CN115799330A - High-voltage-resistant HEMT device and preparation method thereof - Google Patents
High-voltage-resistant HEMT device and preparation method thereof Download PDFInfo
- Publication number
- CN115799330A CN115799330A CN202211410574.7A CN202211410574A CN115799330A CN 115799330 A CN115799330 A CN 115799330A CN 202211410574 A CN202211410574 A CN 202211410574A CN 115799330 A CN115799330 A CN 115799330A
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor substrate
- drift
- metal layer
- schottky
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本申请涉及一种耐高压HEMT器件及其制备方法。耐高压HEMT器件包括:半导体衬底以及在半导体衬底的正面依次层叠设置的漂移层、缓冲层、沟道层和势垒层。栅极设于势垒层上。肖特基金属层设于漂移层上,且与缓冲层的第一侧接触。源极设于肖特基金属层上,且与沟道层以及势垒层接触。中介金属层设于漂移层上,且与缓冲层的第二侧以及沟道层和势垒层接触。漏极设于半导体衬底的背面。本申请通过肖特基金属层与漂移层、半导体衬底可以构造出一个阳极与源极连接且阴极通过半导体衬底与漏极连接的肖特基二极管,当有高电压施加到漏极与源极上时,则该肖特基二极管会被击穿,从而限制漏极与源极之间的电压,提升了耐高压的能力。
The application relates to a high-voltage resistant HEMT device and a preparation method thereof. The high-voltage resistant HEMT device includes: a semiconductor substrate and a drift layer, a buffer layer, a channel layer and a potential barrier layer which are sequentially stacked on the front side of the semiconductor substrate. The gate is disposed on the barrier layer. The Schottky metal layer is disposed on the drift layer and is in contact with the first side of the buffer layer. The source is disposed on the Schottky metal layer and is in contact with the channel layer and the barrier layer. The intermediary metal layer is disposed on the drift layer and is in contact with the second side of the buffer layer, the channel layer and the barrier layer. The drain is arranged on the back side of the semiconductor substrate. In this application, a Schottky diode with an anode connected to the source and a cathode connected to the drain through the semiconductor substrate can be constructed through the Schottky metal layer, the drift layer, and the semiconductor substrate. When a high voltage is applied to the drain and the source When the pole is on, the Schottky diode will be broken down, thereby limiting the voltage between the drain and the source, and improving the ability to withstand high voltage.
Description
技术领域technical field
本申请属于高电子迁移率晶体管技术领域,尤其涉及一种耐高压HEMT器件及其制备方法。The application belongs to the technical field of high electron mobility transistors, and in particular relates to a high-voltage resistant HEMT device and a preparation method thereof.
背景技术Background technique
目前,氮化镓是一种新型的第三代半导体材料,具备许多优异的特性,是未来发展功率半导体的主流,可以通过构造二维电子气(2DEG;Two-Dimensional Electron Gas)来构造高电子迁移率晶体管(High Electron Mobility Transistor;HEMT)器件。与氮化镓搭配的目前常用的衬底各有其优缺点,其中,碳化硅虽然成本昂贵可以使氮化镓晶格错位大幅降低,提高良率与器件性能。At present, gallium nitride is a new type of third-generation semiconductor material with many excellent characteristics, and it will be the mainstream of power semiconductor development in the future. High electron density can be constructed by constructing a two-dimensional electron gas (2DEG; Two-Dimensional Electron Gas). Mobility Transistor (High Electron Mobility Transistor; HEMT) device. The commonly used substrates used with gallium nitride have their own advantages and disadvantages. Among them, although silicon carbide is expensive, it can greatly reduce the lattice dislocation of gallium nitride and improve the yield and device performance.
但现有的由氮化镓和碳化硅构造的功率开关管还存在着耐高电压的能力较差的问题,在被施加高电压的情况下,容易被击穿。However, the existing power switch tubes made of gallium nitride and silicon carbide still have the problem of poor high voltage resistance, and are easily broken down when a high voltage is applied.
发明内容Contents of the invention
本申请的目的在于提供一种耐高压HEMT器件及其制备方法,旨在解决传统的由氮化镓和碳化硅构造的功率开关管存在的耐高电压的能力较差的问题。The purpose of this application is to provide a high-voltage resistant HEMT device and its preparation method, aiming to solve the problem of poor high-voltage resistance of traditional power switch tubes made of gallium nitride and silicon carbide.
本申请实施例的第一方面提供了一种耐高压HEMT器件,包括:半导体衬底;在所述半导体衬底的正面依次层叠设置的漂移层、缓冲层、沟道层和势垒层;栅极,设于所述势垒层上;肖特基金属层,设于所述漂移层上,且与所述缓冲层的第一侧接触,所述肖特基金属层与所述漂移层之间形成肖特基接触;源极,设于所述肖特基金属层上,且与所述沟道层以及所述势垒层接触,并与所述沟道层以及所述势垒层之间形成欧姆接触;中介金属层,设于所述漂移层上,且与所述缓冲层以及所述沟道层和所述势垒层的第二侧接触;其中,所述第二侧与所述第一侧相对;漏极,设于所述半导体衬底的背面。The first aspect of the embodiments of the present application provides a high-voltage resistant HEMT device, including: a semiconductor substrate; a drift layer, a buffer layer, a channel layer and a barrier layer sequentially stacked on the front side of the semiconductor substrate; a gate pole, disposed on the barrier layer; Schottky metal layer, disposed on the drift layer, and in contact with the first side of the buffer layer, between the Schottky metal layer and the drift layer A Schottky contact is formed between them; the source electrode is arranged on the Schottky metal layer, is in contact with the channel layer and the barrier layer, and is in contact with the channel layer and the barrier layer form an ohmic contact between them; an intermediary metal layer is disposed on the drift layer and is in contact with the second side of the buffer layer, the channel layer, and the barrier layer; wherein, the second side is in contact with the second side of the barrier layer The first side is opposite to the first side; the drain is arranged on the back side of the semiconductor substrate.
其中一实施例中,所述肖特基金属层的厚度小于或等于所述缓冲层和所述沟道层的厚度之和。In one embodiment, the thickness of the Schottky metal layer is less than or equal to the sum of the thicknesses of the buffer layer and the channel layer.
其中一实施例中,还包括P型盖帽层;所述P型盖帽层设于所述势垒层与所述栅极之间。In one embodiment, a P-type capping layer is further included; the P-type capping layer is disposed between the barrier layer and the gate.
其中一实施例中,所述源极包括填充金属层和连接金属层;所述填充金属层自所述势垒层的上表面延伸至所述缓冲层;所述连接金属层设置在所述势垒层的上方并与所述填充金属层连接。In one embodiment, the source electrode includes a filling metal layer and a connection metal layer; the filling metal layer extends from the upper surface of the barrier layer to the buffer layer; the connection metal layer is arranged on the barrier layer above the barrier layer and connected to the filling metal layer.
其中一实施例中,所述栅极的材料为肖特基金属,所述源极和所述漏极的材料为欧姆金属。In one embodiment, the material of the gate is Schottky metal, and the material of the source and the drain is ohmic metal.
其中一实施例中,所述半导体衬底和所述漂移层均为N型碳化硅。In one embodiment, both the semiconductor substrate and the drift layer are N-type silicon carbide.
其中一实施例中,所述漂移层中的N型掺杂离子的浓度小于所述半导体衬底中的N型掺杂离子的浓度。In one embodiment, the concentration of N-type dopant ions in the drift layer is smaller than the concentration of N-type dopant ions in the semiconductor substrate.
其中一实施例中,所述沟道层的材料为氮化镓,所述势垒层的材料为氮化铝镓。In one embodiment, the material of the channel layer is gallium nitride, and the material of the barrier layer is aluminum gallium nitride.
其中一实施例中,所述P型盖帽层的材料为P型氮化镓。In one embodiment, the material of the P-type capping layer is P-type GaN.
本申请实施例的第二方面提供了一种耐高压HEMT器件的制备方法,包括:在半导体衬底的正面依次形成漂移层、缓冲层、沟道层、势垒层和P型盖帽层;刻蚀所述P型盖帽层的边缘;对所述缓冲层以及所述沟道层和所述势垒层的第一侧进行刻蚀,直至暴露所述漂移层,以形成第一沟槽;对所述缓冲层以及所述沟道层和所述势垒层的第二侧进行刻蚀,直至暴露所述漂移层,以形成第二沟槽;在所述第一沟槽填充金属材料由下至上依次形成肖特基金属层和源极,在所述第二沟槽填充金属材料形成中介金属层;所述肖特基金属层与所述漂移层之间形成肖特基接触,所述源极与所述沟道层以及所述势垒层之间形成欧姆接触;在所述P型盖帽层上形成栅极,并在所述半导体衬底的背面构造漏极。The second aspect of the embodiment of the present application provides a method for manufacturing a high-voltage HEMT device, including: sequentially forming a drift layer, a buffer layer, a channel layer, a barrier layer, and a P-type cap layer on the front surface of a semiconductor substrate; Etching the edge of the P-type capping layer; etching the first side of the buffer layer and the channel layer and the barrier layer until the drift layer is exposed to form a first trench; Etching the buffer layer and the second side of the channel layer and the barrier layer until the drift layer is exposed to form a second trench; filling the first trench with a metal material from below A Schottky metal layer and a source electrode are sequentially formed on the top, and an intermediary metal layer is formed in the second trench filling metal material; a Schottky contact is formed between the Schottky metal layer and the drift layer, and the source An ohmic contact is formed between the electrode, the channel layer and the barrier layer; a gate is formed on the P-type cap layer, and a drain is constructed on the back of the semiconductor substrate.
本申请实施例与现有技术相比存在的有益效果是:在沟道层与势垒层相接触时,会形成二维电子气,本申请通过将漏极设置在半导体衬底的背面,并通过中介金属层连接二维电子气与漂移层,使得源极依次通过二维电子气、中介金属层、漂移层和半导体衬底与漏极连接,实现电力传输,从而可以在仍具备HEMT器件的高速通断特性的前提下,通过漂移层和半导体衬底提高了器件的耐电高压的能力。Compared with the prior art, the embodiment of the present application has the beneficial effect that a two-dimensional electron gas will be formed when the channel layer is in contact with the barrier layer. In this application, the drain is arranged on the back of the semiconductor substrate, and The two-dimensional electron gas and the drift layer are connected through the intermediary metal layer, so that the source is connected to the drain through the two-dimensional electron gas, the intermediary metal layer, the drift layer and the semiconductor substrate in order to realize power transmission, so that it can be used in HEMT devices. Under the premise of high-speed on-off characteristics, the ability of the device to withstand high voltage is improved through the drift layer and the semiconductor substrate.
同时,本申请通过肖特基金属层与漂移层、半导体衬底可以构造出一个阳极与源极连接且阴极通过半导体衬底与漏极连接的肖特基二极管,当有高电压施加到漏极与源极上(漏极为高电位,源极为低电位)时,若该电压大于由肖特基金属层构造出的肖特基二极管的雪崩电压,则该肖特基二极管会被击穿,从而限制漏极与源极之间的电压,避免整个耐高压HEMT器件被高电压烧坏,进一步提升了耐高压的能力。At the same time, this application can construct a Schottky diode with the anode connected to the source and the cathode connected to the drain through the semiconductor substrate through the Schottky metal layer, the drift layer, and the semiconductor substrate. When a high voltage is applied to the drain When connected to the source (the drain is at a high potential and the source is at a low potential), if the voltage is greater than the avalanche voltage of the Schottky diode constructed by the Schottky metal layer, the Schottky diode will be broken down, thereby The voltage between the drain and the source is limited to prevent the entire high-voltage resistant HEMT device from being burned by high voltage, and further improve the high-voltage withstand capability.
附图说明Description of drawings
图1为本申请第一实施例提供的耐高压HEMT器件的结构示意图;FIG. 1 is a schematic structural view of a high-voltage HEMT device provided in the first embodiment of the present application;
图2为本申请另一实施例提供的耐高压HEMT器件的结构示意图;FIG. 2 is a schematic structural view of a high-voltage HEMT device provided by another embodiment of the present application;
图3为本申请另一实施例提供的绝缘层的结构示意图;FIG. 3 is a schematic structural diagram of an insulating layer provided by another embodiment of the present application;
图4为本申请第二实施例提供的耐高压HEMT器件的制备方法的流程图;Fig. 4 is the flow chart of the preparation method of the high voltage resistant HEMT device provided by the second embodiment of the present application;
图5为本申请第二实施例执行步骤S100后的耐高压HEMT器件的结构示意图;FIG. 5 is a schematic structural diagram of a high-voltage HEMT device after performing step S100 in the second embodiment of the present application;
图6为本申请第二实施例执行步骤S200后的耐高压HEMT器件的结构示意图;FIG. 6 is a schematic structural diagram of a high-voltage HEMT device after performing step S200 in the second embodiment of the present application;
图7为本申请第二实施例执行步骤S400后的耐高压HEMT器件的结构示意图;FIG. 7 is a schematic structural diagram of a high-voltage HEMT device after performing step S400 in the second embodiment of the present application;
图8为本申请第二实施例提供的耐高压HEMT器件的具体制备方法的流程图;8 is a flowchart of a specific preparation method for a high-voltage HEMT device provided in the second embodiment of the present application;
图9为本申请第二实施例执行步骤S500后的耐高压HEMT器件的结构示意图;FIG. 9 is a schematic structural diagram of a high-voltage HEMT device after performing step S500 in the second embodiment of the present application;
图10为本申请第二实施例执行步骤S500后的梯形的中介金属层的结构示意图;FIG. 10 is a schematic structural diagram of a trapezoidal intermediary metal layer after step S500 is performed in the second embodiment of the present application;
图11为本申请第二实施例执行步骤S500后的金属结构的结构示意图。FIG. 11 is a schematic structural diagram of the metal structure after step S500 is executed in the second embodiment of the present application.
上述附图说明:100、半导体衬底;200、漂移层;300、缓冲层;400、沟道层;500、势垒层;510、第一沟槽;520、第二沟槽;600、栅极;610、P型盖帽层;700、源极;710、填充金属层;720、连接金属层;730、肖特基金属层;740、绝缘层;800、中介金属层;810、第一金属结构;820、第二金属结构;830、第三金属结构;900、漏极。Description of the above drawings: 100, semiconductor substrate; 200, drift layer; 300, buffer layer; 400, channel layer; 500, barrier layer; 510, first trench; 520, second trench; 600, gate pole; 610, P-type capping layer; 700, source; 710, filling metal layer; 720, connecting metal layer; 730, Schottky metal layer; 740, insulating layer; 800, intermediary metal layer; 810, first metal structure; 820, the second metal structure; 830, the third metal structure; 900, the drain.
具体实施方式Detailed ways
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being “fixed” or “disposed on” another element, it may be directly on the other element or be indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。It is to be understood that the terms "length", "width", "top", "bottom", "front", "rear", "left", "right", "vertical", "horizontal", "top" , "bottom", "inner", "outer" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the application and simplifying the description, rather than indicating or implying the referred device Or elements must have a certain orientation, be constructed and operate in a certain orientation, and thus should not be construed as limiting the application.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present application, "plurality" means two or more, unless otherwise specifically defined.
图1示出了本申请第一实施例提供的耐高压HEMT器件的结构示意图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:Figure 1 shows a schematic structural view of the high-voltage HEMT device provided by the first embodiment of the present application. For the convenience of description, only the parts related to this embodiment are shown, and the details are as follows:
一种耐高压HEMT器件,包括半导体衬底100、漂移层200、缓冲层300、沟道层400和势垒层500;其中,漂移层200、缓冲层300、沟道层400和势垒层500在半导体衬底100的正面依次层叠设置,沟道层400和势垒层500用于形成二维电子气。缓冲层300用于降低沟道层400与漂移层200之间的晶格错位。A high-voltage resistant HEMT device, comprising a
耐高压HEMT器件还包括栅极600、肖特基金属层730、源极700、中介金属层800和漏极900。The high voltage HEMT device further includes a
栅极600设于势垒层500上。肖特基金属层730设于漂移层200上,且与缓冲层300的第一侧接触,肖特基金属层730与漂移层200之间形成肖特基接触。源极700设于肖特基金属层730上,且与沟道层400以及势垒层500接触,并与沟道层400以及势垒层500之间形成欧姆接触。中介金属层800设于漂移层200上,且与缓冲层300的第二侧以及沟道层400和势垒层500接触。其中,第二侧与第一侧相对,中介金属层800用于连接漂移层200与二维电子气。漏极900设于半导体衬底100的背面。其中,肖特基金属层730的材料为肖特基金属。The
本实施例通过将漏极900设置在半导体衬底100的背面,并通过中介金属层800连接二维电子气与漂移层200,使得源极700依次通过二维电子气、中介金属层800、漂移层200和半导体衬底100与漏极900连接。由于漂移层200和半导体衬底100的耐高电压的能力较强,在仍具备HEMT器件的高速通断特性的前提下,避免过高的电压施加到二维电子气上,通过漂移层200和半导体衬底100提高了器件的耐电高压的能力。In this embodiment, the
需要说明的是,本实施例通过在源极700与漂移层200之间设置肖特基金属层730,肖特基金属层730可以与漂移层200形成肖特基接触(金属-半导体结),以构造肖特基二极管,即在源极700和漏极900之间构造出了一个阳极与源极700连接且阴极与漏极900连接的肖特基二极管。当有高电压施加到漏极900与源极700上时(其中,漏极900为高电位,源极700为低电位),若该电压大于由肖特基金属层730构造出的肖特基二极管的雪崩电压,则该肖特基二极管会被击穿,从而限制漏极900与源极700之间的电压,避免整个耐高压HEMT器件被高电压烧坏或避免耐高压HEMT器件误导通,进一步提升了耐高压的能力。It should be noted that, in this embodiment, by providing a Schottky
尤其在功率器件由导通状态变为关断状态时,若外部电路为具有高电感的电路,则容易使功率器件承受巨大电压,导致功率器件被击穿。而本实施例的耐高压HEMT器件通过设置肖特基二极管,当源极700和漏极900之间的电压超过肖特基二极管的雪崩电压时,肖特基二极管被击穿,实现稳压二极管的效果,从而限制了源极700与漏极900之间的电压,避免本实施例的耐高压HEMT器件被击穿或误导通。Especially when the power device changes from the on state to the off state, if the external circuit is a circuit with high inductance, it is easy to make the power device bear a huge voltage, resulting in breakdown of the power device. However, the high-voltage HEMT device of this embodiment is provided with a Schottky diode. When the voltage between the
本实施例中,肖特基金属层730的厚度小于或等于缓冲层300和沟道层400的厚度之和。在一示例中,如图1所示,肖特基金属层730的厚度等于沟道层400的厚度的四分之三加上缓冲层300的厚度之和,使得源极700能够直接与沟道层400和势垒层500之间的二维电子气充分连接。In this embodiment, the thickness of the
本实施例的耐高压HEMT器件为耗尽型(D-mode)功率器件,在施加到栅极600上的电压为0时,源极700与漏极900之间的二维电子气是导通的,即耗尽型功率器件处于导通状态。在施加到栅极600上负电压的数值大于耗尽型功率器件的开启电压时,栅极600下方对应的二维电子气会被截断,耗尽型功率器件关断。The high-voltage resistant HEMT device of this embodiment is a depletion-mode (D-mode) power device. When the voltage applied to the
如图1所示,填充金属层710自势垒层500的上表面向下延伸,填充金属层710的厚度大于势垒层500的厚度,使得填充金属层710与形成的二维电子气直接连接。在一示例中,填充金属层710与势垒层500的厚度之差等于沟道层400的厚度的四分之一。As shown in FIG. 1, the filling
本实施例中,栅极600的材料为肖特基金属,源极700和漏极900的材料为欧姆金属。其中,栅极600的材料可以为氮化镍(Ni3N)、铝(Al)、铂(Pt)中的任意一种,源极700和漏极900的材料可以为钛(Ti)。在一示例中,漏极900覆盖了半导体衬底100的整个背面。In this embodiment, the material of the
本实施例中,半导体衬底100和漂移层200的材料均为N型碳化硅。In this embodiment, the materials of the
其中,漂移层200中的N型掺杂离子的浓度小于半导体衬底100中的N型掺杂离子的浓度。Wherein, the concentration of N-type dopant ions in the
漂移层200的厚度与耐高压HEMT器件的耐高电压的能力正相关。在一示例中,漂移层200的厚度为半导体衬底100的厚度的五倍。The thickness of the
本实施例中,沟道层400的材料为氮化镓(GaN)。势垒层500的材料为氮化铝镓(AlGaN)。缓冲层300的材料为氮化铝(AlN)。In this embodiment, the material of the
势垒层500的材料还可以是铟铝氮镓(InAlGaN)、铟镓氮(InGaN)中的任意一种,可根据实际情况选择对应的材料。The material of the
另一实施例中,耐高压HEMT器件还包括P型盖帽层610。In another embodiment, the high voltage HEMT device further includes a P-
如图2所示,具体地,P型盖帽层610设于势垒层500与栅极600之间。As shown in FIG. 2 , specifically, the P-
需要说明的是,设有P型盖帽层610的功率器件为增强型(E-mode)功率器件,当有数值大于开启电压的正电压施加到栅极600上时,源极700到中介金属层800的二维电子气可以保持导通,漏极900接收到的电流可以依次通过半导体衬底100、漂移层200、中介金属层800和二维电子气传输至源极700。It should be noted that the power device provided with the P-
当施加到栅极600上的电压小于开启电压或为负电压时,栅极600下方对应的二维电子气会被截断,此时漏极900接收到的电流依次通过半导体衬底100和漂移层200传输至中介金属层800之后,就无法通过二维电子气继续传输至源极700。When the voltage applied to the
本实施例中,P型盖帽层610的材料为P型氮化镓(P-GaN)。In this embodiment, the material of the P-
在一实施例中,半导体衬底100的厚度为10nm~30nm,漂移层200的厚度为50nm~100nm,缓冲层300的厚度为3nm~30nm,沟道层400的厚度为3nm~30nm,势垒层500的厚度为3nm~30nm。In one embodiment, the thickness of the
在一示例中,半导体衬底100的厚度为20nm,漂移层200的厚度为60nm,缓冲层300的厚度为20nm,沟道层400的厚度为20nm,势垒层500的厚度为20nm。填充金属层710的厚度为25nm,相应的,填充金属层710下方的肖特基金属730的厚度为35nm。In an example, the thickness of the
在一实施例中,P型盖帽层610的厚度为2nm~5nm。In one embodiment, the thickness of the P-
另一实施例中,如图3所示,肖特基金属层730与缓冲层300和沟道层400之间,还设有绝缘层740,绝缘层740用于降低从肖特基金属层730产生的漏电流。In another embodiment, as shown in FIG. 3 , an insulating
图4示出了本申请第三实施例提供的耐高压HEMT器件的制备方法的流程图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:Fig. 4 shows the flow chart of the preparation method of the high voltage resistant HEMT device provided by the third embodiment of the present application. For the convenience of explanation, only the parts related to this embodiment are shown, and the details are as follows:
一种耐高压HEMT器件的制备方法,可用于制备上述任一项实施例的耐高压HEMT器件。制备方法包括步骤S100-S600。A method for preparing a high-voltage resistant HEMT device, which can be used to prepare the high-voltage resistant HEMT device of any one of the above embodiments. The preparation method includes steps S100-S600.
在步骤S100中,在半导体衬底的100正面依次形成漂移层200、缓冲层300、沟道层400、势垒层500和P型盖帽层610。In step S100 , a
半导体衬底100、漂移层200、缓冲层300、沟道层400、势垒层500和P型盖帽层610的结构示意图如图5所示。A schematic structural diagram of the
在一示例中,半导体衬底100、缓冲层300、沟道层400、势垒层500和P型盖帽层610和厚度为10nm-100um,漂移层200的厚度为20nm-500um,漂移层200的厚度可以是半导体衬底100的厚度的2倍至5倍,其中,半导体衬底100的厚度和漂移层200的厚度决定了耐高压HEMT器件的耐高压的能力,半导体衬底100和漂移层200越厚则相应的耐高压的能力越强。In an example, the thickness of the
在步骤S200中,刻蚀P型盖帽层610的边缘。In step S200, the edge of the P-
刻蚀后的P型盖帽层610如图6所示,通过刻蚀P型盖帽层610的边缘部分,使得P型盖帽层610位于势垒层500表面的中央区域。P型盖帽层610上可用于构造栅极600。The etched P-
在一示例中,P型盖帽层610的形状可以为多边形、圆形或者圆弧形,本实施例不对其进行限制。In an example, the shape of the P-
在步骤S300中,对缓冲层300以及沟道层400和势垒层500的第一侧进行刻蚀,直至暴露漂移层200,以形成第一沟槽510。In step S300 , the
在步骤S400中,对缓冲层300以及沟道层400和势垒层500的第二侧进行刻蚀,直至暴露漂移层200,以形成第二沟槽520。In step S400 , the second sides of the
结合图7所示,第一沟槽510和第二沟槽520均深入至漂移层200,第二侧与第一侧相对,使得第一沟槽510和第二沟槽520分别位于势垒层500(缓冲层300/沟道层400)相对的两侧,P型盖帽层610位于第一沟槽510和第二沟槽520之间的势垒层500上。As shown in FIG. 7 , both the
在一个具体应用实施例中,第一沟槽510和第二沟槽520的深度均为缓冲层300、沟道层400、势垒层500的厚度之和。In a specific application embodiment, the depths of the
在步骤S500中,在第一沟槽510填充金属材料由下至上依次形成肖特基金属层730和源极700,在第二沟槽520填充金属材料形成中介金属层800。肖特基金属层730与漂移层200之间形成肖特基接触,源极700与沟道层400以及势垒层500之间形成欧姆接触。In step S500 , the metal material is filled in the
在步骤S600中,在P型盖帽层610上形成栅极600,并在半导体衬底100的背面构造漏极900。In step S600 , a
其中,如图8所示,步骤S500和步骤S600具体为:Wherein, as shown in FIG. 8, step S500 and step S600 are specifically:
在步骤S500中,在第一沟槽510填充金属材料由下至上依次形成肖特基金属层730填充金属层710,在第二沟槽520填充金属材料形成中介金属层800。In step S500 , the
肖特基金属层730、填充金属层710和中介金属层800的结构示意图如图9所示。A schematic structural diagram of the
填充金属层710和中介金属层800分别位于势垒层500相对的两侧,使得栅极600设置在填充金属层710和中介金属层800之间的势垒层500的上方,以用于控制填充金属层710和中介金属层800之间的二维电子气的导通与截断。The filling
同时,本实施例的步骤S500会先在第一沟槽510内形成肖特基金属层730,再在肖特基金属层730上形成源极700(填充金属层710),其中,肖特基金属层730与填充金属层710的材料不同,肖特基金属层730的材料为肖特基金属,填充金属层710的材料为欧姆金属。At the same time, step S500 of this embodiment will first form the
需要说明的是,肖特基金属层730可以与漂移层200形成肖特基接触(金属-半导体结),从而构造出一个肖特基二极管,该肖特基二极管的阳极与源极700连接,阴极与漏极900连接,当有高电压施加到漏极900与源极700上时,若该电压大于由肖特基金属层730构造出的肖特基二极管的雪崩电压,则该肖特基二极管会被击穿,从而限制漏极900与源极700之间的电压,避免整个耐高压HEMT器件被高电压烧坏,进一步提升了耐高压的能力。It should be noted that the
在一个具体应用实施例中,可以通过调整第二沟槽520的形状,使得中介金属层800的截面形状呈弧形或者梯形。此时,中介金属层800的宽度由其底部至顶部逐渐增加。如图10所示,中介金属层800的截面形状呈梯形。In a specific application embodiment, the shape of the
如图11所示,在一个具体应用实施例中,中介金属层800可以由多层金属结构组成,例如,中介金属层800可以由第一金属结构810、第二金属结构820以及第三金属结构830组成,第一金属结构810、第二金属结构820以及第三金属结构830与缓冲层300、沟道层400、势垒层500一一对应。As shown in FIG. 11, in a specific application embodiment, the
在一个具体应用实施例中,第一金属结构810、第二金属结构820以及第三金属结构830的宽度逐渐增加。In a specific application embodiment, the widths of the
在一个具体应用实施例中,第一金属结构810、第二金属结构820以及第三金属结构830的宽度按照等差比例设置。In a specific application embodiment, the widths of the
在一个具体应用实施例中,第一金属结构810与缓冲层300之间的界面形状、第二金属结构820与沟道层400之间的界面形状、第三金属结构830与势垒层500之间的界面形状可以互不相同。In a specific application embodiment, the shape of the interface between the
在一个具体应用实施例中,第一金属结构810、第二金属结构820以及第三金属结构830所采用的金属材料可以互不相同。例如,第一金属结构810可以为金,第二金属结构820可以为铜。In a specific application embodiment, the metal materials used in the
在步骤S600中,在P型盖帽层610上形成栅极600,并在半导体衬底100的背面构造漏极900,以及在势垒层500的上方构造与填充金属层710连接的连接金属层720。In step S600, the
栅极600、漏极900和连接金属层720的结构如图2所示,填充金属层710和连接金属层720共同组成了源极700,源极700的整体横截面成L形。填充金属层710用于连接二维电子气,连接金属层720用于与外部电路连接。在一示例中,栅极600和连接金属层720的形状可以为多边形、圆形或者圆弧形,本实施例不对其进行限制。栅极600、连接金属层720和漏极900的厚度均为10nm-100um。The structure of the
本实施例通过将漏极900设置在半导体衬底100的背面,并通过中介金属层800连接二维电子气与漂移层200,使得源极700依次通过二维电子气、中介金属层800、漂移层200和半导体衬底100与漏极900连接。由于漂移层200和半导体衬底100的耐高电压的能力较强,在仍具备HEMT器件的高速通断特性的前提下,通过漂移层200和半导体衬底100提高了器件的耐电高压的能力。In this embodiment, the
本实施例中,栅极600的材料为肖特基金属,源极700和漏极900的材料为欧姆金属。In this embodiment, the material of the
本实施例中,半导体衬底100和漂移层200的材料均为N型碳化硅。In this embodiment, the materials of the
具体地,漂移层200中的N型掺杂离子的浓度小于半导体衬底100中的N型掺杂离子的浓度。Specifically, the concentration of N-type dopant ions in the
本实施例中,沟道层400的材料为氮化镓(GaN)。势垒层500的材料为氮化铝镓(AlGaN)。In this embodiment, the material of the
势垒层500的材料还可以是铟铝氮镓(InAlGaN)、铟镓氮(InGaN)中的任意一种,可根据实际情况选择对应的材料。The material of the
在一实施例中,在步骤S100中,可以采用化学气相沉积(Chemical VaporDeposition;CVD)等公知的方法沉积漂移层200、缓冲层300、沟道层400、势垒层500和P型盖帽层610,本实施例不对漂移层200、缓冲层300、沟道层400、势垒层500和P型盖帽层610的沉积方法进行限制。In one embodiment, in step S100, the
在一实施例中,在步骤S200、步骤300和步骤S400中,可以采用干法刻蚀或湿法刻蚀等公知的方法对缓冲层300、沟道层400、势垒层500和P型盖帽层610进行刻蚀,本实施例不对缓冲层300、沟道层400、势垒层500和P型盖帽层610的刻蚀方法进行限制。在一示例中,可以采用电感耦合等离子刻蚀法(Inductive Coupled Plasma;ICP)对缓冲层300、沟道层400、势垒层500和P型盖帽层610进行刻蚀。In one embodiment, in step S200,
在一实施例中,在步骤S500和步骤S600中,可以采用真空蒸镀法或溅射法等公知的方法构造肖特基金属层730、栅极600、源极700、中介金属层800和漏极900,本实施例不对肖特基金属层730、栅极600、源极700、中介金属层800和漏极900的具体构造方法进行限制。In one embodiment, in step S500 and step S600, the
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that the sequence numbers of the steps in the above embodiments do not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiment of the present application.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the above-mentioned embodiments, the descriptions of each embodiment have their own emphases, and for parts that are not detailed or recorded in a certain embodiment, refer to the relevant descriptions of other embodiments.
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-described embodiments are only used to illustrate the technical solutions of the present application, rather than to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still implement the foregoing embodiments Modifications to the technical solutions described in the examples, or equivalent replacements for some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the application, and should be included in the Within the protection scope of this application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211410574.7A CN115799330A (en) | 2022-11-11 | 2022-11-11 | High-voltage-resistant HEMT device and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211410574.7A CN115799330A (en) | 2022-11-11 | 2022-11-11 | High-voltage-resistant HEMT device and preparation method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115799330A true CN115799330A (en) | 2023-03-14 |
Family
ID=85436893
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211410574.7A Pending CN115799330A (en) | 2022-11-11 | 2022-11-11 | High-voltage-resistant HEMT device and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115799330A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120322011A (en) * | 2025-06-13 | 2025-07-15 | 深圳平湖实验室 | Semiconductor devices and power equipment |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080315257A1 (en) * | 2007-06-19 | 2008-12-25 | Renesas Technology Corp. | Semiconductor device and power conversion device using the same |
| US20130087803A1 (en) * | 2011-10-06 | 2013-04-11 | Epowersoft, Inc. | Monolithically integrated hemt and schottky diode |
| US20140264453A1 (en) * | 2013-03-15 | 2014-09-18 | Semiconductor Components Industries, Llc | Method of forming a high electron mobility semiconductor device and structure therefor |
| CN109148573A (en) * | 2017-06-16 | 2019-01-04 | 株式会社东芝 | Semiconductor device |
| CN110047910A (en) * | 2019-03-27 | 2019-07-23 | 东南大学 | A kind of heterojunction semiconductor device of high voltage ability |
-
2022
- 2022-11-11 CN CN202211410574.7A patent/CN115799330A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080315257A1 (en) * | 2007-06-19 | 2008-12-25 | Renesas Technology Corp. | Semiconductor device and power conversion device using the same |
| US20130087803A1 (en) * | 2011-10-06 | 2013-04-11 | Epowersoft, Inc. | Monolithically integrated hemt and schottky diode |
| US20140264453A1 (en) * | 2013-03-15 | 2014-09-18 | Semiconductor Components Industries, Llc | Method of forming a high electron mobility semiconductor device and structure therefor |
| CN109148573A (en) * | 2017-06-16 | 2019-01-04 | 株式会社东芝 | Semiconductor device |
| CN110047910A (en) * | 2019-03-27 | 2019-07-23 | 东南大学 | A kind of heterojunction semiconductor device of high voltage ability |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120322011A (en) * | 2025-06-13 | 2025-07-15 | 深圳平湖实验室 | Semiconductor devices and power equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110034186B (en) | Group III-nitride-enhanced HEMT based on composite barrier structure and its fabrication method | |
| CN107507856A (en) | Gallium cleavage plane III-nitride epitaxial structure, active device thereof and manufacturing method thereof | |
| CN111463260A (en) | Vertical high electron mobility field effect transistor and preparation method thereof | |
| CN109244130A (en) | Self aligning grid structure GaN MIS-HEMT device and preparation method thereof based on p-GaN and SiN layer | |
| CN108258035B (en) | GaN-based enhanced field effect device and manufacturing method thereof | |
| CN112018176A (en) | A kind of semiconductor device and its manufacturing method | |
| CN110476254A (en) | Heterojunction transistor with vertical structure | |
| CN109560120A (en) | A kind of GaN normally-off MISFET device of selective area growth texturearunaperpendicular and preparation method thereof | |
| CN210640256U (en) | Gallium nitride power device | |
| CN115799330A (en) | High-voltage-resistant HEMT device and preparation method thereof | |
| CN112820648B (en) | A gallium nitride metal oxide semiconductor transistor and its preparation method | |
| CN110085674A (en) | A kind of vertical power device and preparation method thereof | |
| CN115799329A (en) | High-voltage super-junction HEMT device and preparation method thereof | |
| CN104393045A (en) | Novel GaN-base reinforced HEMT device and manufacturing method thereof | |
| CN111384167B (en) | Semiconductor device and manufacturing method | |
| CN117542896A (en) | Vertical gallium nitride power transistor and manufacturing method thereof | |
| CN108022925B (en) | GaN-based monolithic power converter and manufacturing method thereof | |
| CN108365017A (en) | Transverse gallium nitride power rectifier and manufacturing method thereof | |
| CN116344595A (en) | Gallium nitride semiconductor device and method for manufacturing gallium nitride semiconductor device | |
| CN116417520A (en) | Gallium oxide field effect transistor and preparation method thereof | |
| CN115832040A (en) | Silicon carbide-based gallium nitride device and preparation method thereof | |
| CN108807542A (en) | GaN-based vertical power transistor device and manufacturing method thereof | |
| CN115588689A (en) | Gallium nitride Schottky diode and preparation method thereof | |
| CN106409901A (en) | Semiconductor device and preparation method thereof | |
| CN115832042A (en) | High-voltage-resistant gallium nitride switch device, preparation method thereof and chip |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |