CN115786365A - Cotton GhGT-3b_A04 gene, protein, expression vector, transgenic plant obtaining method and application - Google Patents
Cotton GhGT-3b_A04 gene, protein, expression vector, transgenic plant obtaining method and application Download PDFInfo
- Publication number
- CN115786365A CN115786365A CN202211311985.0A CN202211311985A CN115786365A CN 115786365 A CN115786365 A CN 115786365A CN 202211311985 A CN202211311985 A CN 202211311985A CN 115786365 A CN115786365 A CN 115786365A
- Authority
- CN
- China
- Prior art keywords
- ghgt
- cotton
- gene
- vector
- application
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 74
- 229920000742 Cotton Polymers 0.000 title claims abstract description 55
- 230000009261 transgenic effect Effects 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 12
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 12
- 239000013604 expression vector Substances 0.000 title abstract description 7
- 241000196324 Embryophyta Species 0.000 claims abstract description 50
- 241000082085 Verticillium <Phyllachorales> Species 0.000 claims abstract description 25
- 210000004209 hair Anatomy 0.000 claims abstract description 12
- 239000002773 nucleotide Substances 0.000 claims abstract description 5
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 5
- 239000013598 vector Substances 0.000 claims description 44
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 230000002018 overexpression Effects 0.000 claims description 20
- 241000589158 Agrobacterium Species 0.000 claims description 12
- 241000894006 Bacteria Species 0.000 claims description 8
- 210000002615 epidermis Anatomy 0.000 claims description 4
- 230000003803 hair density Effects 0.000 claims description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 241000219194 Arabidopsis Species 0.000 abstract description 16
- 230000006872 improvement Effects 0.000 abstract description 8
- 230000033228 biological regulation Effects 0.000 abstract description 3
- 235000013399 edible fruits Nutrition 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 238000011161 development Methods 0.000 abstract description 2
- 238000011160 research Methods 0.000 abstract description 2
- 230000009466 transformation Effects 0.000 abstract description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 47
- 241000219195 Arabidopsis thaliana Species 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 12
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 108091023040 Transcription factor Proteins 0.000 description 7
- 102000040945 Transcription factor Human genes 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 208000035240 Disease Resistance Diseases 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 6
- 229960004889 salicylic acid Drugs 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 235000009429 Gossypium barbadense Nutrition 0.000 description 4
- 241001123668 Verticillium dahliae Species 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 235000018322 upland cotton Nutrition 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000004665 defense response Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZBMRKNMTMPPMMK-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid;azane Chemical compound [NH4+].CP(O)(=O)CCC(N)C([O-])=O ZBMRKNMTMPPMMK-UHFFFAOYSA-N 0.000 description 1
- 101100327005 Arabidopsis thaliana CBP60G gene Proteins 0.000 description 1
- 101100382172 Arabidopsis thaliana CYP71A13 gene Proteins 0.000 description 1
- 101100011910 Arabidopsis thaliana EARLI1 gene Proteins 0.000 description 1
- 101100448366 Arabidopsis thaliana GH3.12 gene Proteins 0.000 description 1
- 101100449814 Arabidopsis thaliana GTL1 gene Proteins 0.000 description 1
- 101100533570 Arabidopsis thaliana SIRK gene Proteins 0.000 description 1
- 101150023103 CHI gene Proteins 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 238000000116 DAPI staining Methods 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101150089682 FRK1 gene Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 101000926140 Homo sapiens Gem-associated protein 2 Proteins 0.000 description 1
- 101000716750 Homo sapiens Protein SCAF11 Proteins 0.000 description 1
- 101000723833 Homo sapiens Zinc finger E-box-binding homeobox 2 Proteins 0.000 description 1
- 101150020162 ICS1 gene Proteins 0.000 description 1
- 101150049628 MPK4 gene Proteins 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101000742142 Phaseolus vulgaris Pathogenesis-related protein 1 Proteins 0.000 description 1
- 102100020876 Protein SCAF11 Human genes 0.000 description 1
- 241000589615 Pseudomonas syringae Species 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 101100116913 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) DJP1 gene Proteins 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000194806 Solanum sisymbriifolium Species 0.000 description 1
- 235000018724 Solanum sisymbriifolium Nutrition 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000004790 biotic stress Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000024346 drought recovery Effects 0.000 description 1
- 230000008641 drought stress Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- JGBUYEVOKHLFID-UHFFFAOYSA-N gelred Chemical compound [I-].[I-].C=1C(N)=CC=C(C2=CC=C(N)C=C2[N+]=2CCCCCC(=O)NCCCOCCOCCOCCCNC(=O)CCCCC[N+]=3C4=CC(N)=CC=C4C4=CC=C(N)C=C4C=3C=3C=CC=CC=3)C=1C=2C1=CC=CC=C1 JGBUYEVOKHLFID-UHFFFAOYSA-N 0.000 description 1
- 238000003208 gene overexpression Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000003779 hair growth Effects 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 102000037983 regulatory factors Human genes 0.000 description 1
- 108091008025 regulatory factors Proteins 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000010496 root system development Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 230000021918 systemic acquired resistance Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域technical field
本发明属于分子生物学和生物技术领域,尤其涉及一种棉花GhGT-3b_A04基因、蛋白质、表达载体、转基因植物获取方法和应用。The invention belongs to the field of molecular biology and biotechnology, and in particular relates to a cotton GhGT-3b_A04 gene, protein, expression vector, transgenic plant acquisition method and application.
背景技术Background technique
我国是棉花生产和消费大国,棉花在我国国民经济中具有重要地位。黄萎病是土传性真菌病害,严重影响棉花产量和品质。防治黄萎病的有效途径是培育种植抗病品种,因此鉴定抗黄萎病相关基因,探究其抗病机制,是棉花抗病分子育种的关键。水杨酸是一种重要的防御激素,在植物抵御病原体防御反应和系统获得性抗性建立中具有重要作用。在棉花中,已经证明了水杨酸信号通路参与黄萎病的抗病过程。my country is a big country of cotton production and consumption, and cotton plays an important role in our national economy. Verticillium wilt is a soil-borne fungal disease that seriously affects cotton yield and quality. The effective way to control Verticillium wilt is to cultivate and plant disease-resistant varieties. Therefore, identification of genes related to Verticillium wilt resistance and exploring its disease resistance mechanism are the keys to molecular breeding of cotton disease resistance. Salicylic acid is an important defense hormone that plays an important role in plant defense responses against pathogens and establishment of systemic acquired resistance. In cotton, the salicylic acid signaling pathway has been shown to be involved in the resistance process of Verticillium wilt.
三螺旋Trihelix转录因子,又称GT转录因子,其DNA结合域含有3个连续的α-螺旋,可以特异性结合GT顺式元件(GT1 box,5‘-GGTTAA-3‘;GT2 box,5‘-GGTAAT-3‘;GT3 box,5‘-GGTAAA-3’)。根据结构域的数量可以将GT转录因子分为GT-1、GT-2和GT-3三类。根据α螺旋结构域变化可分为GT-1、GT-2、GTγ、SH4和SIP1五个亚家族。通过对一些三螺旋Trihelix转录因子功能的研究表明Trihelix转录因子参与调控植物生物和非生物胁迫。水稻OsGTγ-1、OsGTγ-2、OsGTγ-3基因过表达可以提高植株对盐的耐受性。大豆GmGT-2a和GmGT-2b基因异源表达拟南芥植株对盐、冻害和干旱胁迫的耐受性提高。野生番茄中ShCIGT基因过表达番茄植株具有更高的耐冷性。拟南芥gtl1突变体气孔密度和数量明显降低,耐旱性和水分利用率提高。GTL1与MPK4互作,直接结合并调节水杨酸生物合成、运输和反应相关基因,正调节对丁香假单胞菌菌株的防御反应并抑制调节生长和发育的因子。在棉花中,陆地棉基因组中鉴定到102个Trihelix转录因子,其中Gh_A05G2067(GT-2)在干旱和盐胁迫条件下表达上调,可以提高棉花对干旱和盐胁迫的耐受性。但是,其它的棉花Trihelix转录因子的生物学功能,特别是通过水杨酸合成和信号转导途径调控棉花抗病防御反应的调控因子还不清楚。Triple-helix Trihelix transcription factor, also known as GT transcription factor, its DNA binding domain contains 3 consecutive α-helices, which can specifically bind GT cis elements (GT1 box, 5'-GGTTAA-3'; GT2 box, 5' -GGTAAT-3'; GT3 box, 5'-GGTAAA-3'). According to the number of structural domains, GT transcription factors can be divided into three categories: GT-1, GT-2 and GT-3. According to the change of α-helical domain, it can be divided into five subfamilies: GT-1, GT-2, GTγ, SH4 and SIP1. Studies on the functions of some triple-helix Trihelix transcription factors have shown that Trihelix transcription factors are involved in the regulation of plant biotic and abiotic stress. Overexpression of rice OsGTγ-1, OsGTγ-2, OsGTγ-3 genes can improve the tolerance of plants to salt. Heterologous expression of soybean GmGT-2a and GmGT-2b genes in Arabidopsis plants has increased tolerance to salt, freezing and drought stress. ShCIGT gene overexpression tomato plants in wild tomato have higher cold tolerance. The Arabidopsis gtl1 mutant has significantly reduced stomatal density and number, and improved drought tolerance and water use efficiency. GTL1 interacts with MPK4, directly binds and regulates genes involved in salicylic acid biosynthesis, transport, and responses, positively regulates defense responses to Pseudomonas syringae strains and represses factors that regulate growth and development. In cotton, 102 Trihelix transcription factors were identified in the Upland cotton genome, among which Gh_A05G2067 (GT-2) was up-regulated under drought and salt stress conditions, which can improve the tolerance of cotton to drought and salt stress. However, the biological functions of other cotton Trihelix transcription factors, especially the regulatory factors that regulate cotton disease resistance defense responses through salicylic acid synthesis and signal transduction pathways, are still unclear.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种棉花GhGT-3b_A04基因、蛋白质、表达载体、转基因植物获取方法和应用,所述棉花GhGT-3b_A04基因能够提高植物的抗黄萎病抗性。In view of this, the object of the present invention is to provide a cotton GhGT-3b_A04 gene, protein, expression vector, transgenic plant acquisition method and application, the cotton GhGT-3b_A04 gene can improve the resistance of plants to Verticillium wilt.
为了实现上述发明目的,本发明提供了以下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
本发明提供了一种棉花GhGT-3b_A04基因,所述棉花GhGT-3b_A04基因的核苷酸序列如SEQ ID No.1所示。The invention provides a cotton GhGT-3b_A04 gene, the nucleotide sequence of the cotton GhGT-3b_A04 gene is shown in SEQ ID No.1.
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因在提高植物抗黄萎病抗性中的应用。The present invention also provides the application of the cotton GhGT-3b_A04 gene described in the above technical solution in improving plant resistance to Verticillium wilt.
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因在提高植物根毛长度中的应用。The present invention also provides the application of the cotton GhGT-3b_A04 gene described in the above technical solution in increasing the length of plant root hairs.
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因在提高植物根毛密度中的应用。The present invention also provides the application of the cotton GhGT-3b_A04 gene described in the above technical solution in increasing the density of plant root hairs.
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因在提高植物表皮毛密度中的应用。The present invention also provides the application of the cotton GhGT-3b_A04 gene described in the above technical solution in increasing the hair density of the plant epidermis.
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因编码的蛋白质,所述蛋白质的氨基酸序列如SEQ ID No.2所示。The present invention also provides the protein encoded by the cotton GhGT-3b_A04 gene described in the above technical solution, the amino acid sequence of the protein is shown in SEQ ID No.2.
本发明还提供了一种过表达载体,所述过表达载体中含有上述技术方案所述的棉花GhGT-3b_A04基因。The present invention also provides an overexpression vector, which contains the cotton GhGT-3b_A04 gene described in the above technical solution.
优选的,所述过表达载体的制备方法包括以下步骤:Preferably, the preparation method of the overexpression vector comprises the following steps:
1)将上述技术方案所述的棉花GhGT-3b_A04基因与入门载体pDONR-Zeo进行BP反应,获得pDONR-Zeo-GhGT-3b_A04入门载体;1) The cotton GhGT-3b_A04 gene described in the above technical scheme is subjected to BP reaction with the entry vector pDONR-Zeo to obtain the pDONR-Zeo-GhGT-3b_A04 entry vector;
2)将所述步骤1)得到的pDONR-Zeo-GhGT-3b_A04入门载体与目的载体pEarleyGate 101进行LR反应,得到过表达载体。2) The pDONR-Zeo-GhGT-3b_A04 entry vector obtained in step 1) was subjected to LR reaction with the destination vector pEarleyGate 101 to obtain an overexpression vector.
本发明还提供了一种转基因植物的获取方法,包括以下步骤:The present invention also provides a method for obtaining transgenic plants, comprising the following steps:
a、将上述技术方案所述的过表达载体转化到农杆菌中,得到转化菌;a. Transform the overexpression vector described in the above technical scheme into Agrobacterium to obtain transformed bacteria;
b、将所述步骤a得到的转化菌侵染植物,得到转基因植物。b. Infecting plants with the transformed bacteria obtained in step a to obtain transgenic plants.
优选的,所述农杆菌包括农杆菌GV3101。Preferably, the Agrobacterium includes Agrobacterium GV3101.
本发明的有益效果为:The beneficial effects of the present invention are:
1、GhGT-3b_A04基因能增强拟南芥黄萎病抗性,且获得的转基因植株均能正常开花结果,转化基因能稳定遗传至下一代,故该基因可以进一步运用于黄萎病抗性改良,培育出抗黄萎病新品种,为植物黄萎病抗性改良提供新途径;1. The GhGT-3b_A04 gene can enhance the resistance of Arabidopsis thaliana to Verticillium wilt, and the obtained transgenic plants can flower and bear fruit normally, and the transformed gene can be stably passed on to the next generation, so this gene can be further used in the improvement of Verticillium wilt resistance , to breed new varieties resistant to Verticillium wilt, providing a new way for plant Verticillium wilt resistance improvement;
2、本发明为植物根系和表皮毛发育调控提供理论依据。2. The invention provides a theoretical basis for the regulation and control of plant root system and epidermal hair growth.
3、本发明为黄萎病抗性改良、植物根系和表皮毛研究提供新材料。3. The present invention provides new materials for the improvement of Verticillium wilt resistance and the research of plant root system and epidermis.
附图说明Description of drawings
图1为本发明棉花GhGT-3b_A04基因序列及其克隆与应用的基因表达示意图;Fig. 1 is the gene expression schematic diagram of the present invention cotton GhGT-3b_A04 gene sequence and its cloning and application;
图2为本发明棉花GhGT-3b_A04基因序列及其克隆与应用的拟南芥植株鉴定和植株表型示意图;Fig. 2 is the Arabidopsis plant identification and plant phenotype diagram of the cotton GhGT-3b_A04 gene sequence of the present invention and its cloning and application;
图3为本发明棉花GhGT-3b_A04基因序列及其克隆与应用的基因亚细胞定位示意图;Fig. 3 is a schematic diagram of the gene subcellular localization of the cotton GhGT-3b_A04 gene sequence of the present invention and its cloning and application;
图4为本发明棉花GhGT-3b_A04基因序列及其克隆与应用的基因拟南芥黄萎病处理示意图;Fig. 4 is the gene sequence of cotton GhGT-3b_A04 of the present invention and its cloning and application gene Arabidopsis verticillium wilt treatment schematic diagram;
图5为本发明棉花GhGT-3b_A04基因序列及其克隆与应用的基因拟南芥植株黄萎病处理后DAB染色示意图;Fig. 5 is the DAB staining schematic diagram of the gene sequence of cotton GhGT-3b_A04 of the present invention and its clone and application after the treatment of Verticillium wilt in Arabidopsis plants;
图6为本发明棉花GhGT-3b_A04基因序列及其克隆与应用的基因拟南芥幼苗根系发育示意图;Fig. 6 is the schematic diagram of root system development of Arabidopsis thaliana seedlings of cotton GhGT-3b_A04 gene sequence of the present invention and its clone and application;
图7为本发明棉花GhGT-3b_A04基因序列及其克隆与应用的基因拟南芥莲座叶表皮毛表型示意图;Fig. 7 is a schematic diagram of the gene sequence of the cotton GhGT-3b_A04 gene of the present invention and its clone and application;
图8为本发明棉花GhGT-3b_A04基因序列及其克隆与应用的基因拟南芥莲座叶抗病相关基因表达量变化示意图。Fig. 8 is a schematic diagram of the gene sequence of cotton GhGT-3b_A04 of the present invention and its cloning and application of gene expression changes in Arabidopsis rosette leaf disease resistance-related genes.
具体实施方式Detailed ways
本发明提供了一种棉花GhGT-3b_A04基因,所述棉花GhGT-3b_A04基因的核苷酸序列如SEQ ID No.1所示,具体如下:The invention provides a cotton GhGT-3b_A04 gene, the nucleotide sequence of the cotton GhGT-3b_A04 gene is shown in SEQ ID No.1, specifically as follows:
ATGGAGGGACATCATCGCCATCATCATCATCAGCAGCAGCAACATCTGCAGCAACAACAACAGCCTGTAAGTGTCAACGTTGAAGCTGATAGGTTTCCTCAATGGAGTGTTCAAGAGACAAAGGATTTTTTAATGATCAGAGCAGAGCTGGATCAAAGTTTCATGGAGACCAAAAGGAACAAGCTGCTTTGGGAAGTTATCTCCACCAGGATGAGGGAAAAGGGTTATAATCGAAGCGCTGAACAGTGCAAGTGCAAGTGGAAAAACCTCTTTACTCGTTACAAGGGATGTGGAACGGTTGACGCAGAAATTGTGCGGCAACAGTTCCCGTTTTACGACGAGTTGCAGGCCATATTCACGGCGAGGATGCAAAGTGTTCTATGTTCGGAAAGTGAAGGCGGAGGAGCTACGGGGTCGAAAAAAAAGGCAGCACAGGCGCAGCTATCTTCCGACGAGGAAGACGATACGGAGGAAAACGAGTACAGCTTTAGGAAGAAGAAGAAAGGGAAAACTGGTGGTGGGAGTAGTAGTACGAGCGGCAGCATTAATATAAAGGAAATGTTAGCGAACTTCATGAGGCAACAGTTGCAGATGGAAATGCAATGGAGGGAAGCTTTGGAGTCGAGAGAAAACGAGAGGCGGATGAAGGAAATGGAGTGGAGGCAAACCATGGAAGCCCTTGAAAACGAGAGGATAATGATGGAGAGAAGGTGGAGGGAAAGGGAAGAACAAAGGAGAATAAGGGAAGAAGCTAGGGCTGAGAAGAGAGATGCTCTCATTACTGCACTTCTAAACAAGCTTAGAAGAGAAGATCAAATGTAG。ATGGAGGGACATCATCGCCATCATCATCATCAGCAGCAGCAACATCTGCAGCAACAACAACAGCCTGTAAGTGTCAACGTTGAAGCTGATAGGTTTCCTCAATGGAGTGTTCAAGAGACAAAGGATTTTTTAATGATCAGAGCAGAGCTGGATCAAAGTTTCATGGAGACCAAAAGGAACAAGCTGCTTTGGGAAGTTATCTCCACCAGGATGAGGGAAAAGGGTTATAATCGAAGCGCTGAACAGTGCAAGTGCAAGTGGAAAAACCTCTTTACTCGTTACAAGGGATGTGGAACGGTTGACGCAGAAATTGTGCGGCAACAGTTCCCGTTTTACGACGAGTTGCAGGCCATATTCACGGCGAGGATGCAAAGTGTTCTATGTTCGGAAAGTGAAGGCGGAGGAGCTACGGGGTCGAAAAAAAAGGCAGCACAGGCGCAGCTATCTTCCGACGAGGAAGACGATACGGAGGAAAACGAGTACAGCTTTAGGAAGAAGAAGAAAGGGAAAACTGGTGGTGGGAGTAGTAGTACGAGCGGCAGCATTAATATAAAGGAAATGTTAGCGAACTTCATGAGGCAACAGTTGCAGATGGAAATGCAATGGAGGGAAGCTTTGGAGTCGAGAGAAAACGAGAGGCGGATGAAGGAAATGGAGTGGAGGCAAACCATGGAAGCCCTTGAAAACGAGAGGATAATGATGGAGAGAAGGTGGAGGGAAAGGGAAGAACAAAGGAGAATAAGGGAAGAAGCTAGGGCTGAGAAGAGAGATGCTCTCATTACTGCACTTCTAAACAAGCTTAGAAGAGAAGATCAAATGTAG。
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因在提高植物抗黄萎病抗性中的应用。The present invention also provides the application of the cotton GhGT-3b_A04 gene described in the above technical solution in improving plant resistance to Verticillium wilt.
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因在提高植物根毛长度中的应用。The present invention also provides the application of the cotton GhGT-3b_A04 gene described in the above technical solution in increasing the length of plant root hairs.
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因在提高植物根毛密度中的应用。The present invention also provides the application of the cotton GhGT-3b_A04 gene described in the above technical solution in increasing the density of plant root hairs.
本发明还提供了上述技术方案所述的棉花GhGT-3b_A04基因在提高植物表皮毛密度中的应用。The present invention also provides the application of the cotton GhGT-3b_A04 gene described in the above technical solution in increasing the hair density of the plant epidermis.
在本发明中,所述植物优选包括拟南芥。In the present invention, the plant preferably includes Arabidopsis.
本发明HIA提供了上述技术方案所述的棉花GhGT-3b_A04基因编码的蛋白质,其特征在于,所述蛋白质的氨基酸序列如SEQ ID No.2所示,具体如下:HIA of the present invention provides the protein encoded by the cotton GhGT-3b_A04 gene described in the above-mentioned technical scheme, is characterized in that, the aminoacid sequence of described protein is as shown in SEQ ID No.2, specifically as follows:
MEGHHRHHHHQQQQHLQQQQQPVSVNVEADRFPQWSVQETKDFLMIRAELDQSFMETKRNKLLWEVISTRMREKGYNRSAEQCKCKWKNLFTRYKGCGTVDAEIVRQQFPFYDELQAIFTARMQSVLCSESEGGGATGSKKKAAQAQLSSDEEDDTEENEYSFRKKKKGKTGGGSSSTSGSINIKEMLANFMRQQLQMEMQWREALESRENERRMKEMEWRQTMEALENERIMMERRWREREEQRRIREEARAEKRDALI TALLNKLRRE DQM。MEGHHRHHHHQQQQHLQQQQQPVSVNVEADRFPQWSVQETKDFLMIRAELDQSFMETKRNKLLWEVISTRMREKGYNRSAEQCKCKWKNLFTRYKGCGTVDAEIVRQQFPFYDELQAIFTARMQSVLCSESEGGGATGSKKKAAQAQLSSDEEDDTEENEYSFRKKKKGKTGGGSSSTSGSINIKEMLANFMRQQLQMEMQWREALESRENERRMKEMEWRQTMEALENERIMMERRWREREEQRRIREEARAEKRDALI TALLNKLRRE DQM。
本发明还提供了一种过表达载体,所述过表达载体中含有权利要求1所述的棉花GhGT-3b_A04基因。The present invention also provides an overexpression vector, which contains the cotton GhGT-3b_A04 gene of
在本发明中,所述过表达载体的制备方法优选包括以下步骤:In the present invention, the preparation method of the overexpression vector preferably includes the following steps:
1)将上述技术方案所述的棉花GhGT-3b_A04基因与入门载体pDONR-Zeo进行BP反应,获得pDONR-Zeo-GhGT-3b_A04入门载体;1) The cotton GhGT-3b_A04 gene described in the above technical scheme is subjected to BP reaction with the entry vector pDONR-Zeo to obtain the pDONR-Zeo-GhGT-3b_A04 entry vector;
2)将所述步骤1)得到的pDONR-Zeo-GhGT-3b_A04入门载体与目的载体pEarleyGate 101进行LR反应,得到过表达载体。2) The pDONR-Zeo-GhGT-3b_A04 entry vector obtained in step 1) was subjected to LR reaction with the destination vector pEarleyGate 101 to obtain an overexpression vector.
本发明优选将上述技术方案所述的棉花GhGT-3b_A04基因与入门载体pDONR-Zeo进行BP反应,获得pDONR-Zeo-GhGT-3b_A04入门载体。在本发明中,所述入门载体pDONR-Zeo优选从Invitrogen公司购买。在本发明中,所述BP反应的条件优选包括:反应体系为pDONR-Zeo载体1μl,PCR产物1μl,BP反应酶(Invitrogen,加利福尼亚州,美国)0.5μl,25℃反应2小时。In the present invention, the cotton GhGT-3b_A04 gene described in the above technical scheme is preferably subjected to BP reaction with the entry vector pDONR-Zeo to obtain the pDONR-Zeo-GhGT-3b_A04 entry vector. In the present invention, the entry vector pDONR-Zeo is preferably purchased from Invitrogen. In the present invention, the conditions of the BP reaction preferably include: the reaction system is 1 μl of pDONR-Zeo vector, 1 μl of PCR product, 0.5 μl of BP reaction enzyme (Invitrogen, California, USA), and react at 25° C. for 2 hours.
本发明优选将得到的pDONR-Zeo-GhGT-3b_A04入门载体与目的载体pEarleyGate101进行LR反应,得到过表达载体。在本发明中,所述目的载体pEarleyGate 101优选从优宝生物公司购买。在本发明中,所述LR反应的条件优选包括:反应体系为pDONR-Zeo-GhGT-3b_A04载体1μl,PCR产物1μl,LR反应酶(Invitrogen,加利福尼亚州,美国)0.5μl,25℃反应1小时。In the present invention, the obtained pDONR-Zeo-GhGT-3b_A04 entry vector is preferably subjected to LR reaction with the target vector pEarleyGate101 to obtain an overexpression vector. In the present invention, the target vector pEarleyGate 101 is preferably purchased from Youbao Biological Company. In the present invention, the conditions of the LR reaction preferably include: the reaction system is 1 μl of pDONR-Zeo-GhGT-3b_A04 carrier, 1 μl of PCR product, 0.5 μl of LR reaction enzyme (Invitrogen, California, U.S.), and reacted for 1 hour at 25° C. .
本发明还提供了一种转基因植物的获取方法,包括以下步骤:The present invention also provides a method for obtaining transgenic plants, comprising the following steps:
a、将上述技术方案所述的过表达载体转化到农杆菌中,得到转化菌;a. Transform the overexpression vector described in the above technical scheme into Agrobacterium to obtain transformed bacteria;
b、将所述步骤a得到的转化菌侵染植物,得到转基因植物。b. Infecting plants with the transformed bacteria obtained in step a to obtain transgenic plants.
本发明将上述技术方案所述的过表达载体转化到农杆菌中,得到转化菌。在本发明中,所述农杆菌优选包括农杆菌GV3101。本发明对转化的方法没有特殊限定,本领域技术人员依据常规操作即可。The present invention transforms the overexpression vector described in the above technical scheme into Agrobacterium to obtain transformed bacteria. In the present invention, the Agrobacterium preferably includes Agrobacterium GV3101. The present invention has no special limitation on the transformation method, and those skilled in the art can follow the routine operations.
本发明将所述步骤a得到的转化菌侵染植物,得到转基因植物。本发明对侵染的方法没有特殊限定,本领域技术人员采用常规操作即可,在此不再赘述。The present invention infects plants with the transformed bacteria obtained in step a to obtain transgenic plants. The method of infection is not particularly limited in the present invention, and those skilled in the art can use conventional operations, which will not be repeated here.
在本发明中,所述植物优选包括拟南芥。在本发明中,所述GhGT-3b_A04基因能增强拟南芥黄萎病抗性,且获得的转基因植株均能正常开花结果,转化基因能稳定遗传至下一代。In the present invention, the plant preferably includes Arabidopsis. In the present invention, the GhGT-3b_A04 gene can enhance the resistance to Verticillium wilt of Arabidopsis thaliana, and the obtained transgenic plants can normally flower and bear fruit, and the transformed gene can be stably inherited to the next generation.
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。The technical solutions provided by the present invention will be described in detail below in conjunction with the examples, but they should not be interpreted as limiting the protection scope of the present invention.
实施例1Example 1
棉花GhGT-3b_A04基因的克隆和表达载体构建Cloning of Cotton GhGT-3b_A04 Gene and Construction of Expression Vector
(1)引物设计(1) Primer design
根据cottonFGD已报道的棉花基因组序列,通过生物信息学比对,确定GhGT-3b_A04基因cDNA序列(SEQ ID No.1),根据该序列设计编码框(ORF)全长序列的引物,引物序列如下:According to the cotton genome sequence reported by cottonFGD, by bioinformatics comparison, the cDNA sequence (SEQ ID No.1) of the GhGT-3b_A04 gene was determined, and the primers for the full-length sequence of the coding frame (ORF) were designed according to the sequence, and the primer sequences were as follows:
GhGT-3b_A04-F(SEQ ID No.3):GhGT-3b_A04-F (SEQ ID No.3):
5'GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGGGACATCATCGC3';5'GGGGACAAGTTTTGTACAAAAAAGCAGGCTTAATGGAGGGACATCATCGC3';
GhGT-3b_A04-R(SEQ ID No.4):GhGT-3b_A04-R (SEQ ID No.4):
5'GGGGACCACTTTGTACAAGAAAGCTGGGTACATTTGATCTTCTCTTCT3'。5'GGGGACCACTTTGTACAAGAAAGCTGGGTACATTTGATCTTCTCTTCT3'.
(2)陆地棉TM-1棉花叶片总RNA提取(2) Extraction of Total RNA from Upland Cotton TM-1 Cotton Leaves
取幼嫩叶片加液氮研磨至粉末状,然后使用试剂盒R FastPure Plant Total RNAIsolation Kit(诺唯赞,南京,中国)提取叶片总RNA。经分光光度计检测RNA浓度及质量,浓度约为600ng/ul,OD260/OD280=2.0,OD260/OD230=2.0,提取的总RNA立即用于下一步实验。The young leaves were ground into powder with liquid nitrogen, and then the total RNA of the leaves was extracted using the kit R FastPure Plant Total RNAIsolation Kit (Novazyme, Nanjing, China). The RNA concentration and quality were detected by a spectrophotometer, the concentration was about 600ng/ul, OD260/OD280=2.0, OD260/OD230=2.0, and the extracted total RNA was immediately used in the next experiment.
(3)RNA反转录(3) RNA reverse transcription
取1μg RNA至0.2ml无RNAase的离心管中,使用试剂盒HiScriptⅢRT SuperMixfor qPCR(诺唯赞,南京,中国)将RNA反转录为cDNA,经分光光度计检测DNA浓度及质量,浓度约为1000ng/μl,OD260/OD280=1.8,OD260/OD230=2.0,得到的cDNA进行下一步实验。Take 1 μg RNA into a 0.2ml RNAase-free centrifuge tube, use the kit HiScriptⅢRT SuperMixfor qPCR (Novizan, Nanjing, China) to reverse-transcribe the RNA into cDNA, and detect the DNA concentration and quality by spectrophotometer, the concentration is about 1000ng /μl, OD260/OD280=1.8, OD260/OD230=2.0, the obtained cDNA was used for the next experiment.
(4)PCR扩增和纯化(4) PCR amplification and purification
使用高保真酶进行PCR扩增,具体如下:PCR反应体系为:1000ng/μl棉花cDNA 1μl,10uM引物F和R向各2μl,2×Phanta Master Mix:25μl,ddH2O 20μl,总体系为50μl。PCR扩增条件具体为:95℃预变性2分钟;95℃变性15秒,55℃退火15秒,72℃延伸40秒,35个循环;1%琼脂糖凝胶电泳分离和Gelred染色检测扩增结果。使用Omega PCR纯化回收试剂盒,进行PCR纯化回收,浓度达到100ng/μl,进行连接反应。Use high-fidelity enzymes for PCR amplification, as follows: PCR reaction system: 1000ng/μl cotton cDNA 1μl, 10uM primers F and R each 2μl, 2×Phanta Master Mix: 25μl, ddH 2 O 20μl, the total system is 50μl . PCR amplification conditions are as follows: 95°C pre-denaturation for 2 minutes; 95°C denaturation for 15 seconds, 55°C annealing for 15 seconds, 72°C extension for 40 seconds, 35 cycles; 1% agarose gel electrophoresis separation and Gelred staining detection amplification result. Omega PCR purification and recovery kit was used for PCR purification and recovery, the concentration reached 100ng/μl, and ligation reaction was carried out.
(5)PCR片段连接表达载体(5) PCR fragment connection expression vector
采用Gateway系统进行表达载体构建,首先将PCR产物与入门载体pDONR-Zeo进行BP反应,反应体系:pDONR-Zeo载体1μl,PCR产物1μl,BP反应酶(Invitrogen,加利福尼亚州,美国)0.5μl,25℃反应2小时,获得pDONR-Zeo-GhGT-3b_A04入门载体。将入门载体送至上海生工生物工程有限公司进行测序,载体中包含SEQ ID No.1所示的核苷酸序列,其蛋白质序列中含有典型的三螺旋结构域。然后将入门载体与目的载体pEarleyGate101进行LR反应,反应体系:pDONR-Zeo-GhGT-3b_A04载体1μl,PCR产物1μl,LR反应酶(Invitrogen,加利福尼亚州,美国)0.5μl,25℃反应1小时,得到过表达载体pEarleyGate 101-GhGT-3b_A04。将pEarleyGate 101-GhGT-3b_A04载体转化至GV3101农杆菌中,利用PCR鉴定阳性菌落。The Gateway system was used to construct the expression vector. First, the PCR product was subjected to BP reaction with the entry vector pDONR-Zeo. °C for 2 hours to obtain the entry vector pDONR-Zeo-GhGT-3b_A04. The entry vector was sent to Shanghai Sangon Bioengineering Co., Ltd. for sequencing. The vector contained the nucleotide sequence shown in SEQ ID No.1, and its protein sequence contained a typical triple helix domain. Then the entry vector and the destination vector pEarleyGate101 were subjected to LR reaction, the reaction system: 1 μl of pDONR-Zeo-GhGT-3b_A04 vector, 1 μl of PCR product, 0.5 μl of LR reaction enzyme (Invitrogen, California, U.S.), and reacted for 1 hour at 25°C to obtain Overexpression vector pEarleyGate 101-GhGT-3b_A04. The pEarleyGate 101-GhGT-3b_A04 vector was transformed into GV3101 Agrobacterium, and positive colonies were identified by PCR.
(6)Real-time PCR(6) Real-time PCR
提取陆地棉冀棉J11和中植棉2号ZZ2黄萎病侵染0h、6h、12h、24h、48h、72h根系和叶片以及陆地棉TM-1各组织的RNA,反转录为cDNA,使用SYBR qPCR Master Mix进行Real-time PCR,GhGT-3b_A04基因在J11和ZZ2的根系和叶片中的表达均受黄萎病菌诱导(图1中A-B),并且在TM-1的根、茎、花瓣和雄蕊中具有相对较高的表达(图1中C)。Extract the RNA from roots and leaves of upland cotton Jimian J11 and Zhongzhimian No. 2 ZZ2 verticillium wilt
实施例2Example 2
转基因拟南芥的获得Obtaining transgenic Arabidopsis
(1)拟南芥转化(1) Arabidopsis transformation
将野生型拟南芥Col0放入4℃冰箱中进行春化处理4天,营养土和蛭石按3:1搅拌均匀后,加水润湿后分装至小盆中,将Col0种子直接用枪头吸至小盆中,每盆9棵。拟南芥放置于16h光照,8h黑暗,24℃的温室中进行培养。培养45天左右,花苞较多时进行转化。取实施例1得到的pEarleyGate 101-GhGT-3b_A04阳性农杆菌200μl于2ml LB+rif+kan培养基中,28℃,200rpm振荡培养过夜,取1ml菌液于100ml相应的培养基中扩大培养,28℃,200rpm振荡培养12小时,4000rpm,10min收集菌液,使用侵染液(1/2MS+5%蔗糖+0.05%的silwetl-77)重新悬浮菌液,将OD600调至1.5。将配置好的侵染液倒置培养皿中,使拟南芥花絮浸泡于侵染液中1min,转化完成的拟南芥植株横放,保鲜膜覆盖进行保湿,暗处理24小时后放置温室培养,拟南芥结实后,收取种子,进行抗性筛选转基因阳性植株。Put the wild-type Arabidopsis Col0 in a refrigerator at 4°C for vernalization for 4 days, mix the nutrient soil and vermiculite at a ratio of 3:1, add water to moisten it, and divide it into small pots. Put the Col0 seeds directly with a gun The heads are sucked into small pots, 9 trees per pot. Arabidopsis was cultured in a greenhouse at 24°C with 16 hours of light and 8 hours of darkness. Cultivate for about 45 days, and transform when there are many flower buds. Get 200 μl of the positive Agrobacterium pEarleyGate 101-GhGT-3b_A04 obtained in Example 1 in 2ml LB+rif+kan culture medium, 28°C, shake culture at 200rpm overnight, take 1ml of bacterial liquid and expand culture in 100ml of corresponding medium, 28 ℃, 200rpm shaking culture for 12 hours, 4000rpm, 10min to collect the bacterial liquid, use the infection solution (1/2MS+5% sucrose+0.05% silwetl-77) to resuspend the bacterial liquid, and adjust the OD600 to 1.5. Invert the prepared infection solution into the culture dish, soak the Arabidopsis flocs in the infection solution for 1 min, place the transformed Arabidopsis plants horizontally, cover with plastic wrap to keep them moist, and place them in the greenhouse for 24 hours after dark treatment. After the Arabidopsis thaliana fruited, the seeds were harvested, and the transgenic positive plants were screened for resistance.
(2)阳性植株的筛选和鉴定(2) Screening and identification of positive plants
将获得的转基因拟南芥T0代种子均匀的撒播在营养土基质中,待种子发芽后,开始喷施Basta除草剂,每隔5天喷施一次,共喷施3次。总共得到20株抗性植株,利用CTAB法提取其中三株抗性拟南芥基因组DNA和RNA,并进行目的基因PCR鉴定和半定量PCR,经鉴定均为阳性植株,且在RNA水平高表达,分别命名为GhGT-3b_A04-YFP-1~3(图2中A)。由于将GhGT-3b_A04与黄色荧光蛋白YFP进行了融合表达,所以进一步用anti-GFP抗体对GhGT-3b_A04-YFP-1~3进行westernblot检测,结果发现三个株系的GhGT-3b_A04-YFP蛋白均有表达(图2中B)。同时,以空载转基因株系为对照,观察了拟南芥28天植株的表型,可以看出过表达株系比对照材料的植株更小(图2中C),扫描电镜观察叶片细胞变小。对拟南芥转基因系进行激光共聚焦观察,可以观察到空载在细胞膜,细胞核和细胞质中均有表达,而GhGT-3b_A04-YFP转基因系的荧光通过DAPI染色确定仅分布于细胞核(图3)。The obtained transgenic Arabidopsis thaliana T0 generation seeds were evenly sown in the nutrient soil matrix. After the seeds germinated, the Basta herbicide was sprayed every 5 days for a total of 3 times. A total of 20 resistant plants were obtained. Genomic DNA and RNA of three of the resistant Arabidopsis thaliana were extracted by CTAB method, and PCR identification and semi-quantitative PCR of the target gene were carried out. All of them were identified as positive plants and highly expressed at the RNA level. They were named GhGT-3b_A04-YFP-1~3 respectively (A in Fig. 2). Due to the fusion expression of GhGT-3b_A04 and yellow fluorescent protein YFP, the anti-GFP antibody was further used to detect GhGT-3b_A04-YFP-1~3 by western blot. It was found that the GhGT-3b_A04-YFP proteins of the three strains were all There is expression (B in Figure 2). At the same time, using the empty transgenic line as a control, the phenotype of the Arabidopsis thaliana 28-day-old plant was observed. It can be seen that the overexpression line is smaller than the plant of the control material (C in Figure 2). Small. Confocal observation of Arabidopsis thaliana transgenic lines showed that the empty carrier was expressed in the cell membrane, nucleus and cytoplasm, while the fluorescence of the GhGT-3b_A04-YFP transgenic line was only distributed in the nucleus by DAPI staining (Figure 3) .
实施例3Example 3
转基因拟南芥更抗黄萎病Transgenic Arabidopsis more resistant to Verticillium wilt
转基因T3代纯合株系,在16h光照,8h黑暗,24℃的温室中培养35天后,进行黄萎病菌侵染,20天后观察转基因株系表型,可以观察到三个过表达转基因株系GhGT-3b_A04-YFP-1~3的叶片黄化程度均低于野生型,说明转基因株系比野生型更加抗黄萎病(图4)。对黄萎病侵染24小时和48小时的莲座叶进行DAB染色,可以观察到转基因株系比野生型叶片染色更深(图5),说明在黄萎病菌侵染后转基因株系可以产生更多的活性氧,以对抗黄萎病。Transgenic T3 generation homozygous lines were cultured in a greenhouse with 16 hours of light and 8 hours of darkness at 24°C for 35 days, and then infected with Verticillium dahliae. After 20 days, the phenotype of the transgenic lines was observed, and three overexpression transgenic lines could be observed The leaf yellowing degree of GhGT-3b_A04-YFP-1~3 was lower than that of the wild type, indicating that the transgenic lines were more resistant to Verticillium wilt than the wild type (Figure 4). DAB staining was performed on the rosette leaves of Verticillium dahliae infection for 24 hours and 48 hours, and it can be observed that the transgenic lines stained darker than the wild-type leaves (Figure 5), indicating that the transgenic lines can produce more after Verticillium dahliae infection. Active oxygen to fight Verticillium wilt.
实施例4Example 4
转基因拟南芥的根毛和表皮毛变化Changes of root hairs and epidermal hairs in transgenic Arabidopsis thaliana
为了分析转基因拟南芥的根毛变化,转基因纯合系和对照拟南芥种子经消毒,4℃春化,播种至含1%蔗糖1/2MS固体培养基,光照培养10天后,拍照观察根系长度和根毛数量。可以看出,GhGT-3b_A04-YFP-1~3转基因株系的根毛长度和根毛密度均高于野生型(图6)。In order to analyze the root hair changes of transgenic Arabidopsis thaliana, the seeds of transgenic homozygous lines and control Arabidopsis thaliana were sterilized, vernalized at 4°C, sown on 1/2MS solid medium containing 1% sucrose, and cultured in light for 10 days, and then photographed to observe the root length and root hair count. It can be seen that the root hair length and root hair density of the GhGT-3b_A04-YFP-1~3 transgenic lines are higher than those of the wild type ( FIG. 6 ).
转基因T3代纯合株系,在16h光照,8h黑暗,24℃的温室中培养28天后,观察转基因株系叶片表皮毛表型,可以观察到转基因株系表皮毛密度高于野生型(图7)。The homozygous lines of the transgenic T3 generation were cultured for 28 days in a greenhouse at 24°C with 16 hours of light and 8 hours of light, and the trichome phenotype of the leaves of the transgenic lines was observed. It can be observed that the density of the trichomes of the transgenic lines is higher than that of the wild type (Fig. 7 ).
实施例5Example 5
转基因拟南芥的SA信号和合成途径及抗病相关基因被诱导表达Induced expression of SA signal and synthesis pathway and disease resistance-related genes in transgenic Arabidopsis thaliana
转基因T3代纯合株系,在16h光照,8h黑暗,24℃的温室中培养28天后,提取莲座叶RNA,反转录为cDNA后,进行Real-time PCR,检测了水杨酸信号和合成途径基因CBP60G、ICS1和PBS3的表达,这三个基因在转基因系中均被诱导表达(图8中A,B,G);同时检测了抗病相关基因PR2、CHI、CYP71A13、FRK1、PNP-A、EARLI1的表达,这六个基因在转基因系中均被诱导表达(图8中C-F,H-I),说明了GhGT-3b_A04通过激活水杨酸信号和合成途径及抗病基因的表达来增强黄萎病抗性。Transgenic T3 homozygous lines were cultured in a greenhouse for 28 days with 16 hours of light and 8 hours of darkness at 24°C. RNA was extracted from rosette leaves, reverse-transcribed into cDNA, and Real-time PCR was performed to detect the signal and synthesis of salicylic acid The expressions of pathway genes CBP60G, ICS1 and PBS3 were induced and expressed in the transgenic lines (A, B, G in Figure 8); at the same time, the resistance-related genes PR2, CHI, CYP71A13, FRK1, PNP- A. The expression of EARLI1, these six genes were induced to express in the transgenic lines (C-F, H-I in Fig. 8), indicating that GhGT-3b_A04 enhances the expression of yellow yellow by activating the salicylic acid signal and synthesis pathway and the expression of disease resistance genes. Wilt resistance.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211311985.0A CN115786365B (en) | 2022-10-25 | 2022-10-25 | Cotton GhGT-3b_A04 gene, protein, expression vector, transgenic plant acquisition method and application |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211311985.0A CN115786365B (en) | 2022-10-25 | 2022-10-25 | Cotton GhGT-3b_A04 gene, protein, expression vector, transgenic plant acquisition method and application |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115786365A true CN115786365A (en) | 2023-03-14 |
| CN115786365B CN115786365B (en) | 2024-11-29 |
Family
ID=85433684
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211311985.0A Active CN115786365B (en) | 2022-10-25 | 2022-10-25 | Cotton GhGT-3b_A04 gene, protein, expression vector, transgenic plant acquisition method and application |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115786365B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117327718A (en) * | 2023-12-01 | 2024-01-02 | 三亚中国农业科学院国家南繁研究院 | GhCRLK 1L104 gene and application, protein, over-expression vector and method thereof |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102002503A (en) * | 2003-08-11 | 2011-04-06 | 植物育种农业研究所有限公司 | Fungus resistant plants and their uses |
| US20130061345A1 (en) * | 2001-11-19 | 2013-03-07 | Mendel Biotechnology, Inc. | Transcription regulators for improving plant performance |
-
2022
- 2022-10-25 CN CN202211311985.0A patent/CN115786365B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130061345A1 (en) * | 2001-11-19 | 2013-03-07 | Mendel Biotechnology, Inc. | Transcription regulators for improving plant performance |
| CN102002503A (en) * | 2003-08-11 | 2011-04-06 | 植物育种农业研究所有限公司 | Fungus resistant plants and their uses |
Non-Patent Citations (1)
| Title |
|---|
| GENBANK: "PREDICTED: Gossypium hirsutum trihelix transcription factor GT-3b (LOC107948595), transcript variant X2, mRNA, NCBI Reference Sequence: XM_041111404.1", Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/nucleotide/XM_041111404.1?report=genbank&log$=nuclalign&blast_rank=1&RID=B0EZ1WSM016> * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117327718A (en) * | 2023-12-01 | 2024-01-02 | 三亚中国农业科学院国家南繁研究院 | GhCRLK 1L104 gene and application, protein, over-expression vector and method thereof |
| CN117327718B (en) * | 2023-12-01 | 2024-02-13 | 三亚中国农业科学院国家南繁研究院 | A GhCrRLK1L104 gene and its application, protein, overexpression vector and method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115786365B (en) | 2024-11-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Salleh et al. | A novel function for a redox‐related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses | |
| CN103695439B (en) | Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof | |
| CN110734482B (en) | A Minjiang lily WRKY transcription factor gene LrWRKY4 and its application | |
| CN104829700A (en) | Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof | |
| CN111235165B (en) | A lily susceptible fungal gene LrWRKY-S1 and its application | |
| CN102220297B (en) | Stress resistance associated protein TaSnRK2.3 and coding gene and use thereof | |
| Zhang et al. | Identification of pepper CaSBP08 gene in defense response against Phytophthora capsici infection | |
| CN107937417B (en) | A disease-resistant and drought-tolerant protein gene GhSNAP33 from cotton and its application | |
| CN111424037B (en) | Cymbidium CgWRKY70 gene and application thereof | |
| CN110938617B (en) | Lilium regale LrPAL-1 gene and application thereof | |
| CN100540665C (en) | Gene for regulating plant branching, vector containing the gene, microorganism transformed by the vector, and method for regulating plant branching using the microorganism | |
| CN106554964B (en) | Application of cotton GbABR1 gene in resistance to Verticillium wilt | |
| CN108424920A (en) | The resistance to inversely related transcription factor ZmNAC33 genes of corn and its application | |
| US11535859B1 (en) | Controlling stomatal density in plants | |
| CN115786365A (en) | Cotton GhGT-3b_A04 gene, protein, expression vector, transgenic plant obtaining method and application | |
| CN111304221A (en) | A kind of Chunlan CgWRKY31 gene and its application | |
| CN103320448B (en) | Lilium regle bZIP transcription factor LrbZIP1 and application | |
| CN114591409B (en) | Application of TaDTG6 Protein in Improving Plant Drought Resistance | |
| CN113637682B (en) | Application of OsMYB26 or its mutants in improving drought stress tolerance of plants | |
| CN116589545A (en) | Application of ONAC096 gene in controlling drought resistance of rice | |
| CN102924582A (en) | Plant-adversity-resistance related protein TaNAC67 as well as coding gene and application thereof | |
| CN109957573B (en) | Haynaldia villosa vacuolus processing enzyme gene VPE3-V and silencing vector and application thereof | |
| CN106480069A (en) | Fructus Cucumidis sativi CsERF025 gene and its promote the straight developmental application of cucumber fruits | |
| Chang et al. | Functional characterization of CtWRKY70 transcription factor from Cynanchum thesioides in salt and drought stress resistance | |
| CN106939038A (en) | A kind of corn development modulin, encoding gene and application |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |