CN115825203A - Dielectrophoresis force testing chip, testing device and testing method - Google Patents
Dielectrophoresis force testing chip, testing device and testing method Download PDFInfo
- Publication number
- CN115825203A CN115825203A CN202211495357.2A CN202211495357A CN115825203A CN 115825203 A CN115825203 A CN 115825203A CN 202211495357 A CN202211495357 A CN 202211495357A CN 115825203 A CN115825203 A CN 115825203A
- Authority
- CN
- China
- Prior art keywords
- electrode pair
- dielectrophoretic force
- dielectrophoretic
- interdigitated
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及光镊测试介电泳力技术领域,特别是涉及一种介电泳力测试芯片、测试装置及测试方法。The invention relates to the technical field of optical tweezers testing dielectrophoretic force, in particular to a dielectrophoretic force testing chip, a testing device and a testing method.
背景技术Background technique
单细胞配对微流控芯片平台的研究,对精准细胞融合、单细胞间相互作用以及单细胞测序等研究具有非常重要的意义。研究表明,大多数疾病的发生都包含有至少一种细胞间的通讯发生问题。目前,对细胞间相互作用的研究还集中在细胞群体水平,得到的是许多细胞表现出来的总体平均效应。然而,在单细胞水平上研究细胞之间的相互作用,可以观察到总体水平掩盖的一些不明显的细胞反应。在活体内很难得到孤立的一对单细胞,因此,建立快速简单地单细胞捕获配对的方法,能够为相关的生物医学领域提供一种有力的研究平台。其中,介电电泳(dielectrophoresis,DEP)是一种在非均匀电场中根据中性粒子的介电性质控制其受正介电电泳力作用向高电场或者受负介电电泳力作用向低电场运动,从而实现对介电粒子的操控。通过合理的设计和制作基于DEP原理的微流控芯片,我们能够实现有效的高通量单细胞配对。例如,南方科技大学程鑫课题组研发了一种“平面式”DEP单细胞配对芯片,将两对叉指微电极结构集成在同一平面内,结合微腔阵列,微挡板等结构,在依次给两对叉指电极加电时,两种细胞受到DEP力作用被依次捕获在相邻的单细胞尺寸的微腔阵列中,最终形成单细胞对的阵列,配对效率达74%。日本兵库大学的Yasukawa课题组报道了一种基于DEP方法的“垂直式”单细胞配对的微流控装置,此装置利用顶部的ITO电极和底部的图案化的微电极产生的正介电电泳力将两种细胞依次捕获在微腔阵列内,实现高通量的单细胞配对,配对效率达44%。在这些不同的芯片结构中,不同的电极对间的互感效应是影响配对率的关键因素。因此,在芯片结构的设计和优化过程中,寻找能够准确分析芯片结构中的互感效应的方法非常有助于提高芯片的配对性能。The research on the single-cell paired microfluidic chip platform is of great significance to the research of precise cell fusion, single-cell interaction and single-cell sequencing. Research has shown that the occurrence of most diseases involves at least one type of communication problem between cells. At present, the research on the interaction between cells is still focused on the cell population level, and what is obtained is the overall average effect displayed by many cells. However, studying cell-cell interactions at the single-cell level allows the observation of some indistinct cellular responses that are masked at the aggregate level. It is difficult to obtain an isolated pair of single cells in vivo. Therefore, establishing a fast and simple method for single cell capture pairing can provide a powerful research platform for related biomedical fields. Among them, dielectrophoresis (dielectrophoresis, DEP) is a method in which neutral particles are controlled by the dielectric properties of neutral particles to move to a high electric field by a positive DEP force or to a low electric field by a negative DEP force in a non-uniform electric field. , so as to realize the manipulation of dielectric particles. By rationally designing and fabricating a microfluidic chip based on the DEP principle, we can achieve effective high-throughput single-cell pairing. For example, Cheng Xin's research group at Southern University of Science and Technology has developed a "planar" DEP single-cell paired chip, which integrates two pairs of interdigitated microelectrode structures in the same plane, combined with microcavity arrays, micro baffles and other structures, in turn. When two pairs of interdigitated electrodes were energized, the two kinds of cells were sequentially trapped in adjacent single-cell-sized microcavity arrays under the action of DEP, and finally formed an array of single-cell pairs, with a pairing efficiency of 74%. The Yasukawa research group of the University of Hyogo, Japan reported a "vertical" single-cell paired microfluidic device based on the DEP method, which uses the positive dielectrophoresis generated by the top ITO electrode and the bottom patterned microelectrode The two kinds of cells are sequentially captured in the microcavity array to achieve high-throughput single-cell pairing, with a pairing efficiency of 44%. In these different chip structures, the mutual inductance effect between different electrode pairs is a key factor affecting the pairing rate. Therefore, in the process of chip structure design and optimization, finding a method that can accurately analyze the mutual inductance effect in the chip structure is very helpful to improve the pairing performance of the chip.
因此本领域技术人员致力于开发一种介电泳力测试芯片、测试装置及测试方法,用以实现不同电极对间互感效应对芯片配对效率的影响和分析。Therefore, those skilled in the art are devoting themselves to developing a dielectrophoretic test chip, a test device and a test method, so as to realize the influence and analysis of the mutual inductance effect between different electrode pairs on the chip pairing efficiency.
发明内容Contents of the invention
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种介电泳力测试芯片、测试装置及测试方法,用以实现不同电极对间互感效应对芯片配对效率的影响和分析。In view of the above-mentioned defects in the prior art, the technical problem to be solved by the present invention is to provide a dielectrophoretic force test chip, a test device and a test method to realize the influence and analysis of the mutual inductance effect between different electrode pairs on chip pairing efficiency.
为实现上述目的,本发明提供了一种介电泳力测试芯片,包括基底层,所述基底层上设置有电极层,所述电极层包括至少一个第一叉指电极对和至少一个第二叉指电极对,所述第一叉指电极对和第二叉指电极对的极板均竖向设置。两个电极对的设置,可向其中一个电极对通电,从而在两个电极对间形成非均匀电场,电场中的微球受电场中的介电泳力可发生移动,通过观察微球移动方向及距离,能够测算微球受到的介电泳力和不同互感电场导致微球受到的介电泳力大小的差异。而极板的竖向设置,一能方便定位,二是更能方便观察到微球的运动轨迹,便于后续的测算。In order to achieve the above object, the present invention provides a dielectrophoretic test chip, which includes a base layer, on which an electrode layer is arranged, and the electrode layer includes at least one first interdigitated electrode pair and at least one second fork For the pair of finger electrodes, the pole plates of the first interdigital electrode pair and the second interdigital electrode pair are vertically arranged. The setting of two electrode pairs can energize one of the electrode pairs, thereby forming a non-uniform electric field between the two electrode pairs, and the dielectrophoretic force in the electric field of the microspheres in the electric field can move. By observing the movement direction of the microspheres and The distance can measure the dielectrophoretic force on the microsphere and the difference in the dielectrophoretic force on the microsphere caused by different mutual inductance electric fields. The vertical setting of the polar plate can facilitate positioning on the one hand, and on the other hand, it is more convenient to observe the trajectory of the microspheres, which is convenient for subsequent calculations.
较佳的,所述第一叉指电极对和第二叉指电极对成对设置,一个第一叉指电极对和一个第二叉指电极对组成一个叉指电极组。两个电极对成组设置,一组电极对可组成一个电场。Preferably, the first interdigital electrode pair and the second interdigital electrode pair are arranged in pairs, and one first interdigital electrode pair and one second interdigital electrode pair form an interdigital electrode group. Two electrode pairs are arranged in groups, and a group of electrode pairs can form an electric field.
较佳的,所述电极层上方为负胶层,所述负胶层上设有若干微腔,单个所述微腔连通任一第一叉指电极对的两个成对极板,或者连通任一第二叉指电极对的两个成对极板。微腔的设置,便于形成多个独立电场。Preferably, above the electrode layer is a negative glue layer, and several microcavities are arranged on the negative glue layer, and a single microcavity is connected to the two paired plates of any first interdigitated electrode pair, or connected to Any second interdigitated electrode pair refers to two paired plates. The setting of the microcavity facilitates the formation of multiple independent electric fields.
较佳的,若干所述微腔呈横竖阵列排布,从而形成多个规律电场,便于测试的进行及观察。Preferably, several microcavities are arranged in a horizontal and vertical array, thereby forming a plurality of regular electric fields, which is convenient for testing and observation.
较佳的,所述微腔截面为圆形,直径设置在15-25微米,深度在8-15微米。Preferably, the cross-section of the microcavity is circular, with a diameter of 15-25 microns and a depth of 8-15 microns.
较佳的,所述第一叉指电极对包括第一极板和第二极板,各所述第一叉指电极对的第一极板相互连接;Preferably, the first interdigitated electrode pair includes a first electrode plate and a second electrode plate, and the first electrode plates of each first interdigitated electrode pair are connected to each other;
所述负胶层上设置有第一导电条,所述第一导电条与各所述第一叉指电极对的第二极板连接;A first conductive strip is provided on the negative adhesive layer, and the first conductive strip is connected to the second plate of each of the first interdigitated electrode pairs;
所述第二叉指电极对包括第三极板和第四极板;The second interdigitated electrode pair includes a third pole plate and a fourth pole plate;
所述负胶层上设置有第二导电条,所述第二导电条与各所述第二叉指电极对的第三极板连接;A second conductive strip is provided on the negative adhesive layer, and the second conductive strip is connected to the third plate of each of the second interdigitated electrode pairs;
所述负胶层上还设置有第三导电条,所述第三导电条与各所述第二叉指电极对的第四极板连接。A third conductive strip is also arranged on the negative adhesive layer, and the third conductive strip is connected to the fourth electrode plate of each second interdigitated electrode pair.
较佳的,所述负胶层上设置有定位块,任一所述叉指电极组前后均设置有一定位块。Preferably, a positioning block is provided on the negative adhesive layer, and a positioning block is provided at the front and back of any of the interdigital electrode groups.
本发明还提供一种介电泳力测试装置,包括如上所述介电泳力测试芯片。The present invention also provides a dielectrophoretic test device, which includes the above-mentioned dielectrophoretic test chip.
较佳的,还包括夹具,所述夹具包括载玻片底板,所述载玻片底板上设置有前夹壁和后夹壁,所述前夹壁和后夹壁围合成接触处有缝隙的腔体,所述介电泳力测试芯片封装后插在所述缝隙内。夹具底部采用载玻片底板,便于激光束(光阱)照进腔体,捕获微球,同时也便于观察。Preferably, it also includes a clamp, the clamp includes a glass slide base plate, and a front clamping wall and a rear clamping wall are arranged on the slide glass base plate, and the front clamping wall and the rear clamping wall are surrounded by a gap with a gap at the contact point. A cavity, the dielectrophoretic test chip is inserted into the gap after packaging. The bottom of the fixture adopts a glass slide base plate, which is convenient for the laser beam (optical trap) to shine into the cavity, capture the microspheres, and facilitate observation at the same time.
本发明还提供一种介电泳力测试方法,采用如上所述的介电泳力芯片或介电泳力测试装置,包括以下步骤:The present invention also provides a method for testing dielectrophoretic force, using the above-mentioned dielectrophoretic force chip or dielectrophoretic force testing device, comprising the following steps:
S1:将所述介电泳力芯片立于一腔体中,所述腔体底部为载玻片底板;S1: Standing the dielectrophoretic force chip in a cavity, the bottom of the cavity is a glass slide bottom plate;
S2:将微球溶液加入所述腔体中;S2: adding the microsphere solution into the cavity;
S3:用两束光阱捕获微球至第一叉指电极对和第二叉指电极对上方,每束光阱至少捕获一个微球;捕获微球的高度在同一平面;S3: Use two beams of light traps to trap microspheres above the first pair of interdigitated electrodes and the second pair of interdigitated electrodes, each beam of light traps captures at least one microsphere; the height of the captured microspheres is on the same plane;
S4:给第一叉指电极对施加正弦电信号,微球受介电泳力作用在光阱中发生横向移动;S4: Apply a sinusoidal electrical signal to the first interdigitated electrode pair, and the microspheres are subjected to dielectrophoretic force to move laterally in the optical trap;
S5:观察微球移动的方向,确定介电泳力方向,并通过测试和计算两个微球收到的横向光阱力,分析施加电的微球受到的介电泳力和互感电场导致微球受到的介电泳力大小的差异。S5: Observe the moving direction of the microspheres, determine the direction of the dielectrophoretic force, and analyze the dielectrophoretic force and the mutual inductance electric field on the microspheres that are subjected to the applied electricity by testing and calculating the transverse optical trap force received by the two microspheres. The difference in the size of the dielectrophoretic force.
本发明的有益效果是:本发明可通过测试不同电极对间微球所受的介电泳力,从而能实现不同电极对间的互感效应对芯片配对效率的影响分析,助力芯片配对性能的提高。The beneficial effects of the present invention are: the present invention can realize the influence analysis of the mutual inductance effect between different electrode pairs on the chip pairing efficiency by testing the dielectrophoretic force on the microspheres between different electrode pairs, and help improve the chip pairing performance.
附图说明Description of drawings
图1是本发明一具体实施方式介电泳力测试装置的结构示意图。Fig. 1 is a schematic structural diagram of a dielectrophoretic force testing device according to a specific embodiment of the present invention.
图2是本发明一具体实施方式介电泳力测试芯片的电极层结构示意图。Fig. 2 is a schematic diagram of the electrode layer structure of a dielectrophoretic test chip according to a specific embodiment of the present invention.
图3是本发明一具体实施方式介电泳力测试装置的正视结构示意图。Fig. 3 is a front structural schematic diagram of a dielectrophoretic force testing device according to a specific embodiment of the present invention.
图4是图3中A处的放大结构示意图。FIG. 4 is a schematic diagram of an enlarged structure at point A in FIG. 3 .
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明,需注意的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方式构造和操作,因此不能理解为对本发明的限制。术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。The present invention will be further described below in conjunction with the accompanying drawings and embodiments. It should be noted that in the description of the present invention, the terms "upper", "lower", "left", "right", "inner", "outer" etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation or in a specific way construction and operation, therefore, should not be construed as limiting the invention. The terms "first", "second", "third", etc. are used for descriptive purposes only and should not be construed as indicating or implying relative importance.
如图1和图2所示,一种介电泳力测试芯片,包括基底层1,基底层1上设置有电极层2,电极层2包括至少一个第一叉指电极对21和至少一个第二叉指电极对22,第一叉指电极对21和第二叉指电极对22的极板均竖向设置。本发明中,基底层1采用玻璃基底,基底层1上的叉指电极具体采用图案化的ITO电极。本实施例中包括3对第一叉指电极对21和3对第二叉指电极对22。采用本申请中的介电泳力测试芯片,通过给第一叉指电极对21通电,使电极所处的微球溶液中的微球受到介电泳力,从而产生运动,而极板均竖向设置,能够便于观察微球运动的方向及距离。As shown in Fig. 1 and Fig. 2, a kind of dielectrophoretic test chip comprises
第一叉指电极对21和第二叉指电极对22成对设置,一个第一叉指电极对21和一个第二叉指电极对22组成一个叉指电极组。因此本实施例中,共3个叉指电极组,从而可进行多组的观察。The first
电极层2上方为负胶层3,负胶层3上设有若干微腔30,如图3和图4所示,单个微腔30连通任一第一叉指电极对21的两个成对极板,或者连通行一第二叉指电极对22的两个成对极板。若干微腔30呈横竖阵列排布。一个微腔30内可看到一个叉指电极对,从而在给电极通电时,便于清楚观察微球的运动方向。为了便于观察,微腔30截面为圆形,直径优选设置在15-25微米,深度在8-15微米,本实施例中,直径设置为20微米,深度为10微米。The top of the
为了便于对介电泳力测试芯片的各叉指电极进行快速连接及通电,第一叉指电极对21包括第一极板211和第二极板212,各第一叉指电极对21的第一极板211相互连接,本实施例中,如图所示,各第一叉指电极对21的第一极板211通过连接顶部的导电铜条213连接。In order to facilitate fast connection and energization of each interdigital electrode of the dielectrophoretic test chip, the first
为了同类型的电极板能够同时快速连接导通,负胶层3上设置有第一导电条31、有第二导电条32、第三导电条33。第一导电条31与各第一叉指电极对21的第二极板212连接。第二叉指电极对22包括第三极板221和第四极板222,第二导电条32与各第二叉指电极对22的第三极板221连接,第三导电条33与各第二叉指电极对22的第四极板222连接。本实施例中,负胶层3为绝缘层,第一导电条31、有第二导电条32、第三导电条33设置在负胶层3外,仅在各导电条需要连接相应极板时,在极板对应的负胶层3位置处设置镂空,即可使各导电条与相应极板连接,从而只需对各导电条通电连接,即可实现对所有同类型的相应极板连接。如对各第一叉指电极对21的第二极板212进行通电时,因为所有第二极板212均连接第一导电条31,所以直接对第一导电条31导电,即可对所有第二极板212导电。本实施例中,各导电条为铜导电层。In order to quickly connect and conduct the same type of electrode plates at the same time, the negative
负胶层3上设置有定位块5,任一叉指电极组前后均设置有一定位块5。通过定位块5的设置,可在观察微球移动时,具有定位参考平面,使测试更快速,准确。A
制备本实施例中的介电泳力测试芯片可利用现有技术制造,第一层玻璃基底的清洗干净。制备第二层即电极层2采用光刻和湿法刻蚀相结合的方式,对于负胶层,利用光刻法制备SU-8负胶。对于导电条即第三层,采用磁控溅射方法制备铜导电层,用于形成第一叉指电极对21和第二叉指电极对22的导电区域。对于第四层,即定位块5,利用光刻法制备SU-8负胶,高度为10微米。因为芯片的制造属于常规技术,例如CN114921341A号专利文件就有较详细的记载,本专利不再赘述。Preparation The dielectrophoretic force test chip in this embodiment can be manufactured using the existing technology, and the first layer of glass substrate is cleaned. The preparation of the second layer, that is, the
如图1至图3所示,本发明还提供一种介电泳力测试装置,包括如上所述的介电泳力测试芯片。还包括夹具6,夹具6包括载玻片底板61,载玻片底板61上设置有前夹壁62和后夹壁63,前夹壁62和后夹壁63可采用3D打印制成,前夹壁62和后夹壁63围合成接触处有缝隙的腔体64,本实施例中,腔体64截面为方形。介电泳力测试芯片封装后插在缝隙内,本实施例中,用ecoflex硅胶进行封装,在测试过程中不会漏液。为进一步保证缝隙处的密封性,可以再滴胶进行密封。腔体64可以盛装微球溶液,用以实现下述的介电泳力测试方法。As shown in FIG. 1 to FIG. 3 , the present invention also provides a DEP test device, including the above-mentioned DEP test chip. Also includes a
本发明还提供一种介电泳力测试方法,采用如上的介电泳力芯片介电泳力测试装置,包括以下步骤:The present invention also provides a method for testing dielectrophoretic force, using the above dielectrophoretic force chip dielectrophoretic test device, comprising the following steps:
S1:将介电泳力测试芯片立于一腔体64中,腔体64底部为载玻片底板61,本实施例中,即将介电泳力测试芯插入前夹壁62和后夹壁63围合而成的腔体64内,使第一叉指电板对21和第二叉指电极对的极板竖向立于腔体64中。S1: Stand the dielectrophoretic force test chip in a
S2:将微球溶液加入腔体64中;S2: add microsphere solution in
S3:用两束光阱捕获微球至第一叉指电极对21和第二叉指电极对22上方,每束光阱至少捕获一个微球,捕获微球的高度在同一平面,为了确定在同一平面,可以用定位块5为标记,例如,可以使微球的高度和定位块5的最下表面在同一平面,即在60倍油镜下观察在同一焦面。S3: Use two beams of optical traps to trap microspheres above the first pair of
S4:给第一叉指电极对21施加正弦电信号,微球受介电泳力作用在光阱中发生横向移动;S4: Apply a sinusoidal electrical signal to the first
S5:观察微球移动的方向,确定介电泳力方向,并通过测试和计算两个微球收到的横向光阱力,分析施加电的微球受到的介电泳力和互感电场导致微球受到的介电泳力大小的差异。具体可通过四象限探测器检测到微球移动的距离,再通过胡克定律计算出微球受到的介电泳力。S5: Observe the moving direction of the microspheres, determine the direction of the dielectrophoretic force, and analyze the dielectrophoretic force and the mutual inductance electric field on the microspheres that are subjected to the applied electricity by testing and calculating the transverse optical trap force received by the two microspheres. The difference in the size of the dielectrophoretic force. Specifically, the moving distance of the microsphere can be detected by the four-quadrant detector, and then the dielectrophoretic force on the microsphere can be calculated by Hooke's law.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred specific embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative effort. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the present invention through logical analysis, reasoning or limited experiments on the basis of the prior art shall be within the scope of protection defined by the claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211495357.2A CN115825203A (en) | 2022-11-27 | 2022-11-27 | Dielectrophoresis force testing chip, testing device and testing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211495357.2A CN115825203A (en) | 2022-11-27 | 2022-11-27 | Dielectrophoresis force testing chip, testing device and testing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115825203A true CN115825203A (en) | 2023-03-21 |
Family
ID=85531848
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211495357.2A Pending CN115825203A (en) | 2022-11-27 | 2022-11-27 | Dielectrophoresis force testing chip, testing device and testing method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115825203A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119894199A (en) * | 2025-01-13 | 2025-04-25 | 昆山麦沄显示技术有限公司 | Micro LED fluid assembling method based on Micro-flow control and dielectrophoresis |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010048779A (en) * | 2008-08-25 | 2010-03-04 | Gunma Univ | Apparatus for measuring dielectrophoretic properties |
| CN114921341A (en) * | 2022-06-14 | 2022-08-19 | 南方科技大学 | Optical tweezers testing dielectrophoresis force chip and manufacturing method and testing method thereof |
| CN219245430U (en) * | 2022-11-27 | 2023-06-23 | 南方科技大学 | Dielectrophoretic force test chip and test device |
-
2022
- 2022-11-27 CN CN202211495357.2A patent/CN115825203A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010048779A (en) * | 2008-08-25 | 2010-03-04 | Gunma Univ | Apparatus for measuring dielectrophoretic properties |
| CN114921341A (en) * | 2022-06-14 | 2022-08-19 | 南方科技大学 | Optical tweezers testing dielectrophoresis force chip and manufacturing method and testing method thereof |
| CN219245430U (en) * | 2022-11-27 | 2023-06-23 | 南方科技大学 | Dielectrophoretic force test chip and test device |
Non-Patent Citations (1)
| Title |
|---|
| CHUNHUI WU 等: "A planar dielectrophoresis-based chip for highthroughput cell pairing", 《LAB ON A CHIP》, vol. 17, 31 October 2017 (2017-10-31), pages 4008 - 4014, XP055527406, DOI: 10.1039/C7LC01082F * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119894199A (en) * | 2025-01-13 | 2025-04-25 | 昆山麦沄显示技术有限公司 | Micro LED fluid assembling method based on Micro-flow control and dielectrophoresis |
| CN119894199B (en) * | 2025-01-13 | 2025-09-23 | 昆山麦沄显示技术有限公司 | A Micro LED fluid assembly method based on microfluidics and dielectrophoresis |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8865402B2 (en) | Nanostructured substrates for surface enhanced raman spectroscopy (SERS) and detection of biological and chemical analytes by electrical double layer (EDL) capacitance | |
| CN106092865B (en) | It is a kind of based on digital microcurrent-controlled fluorescence drop separation system and its method for separating | |
| CN101614729B (en) | Microelectrode array device and special device for cell manipulation and electrophysiological signal detection | |
| CN219245430U (en) | Dielectrophoretic force test chip and test device | |
| CN106959391B (en) | System and method for detecting specific capacitance of cell membrane | |
| CN110261380A (en) | A kind of in-situ synchronization observation system of lithium ion cell electrode reaction | |
| CN105460882B (en) | A kind of graphene three-dimensional micro-electrode array chip, method and its application | |
| CN115825203A (en) | Dielectrophoresis force testing chip, testing device and testing method | |
| CN109456879B (en) | Dielectrophoretic microfluidic chip for cell sorting and focusing and its alignment-free microfabrication method | |
| CN102680526B (en) | Single cell array microchip and manufacturing, electrical measurement and electroporation methods thereof | |
| CN104251810A (en) | System for simultaneous representation of single cell Young's modulus and cell membrane specific capacitance | |
| CN107118938A (en) | The unicellular arrangement of fluid enhancing dielectrophoresis and control chip and preparation method thereof | |
| CN109731621B (en) | Microfluidic substrate, preparation method thereof and microfluidic panel | |
| CN106925358A (en) | It is a kind of to realize the micro-fluidic chip that cell centre position focuses on and detects | |
| CN101281163B (en) | Detecting system used for determining multiple cell dielectric response and separation condition | |
| US8367018B2 (en) | Chip with tri-layer electrode and micro-cavity arrays for control of bioparticle and manufacturing method thereof | |
| CN114854556B (en) | A device and method for cell-microbead capture pairing for single-cell omics analysis | |
| CN104974997A (en) | New cell separation method using parallel electric field type photoelectric chip | |
| CN115895876B (en) | A cell electrofusion chip device and preparation method based on a bilateral flow field paired structure array | |
| CN101580797B (en) | A low-cost cell positioning and arrangement chip and its application method | |
| CN114921341A (en) | Optical tweezers testing dielectrophoresis force chip and manufacturing method and testing method thereof | |
| CN103018310A (en) | Capillary chip electrophoresis structure for implementing multiple sample injection and implementation method thereof | |
| CN114005952B (en) | A high-throughput test battery structure and its preparation method | |
| TWI404927B (en) | A capillary electrophoresis chip with integrated top-bottom opposed electrochemical sensing electrodes and its fabrication methods | |
| CN204536205U (en) | Based on the electrochemical cell of electrochemical in-situ-Surface enhanced raman spectroscopy chip |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |