[go: up one dir, main page]

CN115799330A - High-voltage-resistant HEMT device and preparation method thereof - Google Patents

High-voltage-resistant HEMT device and preparation method thereof Download PDF

Info

Publication number
CN115799330A
CN115799330A CN202211410574.7A CN202211410574A CN115799330A CN 115799330 A CN115799330 A CN 115799330A CN 202211410574 A CN202211410574 A CN 202211410574A CN 115799330 A CN115799330 A CN 115799330A
Authority
CN
China
Prior art keywords
layer
semiconductor substrate
drift
metal layer
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211410574.7A
Other languages
Chinese (zh)
Inventor
吴龙江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Sirius Semiconductor Co ltd
Original Assignee
Shenzhen Sirius Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sirius Semiconductor Co ltd filed Critical Shenzhen Sirius Semiconductor Co ltd
Priority to CN202211410574.7A priority Critical patent/CN115799330A/en
Publication of CN115799330A publication Critical patent/CN115799330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本申请涉及一种耐高压HEMT器件及其制备方法。耐高压HEMT器件包括:半导体衬底以及在半导体衬底的正面依次层叠设置的漂移层、缓冲层、沟道层和势垒层。栅极设于势垒层上。肖特基金属层设于漂移层上,且与缓冲层的第一侧接触。源极设于肖特基金属层上,且与沟道层以及势垒层接触。中介金属层设于漂移层上,且与缓冲层的第二侧以及沟道层和势垒层接触。漏极设于半导体衬底的背面。本申请通过肖特基金属层与漂移层、半导体衬底可以构造出一个阳极与源极连接且阴极通过半导体衬底与漏极连接的肖特基二极管,当有高电压施加到漏极与源极上时,则该肖特基二极管会被击穿,从而限制漏极与源极之间的电压,提升了耐高压的能力。

Figure 202211410574

The application relates to a high-voltage resistant HEMT device and a preparation method thereof. The high-voltage resistant HEMT device includes: a semiconductor substrate and a drift layer, a buffer layer, a channel layer and a potential barrier layer which are sequentially stacked on the front side of the semiconductor substrate. The gate is disposed on the barrier layer. The Schottky metal layer is disposed on the drift layer and is in contact with the first side of the buffer layer. The source is disposed on the Schottky metal layer and is in contact with the channel layer and the barrier layer. The intermediary metal layer is disposed on the drift layer and is in contact with the second side of the buffer layer, the channel layer and the barrier layer. The drain is arranged on the back side of the semiconductor substrate. In this application, a Schottky diode with an anode connected to the source and a cathode connected to the drain through the semiconductor substrate can be constructed through the Schottky metal layer, the drift layer, and the semiconductor substrate. When a high voltage is applied to the drain and the source When the pole is on, the Schottky diode will be broken down, thereby limiting the voltage between the drain and the source, and improving the ability to withstand high voltage.

Figure 202211410574

Description

耐高压HEMT器件及其制备方法High voltage resistant HEMT device and its preparation method

技术领域technical field

本申请属于高电子迁移率晶体管技术领域,尤其涉及一种耐高压HEMT器件及其制备方法。The application belongs to the technical field of high electron mobility transistors, and in particular relates to a high-voltage resistant HEMT device and a preparation method thereof.

背景技术Background technique

目前,氮化镓是一种新型的第三代半导体材料,具备许多优异的特性,是未来发展功率半导体的主流,可以通过构造二维电子气(2DEG;Two-Dimensional Electron Gas)来构造高电子迁移率晶体管(High Electron Mobility Transistor;HEMT)器件。与氮化镓搭配的目前常用的衬底各有其优缺点,其中,碳化硅虽然成本昂贵可以使氮化镓晶格错位大幅降低,提高良率与器件性能。At present, gallium nitride is a new type of third-generation semiconductor material with many excellent characteristics, and it will be the mainstream of power semiconductor development in the future. High electron density can be constructed by constructing a two-dimensional electron gas (2DEG; Two-Dimensional Electron Gas). Mobility Transistor (High Electron Mobility Transistor; HEMT) device. The commonly used substrates used with gallium nitride have their own advantages and disadvantages. Among them, although silicon carbide is expensive, it can greatly reduce the lattice dislocation of gallium nitride and improve the yield and device performance.

但现有的由氮化镓和碳化硅构造的功率开关管还存在着耐高电压的能力较差的问题,在被施加高电压的情况下,容易被击穿。However, the existing power switch tubes made of gallium nitride and silicon carbide still have the problem of poor high voltage resistance, and are easily broken down when a high voltage is applied.

发明内容Contents of the invention

本申请的目的在于提供一种耐高压HEMT器件及其制备方法,旨在解决传统的由氮化镓和碳化硅构造的功率开关管存在的耐高电压的能力较差的问题。The purpose of this application is to provide a high-voltage resistant HEMT device and its preparation method, aiming to solve the problem of poor high-voltage resistance of traditional power switch tubes made of gallium nitride and silicon carbide.

本申请实施例的第一方面提供了一种耐高压HEMT器件,包括:半导体衬底;在所述半导体衬底的正面依次层叠设置的漂移层、缓冲层、沟道层和势垒层;栅极,设于所述势垒层上;肖特基金属层,设于所述漂移层上,且与所述缓冲层的第一侧接触,所述肖特基金属层与所述漂移层之间形成肖特基接触;源极,设于所述肖特基金属层上,且与所述沟道层以及所述势垒层接触,并与所述沟道层以及所述势垒层之间形成欧姆接触;中介金属层,设于所述漂移层上,且与所述缓冲层以及所述沟道层和所述势垒层的第二侧接触;其中,所述第二侧与所述第一侧相对;漏极,设于所述半导体衬底的背面。The first aspect of the embodiments of the present application provides a high-voltage resistant HEMT device, including: a semiconductor substrate; a drift layer, a buffer layer, a channel layer and a barrier layer sequentially stacked on the front side of the semiconductor substrate; a gate pole, disposed on the barrier layer; Schottky metal layer, disposed on the drift layer, and in contact with the first side of the buffer layer, between the Schottky metal layer and the drift layer A Schottky contact is formed between them; the source electrode is arranged on the Schottky metal layer, is in contact with the channel layer and the barrier layer, and is in contact with the channel layer and the barrier layer form an ohmic contact between them; an intermediary metal layer is disposed on the drift layer and is in contact with the second side of the buffer layer, the channel layer, and the barrier layer; wherein, the second side is in contact with the second side of the barrier layer The first side is opposite to the first side; the drain is arranged on the back side of the semiconductor substrate.

其中一实施例中,所述肖特基金属层的厚度小于或等于所述缓冲层和所述沟道层的厚度之和。In one embodiment, the thickness of the Schottky metal layer is less than or equal to the sum of the thicknesses of the buffer layer and the channel layer.

其中一实施例中,还包括P型盖帽层;所述P型盖帽层设于所述势垒层与所述栅极之间。In one embodiment, a P-type capping layer is further included; the P-type capping layer is disposed between the barrier layer and the gate.

其中一实施例中,所述源极包括填充金属层和连接金属层;所述填充金属层自所述势垒层的上表面延伸至所述缓冲层;所述连接金属层设置在所述势垒层的上方并与所述填充金属层连接。In one embodiment, the source electrode includes a filling metal layer and a connection metal layer; the filling metal layer extends from the upper surface of the barrier layer to the buffer layer; the connection metal layer is arranged on the barrier layer above the barrier layer and connected to the filling metal layer.

其中一实施例中,所述栅极的材料为肖特基金属,所述源极和所述漏极的材料为欧姆金属。In one embodiment, the material of the gate is Schottky metal, and the material of the source and the drain is ohmic metal.

其中一实施例中,所述半导体衬底和所述漂移层均为N型碳化硅。In one embodiment, both the semiconductor substrate and the drift layer are N-type silicon carbide.

其中一实施例中,所述漂移层中的N型掺杂离子的浓度小于所述半导体衬底中的N型掺杂离子的浓度。In one embodiment, the concentration of N-type dopant ions in the drift layer is smaller than the concentration of N-type dopant ions in the semiconductor substrate.

其中一实施例中,所述沟道层的材料为氮化镓,所述势垒层的材料为氮化铝镓。In one embodiment, the material of the channel layer is gallium nitride, and the material of the barrier layer is aluminum gallium nitride.

其中一实施例中,所述P型盖帽层的材料为P型氮化镓。In one embodiment, the material of the P-type capping layer is P-type GaN.

本申请实施例的第二方面提供了一种耐高压HEMT器件的制备方法,包括:在半导体衬底的正面依次形成漂移层、缓冲层、沟道层、势垒层和P型盖帽层;刻蚀所述P型盖帽层的边缘;对所述缓冲层以及所述沟道层和所述势垒层的第一侧进行刻蚀,直至暴露所述漂移层,以形成第一沟槽;对所述缓冲层以及所述沟道层和所述势垒层的第二侧进行刻蚀,直至暴露所述漂移层,以形成第二沟槽;在所述第一沟槽填充金属材料由下至上依次形成肖特基金属层和源极,在所述第二沟槽填充金属材料形成中介金属层;所述肖特基金属层与所述漂移层之间形成肖特基接触,所述源极与所述沟道层以及所述势垒层之间形成欧姆接触;在所述P型盖帽层上形成栅极,并在所述半导体衬底的背面构造漏极。The second aspect of the embodiment of the present application provides a method for manufacturing a high-voltage HEMT device, including: sequentially forming a drift layer, a buffer layer, a channel layer, a barrier layer, and a P-type cap layer on the front surface of a semiconductor substrate; Etching the edge of the P-type capping layer; etching the first side of the buffer layer and the channel layer and the barrier layer until the drift layer is exposed to form a first trench; Etching the buffer layer and the second side of the channel layer and the barrier layer until the drift layer is exposed to form a second trench; filling the first trench with a metal material from below A Schottky metal layer and a source electrode are sequentially formed on the top, and an intermediary metal layer is formed in the second trench filling metal material; a Schottky contact is formed between the Schottky metal layer and the drift layer, and the source An ohmic contact is formed between the electrode, the channel layer and the barrier layer; a gate is formed on the P-type cap layer, and a drain is constructed on the back of the semiconductor substrate.

本申请实施例与现有技术相比存在的有益效果是:在沟道层与势垒层相接触时,会形成二维电子气,本申请通过将漏极设置在半导体衬底的背面,并通过中介金属层连接二维电子气与漂移层,使得源极依次通过二维电子气、中介金属层、漂移层和半导体衬底与漏极连接,实现电力传输,从而可以在仍具备HEMT器件的高速通断特性的前提下,通过漂移层和半导体衬底提高了器件的耐电高压的能力。Compared with the prior art, the embodiment of the present application has the beneficial effect that a two-dimensional electron gas will be formed when the channel layer is in contact with the barrier layer. In this application, the drain is arranged on the back of the semiconductor substrate, and The two-dimensional electron gas and the drift layer are connected through the intermediary metal layer, so that the source is connected to the drain through the two-dimensional electron gas, the intermediary metal layer, the drift layer and the semiconductor substrate in order to realize power transmission, so that it can be used in HEMT devices. Under the premise of high-speed on-off characteristics, the ability of the device to withstand high voltage is improved through the drift layer and the semiconductor substrate.

同时,本申请通过肖特基金属层与漂移层、半导体衬底可以构造出一个阳极与源极连接且阴极通过半导体衬底与漏极连接的肖特基二极管,当有高电压施加到漏极与源极上(漏极为高电位,源极为低电位)时,若该电压大于由肖特基金属层构造出的肖特基二极管的雪崩电压,则该肖特基二极管会被击穿,从而限制漏极与源极之间的电压,避免整个耐高压HEMT器件被高电压烧坏,进一步提升了耐高压的能力。At the same time, this application can construct a Schottky diode with the anode connected to the source and the cathode connected to the drain through the semiconductor substrate through the Schottky metal layer, the drift layer, and the semiconductor substrate. When a high voltage is applied to the drain When connected to the source (the drain is at a high potential and the source is at a low potential), if the voltage is greater than the avalanche voltage of the Schottky diode constructed by the Schottky metal layer, the Schottky diode will be broken down, thereby The voltage between the drain and the source is limited to prevent the entire high-voltage resistant HEMT device from being burned by high voltage, and further improve the high-voltage withstand capability.

附图说明Description of drawings

图1为本申请第一实施例提供的耐高压HEMT器件的结构示意图;FIG. 1 is a schematic structural view of a high-voltage HEMT device provided in the first embodiment of the present application;

图2为本申请另一实施例提供的耐高压HEMT器件的结构示意图;FIG. 2 is a schematic structural view of a high-voltage HEMT device provided by another embodiment of the present application;

图3为本申请另一实施例提供的绝缘层的结构示意图;FIG. 3 is a schematic structural diagram of an insulating layer provided by another embodiment of the present application;

图4为本申请第二实施例提供的耐高压HEMT器件的制备方法的流程图;Fig. 4 is the flow chart of the preparation method of the high voltage resistant HEMT device provided by the second embodiment of the present application;

图5为本申请第二实施例执行步骤S100后的耐高压HEMT器件的结构示意图;FIG. 5 is a schematic structural diagram of a high-voltage HEMT device after performing step S100 in the second embodiment of the present application;

图6为本申请第二实施例执行步骤S200后的耐高压HEMT器件的结构示意图;FIG. 6 is a schematic structural diagram of a high-voltage HEMT device after performing step S200 in the second embodiment of the present application;

图7为本申请第二实施例执行步骤S400后的耐高压HEMT器件的结构示意图;FIG. 7 is a schematic structural diagram of a high-voltage HEMT device after performing step S400 in the second embodiment of the present application;

图8为本申请第二实施例提供的耐高压HEMT器件的具体制备方法的流程图;8 is a flowchart of a specific preparation method for a high-voltage HEMT device provided in the second embodiment of the present application;

图9为本申请第二实施例执行步骤S500后的耐高压HEMT器件的结构示意图;FIG. 9 is a schematic structural diagram of a high-voltage HEMT device after performing step S500 in the second embodiment of the present application;

图10为本申请第二实施例执行步骤S500后的梯形的中介金属层的结构示意图;FIG. 10 is a schematic structural diagram of a trapezoidal intermediary metal layer after step S500 is performed in the second embodiment of the present application;

图11为本申请第二实施例执行步骤S500后的金属结构的结构示意图。FIG. 11 is a schematic structural diagram of the metal structure after step S500 is executed in the second embodiment of the present application.

上述附图说明:100、半导体衬底;200、漂移层;300、缓冲层;400、沟道层;500、势垒层;510、第一沟槽;520、第二沟槽;600、栅极;610、P型盖帽层;700、源极;710、填充金属层;720、连接金属层;730、肖特基金属层;740、绝缘层;800、中介金属层;810、第一金属结构;820、第二金属结构;830、第三金属结构;900、漏极。Description of the above drawings: 100, semiconductor substrate; 200, drift layer; 300, buffer layer; 400, channel layer; 500, barrier layer; 510, first trench; 520, second trench; 600, gate pole; 610, P-type capping layer; 700, source; 710, filling metal layer; 720, connecting metal layer; 730, Schottky metal layer; 740, insulating layer; 800, intermediary metal layer; 810, first metal structure; 820, the second metal structure; 830, the third metal structure; 900, the drain.

具体实施方式Detailed ways

为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.

需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being “fixed” or “disposed on” another element, it may be directly on the other element or be indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.

需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。It is to be understood that the terms "length", "width", "top", "bottom", "front", "rear", "left", "right", "vertical", "horizontal", "top" , "bottom", "inner", "outer" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the application and simplifying the description, rather than indicating or implying the referred device Or elements must have a certain orientation, be constructed and operate in a certain orientation, and thus should not be construed as limiting the application.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present application, "plurality" means two or more, unless otherwise specifically defined.

图1示出了本申请第一实施例提供的耐高压HEMT器件的结构示意图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:Figure 1 shows a schematic structural view of the high-voltage HEMT device provided by the first embodiment of the present application. For the convenience of description, only the parts related to this embodiment are shown, and the details are as follows:

一种耐高压HEMT器件,包括半导体衬底100、漂移层200、缓冲层300、沟道层400和势垒层500;其中,漂移层200、缓冲层300、沟道层400和势垒层500在半导体衬底100的正面依次层叠设置,沟道层400和势垒层500用于形成二维电子气。缓冲层300用于降低沟道层400与漂移层200之间的晶格错位。A high-voltage resistant HEMT device, comprising a semiconductor substrate 100, a drift layer 200, a buffer layer 300, a channel layer 400, and a barrier layer 500; wherein, the drift layer 200, the buffer layer 300, the channel layer 400, and the barrier layer 500 The channel layer 400 and the barrier layer 500 are stacked sequentially on the front surface of the semiconductor substrate 100 to form a two-dimensional electron gas. The buffer layer 300 is used to reduce lattice dislocation between the channel layer 400 and the drift layer 200 .

耐高压HEMT器件还包括栅极600、肖特基金属层730、源极700、中介金属层800和漏极900。The high voltage HEMT device further includes a gate 600 , a Schottky metal layer 730 , a source 700 , an intervening metal layer 800 and a drain 900 .

栅极600设于势垒层500上。肖特基金属层730设于漂移层200上,且与缓冲层300的第一侧接触,肖特基金属层730与漂移层200之间形成肖特基接触。源极700设于肖特基金属层730上,且与沟道层400以及势垒层500接触,并与沟道层400以及势垒层500之间形成欧姆接触。中介金属层800设于漂移层200上,且与缓冲层300的第二侧以及沟道层400和势垒层500接触。其中,第二侧与第一侧相对,中介金属层800用于连接漂移层200与二维电子气。漏极900设于半导体衬底100的背面。其中,肖特基金属层730的材料为肖特基金属。The gate 600 is disposed on the barrier layer 500 . The Schottky metal layer 730 is disposed on the drift layer 200 and is in contact with the first side of the buffer layer 300 , forming a Schottky contact between the Schottky metal layer 730 and the drift layer 200 . The source electrode 700 is disposed on the Schottky metal layer 730 , is in contact with the channel layer 400 and the barrier layer 500 , and forms an ohmic contact with the channel layer 400 and the barrier layer 500 . The intermediary metal layer 800 is disposed on the drift layer 200 and is in contact with the second side of the buffer layer 300 as well as the channel layer 400 and the barrier layer 500 . Wherein, the second side is opposite to the first side, and the intermediary metal layer 800 is used to connect the drift layer 200 and the two-dimensional electron gas. The drain 900 is disposed on the backside of the semiconductor substrate 100 . Wherein, the material of the Schottky metal layer 730 is Schottky metal.

本实施例通过将漏极900设置在半导体衬底100的背面,并通过中介金属层800连接二维电子气与漂移层200,使得源极700依次通过二维电子气、中介金属层800、漂移层200和半导体衬底100与漏极900连接。由于漂移层200和半导体衬底100的耐高电压的能力较强,在仍具备HEMT器件的高速通断特性的前提下,避免过高的电压施加到二维电子气上,通过漂移层200和半导体衬底100提高了器件的耐电高压的能力。In this embodiment, the drain 900 is disposed on the back of the semiconductor substrate 100, and the two-dimensional electron gas and the drift layer 200 are connected through the intermediary metal layer 800, so that the source 700 passes through the two-dimensional electron gas, the intermediary metal layer 800, and the drift layer 200 sequentially. Layer 200 and semiconductor substrate 100 are connected to drain 900 . Since the drift layer 200 and the semiconductor substrate 100 have a strong ability to withstand high voltage, on the premise of still having the high-speed on-off characteristics of the HEMT device, it is avoided to apply an excessively high voltage to the two-dimensional electron gas, through the drift layer 200 and The semiconductor substrate 100 improves the ability of the device to withstand electrical high voltage.

需要说明的是,本实施例通过在源极700与漂移层200之间设置肖特基金属层730,肖特基金属层730可以与漂移层200形成肖特基接触(金属-半导体结),以构造肖特基二极管,即在源极700和漏极900之间构造出了一个阳极与源极700连接且阴极与漏极900连接的肖特基二极管。当有高电压施加到漏极900与源极700上时(其中,漏极900为高电位,源极700为低电位),若该电压大于由肖特基金属层730构造出的肖特基二极管的雪崩电压,则该肖特基二极管会被击穿,从而限制漏极900与源极700之间的电压,避免整个耐高压HEMT器件被高电压烧坏或避免耐高压HEMT器件误导通,进一步提升了耐高压的能力。It should be noted that, in this embodiment, by providing a Schottky metal layer 730 between the source electrode 700 and the drift layer 200, the Schottky metal layer 730 can form a Schottky contact (metal-semiconductor junction) with the drift layer 200, To construct a Schottky diode, that is, a Schottky diode with an anode connected to the source 700 and a cathode connected to the drain 900 is constructed between the source 700 and the drain 900 . When a high voltage is applied to the drain 900 and the source 700 (the drain 900 is at a high potential and the source 700 is at a low potential), if the voltage is greater than the Schottky formed by the Schottky metal layer 730 The avalanche voltage of the diode, the Schottky diode will be broken down, thereby limiting the voltage between the drain 900 and the source 700, preventing the entire high-voltage HEMT device from being burned by high voltage or preventing the high-voltage HEMT device from being misconducted. The ability to withstand high pressure is further improved.

尤其在功率器件由导通状态变为关断状态时,若外部电路为具有高电感的电路,则容易使功率器件承受巨大电压,导致功率器件被击穿。而本实施例的耐高压HEMT器件通过设置肖特基二极管,当源极700和漏极900之间的电压超过肖特基二极管的雪崩电压时,肖特基二极管被击穿,实现稳压二极管的效果,从而限制了源极700与漏极900之间的电压,避免本实施例的耐高压HEMT器件被击穿或误导通。Especially when the power device changes from the on state to the off state, if the external circuit is a circuit with high inductance, it is easy to make the power device bear a huge voltage, resulting in breakdown of the power device. However, the high-voltage HEMT device of this embodiment is provided with a Schottky diode. When the voltage between the source 700 and the drain 900 exceeds the avalanche voltage of the Schottky diode, the Schottky diode is broken down to realize a Zener diode. Therefore, the voltage between the source 700 and the drain 900 is limited, and the breakdown or false conduction of the high-voltage resistant HEMT device of this embodiment is avoided.

本实施例中,肖特基金属层730的厚度小于或等于缓冲层300和沟道层400的厚度之和。在一示例中,如图1所示,肖特基金属层730的厚度等于沟道层400的厚度的四分之三加上缓冲层300的厚度之和,使得源极700能够直接与沟道层400和势垒层500之间的二维电子气充分连接。In this embodiment, the thickness of the Schottky metal layer 730 is less than or equal to the sum of the thicknesses of the buffer layer 300 and the channel layer 400 . In one example, as shown in FIG. 1 , the thickness of the Schottky metal layer 730 is equal to the sum of three quarters of the thickness of the channel layer 400 plus the thickness of the buffer layer 300, so that the source 700 can be directly connected to the channel. The two-dimensional electron gas between layer 400 and barrier layer 500 is sufficiently connected.

本实施例的耐高压HEMT器件为耗尽型(D-mode)功率器件,在施加到栅极600上的电压为0时,源极700与漏极900之间的二维电子气是导通的,即耗尽型功率器件处于导通状态。在施加到栅极600上负电压的数值大于耗尽型功率器件的开启电压时,栅极600下方对应的二维电子气会被截断,耗尽型功率器件关断。The high-voltage resistant HEMT device of this embodiment is a depletion-mode (D-mode) power device. When the voltage applied to the gate 600 is 0, the two-dimensional electron gas between the source 700 and the drain 900 is turned on. , that is, the depletion mode power device is in the conduction state. When the value of the negative voltage applied to the gate 600 is greater than the turn-on voltage of the depletion power device, the corresponding two-dimensional electron gas under the gate 600 will be cut off, and the depletion power device will be turned off.

如图1所示,填充金属层710自势垒层500的上表面向下延伸,填充金属层710的厚度大于势垒层500的厚度,使得填充金属层710与形成的二维电子气直接连接。在一示例中,填充金属层710与势垒层500的厚度之差等于沟道层400的厚度的四分之一。As shown in FIG. 1, the filling metal layer 710 extends downward from the upper surface of the barrier layer 500, and the thickness of the filling metal layer 710 is greater than the thickness of the barrier layer 500, so that the filling metal layer 710 is directly connected to the formed two-dimensional electron gas. . In one example, the difference between the thicknesses of the filling metal layer 710 and the barrier layer 500 is equal to a quarter of the thickness of the channel layer 400 .

本实施例中,栅极600的材料为肖特基金属,源极700和漏极900的材料为欧姆金属。其中,栅极600的材料可以为氮化镍(Ni3N)、铝(Al)、铂(Pt)中的任意一种,源极700和漏极900的材料可以为钛(Ti)。在一示例中,漏极900覆盖了半导体衬底100的整个背面。In this embodiment, the material of the gate 600 is Schottky metal, and the material of the source 700 and the drain 900 is ohmic metal. Wherein, the material of the gate 600 may be any one of nickel nitride (Ni 3 N), aluminum (Al), and platinum (Pt), and the material of the source 700 and the drain 900 may be titanium (Ti). In an example, the drain 900 covers the entire backside of the semiconductor substrate 100 .

本实施例中,半导体衬底100和漂移层200的材料均为N型碳化硅。In this embodiment, the materials of the semiconductor substrate 100 and the drift layer 200 are both N-type silicon carbide.

其中,漂移层200中的N型掺杂离子的浓度小于半导体衬底100中的N型掺杂离子的浓度。Wherein, the concentration of N-type dopant ions in the drift layer 200 is smaller than the concentration of N-type dopant ions in the semiconductor substrate 100 .

漂移层200的厚度与耐高压HEMT器件的耐高电压的能力正相关。在一示例中,漂移层200的厚度为半导体衬底100的厚度的五倍。The thickness of the drift layer 200 is positively related to the high voltage withstand capability of the high voltage HEMT device. In one example, the thickness of the drift layer 200 is five times the thickness of the semiconductor substrate 100 .

本实施例中,沟道层400的材料为氮化镓(GaN)。势垒层500的材料为氮化铝镓(AlGaN)。缓冲层300的材料为氮化铝(AlN)。In this embodiment, the material of the channel layer 400 is gallium nitride (GaN). The material of the barrier layer 500 is aluminum gallium nitride (AlGaN). The material of the buffer layer 300 is aluminum nitride (AlN).

势垒层500的材料还可以是铟铝氮镓(InAlGaN)、铟镓氮(InGaN)中的任意一种,可根据实际情况选择对应的材料。The material of the barrier layer 500 may also be any one of indium aluminum gallium nitride (InAlGaN) and indium gallium nitride (InGaN), and the corresponding material may be selected according to actual conditions.

另一实施例中,耐高压HEMT器件还包括P型盖帽层610。In another embodiment, the high voltage HEMT device further includes a P-type capping layer 610 .

如图2所示,具体地,P型盖帽层610设于势垒层500与栅极600之间。As shown in FIG. 2 , specifically, the P-type capping layer 610 is disposed between the barrier layer 500 and the gate 600 .

需要说明的是,设有P型盖帽层610的功率器件为增强型(E-mode)功率器件,当有数值大于开启电压的正电压施加到栅极600上时,源极700到中介金属层800的二维电子气可以保持导通,漏极900接收到的电流可以依次通过半导体衬底100、漂移层200、中介金属层800和二维电子气传输至源极700。It should be noted that the power device provided with the P-type capping layer 610 is an enhanced (E-mode) power device. When a positive voltage greater than the turn-on voltage is applied to the gate 600, the source 700 to the intermediary metal layer The two-dimensional electron gas of 800 can be kept on, and the current received by the drain 900 can be transmitted to the source 700 through the semiconductor substrate 100 , the drift layer 200 , the intermediary metal layer 800 and the two-dimensional electron gas in sequence.

当施加到栅极600上的电压小于开启电压或为负电压时,栅极600下方对应的二维电子气会被截断,此时漏极900接收到的电流依次通过半导体衬底100和漂移层200传输至中介金属层800之后,就无法通过二维电子气继续传输至源极700。When the voltage applied to the gate 600 is less than the turn-on voltage or is a negative voltage, the corresponding two-dimensional electron gas under the gate 600 will be cut off, and the current received by the drain 900 will pass through the semiconductor substrate 100 and the drift layer in turn. After the 200 is transported to the intermediary metal layer 800 , it cannot continue to be transported to the source electrode 700 through the two-dimensional electron gas.

本实施例中,P型盖帽层610的材料为P型氮化镓(P-GaN)。In this embodiment, the material of the P-type capping layer 610 is P-type gallium nitride (P-GaN).

在一实施例中,半导体衬底100的厚度为10nm~30nm,漂移层200的厚度为50nm~100nm,缓冲层300的厚度为3nm~30nm,沟道层400的厚度为3nm~30nm,势垒层500的厚度为3nm~30nm。In one embodiment, the thickness of the semiconductor substrate 100 is 10nm-30nm, the thickness of the drift layer 200 is 50nm-100nm, the thickness of the buffer layer 300 is 3nm-30nm, the thickness of the channel layer 400 is 3nm-30nm, the barrier The thickness of the layer 500 is 3nm-30nm.

在一示例中,半导体衬底100的厚度为20nm,漂移层200的厚度为60nm,缓冲层300的厚度为20nm,沟道层400的厚度为20nm,势垒层500的厚度为20nm。填充金属层710的厚度为25nm,相应的,填充金属层710下方的肖特基金属730的厚度为35nm。In an example, the thickness of the semiconductor substrate 100 is 20 nm, the thickness of the drift layer 200 is 60 nm, the thickness of the buffer layer 300 is 20 nm, the thickness of the channel layer 400 is 20 nm, and the thickness of the barrier layer 500 is 20 nm. The thickness of the filling metal layer 710 is 25 nm, and correspondingly, the thickness of the Schottky metal 730 below the filling metal layer 710 is 35 nm.

在一实施例中,P型盖帽层610的厚度为2nm~5nm。In one embodiment, the thickness of the P-type capping layer 610 is 2 nm˜5 nm.

另一实施例中,如图3所示,肖特基金属层730与缓冲层300和沟道层400之间,还设有绝缘层740,绝缘层740用于降低从肖特基金属层730产生的漏电流。In another embodiment, as shown in FIG. 3 , an insulating layer 740 is further provided between the Schottky metal layer 730 and the buffer layer 300 and the channel layer 400. The insulating layer 740 is used to reduce the resulting leakage current.

图4示出了本申请第三实施例提供的耐高压HEMT器件的制备方法的流程图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:Fig. 4 shows the flow chart of the preparation method of the high voltage resistant HEMT device provided by the third embodiment of the present application. For the convenience of explanation, only the parts related to this embodiment are shown, and the details are as follows:

一种耐高压HEMT器件的制备方法,可用于制备上述任一项实施例的耐高压HEMT器件。制备方法包括步骤S100-S600。A method for preparing a high-voltage resistant HEMT device, which can be used to prepare the high-voltage resistant HEMT device of any one of the above embodiments. The preparation method includes steps S100-S600.

在步骤S100中,在半导体衬底的100正面依次形成漂移层200、缓冲层300、沟道层400、势垒层500和P型盖帽层610。In step S100 , a drift layer 200 , a buffer layer 300 , a channel layer 400 , a barrier layer 500 and a P-type cap layer 610 are sequentially formed on the front surface of the semiconductor substrate 100 .

半导体衬底100、漂移层200、缓冲层300、沟道层400、势垒层500和P型盖帽层610的结构示意图如图5所示。A schematic structural diagram of the semiconductor substrate 100 , the drift layer 200 , the buffer layer 300 , the channel layer 400 , the barrier layer 500 and the P-type capping layer 610 is shown in FIG. 5 .

在一示例中,半导体衬底100、缓冲层300、沟道层400、势垒层500和P型盖帽层610和厚度为10nm-100um,漂移层200的厚度为20nm-500um,漂移层200的厚度可以是半导体衬底100的厚度的2倍至5倍,其中,半导体衬底100的厚度和漂移层200的厚度决定了耐高压HEMT器件的耐高压的能力,半导体衬底100和漂移层200越厚则相应的耐高压的能力越强。In an example, the thickness of the semiconductor substrate 100, the buffer layer 300, the channel layer 400, the barrier layer 500 and the P-type cap layer 610 is 10nm-100um, the thickness of the drift layer 200 is 20nm-500um, and the thickness of the drift layer 200 is The thickness can be 2 times to 5 times the thickness of the semiconductor substrate 100, wherein the thickness of the semiconductor substrate 100 and the thickness of the drift layer 200 determine the high voltage withstand capability of the high voltage HEMT device, the semiconductor substrate 100 and the drift layer 200 The thicker the corresponding high pressure resistance is stronger.

在步骤S200中,刻蚀P型盖帽层610的边缘。In step S200, the edge of the P-type capping layer 610 is etched.

刻蚀后的P型盖帽层610如图6所示,通过刻蚀P型盖帽层610的边缘部分,使得P型盖帽层610位于势垒层500表面的中央区域。P型盖帽层610上可用于构造栅极600。The etched P-type capping layer 610 is shown in FIG. 6 , by etching the edge portion of the P-type capping layer 610 so that the P-type capping layer 610 is located in the central area of the surface of the barrier layer 500 . The P-type capping layer 610 can be used to construct the gate 600 .

在一示例中,P型盖帽层610的形状可以为多边形、圆形或者圆弧形,本实施例不对其进行限制。In an example, the shape of the P-type capping layer 610 may be a polygon, a circle or an arc, which is not limited in this embodiment.

在步骤S300中,对缓冲层300以及沟道层400和势垒层500的第一侧进行刻蚀,直至暴露漂移层200,以形成第一沟槽510。In step S300 , the buffer layer 300 , the first sides of the channel layer 400 and the barrier layer 500 are etched until the drift layer 200 is exposed, so as to form a first trench 510 .

在步骤S400中,对缓冲层300以及沟道层400和势垒层500的第二侧进行刻蚀,直至暴露漂移层200,以形成第二沟槽520。In step S400 , the second sides of the buffer layer 300 , the channel layer 400 , and the barrier layer 500 are etched until the drift layer 200 is exposed, so as to form a second trench 520 .

结合图7所示,第一沟槽510和第二沟槽520均深入至漂移层200,第二侧与第一侧相对,使得第一沟槽510和第二沟槽520分别位于势垒层500(缓冲层300/沟道层400)相对的两侧,P型盖帽层610位于第一沟槽510和第二沟槽520之间的势垒层500上。As shown in FIG. 7 , both the first trench 510 and the second trench 520 go deep into the drift layer 200, and the second side is opposite to the first side, so that the first trench 510 and the second trench 520 are respectively located in the barrier layer. 500 (buffer layer 300 /channel layer 400 ), the P-type capping layer 610 is located on the barrier layer 500 between the first trench 510 and the second trench 520 .

在一个具体应用实施例中,第一沟槽510和第二沟槽520的深度均为缓冲层300、沟道层400、势垒层500的厚度之和。In a specific application embodiment, the depths of the first trench 510 and the second trench 520 are the sum of the thicknesses of the buffer layer 300 , the channel layer 400 and the barrier layer 500 .

在步骤S500中,在第一沟槽510填充金属材料由下至上依次形成肖特基金属层730和源极700,在第二沟槽520填充金属材料形成中介金属层800。肖特基金属层730与漂移层200之间形成肖特基接触,源极700与沟道层400以及势垒层500之间形成欧姆接触。In step S500 , the metal material is filled in the first trench 510 from bottom to top to form the Schottky metal layer 730 and the source electrode 700 sequentially, and the metal material is filled in the second trench 520 to form the intervening metal layer 800 . A Schottky contact is formed between the Schottky metal layer 730 and the drift layer 200 , and an ohmic contact is formed between the source electrode 700 and the channel layer 400 and the barrier layer 500 .

在步骤S600中,在P型盖帽层610上形成栅极600,并在半导体衬底100的背面构造漏极900。In step S600 , a gate 600 is formed on the P-type capping layer 610 , and a drain 900 is formed on the back surface of the semiconductor substrate 100 .

其中,如图8所示,步骤S500和步骤S600具体为:Wherein, as shown in FIG. 8, step S500 and step S600 are specifically:

在步骤S500中,在第一沟槽510填充金属材料由下至上依次形成肖特基金属层730填充金属层710,在第二沟槽520填充金属材料形成中介金属层800。In step S500 , the first trench 510 is filled with a metal material from bottom to top to form a Schottky metal layer 730 to fill the metal layer 710 , and the second trench 520 is filled with a metal material to form an intervening metal layer 800 .

肖特基金属层730、填充金属层710和中介金属层800的结构示意图如图9所示。A schematic structural diagram of the Schottky metal layer 730 , the filling metal layer 710 and the intervening metal layer 800 is shown in FIG. 9 .

填充金属层710和中介金属层800分别位于势垒层500相对的两侧,使得栅极600设置在填充金属层710和中介金属层800之间的势垒层500的上方,以用于控制填充金属层710和中介金属层800之间的二维电子气的导通与截断。The filling metal layer 710 and the intervening metal layer 800 are located on opposite sides of the barrier layer 500, so that the gate 600 is disposed above the barrier layer 500 between the filling metal layer 710 and the intervening metal layer 800, so as to control the filling Conduction and disconnection of the two-dimensional electron gas between the metal layer 710 and the intervening metal layer 800 .

同时,本实施例的步骤S500会先在第一沟槽510内形成肖特基金属层730,再在肖特基金属层730上形成源极700(填充金属层710),其中,肖特基金属层730与填充金属层710的材料不同,肖特基金属层730的材料为肖特基金属,填充金属层710的材料为欧姆金属。At the same time, step S500 of this embodiment will first form the Schottky metal layer 730 in the first trench 510, and then form the source electrode 700 (filling metal layer 710) on the Schottky metal layer 730, wherein the Schottky The material of the metal layer 730 is different from that of the filling metal layer 710 , the material of the Schottky metal layer 730 is Schottky metal, and the material of the filling metal layer 710 is ohmic metal.

需要说明的是,肖特基金属层730可以与漂移层200形成肖特基接触(金属-半导体结),从而构造出一个肖特基二极管,该肖特基二极管的阳极与源极700连接,阴极与漏极900连接,当有高电压施加到漏极900与源极700上时,若该电压大于由肖特基金属层730构造出的肖特基二极管的雪崩电压,则该肖特基二极管会被击穿,从而限制漏极900与源极700之间的电压,避免整个耐高压HEMT器件被高电压烧坏,进一步提升了耐高压的能力。It should be noted that the Schottky metal layer 730 can form a Schottky contact (metal-semiconductor junction) with the drift layer 200, thereby constructing a Schottky diode, the anode of the Schottky diode is connected to the source 700, The cathode is connected to the drain 900. When a high voltage is applied to the drain 900 and the source 700, if the voltage is greater than the avalanche voltage of the Schottky diode constructed by the Schottky metal layer 730, the Schottky The diode will be broken down, thereby limiting the voltage between the drain 900 and the source 700, preventing the entire high-voltage resistant HEMT device from being burned by high voltage, and further improving the high-voltage withstand capability.

在一个具体应用实施例中,可以通过调整第二沟槽520的形状,使得中介金属层800的截面形状呈弧形或者梯形。此时,中介金属层800的宽度由其底部至顶部逐渐增加。如图10所示,中介金属层800的截面形状呈梯形。In a specific application embodiment, the shape of the second trench 520 can be adjusted so that the cross-sectional shape of the intervening metal layer 800 is arc-shaped or trapezoidal. At this time, the width of the intervening metal layer 800 gradually increases from the bottom to the top. As shown in FIG. 10 , the cross-sectional shape of the intermediary metal layer 800 is trapezoidal.

如图11所示,在一个具体应用实施例中,中介金属层800可以由多层金属结构组成,例如,中介金属层800可以由第一金属结构810、第二金属结构820以及第三金属结构830组成,第一金属结构810、第二金属结构820以及第三金属结构830与缓冲层300、沟道层400、势垒层500一一对应。As shown in FIG. 11, in a specific application embodiment, the intermediary metal layer 800 can be composed of a multi-layer metal structure, for example, the intermediary metal layer 800 can be composed of a first metal structure 810, a second metal structure 820 and a third metal structure 830, the first metal structure 810, the second metal structure 820 and the third metal structure 830 correspond to the buffer layer 300, the channel layer 400 and the barrier layer 500 one by one.

在一个具体应用实施例中,第一金属结构810、第二金属结构820以及第三金属结构830的宽度逐渐增加。In a specific application embodiment, the widths of the first metal structure 810 , the second metal structure 820 and the third metal structure 830 gradually increase.

在一个具体应用实施例中,第一金属结构810、第二金属结构820以及第三金属结构830的宽度按照等差比例设置。In a specific application embodiment, the widths of the first metal structure 810 , the second metal structure 820 and the third metal structure 830 are set according to an arithmetic difference ratio.

在一个具体应用实施例中,第一金属结构810与缓冲层300之间的界面形状、第二金属结构820与沟道层400之间的界面形状、第三金属结构830与势垒层500之间的界面形状可以互不相同。In a specific application embodiment, the shape of the interface between the first metal structure 810 and the buffer layer 300, the shape of the interface between the second metal structure 820 and the channel layer 400, the shape of the interface between the third metal structure 830 and the barrier layer 500 The shape of the interface between them can be different from each other.

在一个具体应用实施例中,第一金属结构810、第二金属结构820以及第三金属结构830所采用的金属材料可以互不相同。例如,第一金属结构810可以为金,第二金属结构820可以为铜。In a specific application embodiment, the metal materials used in the first metal structure 810 , the second metal structure 820 and the third metal structure 830 may be different from each other. For example, the first metal structure 810 may be gold, and the second metal structure 820 may be copper.

在步骤S600中,在P型盖帽层610上形成栅极600,并在半导体衬底100的背面构造漏极900,以及在势垒层500的上方构造与填充金属层710连接的连接金属层720。In step S600, the gate 600 is formed on the P-type cap layer 610, the drain 900 is formed on the back surface of the semiconductor substrate 100, and the connection metal layer 720 connected to the filling metal layer 710 is formed above the barrier layer 500 .

栅极600、漏极900和连接金属层720的结构如图2所示,填充金属层710和连接金属层720共同组成了源极700,源极700的整体横截面成L形。填充金属层710用于连接二维电子气,连接金属层720用于与外部电路连接。在一示例中,栅极600和连接金属层720的形状可以为多边形、圆形或者圆弧形,本实施例不对其进行限制。栅极600、连接金属层720和漏极900的厚度均为10nm-100um。The structure of the gate 600 , the drain 900 and the connection metal layer 720 is shown in FIG. 2 , the filling metal layer 710 and the connection metal layer 720 together form the source 700 , and the overall cross-section of the source 700 is L-shaped. The filling metal layer 710 is used for connecting the two-dimensional electron gas, and the connecting metal layer 720 is used for connecting with an external circuit. In an example, the shapes of the gate 600 and the connection metal layer 720 may be polygonal, circular or arc-shaped, which is not limited in this embodiment. The thicknesses of the gate 600 , the connection metal layer 720 and the drain 900 are all 10nm-100um.

本实施例通过将漏极900设置在半导体衬底100的背面,并通过中介金属层800连接二维电子气与漂移层200,使得源极700依次通过二维电子气、中介金属层800、漂移层200和半导体衬底100与漏极900连接。由于漂移层200和半导体衬底100的耐高电压的能力较强,在仍具备HEMT器件的高速通断特性的前提下,通过漂移层200和半导体衬底100提高了器件的耐电高压的能力。In this embodiment, the drain 900 is disposed on the back of the semiconductor substrate 100, and the two-dimensional electron gas and the drift layer 200 are connected through the intermediary metal layer 800, so that the source 700 passes through the two-dimensional electron gas, the intermediary metal layer 800, and the drift layer 200 sequentially. Layer 200 and semiconductor substrate 100 are connected to drain 900 . Since the drift layer 200 and the semiconductor substrate 100 have a strong ability to withstand high voltage, the drift layer 200 and the semiconductor substrate 100 can improve the ability of the device to withstand high voltage under the premise of still having the high-speed on-off characteristics of the HEMT device. .

本实施例中,栅极600的材料为肖特基金属,源极700和漏极900的材料为欧姆金属。In this embodiment, the material of the gate 600 is Schottky metal, and the material of the source 700 and the drain 900 is ohmic metal.

本实施例中,半导体衬底100和漂移层200的材料均为N型碳化硅。In this embodiment, the materials of the semiconductor substrate 100 and the drift layer 200 are both N-type silicon carbide.

具体地,漂移层200中的N型掺杂离子的浓度小于半导体衬底100中的N型掺杂离子的浓度。Specifically, the concentration of N-type dopant ions in the drift layer 200 is smaller than the concentration of N-type dopant ions in the semiconductor substrate 100 .

本实施例中,沟道层400的材料为氮化镓(GaN)。势垒层500的材料为氮化铝镓(AlGaN)。In this embodiment, the material of the channel layer 400 is gallium nitride (GaN). The material of the barrier layer 500 is aluminum gallium nitride (AlGaN).

势垒层500的材料还可以是铟铝氮镓(InAlGaN)、铟镓氮(InGaN)中的任意一种,可根据实际情况选择对应的材料。The material of the barrier layer 500 may also be any one of indium aluminum gallium nitride (InAlGaN) and indium gallium nitride (InGaN), and the corresponding material may be selected according to actual conditions.

在一实施例中,在步骤S100中,可以采用化学气相沉积(Chemical VaporDeposition;CVD)等公知的方法沉积漂移层200、缓冲层300、沟道层400、势垒层500和P型盖帽层610,本实施例不对漂移层200、缓冲层300、沟道层400、势垒层500和P型盖帽层610的沉积方法进行限制。In one embodiment, in step S100, the drift layer 200, the buffer layer 300, the channel layer 400, the barrier layer 500 and the P-type cap layer 610 can be deposited by known methods such as chemical vapor deposition (Chemical VaporDeposition; CVD) , this embodiment does not limit the deposition methods of the drift layer 200 , the buffer layer 300 , the channel layer 400 , the barrier layer 500 and the P-type capping layer 610 .

在一实施例中,在步骤S200、步骤300和步骤S400中,可以采用干法刻蚀或湿法刻蚀等公知的方法对缓冲层300、沟道层400、势垒层500和P型盖帽层610进行刻蚀,本实施例不对缓冲层300、沟道层400、势垒层500和P型盖帽层610的刻蚀方法进行限制。在一示例中,可以采用电感耦合等离子刻蚀法(Inductive Coupled Plasma;ICP)对缓冲层300、沟道层400、势垒层500和P型盖帽层610进行刻蚀。In one embodiment, in step S200, step 300 and step S400, the buffer layer 300, the channel layer 400, the barrier layer 500 and the P-type cap can be formed using known methods such as dry etching or wet etching. The layer 610 is etched, and this embodiment does not limit the etching method of the buffer layer 300 , the channel layer 400 , the barrier layer 500 and the P-type cap layer 610 . In an example, the buffer layer 300 , the channel layer 400 , the barrier layer 500 and the P-type cap layer 610 may be etched by using an inductively coupled plasma etching method (Inductive Coupled Plasma; ICP).

在一实施例中,在步骤S500和步骤S600中,可以采用真空蒸镀法或溅射法等公知的方法构造肖特基金属层730、栅极600、源极700、中介金属层800和漏极900,本实施例不对肖特基金属层730、栅极600、源极700、中介金属层800和漏极900的具体构造方法进行限制。In one embodiment, in step S500 and step S600, the Schottky metal layer 730, the gate 600, the source 700, the intervening metal layer 800, and the drain can be formed by known methods such as vacuum evaporation or sputtering. electrode 900 , this embodiment does not limit the specific construction methods of the Schottky metal layer 730 , the gate electrode 600 , the source electrode 700 , the intervening metal layer 800 and the drain electrode 900 .

应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It should be understood that the sequence numbers of the steps in the above embodiments do not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiment of the present application.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the above-mentioned embodiments, the descriptions of each embodiment have their own emphases, and for parts that are not detailed or recorded in a certain embodiment, refer to the relevant descriptions of other embodiments.

以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-described embodiments are only used to illustrate the technical solutions of the present application, rather than to limit them; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still implement the foregoing embodiments Modifications to the technical solutions described in the examples, or equivalent replacements for some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the application, and should be included in the Within the protection scope of this application.

Claims (10)

1.一种耐高压HEMT器件,其特征在于,包括:1. A high voltage resistant HEMT device, characterized in that, comprising: 半导体衬底;semiconductor substrate; 在所述半导体衬底的正面依次层叠设置的漂移层、缓冲层、沟道层和势垒层;A drift layer, a buffer layer, a channel layer and a barrier layer are sequentially stacked on the front side of the semiconductor substrate; 栅极,设于所述势垒层上;a gate disposed on the barrier layer; 肖特基金属层,设于所述漂移层上,且与所述缓冲层的第一侧接触,所述肖特基金属层与所述漂移层之间形成肖特基接触;a Schottky metal layer, disposed on the drift layer and in contact with the first side of the buffer layer, forming a Schottky contact between the Schottky metal layer and the drift layer; 源极,设于所述肖特基金属层上,且与所述沟道层以及所述势垒层接触,并与所述沟道层以及所述势垒层之间形成欧姆接触;The source electrode is disposed on the Schottky metal layer, is in contact with the channel layer and the barrier layer, and forms an ohmic contact with the channel layer and the barrier layer; 中介金属层,设于所述漂移层上,且与所述缓冲层以及所述沟道层和所述势垒层的第二侧接触;其中,所述第二侧与所述第一侧相对;an intermediary metal layer, disposed on the drift layer, and in contact with the buffer layer and the second sides of the channel layer and the barrier layer; wherein the second side is opposite to the first side ; 漏极,设于所述半导体衬底的背面。The drain is arranged on the back side of the semiconductor substrate. 2.如权利要求1所述的耐高压HEMT器件,其特征在于,所述肖特基金属层的厚度小于或等于所述缓冲层和所述沟道层的厚度之和。2. The high voltage resistant HEMT device according to claim 1, wherein the thickness of the Schottky metal layer is less than or equal to the sum of the thicknesses of the buffer layer and the channel layer. 3.如权利要求1或2所述的耐高压HEMT器件,其特征在于,还包括P型盖帽层;3. The high voltage resistant HEMT device according to claim 1 or 2, further comprising a P-type capping layer; 所述P型盖帽层设于所述势垒层与所述栅极之间。The P-type capping layer is disposed between the barrier layer and the gate. 4.如权利要求1或2所述的耐高压HEMT器件,其特征在于,所述源极包括填充金属层和连接金属层;4. The high voltage resistant HEMT device according to claim 1 or 2, wherein the source comprises a filling metal layer and a connecting metal layer; 所述填充金属层自所述势垒层的上表面延伸至所述缓冲层;The filling metal layer extends from the upper surface of the barrier layer to the buffer layer; 所述连接金属层设置在所述势垒层的上方并与所述填充金属层连接。The connecting metal layer is disposed above the barrier layer and connected to the filling metal layer. 5.如权利要求1或2所述的耐高压HEMT器件,其特征在于,所述栅极的材料为肖特基金属,所述源极和所述漏极的材料为欧姆金属。5. The high voltage HEMT device according to claim 1 or 2, characterized in that, the material of the gate is Schottky metal, and the material of the source and the drain is ohmic metal. 6.如权利要求1或2所述的耐高压HEMT器件,其特征在于,所述半导体衬底和所述漂移层均为N型碳化硅。6. The high voltage HEMT device according to claim 1 or 2, characterized in that both the semiconductor substrate and the drift layer are N-type silicon carbide. 7.如权利要求1或2所述的耐高压HEMT器件,其特征在于,所述漂移层中的N型掺杂离子的浓度小于所述半导体衬底中的N型掺杂离子的浓度。7. The high voltage resistant HEMT device according to claim 1 or 2, characterized in that the concentration of N-type dopant ions in the drift layer is lower than the concentration of N-type dopant ions in the semiconductor substrate. 8.如权利要求1或2所述的耐高压HEMT器件,其特征在于,所述沟道层的材料为氮化镓,所述势垒层的材料为氮化铝镓。8. The high voltage HEMT device according to claim 1 or 2, characterized in that, the material of the channel layer is gallium nitride, and the material of the barrier layer is aluminum gallium nitride. 9.如权利要求3所述的耐高压HEMT器件,其特征在于,所述P型盖帽层的材料为P型氮化镓。9. The high voltage resistant HEMT device according to claim 3, characterized in that, the material of the P-type capping layer is P-type GaN. 10.一种耐高压HEMT器件的制备方法,其特征在于,包括:10. A method for preparing a high-voltage resistant HEMT device, characterized in that, comprising: 在半导体衬底的正面依次形成漂移层、缓冲层、沟道层、势垒层和P型盖帽层;sequentially forming a drift layer, a buffer layer, a channel layer, a barrier layer and a P-type cap layer on the front side of the semiconductor substrate; 刻蚀所述P型盖帽层的边缘;etching the edge of the P-type capping layer; 对所述缓冲层以及所述沟道层和所述势垒层的第一侧进行刻蚀,直至暴露所述漂移层,以形成第一沟槽;Etching the first sides of the buffer layer, the channel layer, and the barrier layer until the drift layer is exposed, so as to form a first trench; 对所述缓冲层以及所述沟道层和所述势垒层的第二侧进行刻蚀,直至暴露所述漂移层,以形成第二沟槽;Etching the buffer layer and the second sides of the channel layer and the barrier layer until the drift layer is exposed, so as to form a second trench; 在所述第一沟槽填充金属材料由下至上依次形成肖特基金属层和源极,在所述第二沟槽填充金属材料形成中介金属层;所述肖特基金属层与所述漂移层之间形成肖特基接触,所述源极与所述沟道层以及所述势垒层之间形成欧姆接触;A Schottky metal layer and a source electrode are sequentially formed in the first trench filling metal material from bottom to top, and an intermediary metal layer is formed in the second trench filling metal material; the Schottky metal layer and the drift A Schottky contact is formed between the layers, and an ohmic contact is formed between the source electrode, the channel layer and the barrier layer; 在所述P型盖帽层上形成栅极,并在所述半导体衬底的背面构造漏极。A gate is formed on the P-type capping layer, and a drain is formed on the back of the semiconductor substrate.
CN202211410574.7A 2022-11-11 2022-11-11 High-voltage-resistant HEMT device and preparation method thereof Pending CN115799330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211410574.7A CN115799330A (en) 2022-11-11 2022-11-11 High-voltage-resistant HEMT device and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211410574.7A CN115799330A (en) 2022-11-11 2022-11-11 High-voltage-resistant HEMT device and preparation method thereof

Publications (1)

Publication Number Publication Date
CN115799330A true CN115799330A (en) 2023-03-14

Family

ID=85436893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211410574.7A Pending CN115799330A (en) 2022-11-11 2022-11-11 High-voltage-resistant HEMT device and preparation method thereof

Country Status (1)

Country Link
CN (1) CN115799330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120322011A (en) * 2025-06-13 2025-07-15 深圳平湖实验室 Semiconductor devices and power equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315257A1 (en) * 2007-06-19 2008-12-25 Renesas Technology Corp. Semiconductor device and power conversion device using the same
US20130087803A1 (en) * 2011-10-06 2013-04-11 Epowersoft, Inc. Monolithically integrated hemt and schottky diode
US20140264453A1 (en) * 2013-03-15 2014-09-18 Semiconductor Components Industries, Llc Method of forming a high electron mobility semiconductor device and structure therefor
CN109148573A (en) * 2017-06-16 2019-01-04 株式会社东芝 Semiconductor device
CN110047910A (en) * 2019-03-27 2019-07-23 东南大学 A kind of heterojunction semiconductor device of high voltage ability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315257A1 (en) * 2007-06-19 2008-12-25 Renesas Technology Corp. Semiconductor device and power conversion device using the same
US20130087803A1 (en) * 2011-10-06 2013-04-11 Epowersoft, Inc. Monolithically integrated hemt and schottky diode
US20140264453A1 (en) * 2013-03-15 2014-09-18 Semiconductor Components Industries, Llc Method of forming a high electron mobility semiconductor device and structure therefor
CN109148573A (en) * 2017-06-16 2019-01-04 株式会社东芝 Semiconductor device
CN110047910A (en) * 2019-03-27 2019-07-23 东南大学 A kind of heterojunction semiconductor device of high voltage ability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120322011A (en) * 2025-06-13 2025-07-15 深圳平湖实验室 Semiconductor devices and power equipment

Similar Documents

Publication Publication Date Title
CN110034186B (en) Group III-nitride-enhanced HEMT based on composite barrier structure and its fabrication method
CN107507856A (en) Gallium cleavage plane III-nitride epitaxial structure, active device thereof and manufacturing method thereof
CN111463260A (en) Vertical high electron mobility field effect transistor and preparation method thereof
CN109244130A (en) Self aligning grid structure GaN MIS-HEMT device and preparation method thereof based on p-GaN and SiN layer
CN108258035B (en) GaN-based enhanced field effect device and manufacturing method thereof
CN112018176A (en) A kind of semiconductor device and its manufacturing method
CN110476254A (en) Heterojunction transistor with vertical structure
CN109560120A (en) A kind of GaN normally-off MISFET device of selective area growth texturearunaperpendicular and preparation method thereof
CN210640256U (en) Gallium nitride power device
CN115799330A (en) High-voltage-resistant HEMT device and preparation method thereof
CN112820648B (en) A gallium nitride metal oxide semiconductor transistor and its preparation method
CN110085674A (en) A kind of vertical power device and preparation method thereof
CN115799329A (en) High-voltage super-junction HEMT device and preparation method thereof
CN104393045A (en) Novel GaN-base reinforced HEMT device and manufacturing method thereof
CN111384167B (en) Semiconductor device and manufacturing method
CN117542896A (en) Vertical gallium nitride power transistor and manufacturing method thereof
CN108022925B (en) GaN-based monolithic power converter and manufacturing method thereof
CN108365017A (en) Transverse gallium nitride power rectifier and manufacturing method thereof
CN116344595A (en) Gallium nitride semiconductor device and method for manufacturing gallium nitride semiconductor device
CN116417520A (en) Gallium oxide field effect transistor and preparation method thereof
CN115832040A (en) Silicon carbide-based gallium nitride device and preparation method thereof
CN108807542A (en) GaN-based vertical power transistor device and manufacturing method thereof
CN115588689A (en) Gallium nitride Schottky diode and preparation method thereof
CN106409901A (en) Semiconductor device and preparation method thereof
CN115832042A (en) High-voltage-resistant gallium nitride switch device, preparation method thereof and chip

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination