形成方法,其特征在于,所述侧墙的材料包括氧化硅、氮化硅、碳化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。21. The method for forming a semiconductor structure according to claim 9, wherein the material of the sidewall comprises silicon oxide, silicon nitride, silicon carbide, silicon carbonitride, silicon carbonitride, silicon nitride oxide, One or more of boron nitride and carbon boron nitride.
CN202110970620.8A 2021-08-23 2021-08-23 Semiconductor structure and forming method thereof Pending CN115714127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110970620.8A CN115714127A (en) 2021-08-23 2021-08-23 Semiconductor structure and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110970620.8A CN115714127A (en) 2021-08-23 2021-08-23 Semiconductor structure and forming method thereof

Publications (1)

Publication Number Publication Date
CN115714127A true CN115714127A (en) 2023-02-24

Family

ID=85230354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110970620.8A Pending CN115714127A (en) 2021-08-23 2021-08-23 Semiconductor structure and forming method thereof

Country Status (1)

Country Link
CN (1) CN115714127A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097649A (en) * 2014-05-04 2015-11-25 中芯国际集成电路制造(上海)有限公司 Formation method of semiconductor structure
CN105762108A (en) * 2014-12-19 2016-07-13 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and formation method thereof
CN107799462A (en) * 2016-09-06 2018-03-13 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor structure
CN112201614A (en) * 2019-07-08 2021-01-08 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097649A (en) * 2014-05-04 2015-11-25 中芯国际集成电路制造(上海)有限公司 Formation method of semiconductor structure
CN105762108A (en) * 2014-12-19 2016-07-13 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and formation method thereof
CN107799462A (en) * 2016-09-06 2018-03-13 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor structure
CN112201614A (en) * 2019-07-08 2021-01-08 中芯国际集成电路制造(上海)有限公司 Semiconductor device and method of forming the same

Similar Documents

Publication Publication Date Title
US10763341B2 (en) Semiconductor device structure and method for forming the same
CN111863711B (en) Semiconductor structures and methods of forming them
CN109427653B (en) Semiconductor structure and forming method thereof
CN113809007B (en) Semiconductor structure and forming method thereof
CN111863723B (en) Semiconductor structure and forming method thereof
CN111200017A (en) Semiconductor structure and forming method thereof
TWI851115B (en) Semiconductor device and forming method thereof
TW202213638A (en) Semiconductor structure and method for forming same
CN116344449B (en) Semiconductor structure and forming method thereof
CN115621249A (en) Semiconductor structure and forming method thereof
CN114068481B (en) Semiconductor structure and forming method thereof
CN108269847A (en) Semiconductor structure and forming method thereof
CN115621194A (en) Semiconductor structure and forming method thereof
CN115714127A (en) Semiconductor structure and forming method thereof
CN114664818A (en) Semiconductor structure and method of forming the same
CN117133715A (en) Method for forming semiconductor structure
CN114078760B (en) Semiconductor structures and methods of forming them
CN115602630A (en) Semiconductor structure and forming method thereof
CN114068395B (en) Semiconductor structure and forming method thereof
CN114664734A (en) Semiconductor structure and forming method thereof
CN113823692B (en) Semiconductor structure and forming method thereof
CN116364655A (en) Semiconductor structures and methods of forming them
CN115621317A (en) Semiconductor structure and forming method thereof
CN115117056A (en) Semiconductor structure and forming method thereof
CN116153928A (en) Semiconductor structure and forming method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination