CN115822604B - Cobalt-rich crust exploitation system and method for carbon dioxide jet flow manufacturing temperature difference effect - Google Patents
Cobalt-rich crust exploitation system and method for carbon dioxide jet flow manufacturing temperature difference effect Download PDFInfo
- Publication number
- CN115822604B CN115822604B CN202211457527.8A CN202211457527A CN115822604B CN 115822604 B CN115822604 B CN 115822604B CN 202211457527 A CN202211457527 A CN 202211457527A CN 115822604 B CN115822604 B CN 115822604B
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- cobalt
- jet
- rich
- fluid preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 372
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 172
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 172
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 87
- 239000010941 cobalt Substances 0.000 title claims abstract description 87
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 230000000694 effects Effects 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 4
- 238000002360 preparation method Methods 0.000 claims abstract description 63
- 239000012530 fluid Substances 0.000 claims abstract description 54
- 239000004576 sand Substances 0.000 claims abstract description 47
- 238000010438 heat treatment Methods 0.000 claims abstract description 41
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 239000012809 cooling fluid Substances 0.000 claims abstract description 20
- 206010039509 Scab Diseases 0.000 claims description 85
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 51
- 238000002156 mixing Methods 0.000 claims description 48
- 238000005065 mining Methods 0.000 claims description 36
- 235000011089 carbon dioxide Nutrition 0.000 claims description 27
- 238000003860 storage Methods 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 14
- 239000003082 abrasive agent Substances 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 238000007711 solidification Methods 0.000 claims description 8
- 230000008023 solidification Effects 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000013016 damping Methods 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000002223 garnet Substances 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000015271 coagulation Effects 0.000 claims 1
- 238000005345 coagulation Methods 0.000 claims 1
- 239000011435 rock Substances 0.000 abstract description 11
- 239000011148 porous material Substances 0.000 abstract description 5
- 238000011161 development Methods 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000002277 temperature effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 241001283150 Terana caerulea Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009919 sequestration Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 241001147665 Foraminifera Species 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011026 pyroclastic rock Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及深海海底富钴结壳开采技术领域,具体涉及一种二氧化碳射流制造温差效应的富钴结壳开采系统及方法。The invention relates to the technical field of deep seabed cobalt-rich crust mining, in particular to a cobalt-rich crust mining system and method in which a carbon dioxide jet produces a temperature difference effect.
背景技术Background technique
富钴结壳富含钴、镍、锌、铅、铈、铂等金属,其钴含量能到到陆地原生钴矿的几十倍,铂的平均含量也是陆地矿的80倍,具有极高的开采价值。富钴结壳主要赋存于水深800~3000m的海山、岛屿斜坡上,环境水深约为8~30Mpa,以最有开采前景的结壳富集区域中西太平洋海山区(包括麦哲伦海山区、马库斯海脊、威克海山、马绍尔海山链和恩莱海山链)的矿点普查资料海山上矿体上部边界贯穿有孔虫发育场,下部边界由黏土和粉沙发育场,结壳基岩50%~65%为玄武岩、火山碎屑岩和石灰岩,少部分为角砾岩黏土与粉沙。由此可知,富钴结壳开采需要面临将富钴结壳从更硬或者更软的基岩上剥离,同时尽量不损伤基岩的难题。Cobalt-rich crusts are rich in metals such as cobalt, nickel, zinc, lead, cerium, and platinum. The cobalt content can reach dozens of times that of terrestrial primary cobalt ores, and the average content of platinum is 80 times that of terrestrial ores. mining value. Cobalt-rich crusts mainly occur on seamounts and island slopes with a water depth of 800-3000m, and the ambient water depth is about 8-30Mpa. The most promising crust-enriched areas are the central and western Pacific seamounts (including the Magellan Seamounts, Maku Seamount Ridge, Wake Seamount, Marshall Seamount Chain, and Enlai Seamount Chain), the upper boundary of the orebody on the seamount runs through the foraminifer development field, the lower boundary is composed of clay and silt development field, and the crust bedrock 50 %~65% are basalt, pyroclastic rock and limestone, and a small part is breccia clay and silt. It can be seen that the mining of cobalt-rich crusts needs to face the problem of stripping cobalt-rich crusts from harder or softer bedrock while trying not to damage the bedrock.
目前有关海底富钴结壳开采方面的研究报道主要有:The current research reports on the mining of cobalt-rich crusts on the seabed mainly include:
CN103551231B公开了一种脉冲破碎机构、海底富钴结壳破碎系统及破碎方法,脉冲破碎机构包括安装盘以及安装在安装盘上的多组成对安装的脉冲电极;每组脉冲电极包括一个正电极和一个接地电极;脉冲电极通过电缆与脉冲电源相连;脉冲电极包括电极本体和包裹住该电极本体的绝缘体,且电极本体的尖端部分从绝缘体的底部伸出;绝缘体的中段设有法兰,脉冲电极置于安装盘内带有限位台阶的安装孔中;安装孔的上端设有螺纹透盖,在螺纹透盖与法兰之间设有弹簧。CN103551231B discloses a pulse crushing mechanism, a seabed cobalt-rich crust crushing system and a crushing method. The pulse crushing mechanism includes a mounting plate and a plurality of pairs of pulse electrodes installed on the mounting plate; each group of pulse electrodes includes a positive electrode and A ground electrode; the pulse electrode is connected to the pulse power supply through a cable; the pulse electrode includes an electrode body and an insulator that wraps the electrode body, and the tip of the electrode body protrudes from the bottom of the insulator; the middle section of the insulator is provided with a flange, and the pulse electrode It is placed in the installation hole with a limit step in the installation plate; the upper end of the installation hole is provided with a threaded through cover, and a spring is provided between the threaded through cover and the flange.
CN214062951U公开了一种海底结壳矿体破碎装备,包括切割装置、液压冲击装置、行走装置及海底中继器;行走装置能在海底进行行走,切割装置和液压冲击装置分别安装在行走装置的前端和后端;切割装置和液压冲击装置分别用于对矿体切割分区和冲击破碎,所述的行走装置通过供电和通讯缆与海底中继器连接,海底中继器设有供缆绞车,供电和通讯缆绕在供缆绞车上。CN214062951U discloses a kind of subsea crust ore body crushing equipment, including cutting device, hydraulic impact device, traveling device and seabed repeater; traveling device can walk on the seabed, and cutting device and hydraulic impact device are respectively installed on the front end of traveling device and the rear end; the cutting device and the hydraulic impact device are respectively used for cutting the ore body into sections and impacting and crushing. The walking device is connected with the submarine repeater through the power supply and communication cable. And the communication cable is wound on the cable winch.
CN110454166A公开了一种海底矿产资源富钴结壳的采矿头,用于切削并收集深海中的富钴结壳薄层矿。该采掘头主要由水力式采集机构、安装盘、液压减震器、刀盘、刀盘安装轴颈和轴承系统组成。该采掘头安装在海底作业车上,作业车带动采掘头移动。液压马达驱动安装盘绕其中心轴转动,三个旋转刀盘绕自身中心轴转动,利用高速的转速切削结壳使得结壳与基岩分离,三个刀盘配合旋转将剥离下的结壳块集中于采掘头的中心部位;水力式采集机构产生负压,将结壳块随水流吸入水力式采集机构的料仓中,具有集矿效率高、微地形敏感等特点。CN110454166A discloses a mining head for cobalt-rich crusts of seabed mineral resources, which is used for cutting and collecting thin layers of cobalt-rich crusts in deep sea. The mining head is mainly composed of a hydraulic collecting mechanism, a mounting plate, a hydraulic shock absorber, a cutterhead, a cutterhead mounting journal and a bearing system. The mining head is installed on the subsea operation vehicle, and the operation vehicle drives the mining head to move. The hydraulic motor drives the mounting coil to rotate around its central axis, and the three rotary cutters rotate around their own central axis. The crust is cut at a high speed to separate the crust from the bedrock. The three cutters rotate together to concentrate the peeled crust on the The central part of the mining head; the hydraulic collection mechanism generates negative pressure, and the crusts are sucked into the silo of the hydraulic collection mechanism with the water flow, which has the characteristics of high ore collection efficiency and micro-terrain sensitivity.
上述现有技术中,CN103551231B公开的一种脉冲破碎机构、海底富钴结壳破碎系统及破碎方法中,主要是利用了电磁脉冲技术的破岩方法,这种方法涉及复杂电路,这些电气设备在深海环境中,有很高的耐压及密封性要求,而且因为需要进行充放电,不能实现连续破岩,影响效率,且充放电设备的寿命问题难以解决;CN214062951U公开的一种海底结壳矿体破碎装备中,主要是利用机械切割与液压冲击破岩采集的方法,其具有技术成熟结构简单的优点,但是在深海高盐环境下,金属零部件极易腐蚀,耐久度差,且切割过程中会产生大量的微米级微尘颗粒、噪音,形成羽状流扩散,影响海底生态环境;CN110454166A公开的一种海底矿产资源富钴结壳的采矿头中,主要是采用了机械切削与水力采集技术结合的方法,该方法在一定程度上减少了金属零部件的使用,利用水力代替金属部件,但同样存在着机械部容易被海底异物卡住造成故障的问题,同时其水力采集在深海高压浸没环境下冲击力大大降低。In the above-mentioned prior art, CN103551231B discloses a pulse crushing mechanism, a submarine cobalt-rich crust crushing system and a crushing method, which mainly utilizes the rock-breaking method of electromagnetic pulse technology. This method involves complex circuits. In the deep-sea environment, there are high pressure and sealing requirements, and because of the need for charging and discharging, continuous rock breaking cannot be achieved, which affects efficiency, and the life of charging and discharging equipment is difficult to solve; CN214062951U discloses a seabed crust In the body crushing equipment, the method of mechanical cutting and hydraulic impact rock breaking is mainly used, which has the advantages of mature technology and simple structure. However, in the deep sea high-salt environment, metal parts are easily corroded and have poor durability. A large number of micron-scale dust particles and noise will be produced in the mine, forming a plume flow and spreading, affecting the seabed ecological environment; CN110454166A discloses a mining head for cobalt-rich crusts of seabed mineral resources, which mainly adopts mechanical cutting and hydraulic collection The method of combining technologies reduces the use of metal parts to a certain extent and uses hydraulic power to replace metal parts, but there is also the problem that the mechanical parts are easily stuck by foreign objects on the seabed and cause failures. The impact force in the environment is greatly reduced.
综上所述,上述现有技术中的方法都难以高效地解决从基岩上破碎、剥离、采集富钴结壳的问题。In summary, the above-mentioned methods in the prior art are difficult to efficiently solve the problem of breaking, stripping and collecting cobalt-rich crusts from the bedrock.
发明内容Contents of the invention
本发明的目的之一在于提供一种二氧化碳射流制造温差效应的富钴结壳开采系统,其利用岩石温度效应原理,通过不同状态的二氧化碳射流,实现海底富钴结壳高效绿色的剥离破碎采集。One of the objectives of the present invention is to provide a cobalt-rich crust mining system that produces temperature difference effects by carbon dioxide jets, which uses the principle of rock temperature effects to realize efficient and green stripping and crushing of seabed cobalt-rich crusts through carbon dioxide jets in different states.
为了实现上述目的,本发明采用了以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种二氧化碳射流制造温差效应的富钴结壳开采系统,包括气源提供系统、运输系统和位于深海海底的富钴结壳采集系统,所述的气源提供系统与所述的运输系统连接;A cobalt-rich crust mining system in which carbon dioxide jets produce temperature difference effects, including a gas source supply system, a transportation system, and a cobalt-rich crust collection system located on the deep seabed, and the gas source supply system is connected to the transportation system;
所述的富钴结壳采集系统包括行走器、中继装置、加热流体制备装置、冷却流体制备装置、二氧化碳流体制备装置以及采集头射流采集装置,所述的中继装置安装在所述的行走器上,所述的中继装置与所述的运输系统连接,通过所述的运输系统将二氧化碳运送并临时储存在所述的中继装置中,所述的中继装置的二氧化碳的压力≧7.3MPa;The cobalt-rich crust collection system includes a walker, a relay device, a heating fluid preparation device, a cooling fluid preparation device, a carbon dioxide fluid preparation device, and a collection head jet collection device. The relay device is installed on the walking On the device, the relay device is connected to the transportation system, and the carbon dioxide is transported and temporarily stored in the relay device through the transportation system, and the carbon dioxide pressure of the relay device is ≧7.3 MPa;
所述的中继装置分别与所述的加热流体制备装置、冷却流体制备装置、二氧化碳流体制备装置连接;所述的采集头射流采集装置包括第一射流头、第二射流头、混合室以及吸力管,所述的第一射流头和第二射流头分别位于采集头射流采集装置的一端,且第一射流头在第二射流头前排,所述的混合室位于所述的第二射流头的后端;The relay device is respectively connected with the heating fluid preparation device, the cooling fluid preparation device, and the carbon dioxide fluid preparation device; the collection head jet collection device includes a first jet head, a second jet head, a mixing chamber and a suction tube, the first jet head and the second jet head are respectively located at one end of the jet collection device of the collection head, and the first jet head is in the front row of the second jet head, and the mixing chamber is located at the second jet head the backend of
所述的加热流体制备装置用于将中继装置提供的二氧化碳进行加热,使其达到超临界二氧化碳形成的条件,然后继续对其进行加热,将加热温度下的高温超临界二氧化碳送入所述的第一射流头内,从所述的第一射流头喷出;The heating fluid preparation device is used to heat the carbon dioxide provided by the relay device to make it reach the condition for the formation of supercritical carbon dioxide, and then continue to heat it, and send the high-temperature supercritical carbon dioxide at the heating temperature into the In the first jet head, ejected from the first jet head;
所述的冷却流体制备装置用于将高硬度砂与中继装置提供的二氧化碳混合,通过冷凝至-56.6℃以下形成固态干冰,并将固态干冰破碎成颗粒后送入所述的混合室;The cooling fluid preparation device is used to mix the high-hardness sand with the carbon dioxide provided by the relay device, form solid dry ice by condensing to below -56.6°C, and crush the solid dry ice into particles before sending it into the mixing chamber;
所述的二氧化碳流体制备装置用于将中继装置提供的二氧化碳进行增压,加压至7.37MPa以上形成高密度液态二氧化碳,并送入所述的混合室;The carbon dioxide fluid preparation device is used to pressurize the carbon dioxide provided by the relay device, pressurize it to above 7.37MPa to form high-density liquid carbon dioxide, and send it into the mixing chamber;
位于混合室内的低温流体和高压射流流体经过混合后,快速送入所述的第二射流头内,从所述的第二射流头喷出;The low-temperature fluid and high-pressure jet fluid located in the mixing chamber are mixed, then quickly sent into the second jet head, and ejected from the second jet head;
所述的吸力管用于对经过破碎后的富钴结壳进行采集。The suction tube is used to collect crushed cobalt-rich crusts.
上述技术方案直接带来的有益技术效果为:The beneficial technical effect that above-mentioned technical scheme directly brings is:
上述的富钴结壳采集系统,其通过安装在行走器上的中继装置、加热流体制备装置、冷却流体制备装置、二氧化碳流体制备装置和采集头射流采集装置,共同配合,可以实现对海底富钴结壳的高效绿色采集。具体的:通过采集头射流采集装置的第一射流头喷出经过加热流体制备装置得到的高压高温的超临界二氧化碳,这种状态的二氧化碳由于黏性极小,具有极强的渗透性,在压力的作用下,可以均匀地渗入富钴结壳这类具有明显孔隙发育的多孔介质岩体,令其受热产生膨胀;通过采集头射流采集装置的第二射流头喷射带有高硬度砂与干冰碎屑的高压低温液态二氧化碳,随着行走器前进,富钴结壳受热冷交替,内部产生温度应力,萌生破坏裂隙,在裹挟着高硬度砂磨料的高压液态二氧化碳的高压冲击下,富钴结壳即可被剥离破碎,破碎后的矿石随着中部吸力管被吸走,完成富钴结壳的剥离破碎与采集。The above-mentioned cobalt-rich crust collection system, through the cooperation of the relay device installed on the walker, the heating fluid preparation device, the cooling fluid preparation device, the carbon dioxide fluid preparation device and the collection head jet collection device, can realize the collection of seabed rich Efficient green harvesting of cobalt crusts. Specifically: through the first jet head of the collection head jet collection device, the high-pressure and high-temperature supercritical carbon dioxide obtained by the heating fluid preparation device is ejected. The carbon dioxide in this state has extremely low viscosity and strong permeability. Under the action of the cobalt-rich crust, it can evenly infiltrate into the porous medium rock mass with obvious pore development such as the cobalt-rich crust, causing it to expand when heated; the second jet head of the collection head jet flow collection device sprays high-hardness sand and dry ice The high-pressure and low-temperature liquid carbon dioxide of the chips, as the walker advances, the cobalt-rich crust is alternately heated and cold, and temperature stress is generated inside, and damage cracks are initiated. It can be stripped and crushed, and the crushed ore is sucked away with the suction tube in the middle to complete the stripping, crushing and collection of cobalt-rich crusts.
总言之,上述技术方案,主要是利用了超临界二氧化碳的高温性、高渗透性,干冰的低温性,以及富钴结壳和基岩具有不同的热胀冷缩特性,首先通过第一射流头对富钴结壳采用热胀冷缩致裂,然后再通过第二射流头辅以磨料冲击,达到了准确剥离的效果,适用于深海环境。In a word, the above-mentioned technical solution mainly utilizes the high temperature and high permeability of supercritical carbon dioxide, the low temperature of dry ice, and the different characteristics of thermal expansion and contraction of cobalt-rich crust and bedrock. The head uses thermal expansion and cold contraction to crack the cobalt-rich crust, and then the second jet head is supplemented by abrasive impact to achieve the effect of accurate peeling, which is suitable for deep sea environment.
作为本发明的一个优选方案,所述的中继装置包括中继存储罐和加压机构,所述的加压机构用于对运输系统输送来的二氧化碳进行加压。As a preferred solution of the present invention, the relay device includes a relay storage tank and a pressurization mechanism, and the pressurization mechanism is used to pressurize the carbon dioxide delivered by the transportation system.
上述技术方案中,由于通过运输系统运输到达位于深海的中继装置时,气态二氧化碳已转变为液态二氧化碳,因此通过设置加压机构对其进行加压并确保二氧化碳压力≧7.3MPa,之后通过中继装置对达到压力条件的二氧化碳进行临时储存备用。In the above technical solution, since the gaseous carbon dioxide has been transformed into liquid carbon dioxide when it is transported through the transportation system to the relay device located in the deep sea, it is pressurized by setting a pressurizing mechanism to ensure that the pressure of carbon dioxide is ≧7.3MPa, and then through the relay The device temporarily stores the carbon dioxide that reaches the pressure condition for backup.
作为本发明的另一个优选方案,所述的加热流体制备装置包括输送管道一、单向控制阀一、加热室和单向控制阀二,所述的输送管道一的一端连接在所述的中继存储罐的出口一,另一端连接在所述的第一射流头上,所述的单向控制阀一和单向控制阀二分别设置在靠近中继存储罐和第一射流头一侧的输送管道一上,所述的加热室位于所述的单向控制阀一和单向控制阀二之间,所述的加热室加热至温度为31.1℃时形成超临界二氧化碳形成的条件,之后继续对其进行加热至温度为65~75℃。As another preferred solution of the present invention, the heating fluid preparation device includes a
上述技术方案中,加热流体制备装置的目的是获得高温超临界二氧化碳,当温度高于31.1摄氏度,压力高于7.3Mpa时,二氧化碳便进入到了超临界状态,通过加热室对中继装置中储存的压力大于7.3MPa的二氧化碳进行加热,达到超临界状态后,继续加热,加热至温度为65~75℃,以形成高温超临界二氧化碳。In the above technical solution, the purpose of the heating fluid preparation device is to obtain high-temperature supercritical carbon dioxide. When the temperature is higher than 31.1 degrees Celsius and the pressure is higher than 7.3Mpa, the carbon dioxide enters a supercritical state, and the heating chamber is used to store the carbon dioxide in the relay device. The carbon dioxide with a pressure greater than 7.3MPa is heated, and after reaching the supercritical state, the heating is continued until the temperature is 65-75°C to form high-temperature supercritical carbon dioxide.
进一步的,所述的冷却流体制备装置包括输送管道二、单向控制阀三、高硬度砂混合室、降温凝固室以及破碎室,所述的输送管道二的一端连接在所述的中继存储罐的出口二,另一端连接在所述的混合室,所述的单向控制阀三设置在靠近中继存储罐一侧的输送管道二上,所述的高硬度砂混合室、降温凝固室和破碎室依次并排设置,所述的高硬度砂混合室在靠近单向控制阀三的一侧,所述的破碎室在靠近混合室的一侧。Further, the cooling fluid preparation device includes a delivery pipeline II, a one-way control valve III, a high-hardness sand mixing chamber, a cooling and solidification chamber, and a crushing chamber. One end of the delivery pipeline II is connected to the relay storage The outlet 2 of the tank is connected to the mixing chamber at the other end, and the one-
进一步的,所述的二氧化碳流体制备装置包括输送管道三、单向控制阀四、二氧化碳增压室以及单向控制阀五,所述的输送管道三的一端连接在所述的中继存储罐的出口三,另一端连接在所述的混合室,所述的单向控制阀四和单向控制阀五连接在输送管道三上,所述的二氧化碳增压室设置在单向控制阀四和单向控制阀五之间。Further, the carbon dioxide fluid preparation device includes a delivery pipeline three, a one-way control valve four, a carbon dioxide pressurization chamber and a one-way control valve five, one end of the delivery pipeline three is connected to the relay storage tank Outlet three, the other end is connected to the mixing chamber, the one-way control valve four and one-way control valve five are connected to the delivery pipeline three, and the carbon dioxide pressurization chamber is set at one-way control valve four and one-way control valve five to the control valve between five.
进一步的,所述的吸力管还连接有吸力泵,通过所述的吸力泵产生的吸力对破碎后的富钴结壳进行采集。Further, the suction pipe is also connected with a suction pump, and the crushed cobalt-rich crusts are collected through the suction generated by the suction pump.
进一步的,所述的运输系统包括运输管道,所述的运输管道包括管道本体,在所述的管道本体内穿插有脐带缆,所述的脐带缆通过阻尼固定装置固定在所述的管道本体的中心位置;所述的管道本体由抗拉伸材料制成。Further, the transportation system includes a transportation pipeline, the transportation pipeline includes a pipeline body, and an umbilical cable is inserted in the pipeline body, and the umbilical cable is fixed on the side of the pipeline body by a damping fixing device. Central position; the pipe body is made of stretch-resistant material.
进一步的,所述的高硬度砂的莫氏硬度大于7,所述的高硬度砂选用粒度为60~150目的二氧化硅、氧化铝或石榴石。Further, the Mohs hardness of the high-hardness sand is greater than 7, and the high-hardness sand is made of silica, alumina or garnet with a particle size of 60-150 mesh.
进一步的,所述行走器为海底矿车,所述的中继装置安装在海底矿车的尾部;所述的第一射流头和第二射流头交错设置,二者的射流目标不同靶。Further, the walker is a seabed mine car, and the relay device is installed at the tail of the seabed mine car; the first jet head and the second jet head are arranged alternately, and the jet targets of the two are different.
本发明的另一目的在于提供一种二氧化碳射流制造温差效应的富钴结壳开采方法,依次包括以下步骤:Another object of the present invention is to provide a cobalt-rich crust mining method in which a carbon dioxide jet produces a temperature difference effect, which includes the following steps in sequence:
S1、气源提供系统通过所述的运输系统向中继装置提供二氧化碳,当气源提供系统提供的气态二氧化碳到达位于深海的中继装置时,其转变为液态二氧化碳,对其进行加压并确保二氧化碳压力≧7.3MPa;通过中继装置对达到压力条件的二氧化碳进行临时储存;S1. The gas source supply system provides carbon dioxide to the relay device through the transportation system. When the gaseous carbon dioxide provided by the gas source supply system reaches the relay device located in the deep sea, it is transformed into liquid carbon dioxide, which is pressurized and ensured Carbon dioxide pressure ≧7.3MPa; temporary storage of carbon dioxide that reaches the pressure condition through the relay device;
S2、中继装置中储存的二氧化碳进入加热流体制备装置中,对其进一步加热,在达到超临界二氧化碳的形成条件大于31℃后继续加热一段时间达到65~75℃,形成高温超临界二氧化碳,将高温超临界二氧化碳送入所述的第一射流头内,所述的第一射流头喷出,对富钴结壳进行加热;S2. The carbon dioxide stored in the relay device enters the heating fluid preparation device and is further heated. After reaching the formation condition of supercritical carbon dioxide greater than 31°C, continue heating for a period of time to reach 65-75°C to form high-temperature supercritical carbon dioxide. High-temperature supercritical carbon dioxide is sent into the first jet head, and the first jet head is ejected to heat the cobalt-rich crust;
S3、中继装置中储存的二氧化碳进入冷却流体制备装置中,降温后与硬质砂磨料混合后,冷凝至-56.6℃以下制成掺有硬质砂的干冰,之后将掺有硬质砂的干冰搅碎成颗粒状,将其送入混合室中;S3. The carbon dioxide stored in the relay device enters the cooling fluid preparation device. After cooling down, it is mixed with hard sand abrasives, condensed to below -56.6°C to make dry ice mixed with hard sand, and then mixed with hard sand The dry ice is crushed into granules and fed into the mixing chamber;
S4、中继装置中储存的二氧化碳进入到二氧化碳流体制备装置中,加压至7.37MPa以上形成高密度液态二氧化碳,并送入所述的混合室;与步骤S3中掺有硬质砂的干冰混合;S4. The carbon dioxide stored in the relay device enters the carbon dioxide fluid preparation device, pressurizes to above 7.37MPa to form high-density liquid carbon dioxide, and sends it into the mixing chamber; mixes with the dry ice mixed with hard sand in step S3 ;
S5、混合室中得到的带有硬质砂与干冰颗粒的高压低温液态二氧化碳从第二射流头喷出,随着行走器前进,富钴结壳受热冷交替,内部产生温度应力,萌生破坏裂隙,在裹挟着硬质砂磨料的高压液态二氧化碳的高压冲击下,富钴结壳即可被剥离破碎,破碎后的富钴结壳从吸力管被吸走,完成富钴结壳的剥离破碎与采集。S5. The high-pressure and low-temperature liquid carbon dioxide with hard sand and dry ice particles obtained in the mixing chamber is ejected from the second jet head. As the traveler advances, the cobalt-rich crust is alternately heated and cooled, and temperature stress is generated inside, and cracks are initiated. , under the high-pressure impact of high-pressure liquid carbon dioxide surrounded by hard sand abrasives, the cobalt-rich crusts can be peeled off and broken, and the broken cobalt-rich crusts are sucked away from the suction tube to complete the stripping and crushing of the cobalt-rich crusts collection.
与现有技术相比,本发明带来了以下有益技术效果:Compared with the prior art, the present invention brings the following beneficial technical effects:
(1)本发明利用富钴结壳与基岩具有不同的孔隙率以及不同的热膨胀率的特点,对富钴结壳进行破碎与剥离,这种剥离方法对基岩的损伤小,也不必设置切割高度控制系统。(1) The present invention utilizes the characteristics that the cobalt-rich crust and the bedrock have different porosities and different thermal expansion rates to crush and peel the cobalt-rich crust. This stripping method has little damage to the bedrock and does not need to be installed Cutting height control system.
(2)通过冷热交替使得富钴结壳内部产生裂隙,再加上磨料流体冲击的剥离破碎方式,结核破碎块径较大,磨料粒径重量大容易沉降,在破碎过程中不会产生细微粒径颗粒,不会形成羽状流对海底环境造成污染。(2) Cracks are generated inside the cobalt-rich crust through alternating cold and heat, coupled with the stripping and crushing method of abrasive fluid impact, the diameter of the broken nodules is large, and the abrasive particle size and weight are large and easy to settle, and no fine grains will be produced during the crushing process. Particles with small particle size will not form plumes and pollute the seabed environment.
(3)脐带缆包裹在二氧化碳输送管道中,二氧化碳为惰性气体,可以对脐带缆起到保护作用,减少海水对脐带缆的腐蚀,降低脐带缆断裂或者漏电的风险,同时还可以对脐带缆起到降温的作用。(3) The umbilical cable is wrapped in the carbon dioxide transmission pipeline. Carbon dioxide is an inert gas, which can protect the umbilical cable, reduce the corrosion of the umbilical cable by seawater, reduce the risk of umbilical cable breakage or leakage, and also protect the umbilical cable. to the cooling effect.
(4)硬质砂作为磨料与二氧化碳混合后再制成干冰,硬质砂可以作为凝结核,降低二氧化碳凝固温度,比纯二氧化碳制成干冰更节省能源。(4) Hard sand is used as an abrasive and mixed with carbon dioxide to make dry ice. The hard sand can be used as a condensation nucleus to reduce the freezing temperature of carbon dioxide, which is more energy-saving than dry ice made of pure carbon dioxide.
(5)射流介质采用二氧化碳,充分利用不同状态二氧化碳的特点:超临界二氧化碳高温、低粘度、高渗透性的特性,可以更好地对富含孔隙的富钴结壳进行加热;高密度二氧化碳比水密度大,提供更大的冲击力以及干冰低温的特性,大部分会通过形成碳湖、水合物的形式留存在海底,实现二氧化碳的封存。(5) The jet medium uses carbon dioxide, making full use of the characteristics of different states of carbon dioxide: supercritical carbon dioxide has the characteristics of high temperature, low viscosity, and high permeability, which can better heat the cobalt-rich crusts rich in pores; high-density carbon dioxide ratio The high density of water provides greater impact force and the low temperature characteristics of dry ice. Most of them will remain on the seabed in the form of carbon lakes and hydrates to achieve carbon dioxide sequestration.
(6)对于一些密度低孔隙发育的岩石,70℃的温差即可产生明显裂纹破坏,不同的岩石具有不同的热胀系数,其温差效应也不同。本发明利用这一特点,形成大于70℃的温差,可以对富钴结壳进行破裂剥离。(6) For some rocks with low density and developed pores, a temperature difference of 70°C can produce obvious crack damage. Different rocks have different thermal expansion coefficients, and their temperature difference effects are also different. The invention utilizes this feature to form a temperature difference greater than 70°C, which can crack and peel off the cobalt-rich crust.
综上所述,本发明利用岩石温度效应原理,通过不同状态的二氧化碳射流,可实现对海底富钴结壳高效绿色的剥离破碎采集。本发明开采系统能够主动适应结壳厚度变化,减少对基岩的损坏与碎屑扬尘的环境影响,并将二氧化碳尾气直接封存在深海,实现碳封存,具有高效环保的特点。To sum up, the present invention utilizes the principle of rock temperature effect to achieve efficient and green stripping and crushing of cobalt-rich crusts on the seabed through jets of carbon dioxide in different states. The mining system of the present invention can actively adapt to changes in crust thickness, reduce damage to bedrock and environmental impact of debris dust, and directly seal carbon dioxide tail gas in deep sea to achieve carbon sequestration, which has the characteristics of high efficiency and environmental protection.
附图说明Description of drawings
下面结合附图对本发明做进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
图1为本发明富钴结壳开采方法流程图;Fig. 1 is the flowchart of the method for mining cobalt-rich crusts of the present invention;
图2为本发明二氧化碳射流制造温差效应的富钴结壳开采系统整体结构示意图;Fig. 2 is a schematic diagram of the overall structure of the cobalt-rich crust mining system with the temperature difference effect produced by the carbon dioxide jet of the present invention;
图3为本发明运输系统中运输管道的剖面结构示意图;Fig. 3 is the schematic cross-sectional structure diagram of the transportation pipeline in the transportation system of the present invention;
图4为本发明二氧化碳射流制造温差效应的富钴结壳开采系统局部结构示意图;Fig. 4 is a schematic diagram of the partial structure of the cobalt-rich crust mining system of the carbon dioxide jet manufacturing temperature difference effect of the present invention;
图5为采用本发明开采系统对结壳破碎剥离示意图;Fig. 5 is a schematic diagram of crust crushing and stripping by adopting the mining system of the present invention;
图中:In the picture:
1、运输系统,11、气源提供系统,12、运输管道,121、管道本体,122、脐带缆,123、阻尼固定装置,13、中继装置,131、加压机构,132、中继存储罐,2、加热流体制备装置,21、输送管道一,22、单向控制阀一,23、加热室,24、单向控制阀二,3、冷却流体制备装置,31、输送管道二,32、单向控制阀三,33、高硬度砂混合室,34、降温凝固室,35、破碎室,4、二氧化碳流体制备装置,41、输送管道三,42、单向控制阀四,43、二氧化碳增压室,44、单向控制阀五,5、采集头射流采集装置,51、第一射流头,52、混合室,53、吸力管,531、吸力泵。1. Transportation system, 11. Air source supply system, 12. Transportation pipeline, 121. Pipeline body, 122. Umbilical cable, 123. Damping fixture, 13. Relay device, 131. Pressurization mechanism, 132. Relay storage Tank, 2. Heating fluid preparation device, 21. Conveying pipeline one, 22. One-way control valve one, 23. Heating chamber, 24. One-way control valve two, 3. Cooling fluid preparation device, 31. Conveying pipeline two, 32 , one-way control valve three, 33, high hardness sand mixing chamber, 34, cooling and solidification chamber, 35, crushing chamber, 4, carbon dioxide fluid preparation device, 41, delivery pipeline three, 42, one-way control valve four, 43, carbon dioxide Booster chamber, 44, one-way control valve five, 5, collection head jet collection device, 51, first jet head, 52, mixing chamber, 53, suction pipe, 531, suction pump.
具体实施方式Detailed ways
本发明提出了一种二氧化碳射流制造温差效应的富钴结壳开采系统及方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做进一步说明。The present invention proposes a cobalt-rich crust mining system and method based on temperature difference effects produced by carbon dioxide jets. In order to make the advantages and technical solutions of the present invention clearer and clearer, the present invention will be further described in conjunction with specific examples below.
本发明中所述及的“高温超临界二氧化碳”是指温度为65~75℃的超临界二氧化碳。The "high-temperature supercritical carbon dioxide" mentioned in the present invention refers to supercritical carbon dioxide with a temperature of 65-75°C.
“高硬度砂”是指:莫氏硬度大于7,如选用粒度为60~150目的二氧化硅、氧化铝或石榴石。"High hardness sand" means: Mohs hardness greater than 7, such as silica, alumina or garnet with a particle size of 60-150 mesh.
“高压射流流体”是指通过增压装置增压形成高密度液态二氧化碳,压力是指7.37MPa以上。"High-pressure jet fluid" refers to high-density liquid carbon dioxide formed by pressurization by a supercharging device, and the pressure refers to above 7.37MPa.
“低温流体”是指温度在-30~-50℃的流体,是利用高压高密度二氧化碳流体利用压力裹挟固态干冰、砂颗粒形成的混合流体。"Cryogenic fluid" refers to a fluid with a temperature of -30 to -50°C, which is a mixed fluid formed by using high-pressure and high-density carbon dioxide fluid to engulf solid dry ice and sand particles under pressure.
本文中所述及的中继装置的二氧化碳的压力≧7.3MPa,是指绝对压力。The carbon dioxide pressure of the relay device mentioned in this article is ≧7.3MPa, which refers to the absolute pressure.
本发明主要是利用岩石温度效应原理,通过不同状态的二氧化碳射流,可实现对海底富钴结壳高效绿色的剥离破碎采集,需要强调的是,上述技术方案的应用场景是深海环境中,由于超临界二氧化碳比水介质要轻,所以不适宜单纯用二氧化碳冲击,这样会产生极大地能量消耗,达不到本申请所要解决的技术问题。The present invention mainly utilizes the principle of rock temperature effect to achieve efficient and green stripping and crushing of cobalt-rich crusts on the seabed through different states of carbon dioxide jets. The critical carbon dioxide is lighter than the water medium, so it is not suitable to simply shock with carbon dioxide, which will cause a huge energy consumption and fail to reach the technical problem to be solved in this application.
结合图2至图4所示,本发明一种二氧化碳射流制造温差效应的富钴结壳开采系统,包括气源提供系统11、运输系统1和位于深海海底的富钴结壳采集系统。As shown in FIG. 2 to FIG. 4 , a cobalt-rich crust mining system of the present invention that produces temperature difference effects by carbon dioxide jets includes a gas
其中:气源提供系统11与运输系统连接,气源提供系统11如采用位于海面的气源提供设备,该气源提供设备以释放储存或直接从陆地输运的形式提供二氧化碳气源。Wherein: the gas
运输系统1,主要作用是将气源提供系统提供的气态二氧化碳输送至位于深海海底的富钴结壳采集系统,运输系统1包括运输管道12,如图3所示,运输管道包括管道本体121,管道本体121由较强抗拉伸材料制作而成,在管道本体121中间穿插有脐带缆122,脐带缆122通过阻尼固定装置123固定在管道本体的中心位置,避免由于运输管道运动造成两者摩擦。The main function of the
富钴结壳采集系统包括行走器、中继装置13、加热流体制备装置2、冷却流体制备装置3、二氧化碳流体制备装置4以及采集头射流采集装置5。The cobalt-rich crust collection system includes a walker, a
行走器即为可移动的海底矿车,将中继装置13、加热流体制备装置2、冷却流体制备装置3、二氧化碳流体制备装置4以及采集头射流采集装置5均安装在该海底矿车上,以实现对海底矿物的开采,海底矿车的结构,借鉴现有技术即可实现。The walking device is a movable seabed mine car, and the
中继装置13安装在海底矿车的尾端,中继装置与运输系统连接,通过运输系统将二氧化碳运送并临时储存在中继装置中,中继装置的二氧化碳的压力≧7.3MPa。The
如图4所示,中继装置包括加压机构131和中继存储罐132,当二氧化碳到达深海时,由于深海压强及温度,已经成为液态,加压机构131用于对运输系统输送来的二氧化碳进行加压,通过加压确保其压力达到7.3MPa以上,通过中继存储罐132为来临时储存二氧化碳。中继存储罐132设置三个出口,分别为出口一、出口二、出口三,三个出口分别连接三条平行的输送管道一21、输送管道二31和输送管道三41,输送管道一21的一端连接在中继存储罐的出口一,输送管道一的另一端连接在第一射流头51上,输送管道一上分别设置有单向控制阀一22、加热室23和单向控制阀二24,单向控制阀一和单向控制阀二分别设置在靠近中继存储罐和第一射流头一侧的输送管道一上,加热室位于单向控制阀一和单向控制阀二之间,加热室加热至温度为31℃时形成超临界二氧化碳形成的条件,之后继续对其进行加热至温度为65~75℃,以形成高温超临界二氧化碳。As shown in Figure 4, the relay device includes a
上述的输送管道一21、单向控制阀一22、加热室23和单向控制阀二24共同构成加热流体制备装置,通过加热室加热形成高温超临界二氧化碳,高温超临界二氧化碳通过单向控制阀二24流向第一射流头51。The above-mentioned delivery pipeline one 21, one-way control valve one 22,
所述的冷却流体制备装置用于将高硬度砂与中继装置提供的二氧化碳混合,通过冷凝至-56.6℃以下形成固态干冰,并将固态干冰破碎成颗粒后送入所述的混合室;冷却流体制备装置包括输送管道二31、单向控制阀三32、高硬度砂混合室33、降温凝固室34以及破碎室35,输送管道二的一端连接在中继存储罐的出口二,另一端连接在所述的混合室,单向控制阀三设置在靠近中继存储罐一侧的输送管道二上,所述的高硬度砂混合室、降温凝固室和破碎室依次并排设置,所述的高硬度砂混合室在靠近单向控制阀三的一侧,破碎室在靠近混合室的一侧。The cooling fluid preparation device is used to mix the high-hardness sand with the carbon dioxide provided by the relay device, form solid dry ice by condensing it below -56.6°C, and break the solid dry ice into particles and send it to the mixing chamber; cooling The fluid preparation device includes a delivery pipeline 2 31, a one-
进入冷却流体制备装置的二氧化碳,通过输送管道二31流经单向控制阀三32、进入二氧化碳与高硬度砂混合室33,与高硬度砂混合,然后进入降温凝固室34凝固形成固态干冰,之后进入破碎室35破碎成颗粒后流向采集头射流采集装置5的混合室52。The carbon dioxide entering the cooling fluid preparation device flows through the delivery pipeline 2 31 through the one-
二氧化碳流体制备装置用于将中继装置提供的二氧化碳进行增压,加压至7.37MPa以上形成高密度液态二氧化碳,并送入所述的混合室;二氧化碳流体制备装置包括输送管道三41、单向控制阀四42、二氧化碳增压室43以及单向控制阀五44,输送管道三的一端连接在中继存储罐的出口三,另一端连接在混合室52,单向控制阀四和单向控制阀五连接在输送管道三上,二氧化碳增压室设置在单向控制阀四和单向控制阀五之间。进入二氧化碳流体制备装置的二氧化碳,通过输送管道三41流经单向控制阀四42进入二氧化碳增压室43,进行增压并形成高密度液态二氧化碳,流经单向控制阀五44,后流向采集头射流采集装置5的混合室52。The carbon dioxide fluid preparation device is used to pressurize the carbon dioxide provided by the relay device, pressurize it to above 7.37MPa to form high-density liquid carbon dioxide, and send it into the mixing chamber; the carbon dioxide fluid preparation device includes a
采集头射流采集装置5,包括第一射流头51、混合室52、吸力管53以及吸力泵531,第一射流头51连接加热流体制备装置,喷射高温超临界二氧化碳对矿物富钴结壳进行加热,混合室52位于第二射流头后端,混合室连接冷却流体制备装置和二氧化碳流体制备装置,喷射混有干冰、高硬度砂磨料的高密度液态二氧化碳,干冰产生低温,造成富钴结壳龟裂,磨料与高密度二氧化碳的冲击力沿着破碎裂隙对富钴结壳进行进一步破碎剥离,吸力管53通过吸力泵531产生的吸力对破碎后的矿石进行采集,完成海底富钴结壳的低扰动绿色采集。The collection head jet collection device 5 includes a
如图1所示,下面结合上述开采系统对本发明开采方法做详细说明。As shown in Fig. 1, the mining method of the present invention will be described in detail below in conjunction with the above mining system.
步骤一、气源提供系统通过运输系统向中继装置提供二氧化碳,当气源提供系统提供的气态二氧化碳到达位于深海的中继装置时,其转变为液态二氧化碳,通过加压机构室对其进行加压并确保二氧化碳压力≧7.3MPa;通过中继装置对达到压力条件的二氧化碳进行临时储存;
步骤二、中继装置中储存的二氧化碳进入加热流体制备装置中,对其进一步加热,在达到超临界二氧化碳的形成条件大于31℃后通过加热室继续加热一段时间达到65~75℃,形成高温超临界二氧化碳,将高温超临界二氧化碳送入所述的第一射流头内,所述的第一射流头喷出,喷出的高温超临界二氧化碳,这种状态的二氧化碳由于黏性极小,具有极强的渗透性,在压力的作用下,可以均匀地渗入富钴结壳这类具有明显孔隙发育的多孔介质岩体,令其受热产生膨胀;Step 2: The carbon dioxide stored in the relay device enters the heating fluid preparation device, and it is further heated. After the formation condition of supercritical carbon dioxide is greater than 31°C, the heating chamber continues to heat for a period of time to reach 65-75°C, forming a high-temperature supercritical fluid. Critical carbon dioxide, high-temperature supercritical carbon dioxide is sent into the first jet head, and the first jet head sprays out high-temperature supercritical carbon dioxide. Carbon dioxide in this state has extremely low viscosity and extremely Strong permeability, under the action of pressure, it can evenly infiltrate into porous media rock mass with obvious pores such as cobalt-rich crust, causing it to expand when heated;
步骤三、中继装置中储存的二氧化碳进入冷却流体制备装置中,降温后与硬质砂磨料混合后,冷凝至-56.6℃以下制成掺有硬质砂的干冰,之后将掺有硬质砂的干冰搅碎成颗粒状,将其送入混合室中;
步骤四、中继装置中储存的二氧化碳进入到二氧化碳流体制备装置中,加压至7.37MPa以上形成高密度液态二氧化碳,并送入所述的混合室;与步骤三中掺有硬质砂的干冰混合;Step 4: The carbon dioxide stored in the relay device enters the carbon dioxide fluid preparation device, pressurized to above 7.37MPa to form high-density liquid carbon dioxide, and sends it into the mixing chamber; and dry ice mixed with hard sand in
步骤五、如图5所示,混合室中得到的带有硬质砂与干冰颗粒的高压低温液态二氧化碳从第二射流头喷出,随着行走器前进,富钴结壳受热冷交替,内部产生温度应力,萌生破坏裂隙,在裹挟着硬质砂磨料的高压液态二氧化碳的高压冲击下,富钴结壳即可被剥离破碎,破碎后的富钴结壳从吸力管被吸走,完成富钴结壳的剥离破碎与采集。Step 5, as shown in Figure 5, the high-pressure and low-temperature liquid carbon dioxide with hard sand and dry ice particles obtained in the mixing chamber is ejected from the second jet head, and as the walker advances, the cobalt-rich crust is alternately heated and cooled, and the interior Temperature stress is generated, and fracture cracks are initiated. Under the high-pressure impact of high-pressure liquid carbon dioxide surrounded by hard sand abrasives, the cobalt-rich crusts can be peeled off and broken, and the broken cobalt-rich crusts are sucked away from the suction tube to complete the enrichment process. Exfoliation, crushing and collection of cobalt crusts.
本发明中所述及的加热室、高硬度砂混合室、降温凝固室、破碎室、二氧化碳增压室其具体的结构及工作方式借鉴现有技术即可实现,本文不再详细冗述。The specific structures and working methods of the heating chamber, high-hardness sand mixing chamber, cooling and solidification chamber, crushing chamber, and carbon dioxide pressurization chamber mentioned in the present invention can be realized by referring to the existing technology, and will not be described in detail herein.
本发明中未述及的部分借鉴现有技术即可实现。The parts not mentioned in the present invention can be realized by referring to the prior art.
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。Of course, the above descriptions are not intended to limit the present invention, and the present invention is not limited to the above examples. Changes, modifications, additions or replacements made by those skilled in the art within the scope of the present invention shall also belong to the present invention. protection scope of the invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211457527.8A CN115822604B (en) | 2022-11-21 | 2022-11-21 | Cobalt-rich crust exploitation system and method for carbon dioxide jet flow manufacturing temperature difference effect |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211457527.8A CN115822604B (en) | 2022-11-21 | 2022-11-21 | Cobalt-rich crust exploitation system and method for carbon dioxide jet flow manufacturing temperature difference effect |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115822604A CN115822604A (en) | 2023-03-21 |
| CN115822604B true CN115822604B (en) | 2023-06-30 |
Family
ID=85529734
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211457527.8A Active CN115822604B (en) | 2022-11-21 | 2022-11-21 | Cobalt-rich crust exploitation system and method for carbon dioxide jet flow manufacturing temperature difference effect |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115822604B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117449857A (en) * | 2023-04-19 | 2024-01-26 | 中国海洋大学 | Submarine polymetallic nodule CO 2 Jet flow acquisition device and method |
| CN117167016B (en) * | 2023-09-01 | 2024-02-13 | 中国海洋大学 | A device that uses supercritical CO2 to achieve efficient collection and transportation of deep-sea ores |
| CN117326357A (en) * | 2023-11-16 | 2024-01-02 | 上海市东方海事工程技术有限公司 | Low-disturbance harvesting integrated ore collecting device for deep sea mining |
| CN117662983B (en) * | 2023-11-20 | 2025-01-14 | 中国海洋大学 | Deep sea CO2Subsea carbon sequestration equipment and method for jet mining |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7165621B2 (en) * | 2004-08-10 | 2007-01-23 | Schlumberger Technology Corp. | Method for exploitation of gas hydrates |
| CN1721065A (en) * | 2005-06-20 | 2006-01-18 | 浙江大学 | Copper-based catalyst with manganese nodules and cobalt-rich crust as carrier and preparation method thereof |
| JP2010180528A (en) * | 2009-02-03 | 2010-08-19 | M Hikari Energy Kaihatsu Kenkyusho:Kk | Deep sea resource mining and recovery integrated ocean factory |
| DE102009029893B4 (en) * | 2009-06-23 | 2014-05-22 | Messer Group Gmbh | Apparatus and method for cooling and introducing a trickle or powdery material flow in a storage container |
| CN102409976B (en) * | 2011-12-02 | 2015-08-26 | 中国石油大学(华东) | Supercritical carbon dioxide radially horizontal well well system and boring method thereof |
| CN103742075B (en) * | 2013-12-18 | 2016-04-13 | 中国石油大学(北京) | Supercritical carbon dioxide abrasive jet flow perforation simulation experiment system |
| CN104863654B (en) * | 2015-04-21 | 2016-03-02 | 中国石油大学(华东) | A kind of supercritical carbon dioxide underground heat quarrying apparatus and method |
| CN104863595B (en) * | 2015-06-09 | 2017-04-12 | 长沙矿冶研究院有限责任公司 | Seabed cobalt-rich crust crushing and collecting integrated device |
| CN106939375A (en) * | 2017-04-10 | 2017-07-11 | 青岛海洋地质研究所 | Deep-sea hydrothermal metal sulfide gathers electrolysis system |
| CN109709134A (en) * | 2018-08-24 | 2019-05-03 | 中国石油大学(华东) | A wellbore self-circulation heat exchange experimental device and method |
| CN109026009B (en) * | 2018-10-17 | 2023-11-21 | 中南大学 | Mining head for cobalt-rich crust of submarine mineral resources |
| CN109899081A (en) * | 2019-04-02 | 2019-06-18 | 中铁工程装备集团有限公司 | Utilize the development machine of supercritical carbon dioxide jet stream broken rock |
| CN215672216U (en) * | 2021-09-23 | 2022-01-28 | 中煤(天津)地下工程智能研究院有限公司 | High-hardness rock soil rapid tunneling mechanism |
-
2022
- 2022-11-21 CN CN202211457527.8A patent/CN115822604B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN115822604A (en) | 2023-03-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115822604B (en) | Cobalt-rich crust exploitation system and method for carbon dioxide jet flow manufacturing temperature difference effect | |
| CN102477845B (en) | A drilling method for ultra-short radius horizontal wells | |
| CN102409976B (en) | Supercritical carbon dioxide radially horizontal well well system and boring method thereof | |
| CN108894755B (en) | A submarine natural gas hydrate extraction system and method | |
| CN110821448B (en) | Exploitation method and exploitation device for marine natural gas hydrate | |
| CN101182771A (en) | A method and device for exploiting seabed natural gas hydrate | |
| CN107642346A (en) | A kind of non-diagenesis gas hydrates neck eye of sea-bottom shallow, which returns, drags jet recovery method and quarrying apparatus | |
| CN107631899B (en) | A kind of continuous sampling system and sampling method for ocean gas hydrate | |
| CN115773114B (en) | Cobalt-rich crust ore collection device and method based on supercritical CO2 jet fracturing effect | |
| CN112228075B (en) | Device for exploiting marine weakly cemented non-diagenetic natural gas hydrate and its exploitation method | |
| CN101248162A (en) | Gas hydrate generation method, replacement method and mining method | |
| CN111411922B (en) | A kind of horizontal well fracturing and filling natural gas hydrate efficiency-enhancing production equipment and method | |
| CN102966309A (en) | High-pressure grinding material jet flow drill carriage device | |
| CN108425661A (en) | Coiled tubing steel grit jet stream perforating system | |
| CN114508336B (en) | An integrated device and method for drilling, unlocking and fracturing of soft coal seams | |
| CN107304671B (en) | Large-flow circulation mining matching technology for pore sandstone thermal reservoir to well unit body | |
| CN111648749A (en) | A mobile riser type mining system and mining method of natural gas hydrate in shallow surface layer of seabed | |
| CN102322264B (en) | Gas hydrate exploitation, well completion, collection and conveying platform system | |
| CN106401463B (en) | A kind of well system and its method for improving frozen soil layer drilling efficiency | |
| CN109131433B (en) | Rapid snow removal and icing method for high-speed train bogies with heat-carrying micro-sand jetting | |
| CN106837338A (en) | A kind of deep-sea exploitation of gas hydrates control method | |
| CN203878636U (en) | Spiral sludge sucking head applied to underwater dredging | |
| TW202018167A (en) | Resource collection system | |
| Pedchenko et al. | Technological complex for production, transportation and storage of gas from the offshore gas and gas hydrates fields | |
| CN202741444U (en) | Casting blank surface descaling device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |