CN115824220A - A robot traffic path planning method and device, electronic equipment - Google Patents
A robot traffic path planning method and device, electronic equipment Download PDFInfo
- Publication number
- CN115824220A CN115824220A CN202211520286.7A CN202211520286A CN115824220A CN 115824220 A CN115824220 A CN 115824220A CN 202211520286 A CN202211520286 A CN 202211520286A CN 115824220 A CN115824220 A CN 115824220A
- Authority
- CN
- China
- Prior art keywords
- robot
- traffic
- passing
- travel
- cost
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
本发明公开了一种机器人通行路径规划方案,属于智能硬件技术领域,所述方法包括:确定交通网络中各路段对应的通道建设参数并将其输入预设的机器人通行网络规划模型中;将确定出的机器人的出行需求、机器人通行成本参数,输入预先构建的机器人通行均衡模型;将确定出的其他交通参与者的出行需求、其他交通参与者通行成本参数,输入预先构建的其他交通参与者通行均衡模型;对机器人通行网络规划模型、机器人通行均衡模型以及其他交通参与者通行均衡模型进行联合求解,得到交通网络中机器人通行路径规划结果,所得规划结果既满足整个交通网络的总通行需求,又可节省机器人专用道路建设成本。
The invention discloses a robot passage path planning scheme, which belongs to the technical field of intelligent hardware. The method includes: determining channel construction parameters corresponding to each road section in the traffic network and inputting it into a preset robot passage network planning model; determining The travel demand of the robot and the traffic cost parameters of the robot are input into the pre-built robot traffic equilibrium model; the travel needs of other traffic participants and the traffic cost parameters of other traffic participants determined are input into the pre-built traffic flow model of other traffic participants Equilibrium model; jointly solve the robot traffic network planning model, robot traffic equilibrium model and other traffic participant traffic equilibrium models, and obtain the robot traffic path planning results in the traffic network. The planning results not only meet the total traffic demand of the entire traffic network, but also It can save the cost of robot-specific road construction.
Description
技术领域technical field
本发明涉及智能硬件技术领域,尤其涉及一种机器人通行路径规划方法和装置、电子设备。The invention relates to the technical field of intelligent hardware, in particular to a method and device for planning a robot's passage path, and electronic equipment.
背景技术Background technique
在同时存在机器人以及其他交通参与者的复杂交通环境中,为保证机器人安全运行,可在路段内建设机器人的专用通道,或者直接将路段规划为仅允许机器人通行的路段。In a complex traffic environment where robots and other traffic participants exist at the same time, in order to ensure the safe operation of robots, special passages for robots can be built in road sections, or road sections can be directly planned as road sections that only allow robots to pass.
考虑到机器人专用通道建设成本较高,在一个现有通行网络内,各个路段是否需要建设机器人专用通道以及是否需要被规划为仅允许机器人通行的路段,是个关键问题。对这个问题如何进行合理规划,使规划既满足整个通行网络的通行需求又能够节省机器人专用通道建设成本,是本领域技术人员亟待解决的技术问题。Considering the high cost of building robot-only passages, in an existing traffic network, whether each road section needs to build robot-specific passages and whether it needs to be planned as a road section that only allows robots to pass is a key issue. How to make a reasonable plan for this problem, so that the planning can not only meet the traffic demand of the entire traffic network but also save the construction cost of the dedicated robot channel, is a technical problem to be solved urgently by those skilled in the art.
发明内容Contents of the invention
本发明实施例的目的是提供一种机器人通行路径规划方法和装置、电子设备,能够解决目前无法对机器人路径进行合理规划的问题。The purpose of the embodiment of the present invention is to provide a robot path planning method and device, and electronic equipment, which can solve the problem that the robot path cannot be reasonably planned at present.
为解决上述技术问题,本发明提供如下技术方案:In order to solve the above technical problems, the present invention provides the following technical solutions:
本发明实施例提供了一种机器人通行路径规划方法,其中,所述方法包括:确定交通网络中各路段对应的通道建设参数,其中,所述通道建设参数包括:机器人专用通道的建设成本、总通行成本、通行类别;所述通行类别用于指示路段是否是否建设新的机器人专用通道;An embodiment of the present invention provides a method for planning a robot passage path, wherein the method includes: determining channel construction parameters corresponding to each road section in the traffic network, wherein the channel construction parameters include: the construction cost of the robot-specific channel, the total Passage cost, pass category; said pass category is used to indicate whether to build a new robot-specific passage for the road section;
将所述各路段对应的通道建设参数输入预设的机器人通行网络规划模型中;Input the channel construction parameters corresponding to each road section into the preset robot traffic network planning model;
确定出行位置对集合中的每个位置对之间机器人的出行需求、其他交通参与者的出行需求以及各路段对应的通行成本参数,其中,所述通行成本参数包括:机器人通行成本参数、其他交通参与者通行成本参数;Determine the travel demand of the robot between each position pair in the travel position pair set, the travel demand of other traffic participants, and the traffic cost parameters corresponding to each road section, wherein the traffic cost parameters include: robot traffic cost parameters, other traffic Participant travel cost parameters;
将所述机器人的出行需求、所述机器人通行成本参数,输入预先构建的机器人通行均衡模型;Inputting the travel demand of the robot and the traffic cost parameters of the robot into a pre-built robot traffic equilibrium model;
将所述其他交通参与者的出行需求、所述其他交通参与者通行成本参数,输入预先构建的其他交通参与者通行均衡模型;Inputting the travel demand of the other traffic participants and the traffic cost parameters of the other traffic participants into the pre-built traffic equilibrium model of other traffic participants;
对所述机器人通行网络规划模型、所述机器人通行均衡模型以及所述其他交通参与者通行均衡模型进行联合求解,得到交通网络中机器人通行路径规划结果。The robot traffic network planning model, the robot traffic equilibrium model, and the other traffic participant traffic equilibrium models are jointly solved to obtain a robot traffic path planning result in the traffic network.
可选地,所述机器人通行成本参数包括:单位时间内通过机器人的数量以及单位时间内机器人的平均通行时间;Optionally, the robot passing cost parameters include: the number of passing robots per unit time and the average passing time of robots per unit time;
所述其他交通参与者通行成本参数包括:单位时间内通过其他交通参与者的数量以及单位时间内其他交通参与者的平均通行时间。The passing cost parameters of other traffic participants include: the number of passing other traffic participants per unit time and the average passing time of other traffic participants per unit time.
可选地,所述机器人通行网络规划模型包括:Optionally, the robot traffic network planning model includes:
表征各路段机器人专用通道的建设成本与总通行成本之和最小的第一子模型;The first sub-model that represents the minimum sum of the construction cost and the total traffic cost of the robot-specific passage in each road section;
表征出行位置对之间存在连通的机器人通行路径的第二子模型;a second sub-model representing a connected robot travel path between travel position pairs;
表征出行位置对之间为机器人通行路径的第三子模型。The third sub-model representing the travel path between travel position pairs.
可选地,确定出行位置对集合中的每个位置对之间机器人的出行需求、其他交通参与者的出行需求的步骤,包括:Optionally, the step of determining the travel demand of the robot and the travel demand of other traffic participants between each position pair in the travel position pair set includes:
针对出行位置对集合中每个位置对,基于所述位置对之间的机器人最小通行时间、其他交通参与者最小通行时间以及预设参数,确定用户选择派出机器人的概率;For each position pair in the set of travel position pairs, based on the minimum passing time of the robot between the position pairs, the minimum passing time of other traffic participants and preset parameters, determine the probability that the user chooses to dispatch the robot;
基于所述概率和所述位置对对应的总出行需求,确定所述位置对之间机器人的出行需求;Based on the probability and the total travel demand corresponding to the position pair, determine the travel demand of the robot between the position pair;
将所述位置对对应的总出行需求与所述位置对之间机器人的出行需求之差,确定为所述位置对之间其他交通参与者的出行需求。The difference between the total travel demand corresponding to the position pair and the travel demand of the robot between the position pairs is determined as the travel demand of other traffic participants between the position pairs.
可选地,所述机器人通行均衡模型包括:Optionally, the robot traffic balance model includes:
表征全部路段内机器人平均通行时间之和最小的第四子模型;Characterize the fourth sub-model with the minimum sum of the robot average transit time in all road sections;
表征位置对之间的通行路径集合中机器人交通量,与所述位置对之间机器人的出行需求相等的第五子模型。A fifth sub-model that characterizes the traffic volume of the robot in the passing path set between the location pairs, and is equal to the travel demand of the robot between the location pairs.
可选地,所述其他交通参与者通行均衡模型包括:Optionally, the traffic equilibrium models of other traffic participants include:
表征全部路段内其他交通参与者平均通行时间之和最小的第六子模型;The sixth sub-model representing the minimum sum of the average passing time of other traffic participants in all road sections;
表征位置对之间的通行路径集合中其他交通参与者交通量,与所述位置对之间其他交通参与者的出行需求相等的第七子模型。A seventh sub-model representing the traffic volume of other traffic participants in the passing path set between the location pairs, which is equal to the travel demand of other traffic participants between the location pairs.
本发明实施例提供了一种机器人通行路径规划装置,其中,所述装置包括:第一确定模块,用于确定交通网络中各路段对应的通道建设参数,其中,所述通道建设参数包括:机器人专用通道的建设成本、总通行成本、通行类别;所述通行类别用于指示路段是否建设新的机器人专用通道;第二确定模块,用于将所述各路段对应的通道建设参数输入预设的机器人通行网络规划模型中;第三确定模块,用于确定出行位置对集合中的每个位置对之间机器人的出行需求、其他交通参与者的出行需求以及各路段对应的通行成本参数,其中,所述通行成本参数包括:机器人通行成本参数、其他交通参与者通行成本参数;第一输入模块,用于将所述机器人的出行需求、所述机器人通行成本参数,输入预先构建的机器人通行均衡模型;第二输入模块,用于将所述其他交通参与者的出行需求、所述其他交通参与者通行成本参数,输入预先构建的其他交通参与者通行均衡模型;求解模块,用于对所述机器人通行网络规划模型、所述机器人通行均衡模型以及所述其他交通参与者通行均衡模型进行联合求解,得到交通网络中机器人通行路径规划结果。An embodiment of the present invention provides a robot passage path planning device, wherein the device includes: a first determination module, configured to determine channel construction parameters corresponding to each road section in the traffic network, wherein the channel construction parameters include: a robot The construction cost, the total traffic cost, and the traffic category of the dedicated channel; the traffic category is used to indicate whether a road section is to build a new robot-specific channel; the second determination module is used to input the channel construction parameters corresponding to the road sections into the preset In the robot traffic network planning model; the third determination module is used to determine the travel demand of the robot between each position pair in the travel position pair set, the travel demand of other traffic participants, and the corresponding traffic cost parameters of each road section, wherein, The passage cost parameters include: robot passage cost parameters, and other traffic participant passage cost parameters; a first input module for inputting the travel demand of the robot and the robot passage cost parameters into a pre-built robot passage equilibrium model The second input module is used to input the travel demand of the other traffic participants and the traffic cost parameters of the other traffic participants into the pre-built traffic equilibrium model of other traffic participants; the solution module is used to calculate the robot The traffic network planning model, the robot traffic equilibrium model and the other traffic participant traffic equilibrium models are jointly solved to obtain the robot traffic path planning results in the traffic network.
可选地,所述机器人通行成本参数包括:单位时间内通过机器人的数量以及单位时间内机器人的平均通行时间;Optionally, the robot passing cost parameters include: the number of passing robots per unit time and the average passing time of robots per unit time;
所述其他交通参与者通行成本参数包括:单位时间内通过其他交通参与者的数量以及单位时间内其他交通参与者的平均通行时间。The passing cost parameters of other traffic participants include: the number of passing other traffic participants per unit time and the average passing time of other traffic participants per unit time.
可选地,所述机器人通行网络规划模型包括:Optionally, the robot traffic network planning model includes:
表征各路段机器人专用通道的建设成本与总通行成本之和最小的第一子模型;The first sub-model that represents the minimum sum of the construction cost and the total traffic cost of the robot-specific passage in each road section;
表征出行位置对之间存在连通的机器人通行路径的第二子模型;a second sub-model representing a connected robot travel path between travel position pairs;
表征出行位置对之间为机器人通行路径的第三子模型。The third sub-model representing the travel path between travel position pairs.
可选地,所述第三确定模块包括:Optionally, the third determination module includes:
第一子模块,用于针对出行位置对集合中每个位置对,基于所述位置对之间的机器人最小通行时间、其他交通参与者最小通行时间以及预设参数,确定用户选择派出机器人的概率;The first sub-module is used to determine the probability that the user chooses to dispatch a robot based on the minimum passing time of the robot between the pair of locations, the minimum passing time of other traffic participants, and preset parameters for each position pair in the travel position pair set ;
第二子模块,用于基于所述概率和所述位置对对应的总出行需求,确定所述位置对之间机器人的出行需求;The second submodule is used to determine the travel demand of the robot between the position pair based on the probability and the total travel demand corresponding to the position pair;
第三子模块,用于将所述位置对对应的总出行需求与所述位置对之间机器人的出行需求之差,确定为所述位置对之间其他交通参与者的出行需求。The third sub-module is configured to determine the difference between the total travel demand corresponding to the position pair and the travel demand of the robot between the position pair as the travel demand of other traffic participants between the position pair.
可选地,所述机器人通行均衡模型包括:Optionally, the robot traffic balance model includes:
表征全部路段内机器人平均通行时间之和最小的第四子模型;Characterize the fourth sub-model with the minimum sum of the robot average transit time in all road sections;
表征位置对之间的通行路径集合中机器人交通量,与所述位置对之间机器人的出行需求相等的第五子模型。A fifth sub-model that characterizes the traffic volume of the robot in the passing path set between the location pairs, and is equal to the travel demand of the robot between the location pairs.
可选地,所述其他交通参与者通行均衡模型包括:Optionally, the traffic equilibrium models of other traffic participants include:
表征全部路段内其他交通参与者平均通行时间之和最小的第六子模型;The sixth sub-model representing the minimum sum of the average passing time of other traffic participants in all road sections;
表征位置对之间的通行路径集合中其他交通参与者交通量,与所述位置对之间其他交通参与者的出行需求相等的第七子模型。A seventh sub-model representing the traffic volume of other traffic participants in the passing path set between the location pairs, which is equal to the travel demand of other traffic participants between the location pairs.
本发明实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现上述任意一种机器人通行路径规划方法的步骤。An embodiment of the present invention provides an electronic device, which includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the processor During execution, the steps of any one of the above-mentioned robot path planning methods are realized.
本发明实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现上述任意一种机器人通行路径规划方法的步骤。An embodiment of the present invention provides a readable storage medium, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of any one of the above robot path planning methods are implemented.
本发明实施例提供的机器人通行路径规划方案,确定交通网络中各路段对应的通道建设参数;将各路段对应的通道建设参数输入预设的机器人通行网络规划模型中;确定出行位置对集合中的每个位置对之间机器人的出行需求、其他交通参与者的出行需求以及各路段对应的通行成本参数;将机器人的出行需求、机器人通行成本参数,输入预先构建的机器人通行均衡模型;将其他交通参与者的出行需求、其他交通参与者通行成本参数,输入预先构建的其他交通参与者通行均衡模型;对机器人通行网络规划模型、机器人通行均衡模型以及其他交通参与者通行均衡模型进行联合求解,得到交通网络中机器人通行路径规划结果。本申请实施例提供的机器人通行路径规划方法,预先构建用于约束机器人专用通道构建成本最低的机器人通行网络规划模型,以及预先构建用于约束机器人总通行成本最低的机器人通行均衡模型和其他交通参与者通行均衡模型,通过对预先构建的这三个网络规划模型进行联合求解,使得所得机器人通行路径规划结果,既满足整个交通网络的总通行需求确保交通网络连通性,又可节省机器人专用道路建设成本。The robot traffic path planning scheme provided by the embodiment of the present invention determines the channel construction parameters corresponding to each road section in the traffic network; inputs the channel construction parameters corresponding to each road section into the preset robot traffic network planning model; determines the travel position pair set The travel demand of the robot between each location pair, the travel demand of other traffic participants, and the corresponding traffic cost parameters of each road section; the travel demand of the robot and the traffic cost parameters of the robot are input into the pre-built robot traffic equilibrium model; the other traffic The travel demand of the participants and the traffic cost parameters of other traffic participants are input into the pre-built traffic equilibrium model of other traffic participants; the robot traffic network planning model, the robot traffic equilibrium model and the traffic equilibrium model of other traffic participants are jointly solved to obtain Path planning results for robots in traffic networks. The robot passage path planning method provided in the embodiment of the present application pre-constructs the robot passage network planning model for constraining the lowest construction cost of the robot-specific passage, and pre-constructs the robot passage equilibrium model and other traffic participation for constraining the robot's total passage cost to be the lowest. Through the joint solution of these three pre-built network planning models, the result of robot traffic path planning can not only meet the total traffic demand of the entire traffic network, ensure the connectivity of the traffic network, but also save the construction of dedicated roads for robots. cost.
附图说明Description of drawings
图1是表示本申请实施例的一种机器人通行路径规划方法的步骤流程图;Fig. 1 is a flow chart showing the steps of a method for planning a robot travel path according to an embodiment of the present application;
图2是表示现有方式规划出的交通网络示意图;Fig. 2 shows the schematic diagram of the traffic network planned in the existing way;
图3是表示本申请实施例中的机器人通行路径规划方法规划出的交通网络示意图;Fig. 3 is a schematic diagram showing the transportation network planned by the robot passage path planning method in the embodiment of the present application;
图4是表示本申请实施例的一种机器人通行路径规划装置的结构框图;Fig. 4 is a structural block diagram showing a robot travel path planning device according to an embodiment of the present application;
图5是表示本申请实施例的一种电子设备的结构框图。FIG. 5 is a structural block diagram showing an electronic device according to an embodiment of the present application.
具体实施方式Detailed ways
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的机器人通行路径规划方案进行详细地说明。The following is a detailed description of the robot travel path planning solution provided by the embodiment of the present application through specific embodiments and application scenarios with reference to the accompanying drawings.
如附图1所示,本申请实施例的机器人通行路径规划方法包括以下步骤:As shown in accompanying drawing 1, the robot passage path planning method of the embodiment of the present application comprises the following steps:
步骤101:确定交通网络中各路段对应的通道建设参数。Step 101: Determine the channel construction parameters corresponding to each road section in the transportation network.
其中,通道建设参数包括:机器人专用通道的建设成本、总通行成本、通行类别。通行类别用于指示路段是否是否建设新的机器人专用通道,此外,通道建设参数还可以包括路段类型,路段类型用于指示路段是否属于出行位置对之间的机器人通行路径上。Among them, the channel construction parameters include: the construction cost of the robot-specific channel, the total traffic cost, and the traffic category. The traffic category is used to indicate whether a new robot-specific passage is built for the road segment. In addition, the channel construction parameters can also include the road segment type, which is used to indicate whether the road segment belongs to the robot traffic path between the travel position pair.
本申请实施例的机器人通行路径规划方法应用于电子设备,电子设备可以为服务器、电脑等具有分析功能的设备。电子设备中的存储介质存储有机器人通行路径规划识别程序,电子设备的处理器运行存储介质中的程序执行机器人通行路径规划流程。The robot path planning method in the embodiment of the present application is applied to an electronic device, and the electronic device may be a server, a computer, and other devices with analysis functions. The storage medium in the electronic device stores the robot passage path planning and recognition program, and the processor of the electronic device runs the program in the storage medium to execute the robot passage path planning process.
步骤102:将各路段对应的通道建设参数输入预设的机器人通行网络规划模型中。Step 102: Input the channel construction parameters corresponding to each road section into the preset robot traffic network planning model.
机器人通行网络规划模型包括:表征各路段机器人专用通道的建设成本与总通行成本之和最小的第一子模型;表征出行位置对之间存在连通的机器人通行路径的第二子模型;表征出行位置对之间为机器人通行路径的第三子模型。The robot traffic network planning model includes: the first sub-model representing the minimum sum of the construction cost and the total traffic cost of the robot-specific passages in each road section; the second sub-model representing the connected robot traffic path between the travel position pairs; representing the travel position Between the pair is the third submodel of the robot's travel path.
本申请实施例中预先构建机器人通行网络规划模型,后续通过对该模型进行求解,可以得到针对现有通行网络的改造方案。改造方案具体包括对每个路段的改造结果,改造结果包括三种:第一,在路段内建设机器人专用通道,第二,直接将路段规划为只允许机器人通行禁止其他交通参与者通行的路段,第三,不做改造。改造目标是在最小化系统总成本的前提下,规划出一个机器人通行网络,并保证网络连通性。其中,系统总成本=机器人专用通道建设成本+总通行成本。In the embodiment of the present application, a robot traffic network planning model is pre-built, and a transformation plan for the existing traffic network can be obtained by subsequently solving the model. The transformation plan specifically includes the transformation results of each road section. The transformation results include three types: first, build a special passage for robots in the road section, and second, directly plan the road section as a section that only allows robots to pass and prohibits other traffic participants from passing. Third, do not make transformations. The goal of the transformation is to plan a robot traffic network and ensure network connectivity under the premise of minimizing the total system cost. Among them, the total cost of the system = the construction cost of the robot-specific channel + the total traffic cost.
步骤103:确定出行位置对集合中的每个位置对之间机器人的出行需求、其他交通参与者的出行需求以及各路段对应的通行成本参数。Step 103: Determine the travel demand of the robot, the travel demand of other traffic participants, and the corresponding travel cost parameters of each road segment between each position pair in the travel position pair set.
其中,通行成本参数包括:机器人通行成本参数、其他交通参与者通行成本参数。Among them, the passage cost parameters include: the passage cost parameters of the robot, and the passage cost parameters of other traffic participants.
一种可选地确定出行位置对集合中的每个位置对之间机器人的出行需求、其他交通参与者的出行需求的方式可以如下:An optional way to determine the travel demand of the robot and the travel demand of other traffic participants between each position pair in the set of travel position pairs can be as follows:
首先,针对出行位置对集合中每个位置对,基于位置对之间的机器人最小通行时间、其他交通参与者最小通行时间以及预设参数,确定用户选择派出机器人的概率;First, for each location pair in the travel location pair set, determine the probability that the user chooses to dispatch the robot based on the minimum passing time of the robot between the location pairs, the minimum passing time of other traffic participants, and preset parameters;
其次,基于概率和位置对对应的总出行需求,确定位置对之间机器人的出行需求;Secondly, based on the probability and the total travel demand corresponding to the position pair, the travel demand of the robot between the position pairs is determined;
再次,将位置对对应的总出行需求与位置对之间机器人的出行需求之差,确定为位置对之间其他交通参与者的出行需求。Thirdly, the difference between the total travel demand corresponding to the location pair and the travel demand of the robot between the location pairs is determined as the travel demand of other traffic participants between the location pairs.
在实际实现过程中,可通过如下出行需求划分模型确定每个位置对的入口位置点、出口位置点之间机器人的出行需求,确定每个位置对的入口位置点、出口位置点之间其他交通参与者的出行需求。In the actual implementation process, the following travel demand division model can be used to determine the travel demand of the robot between the entry location point and the exit location point of each location pair, and determine other traffic between the entry location point and the exit location point of each location pair The travel needs of the participants.
步骤104:将机器人的出行需求、机器人通行成本参数,输入预先构建的机器人通行均衡模型。Step 104: Input the robot's travel demand and the robot's traffic cost parameters into the pre-built robot traffic equilibrium model.
机器人通行成本参数包括:单位时间内通过机器人的数量以及单位时间内机器人的平均通行时间。The robot passing cost parameters include: the number of passing robots per unit time and the average passing time of robots per unit time.
机器人通行网络规划模型是从节省成本的角度对机器人通行网络规划问题进行建模,可以理解的是,由于规划了机器人通行网络,现有的通行网络发生了改变,所以用户的出行需要考虑以下问题:出行方式选择问题,是选择机器人出行还是选择其他交通参与者出行,以及在确定出行方式之后的出行路径选择问题。为解决上述问题,本申请实施例中设定出行位置对w之间的总出行需求不变,即出行位置对w之间机器人的出行需求与其他交通参与者的出行需求不变。在此基础之上,预先构建出行需求划分模型。根据出行需求划分模型,可以确定每个出行位置对w之间的机器人的出行需求和其他交通参与者的出行需求。还需要预先构建机器人通行均衡模型、其他交通参与者通行均衡模型,通过将机器人的出行需求和其他交通参与者的出行需求分别代入机器人通行均衡模型、其他交通参与者通行均衡模型中,再与机器人通行网络规划模型联合求解,可最终确定出既满足整个交通网络的总通行需求确保交通网络连通性,又可节省机器人专用道路建设成本的机器人通行路径规划方案。The robot traffic network planning model is to model the robot traffic network planning problem from the perspective of cost saving. It is understandable that due to the planning of the robot traffic network, the existing traffic network has changed, so the user travel needs to consider the following issues : The problem of travel mode selection, whether to choose a robot to travel or choose other traffic participants to travel, and the problem of travel route selection after the travel mode is determined. In order to solve the above problems, in the embodiment of the present application, the total travel demand between the travel position pair w is set to be unchanged, that is, the travel demand of the robot and the travel demand of other traffic participants between the travel position pair w remain unchanged. On this basis, the travel demand division model is constructed in advance. According to the travel demand partition model, the travel demand of the robot and the travel demand of other traffic participants between each travel position pair w can be determined. It is also necessary to pre-build the traffic equilibrium model of the robot and other traffic participants. By substituting the travel demands of the robot and other traffic participants into the traffic equilibrium model of the robot and the traffic equilibrium model of other traffic participants, the robot The joint solution of the traffic network planning model can finally determine the robot traffic path planning scheme that not only meets the total traffic demand of the entire traffic network, ensures the connectivity of the traffic network, but also saves the cost of robot-specific road construction.
机器人通行均衡模型包括:表征全部路段内机器人平均通行时间之和最小的第四子模型;表征位置对之间的通行路径集合中机器人交通量,与所述位置对之间机器人的出行需求相等的第五子模型。The robot traffic balance model includes: the fourth sub-model that represents the minimum sum of the average passing time of robots in all road sections; represents the robot traffic volume in the path set between the position pairs, and is equal to the travel demand of the robot between the position pairs Fifth submodel.
步骤105:将其他交通参与者的出行需求、其他交通参与者通行成本参数,输入预先构建的其他交通参与者通行均衡模型。Step 105: Input the travel demands of other traffic participants and the traffic cost parameters of other traffic participants into the pre-built traffic equilibrium model of other traffic participants.
其中,其他交通参与者通行成本参数包括:单位时间内通过其他交通参与者的数量以及单位时间内其他交通参与者的平均通行时间。Wherein, the parameters of the passing cost of other traffic participants include: the number of passing other traffic participants per unit time and the average passing time of other traffic participants per unit time.
其他交通参与者通行均衡模型包括但不限于:表征全部路段内其他交通参与者平均通行时间之和最小的第六子模型;表征位置对之间的通行路径集合中其他交通参与者交通量,与位置对之间其他交通参与者的出行需求相等的第七子模型。The balance model of other traffic participants includes but not limited to: the sixth sub-model that represents the minimum sum of the average transit time of other traffic participants in all road sections; represents the traffic volume of other traffic participants in the traffic path set between pairs of locations, and The seventh sub-model with equal travel demand of other traffic participants between pairs of locations.
步骤106:对机器人通行网络规划模型、机器人通行均衡模型以及其他交通参与者通行均衡模型进行联合求解,得到交通网络中机器人通行路径规划结果。Step 106: jointly solve the robot traffic network planning model, the robot traffic equilibrium model, and other traffic participant traffic equilibrium models, and obtain the robot traffic path planning results in the traffic network.
本方案的目的在于在最小化系统总成本的前提下规划出满足连通性约束条件的机器人通行网络。The purpose of this scheme is to plan a robot traffic network that satisfies the connectivity constraints on the premise of minimizing the total system cost.
下面结合图2-图3,以及下述表1对本申请实施例中所示的机器人通行路径规划方法进行说明。The method for planning the robot's travel path shown in the embodiment of the present application will be described below with reference to FIGS. 2-3 and Table 1 below.
图2为现有方式规划出的交通网络示意图。假设出行位置对之间的总通行需求为已知量,具体数值如表1所示,且通行网络发生变化也不会改变其数值,在此基础上,本申请实施例中结合表1采用本申请实施例提供的机器人通行路径规划方法对机器人通行路径进行优化,具体优化流程如下所示:Fig. 2 is a schematic diagram of a traffic network planned by an existing method. Assuming that the total traffic demand between the travel location pairs is a known quantity, the specific values are shown in Table 1, and the traffic network changes will not change its value. On this basis, the embodiment of the application uses this method in combination with Table 1. The robot passage path planning method provided in the embodiment of the application optimizes the robot passage path, and the specific optimization process is as follows:
表1Table 1
S1:构建机器人通行网络规划模型。S1: Construct a robot traffic network planning model.
本步骤的目的在于构建机器人通行网络规划模型。后续通过对该模型进行求解,可以得到针对现有通行网络的改造方案。改造方案具体包括对每个路段的改造结果,改造结果包括三种:第一,在路段内建设机器人专用通道,第二,直接将路段规划为只允许机器人通行禁止其他交通参与者通行的路段,第三,不做改造。The purpose of this step is to build a robot traffic network planning model. Afterwards, by solving the model, a transformation plan for the existing traffic network can be obtained. The transformation plan specifically includes the transformation results of each road section. The transformation results include three types: first, build a special passage for robots in the road section, and second, directly plan the road section as a section that only allows robots to pass and prohibits other traffic participants from passing. Third, do not make transformations.
改造目标是在最小化系统总成本的前提下,规划出一个机器人通行网络,并保证网络连通性。其中,系统总成本=机器人专用通道建设成本+总通行成本。The goal of the transformation is to plan a robot traffic network and ensure network connectivity under the premise of minimizing the total system cost. Among them, the total cost of the system = the construction cost of the robot-specific channel + the total traffic cost.
机器人通行网络规划模型如下:The robot traffic network planning model is as follows:
机器人通行网络规划模型中各个参数的含义如下:The meaning of each parameter in the robot traffic network planning model is as follows:
A表示所有路段的集合,a表示任意路段;A represents the collection of all road segments, and a represents any road segment;
N表示所有位置点的集合;N represents the set of all location points;
I表示所有出行位置对的集合,出行位置对包括入口位置点和出口位置点,I∈N;I represents the set of all travel position pairs, the travel position pair includes the entry point and the exit point, I∈N;
xa表示路段a是否建设新的机器人专用通道;ca表示路段a建设新的机器人专用通道的成本;表示机器人专用通道的建设成本。x a indicates whether a new robot-only channel is built in section a; c a indicates the cost of building a new robot-only channel in section a; Indicates the construction cost of the dedicated channel for robots.
σ表示通行时间折算系数;表示单位时间内路段a上的通过机器人的数量;表示单位时间内路段a上有台机器人通过时机器人平均通行时间;表示单位时间内路段a上的通过的其他交通参与者的数量;表示单位时间内路段a上有个其他交通参与者通过时其他交通参与者平均通行时间;表示总通行成本。公式(1)即第一子模型。σ represents the travel time conversion coefficient; Indicates the number of passing robots on road section a per unit time; Indicates that there is a road segment a in unit time The average passing time of the robot when a robot passes; Indicates the number of other traffic participants passing on road section a per unit time; Indicates that there is a road segment a in unit time The average passing time of other traffic participants when other traffic participants pass; Indicates the total travel cost. Formula (1) is the first sub-model.
ya表示路段a是否禁止其他交通参与者通行;公式(2)表示,如果机器人能够通行一个路段,要么该路段建设了机器人专用通道,要么该路段采取了禁止其他交通参与者通行的方案,两种规划方案只能选择其一。y a indicates whether road section a prohibits other traffic participants from passing; formula (2) indicates that if the robot can pass through a road section, either the road section has a dedicated robot passageway, or the road section adopts a scheme that prohibits other traffic participants from passing. Only one of the planning options can be selected.
表示路段a是否属于出行位置点r到e之间的机器人通行路径上;i为路段的入口位置点,j路段的出口位置点;a=(i,j)∈A。 Indicates whether road segment a belongs to the path of the robot between travel position point r and e; i is the entry point of road segment, and the exit point of road segment j; a=(i,j)∈A.
公式(3)和公式(4)表示,从出行位置对中任选两个点r到e,在r到e之间存在连通的机器人通行路径。公式(3)和公式(4)即为第二子模型。Equation (3) and Equation (4) indicate that if two points r to e are selected from the travel position pair, there is a connected robot path between r and e. Formula (3) and formula (4) are the second sub-model.
公式(4)表示,从出行位置对中任选两个点r到e,连接r到e的机器人专用路径中任意一个路段均为机器人专用路段。公式(4)即为第三子模型。Formula (4) indicates that any two points r to e are selected from the travel position pair, and any road section in the robot-specific path connecting r to e is a robot-specific road section. Formula (4) is the third sub-model.
公式(5)表示,xa,ya,均为0-1变量。Formula (5) shows that x a , y a , Both are 0-1 variables.
S2:构建出行需求划分模型。S2: Build a travel demand partition model.
上一步骤是从节省成本的角度对机器人通行网络规划问题进行建模,可以理解的是,由于规划了机器人通行网络,现有的通行网络发生了改变,所以用户的出行需要考虑以下问题:出行方式选择问题,是选择机器人出行还是选择其他交通参与者出行,以及在确定出行方式之后的出行路径选择问题。本步骤的目的则是对上述问题进行建模。The previous step is to model the robot traffic network planning problem from the perspective of cost saving. It is understandable that due to the planning of the robot traffic network, the existing traffic network has changed, so the following issues need to be considered for the travel of users: travel The mode selection problem is whether to choose the robot to travel or choose other traffic participants to travel, and the travel route selection problem after the travel mode is determined. The purpose of this step is to model the problem described above.
在规划机器人通行网络前后,本方案认为出行位置对w之间的总出行需求不变,即出行位置对w之间机器人的出行需求与其他交通参与者的出行需求不变。在此基础之上,本步骤构建出行需求划分模型。根据出行需求划分模型,可以确定每个出行位置对w之间的机器人的出行需求和其他交通参与者的出行需求。Before and after planning the robot traffic network, this scheme considers that the total travel demand between the travel position pair w remains unchanged, that is, the travel demand of the robot and the travel demand of other traffic participants between the travel position pair w remain unchanged. On this basis, this step builds a travel demand division model. According to the travel demand partition model, the travel demand of the robot and the travel demand of other traffic participants between each travel position pair w can be determined.
出行需求划分模型如下:The travel demand division model is as follows:
各个参数的含义如下:The meaning of each parameter is as follows:
W表示出行位置对集合;W represents a set of travel position pairs;
w表示出行位置对;w represents the travel location pair;
表示出行位置对w之间机器人的出行需求; Indicates the travel demand of the robot between the travel position and w;
表示出行位置对w之间其他交通参与者的出行需求; Indicates the travel demand of other traffic participants between the travel location and w;
dw表示出行位置对w之间的总出行需求;d w represents the total travel demand between the travel location pair w;
表示出行位置对w之间用户选择派出机器人去的概率; Indicates the probability that the user chooses to send the robot between the travel location pair w;
θ系统预设参数;θSystem preset parameters;
表示出行位置对w之间的机器人最小通行时间; Indicates the minimum travel time of the robot between the travel position pair w;
表示出行位置对w之间的其他交通参与者最小通行时间。 Indicates the minimum travel time of other traffic participants between the travel location pair w.
在实际实现过程中,可通过如下出行需求划分模型确定每个位置对的入口位置点、出口位置点之间机器人的出行需求,确定每个位置对的入口位置点、出口位置点之间其他交通参与者的出行需求。In the actual implementation process, the following travel demand division model can be used to determine the travel demand of the robot between the entry location point and the exit location point of each location pair, and determine other traffic between the entry location point and the exit location point of each location pair The travel needs of the participants.
在得到出行位置对w之间的机器人的出行需求之后,构建机器人通行均衡模型如下:The travel demand of the robot between the obtained travel position pair w After that, the robot traffic balance model is constructed as follows:
其中,公式(9)即第四子模型,公式(10)即第五子模型。Wherein, formula (9) is the fourth sub-model, and formula (10) is the fifth sub-model.
表示单位时间内路段a上的通过机器人的数量;表示单位时间内路段a上有台机器人通过时机器人的平均通行时间; Indicates the number of passing robots on road section a per unit time; Indicates that there is a road segment a in unit time The average passing time of the robot when the robot passes;
表示出行位置对w之间机器人通行路径p上的机器人交通量;表示出行位置对w之间机器人通行路径集合;p表示一个通行路径;表示出行位置对w之间机器人的出行需求; Indicates the traffic volume of the robot on the path p between the travel position pair w; Indicates the set of travel paths of the robot between the travel position pair w; p represents a passage path; Indicates the travel demand of the robot between the travel position and w;
表示路段a是否属于出行位置对w之间的机器人通行路径p上;W表示出行位置对集合; Indicates whether the road section a belongs to the path p of the robot between the travel position pair w; W represents the set of travel position pairs;
表示机器人通行时长增长系数;表示各个机器人通行路段上机器人平均通行时间;α,β表示预设系统第二系数、第三系数;Qb表示机器人单位时间内通过的最大数量;M表示一个无穷大的数。 Indicates the growth coefficient of the robot's transit time; Indicates the average passing time of robots on each robot passage section; α, β represent the second and third coefficients of the preset system; Qb represents the maximum number of robots passing per unit time; M represents an infinite number.
在得到出行位置对w之间其他交通参与者的出行需求之后,构建其他交通参与者通行均衡模型如下:The travel demand of other traffic participants between the travel location pair w is obtained Afterwards, the traffic equilibrium model of other traffic participants is constructed as follows:
其中,公式(14)即第六子模型,公式(15)即第七子模型。Wherein, formula (14) is the sixth sub-model, and formula (15) is the seventh sub-model.
其他交通参与者通行均衡模型中各个参数的含义如下:The meaning of each parameter in the traffic equilibrium model of other traffic participants is as follows:
表示单位时间内路段a上的通过的其他交通参与者的数量;表示单位时间内路段a上有个其他交通参与者通过时其他交通参与者的平均通行时间; Indicates the number of other traffic participants passing on road section a per unit time; Indicates that there is a road segment a in unit time The average passing time of other traffic participants when other traffic participants pass;
表示出行位置对w之间其他交通参与者通行路径p上的其他交通参与者的交通量;表示出行位置对w之间其他交通参与者的通行路径集合;p表示一个通行路径;表示其他交通参与者通行出行位置对w之间的总需求数量; Indicates the traffic volume of other traffic participants on the path p of other traffic participants between the travel position pair w; Indicates the set of passing paths of other traffic participants between the travel position pair w; p represents a passing path; Indicates the total demand quantity between the travel positions of other traffic participants and w;
表示路段a是否属于出行位置对w之间的其他交通参与者的通行路径p上; Indicates whether the road section a belongs to the passing path p of other traffic participants between the travel position pair w;
表示各个其他交通参与者的通行路段上其他交通参与者平均通行时间;α,β表示预设系统第二系数、第三系数;Qv表示其他交通参与者在单位时间内通过的最大数量;M表示一个无穷大的数。 Indicates the average passing time of other traffic participants on the passing section of each other traffic participant; α, β represent the second coefficient and the third coefficient of the preset system; Qv represents the maximum number of other traffic participants passing in a unit time; M represents an infinite number.
S3:对S1和S2的模型进行联合求解,得到对现有交通网络的规划结果,即哪些路段上新建了机器人专用通道,以及哪些路段禁止其他交通参与者通行。S3: Jointly solve the models of S1 and S2 to obtain the planning results of the existing traffic network, that is, which road sections are newly built with robot-specific passages, and which road sections are prohibited from passing by other traffic participants.
本具体实例的目的在于在最小化系统总成本的前提下规划出满足连通性约束条件的机器人通行网络,整体模型如S1所示,其中系统总成本包括机器人专用通道建设成本和总通行成本,如图2中所示的现有方式规划出的交通网络示意图所示,现有通行网络中规划出机器人通行网络后,用户会面临出行方式和出行路径的选择问题,总通行成本也会受影响,具体模型如S2所示。在本步骤中,对S1和S2的模型进行联合求解,即可得到保证机器人专用通道建设成本和总通行成本最小的且满足约束性条件的机器人通行网络,优化后得到的交通网络示意图如图3所示。其中,图3中所示的黑色填充路段为新建设机器人通行路段,白色与黑色相间填充路段为禁止其他交通参与者通行路段。The purpose of this specific example is to plan a robot traffic network that satisfies the connectivity constraints on the premise of minimizing the total system cost. The overall model is shown in S1, where the total system cost includes the construction cost of the robot-specific channel and the total traffic cost, as shown in As shown in the schematic diagram of the traffic network planned by the existing way shown in Figure 2, after the robot traffic network is planned in the existing traffic network, users will face the problem of choosing travel modes and travel routes, and the total traffic cost will also be affected. The specific model is shown in S2. In this step, the models of S1 and S2 are jointly solved to obtain a robot traffic network that guarantees the minimum robot-specific channel construction cost and total traffic cost and satisfies the constraint conditions. The traffic network schematic diagram obtained after optimization is shown in Figure 3 shown. Among them, the black filled road section shown in Figure 3 is the new construction robot passage section, and the white and black filled road section is the road section where other traffic participants are prohibited from passing.
本申请实施例提供的机器人通行路径规划方法,预先构建用于约束机器人专用通道构建成本最低的机器人通行网络规划模型,以及预先构建用于约束机器人总通行成本最低的机器人通行均衡模型和其他交通参与者通行均衡模型,通过对预先构建的这三个网络规划模型进行联合求解,使得所得机器人通行路径规划结果,既满足整个交通网络的总通行需求确保交通网络连通性,又可节省机器人专用道路建设成本。The robot passage path planning method provided in the embodiment of the present application pre-constructs the robot passage network planning model for constraining the lowest construction cost of the robot-specific passage, and pre-constructs the robot passage equilibrium model and other traffic participation for constraining the robot's total passage cost to be the lowest. Through the joint solution of these three pre-built network planning models, the result of robot traffic path planning can not only meet the total traffic demand of the entire traffic network, ensure the connectivity of the traffic network, but also save the construction of dedicated roads for robots. cost.
图4为实现本申请实施例的一种机器人通行路径规划装置的结构框图。Fig. 4 is a structural block diagram of a robot travel path planning device implementing an embodiment of the present application.
本申请实施例提供的机器人通行路径规划装置,所述装置包括如下功能模块:The robot passage path planning device provided in the embodiment of the present application, the device includes the following functional modules:
第一确定模块401,用于确定交通网络中各路段对应的通道建设参数,其中,所述通道建设参数包括:机器人专用通道的建设成本、总通行成本、通行类别;所述通行类别用于指示路段是否建设新的机器人专用通道;The first determination module 401 is used to determine the channel construction parameters corresponding to each road section in the transportation network, wherein the channel construction parameters include: the construction cost of the robot-specific channel, the total traffic cost, and the traffic category; the traffic category is used to indicate Whether to build a new robot-only passage on the road section;
第二确定模块402,用于将所述各路段对应的通道建设参数输入预设的机器人通行网络规划模型中;The second determination module 402 is used to input the channel construction parameters corresponding to the road sections into the preset robot traffic network planning model;
第三确定模块403,用于确定出行位置对集合中的每个位置对之间机器人的出行需求、其他交通参与者的出行需求以及各路段对应的通行成本参数,其中,所述通行成本参数包括:机器人通行成本参数、其他交通参与者通行成本参数;The third determination module 403 is used to determine the travel demand of the robot between each position pair in the travel position pair set, the travel demand of other traffic participants, and the traffic cost parameters corresponding to each road section, wherein the traffic cost parameters include : robot traffic cost parameters, other traffic participants traffic cost parameters;
第一输入模块404,用于将所述机器人的出行需求、所述机器人通行成本参数,输入预先构建的机器人通行均衡模型;The first input module 404 is configured to input the travel demand of the robot and the travel cost parameters of the robot into a pre-built robot travel equilibrium model;
第二输入模块405,用于将所述其他交通参与者的出行需求、所述其他交通参与者通行成本参数,输入预先构建的其他交通参与者通行均衡模型;The second input module 405 is used to input the travel demand of the other traffic participants and the travel cost parameters of the other traffic participants into the pre-built traffic balance model of other traffic participants;
求解模块406,用于对所述机器人通行网络规划模型、所述机器人通行均衡模型以及所述其他交通参与者通行均衡模型进行联合求解,得到交通网络中机器人通行路径规划结果。The solution module 406 is configured to jointly solve the robot traffic network planning model, the robot traffic equilibrium model, and the other traffic participant traffic equilibrium models to obtain robot traffic path planning results in the traffic network.
可选地,所述机器人通行成本参数包括:单位时间内通过机器人的数量以及单位时间内机器人的平均通行时间;Optionally, the robot passing cost parameters include: the number of passing robots per unit time and the average passing time of robots per unit time;
所述其他交通参与者通行成本参数包括:单位时间内通过其他交通参与者的数量以及单位时间内其他交通参与者的平均通行时间。The passing cost parameters of other traffic participants include: the number of passing other traffic participants per unit time and the average passing time of other traffic participants per unit time.
可选地,所述机器人通行网络规划模型包括:Optionally, the robot traffic network planning model includes:
表征各路段机器人专用通道的建设成本与总通行成本之和最小的第一子模型;The first sub-model that represents the minimum sum of the construction cost and the total traffic cost of the robot-specific passage in each road section;
表征出行位置对之间存在连通的机器人通行路径的第二子模型;a second sub-model representing a connected robot travel path between travel position pairs;
表征出行位置对之间为机器人通行路径的第三子模型。The third sub-model representing the travel path between travel position pairs.
可选地,所述第三确定模块包括:Optionally, the third determination module includes:
第一子模块,用于针对出行位置对集合中每个位置对,基于所述位置对之间的机器人最小通行时间、其他交通参与者最小通行时间以及预设参数,确定用户选择派出机器人的概率;The first sub-module is used to determine the probability that the user chooses to dispatch a robot based on the minimum passing time of the robot between the pair of locations, the minimum passing time of other traffic participants, and preset parameters for each position pair in the travel position pair set ;
第二子模块,用于基于所述概率和所述位置对对应的总出行需求,确定所述位置对之间机器人的出行需求;The second submodule is used to determine the travel demand of the robot between the position pair based on the probability and the total travel demand corresponding to the position pair;
第三子模块,用于将所述位置对对应的总出行需求与所述位置对之间机器人的出行需求之差,确定为所述位置对之间其他交通参与者的出行需求。The third sub-module is configured to determine the difference between the total travel demand corresponding to the position pair and the travel demand of the robot between the position pair as the travel demand of other traffic participants between the position pair.
可选地,所述机器人通行均衡模型包括:Optionally, the robot traffic balance model includes:
表征全部路段内机器人平均通行时间之和最小的第四子模型;Characterize the fourth sub-model with the minimum sum of the robot average transit time in all road sections;
表征位置对之间的通行路径集合中机器人交通量,与所述位置对之间机器人的出行需求相等的第五子模型。A fifth sub-model that characterizes the traffic volume of the robot in the passing path set between the location pairs, and is equal to the travel demand of the robot between the location pairs.
可选地,所述其他交通参与者通行均衡模型包括:Optionally, the traffic equilibrium models of other traffic participants include:
表征全部路段内其他交通参与者平均通行时间之和最小的第六子模型;The sixth sub-model representing the minimum sum of the average passing time of other traffic participants in all road sections;
表征位置对之间的通行路径集合中其他交通参与者交通量,与所述位置对之间其他交通参与者的出行需求相等的第七子模型。A seventh sub-model representing the traffic volume of other traffic participants in the passing path set between the location pairs, which is equal to the travel demand of other traffic participants between the location pairs.
本申请实施例提供的机器人通行路径规划装置,预先构建用于约束机器人专用通道构建成本最低的机器人通行网络规划模型,以及预先构建用于约束机器人总通行成本最低的机器人通行均衡模型和其他交通参与者通行均衡模型,通过对预先构建的这三个网络规划模型进行联合求解,使得所得机器人通行路径规划结果,既满足整个交通网络的总通行需求确保交通网络连通性,又可节省机器人专用道路建设成本。The robot passage path planning device provided by the embodiment of the present application pre-constructs the robot passage network planning model for constraining the lowest construction cost of the robot-specific passage, and pre-constructs the robot passage equilibrium model and other traffic participation for constraining the robot's total passage cost to be the lowest. Through the joint solution of these three pre-built network planning models, the result of robot traffic path planning can not only meet the total traffic demand of the entire traffic network, ensure the connectivity of the traffic network, but also save the construction of dedicated roads for robots. cost.
本申请实施例中图4所示的机器人通行路径规划装置可以是装置,也可以是服务器中的部件、集成电路、或芯片。本申请实施例中的图4所示的机器人通行路径规划装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为iOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。The robot path planning device shown in FIG. 4 in the embodiment of the present application may be a device, or a component, an integrated circuit, or a chip in a server. The robot path planning device shown in FIG. 4 in the embodiment of the present application may be a device with an operating system. The operating system may be an Android operating system, an iOS operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
本申请实施例提供的图4所示的机器人通行路径规划装置能够实现图1的方法实施例实现的各个过程,为避免重复,这里不再赘述。The robot passage path planning device shown in FIG. 4 provided by the embodiment of the present application can realize various processes realized by the method embodiment in FIG. 1 , and details are not repeated here to avoid repetition.
可选地,如图5所示,本申请实施例还提供一种电子设备500,包括处理器501,存储器502,存储在存储器502上并可在所述处理器501上运行的程序或指令,该程序或指令被处理器501执行时实现上述机器人通行路径规划方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。Optionally, as shown in FIG. 5 , the embodiment of the present application further provides an electronic device 500, including a processor 501, a memory 502, and programs or instructions stored in the memory 502 and operable on the processor 501, When the program or instruction is executed by the processor 501, each process of the above-mentioned embodiment of the robot path planning method can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
需要注意的是,本申请实施例中的电子设备包括上述所述的服务器。It should be noted that the electronic device in the embodiment of the present application includes the above-mentioned server.
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述机器人通行路径规划方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。The embodiment of the present application also provides a readable storage medium. The readable storage medium stores programs or instructions. When the program or instructions are executed by the processor, the various processes of the above-mentioned embodiments of the robot path planning method are implemented, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(RandomAccessMemory,RAM)、磁碟或者光盘等。Wherein, the processor is the processor in the electronic device described in the above embodiments. The readable storage medium includes a computer readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述机器人通行路径规划方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。The embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to realize the implementation of the above robot path planning method Each process of the example, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。It should be understood that the chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, these improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211520286.7A CN115824220A (en) | 2022-11-30 | 2022-11-30 | A robot traffic path planning method and device, electronic equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211520286.7A CN115824220A (en) | 2022-11-30 | 2022-11-30 | A robot traffic path planning method and device, electronic equipment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115824220A true CN115824220A (en) | 2023-03-21 |
Family
ID=85533078
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211520286.7A Pending CN115824220A (en) | 2022-11-30 | 2022-11-30 | A robot traffic path planning method and device, electronic equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115824220A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107123260A (en) * | 2017-06-26 | 2017-09-01 | 上海交通大学 | Method of traffic assignment based on traveler budget limit |
| US20170262790A1 (en) * | 2016-03-11 | 2017-09-14 | Route4Me, Inc. | Complex dynamic route sequencing for multi-vehicle fleets using traffic and real-world constraints |
| CN108694278A (en) * | 2018-04-27 | 2018-10-23 | 东南大学 | A kind of city discrete network design problem method based on road load equilibrium |
| KR102049962B1 (en) * | 2019-04-17 | 2019-11-28 | 주식회사 트위니 | Sampling based optimal tree planning method and recording medium storing program for executing the same, and computer program stored in recording medium for executing the same |
| CN112216130A (en) * | 2020-09-30 | 2021-01-12 | 长沙理工大学 | An emergency vehicle induction method in a vehicle-road coordination environment |
| CN113393690A (en) * | 2021-08-17 | 2021-09-14 | 长沙理工大学 | Hybrid traffic balance distribution method considering automatic driving special lane |
-
2022
- 2022-11-30 CN CN202211520286.7A patent/CN115824220A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170262790A1 (en) * | 2016-03-11 | 2017-09-14 | Route4Me, Inc. | Complex dynamic route sequencing for multi-vehicle fleets using traffic and real-world constraints |
| CN107123260A (en) * | 2017-06-26 | 2017-09-01 | 上海交通大学 | Method of traffic assignment based on traveler budget limit |
| CN108694278A (en) * | 2018-04-27 | 2018-10-23 | 东南大学 | A kind of city discrete network design problem method based on road load equilibrium |
| KR102049962B1 (en) * | 2019-04-17 | 2019-11-28 | 주식회사 트위니 | Sampling based optimal tree planning method and recording medium storing program for executing the same, and computer program stored in recording medium for executing the same |
| CN112216130A (en) * | 2020-09-30 | 2021-01-12 | 长沙理工大学 | An emergency vehicle induction method in a vehicle-road coordination environment |
| CN113393690A (en) * | 2021-08-17 | 2021-09-14 | 长沙理工大学 | Hybrid traffic balance distribution method considering automatic driving special lane |
Non-Patent Citations (1)
| Title |
|---|
| 刘诗序;池其源;阎昊;郭丽丹;唐颖诺;严海;: "基于分层Logit的多方式随机用户均衡分配模型", 长安大学学报(自然科学版), no. 05, 15 September 2018 (2018-09-15), pages 114 - 122 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109034481B (en) | Constraint programming-based vehicle path problem modeling and optimizing method with time window | |
| CN111044060B (en) | Multi-vehicle path planning method and multi-vehicle path planning system | |
| CN104040605A (en) | Traffic signal control method and traffic signal controller | |
| CN104052811B (en) | The method, apparatus and system of a kind of traffic scheduling | |
| Lazar et al. | Routing for traffic networks with mixed autonomy | |
| CN110648022B (en) | Community public transportation network and departure frequency synchronous optimization method of connection subways considering full coverage of stations | |
| CN108664241A (en) | A method of SysML models are subjected to simulating, verifying | |
| Bianchin et al. | Gramian-based optimization for the analysis and control of traffic networks | |
| CN111445186B (en) | A Vehicle Routing Optimization Method with Time Window Based on Petri Net Theory | |
| CN115249315B (en) | Deep learning image classification method and device for heterogeneous computing equipment | |
| CN115344972A (en) | Method for optimizing signal timing of special road position and intersection for man-machine hybrid driving automatic driving | |
| JP4481235B2 (en) | High-precision estimation method of generated / concentrated traffic volume and OD traffic volume by zone | |
| CN116935643A (en) | Traffic management method, device, equipment and storage medium | |
| Elgamal et al. | Framework for evaluating reliability of stochastic flow networks under different constraints | |
| CN115824220A (en) | A robot traffic path planning method and device, electronic equipment | |
| Wei et al. | Vector network equilibrium problems with uncertain demands and capacity constraints of arcs | |
| CN115713207A (en) | Hybrid bus service combination optimization method | |
| CN107330169A (en) | A kind of regional cold supply system pipe network route planning method and system | |
| Shirasawa et al. | A comparative study of heuristic algorithms for the multiple target access problem | |
| CN111210088B (en) | Traffic state index prediction method based on space-time factors | |
| CN105553719A (en) | Optical cable path planning method oriented to telecom resource business field | |
| Huang et al. | A matrix translation model for evacuation path optimization | |
| US12313411B2 (en) | Methods for place recommendation in the smart cities based on internet of things and the internet of things systems thereof | |
| CN117081944A (en) | A global reduction method based on multiple spanning trees | |
| CN116311932A (en) | Dynamic traffic distribution method considering hybrid equalization in MaaS background |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |