[go: up one dir, main page]

CN115838644A - Microorganisms and method for improving fermentation yield of microbial hydrophobic compounds - Google Patents

Microorganisms and method for improving fermentation yield of microbial hydrophobic compounds Download PDF

Info

Publication number
CN115838644A
CN115838644A CN202211020662.6A CN202211020662A CN115838644A CN 115838644 A CN115838644 A CN 115838644A CN 202211020662 A CN202211020662 A CN 202211020662A CN 115838644 A CN115838644 A CN 115838644A
Authority
CN
China
Prior art keywords
seq
polypeptide
encodes
amino acid
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211020662.6A
Other languages
Chinese (zh)
Inventor
马田
刘然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Hesheng Technology Co ltd
Original Assignee
Wuhan Hesheng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Hesheng Technology Co ltd filed Critical Wuhan Hesheng Technology Co ltd
Priority to CN202211020662.6A priority Critical patent/CN115838644A/en
Publication of CN115838644A publication Critical patent/CN115838644A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • C12N1/185Saccharomyces isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • C12P19/62Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin the hetero ring having eight or more ring members and only oxygen as ring hetero atoms, e.g. erythromycin, spiramycin, nystatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • C12P19/62Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin the hetero ring having eight or more ring members and only oxygen as ring hetero atoms, e.g. erythromycin, spiramycin, nystatin
    • C12P19/626Natamycin; Pimaricin; Tennecetin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01158Phospholipid:diacylglycerol acyltransferase (2.3.1.158)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03004Phosphatidate phosphatase (3.1.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01002Acetyl-CoA carboxylase (6.4.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/465Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention provides a microorganism. The microorganisms include: overexpression comprises at least one of the following genes: ACCA2, ACCB, ACCE, DGAT, LPP β, OLE1A, OLE1B, OLE1C, OLE1D, ecaacca, ecACCB, ecACCC, ecACCD, pgpB, atfA, fabA, fabB; wherein the microorganism is a microorganism having the potential to synthesize hydrophobic compounds. According to the embodiment of the invention, the yield of the hydrophobic compound of the microorganism can be improved by more than 10 percent, for example, the yield of lycopene is improved by more than 40 percent, the yield of natamycin is improved by 14 percent, the yield of spinosad is improved by 20 percent, the yield of astaxanthin is improved by 50 percent, and the product has low toxicity to cell growth.

Description

微生物及提高微生物疏水化合物发酵产量的方法Microorganism and method for increasing the fermentation yield of hydrophobic compounds from microorganisms

本申请是申请日为2017年10月13日、申请号为201710955112.6、发明名称为“微生物及提高微生物疏水化合物发酵产量的方法”的专利申请的分案申请。This application is a divisional application of a patent application with an application date of October 13, 2017, application number 201710955112.6, and invention name “Microorganisms and methods for increasing the fermentation yield of hydrophobic compounds in microorganisms”.

技术领域Technical Field

本发明涉及生物技术领域,具体涉及一种通过脂质合成提高疏水产物产量的方法。The invention relates to the field of biotechnology, and in particular to a method for increasing the yield of hydrophobic products through lipid synthesis.

背景技术Background Art

微生物发酵生产化合物已经是非常成熟的技术,比如酿酒酵母(Saccharomycescerevisia)作为成熟的可大规模发酵的食品安全菌株,有着清晰的遗传背景,成熟的遗传操作体系,是很多食品级产物的研究改造对象,也是工业生产中的模式菌株。成熟的发酵平台及周边产业也为后续的下游产品推广创造了便利。Microbial fermentation to produce compounds is already a very mature technology. For example, Saccharomyces cerevisiae is a mature food safety strain that can be fermented on a large scale. It has a clear genetic background and a mature genetic operation system. It is the research and transformation object of many food-grade products and a model strain in industrial production. The mature fermentation platform and surrounding industries have also created convenience for the subsequent promotion of downstream products.

然而,如何进一步提高微生物发酵产物仍是科研工作者拭待解决的关键问题。However, how to further improve the products of microbial fermentation remains a key issue that researchers are waiting to solve.

发明内容Summary of the invention

本申请是发明人基于对下列问题和事实的发现而做出的:This application is made by the inventor based on the discovery of the following problems and facts:

大多数疏水性化合物在微生物体内合成后由于溶解度较低,导致产量无法大量积累,比如番茄红素是典型的疏水性化合物,由于其水溶性较差,产物合成后定位于细胞膜,这不但限制了产物的积累,同时也对细胞产生毒性,产物的积累被限制在一定水平,细胞生长也同时受限。这对于工程菌株的放大生产造成了巨大的障碍。发明人在实验中意外地发现,如果微生物体内的脂质含量得到提高,那么微生物体内疏水化合物的产量会得到显著提高。经过发明人进一步地研究发现,微生物体内的脂质含量得到提高,会为番茄红素、虾青素、纳他霉素、多杀菌素等这类疏水性产物在体内的积累提供承载环境,并会尽可能小地减少疏水性产物在细胞内的毒性,在提高疏水性产物的积累的同时,可有效降低疏水性产物积累对细胞生长的影响。Most hydrophobic compounds cannot accumulate in large quantities due to their low solubility after being synthesized in microorganisms. For example, lycopene is a typical hydrophobic compound. Due to its poor water solubility, the product is located in the cell membrane after synthesis, which not only limits the accumulation of the product, but also produces toxicity to the cells. The accumulation of the product is limited to a certain level, and cell growth is also limited at the same time. This has caused a huge obstacle to the amplification of engineering strains. The inventor unexpectedly found in the experiment that if the lipid content in the microorganism is increased, the output of hydrophobic compounds in the microorganism will be significantly improved. After further research by the inventor, it was found that the increase in the lipid content in the microorganism will provide a carrying environment for the accumulation of hydrophobic products such as lycopene, astaxanthin, natamycin, and spinosad in the body, and will minimize the toxicity of hydrophobic products in the cell. While increasing the accumulation of hydrophobic products, the effect of hydrophobic product accumulation on cell growth can be effectively reduced.

基于此,在本发明的第一方面,本发明提出了一种微生物。根据本发明的实施例,所述微生物包括:过表达包括选自下列基因的至少之一:PAH1,DGA1,OLE1,ACC1**,ACCA2,ACCB,ACCE,DGAT,LPPβ,OLE1A,OLE1B,OLE1C,OLE1D,EcACCA,EcACCB,EcACCC,EcACCD,pgpB,atfA,fabA,fabB;以及沉默包括选自FLD1,TGL3的至少之一,其中,所述微生物是具有合成疏水化合物潜能的微生物。根据本发明实施例微生物的疏水化合物的产量可提高10%以上,如番茄红素的产量提高了40%以上,纳他霉素的产量提高了14%,多杀菌素的产量提高了20%,虾青素的产量提高了50%,且产物对细胞生长的毒性小。Based on this, in the first aspect of the present invention, the present invention proposes a microorganism. According to an embodiment of the present invention, the microorganism includes: overexpression includes at least one of the following genes: PAH1, DGA1, OLE1, ACC1**, ACCA2, ACCB, ACCE, DGAT, LPPβ, OLE1A, OLE1B, OLE1C, OLE1D, EcACCA, EcACCB, EcACCC, EcACCD, pgpB, atfA, fabA, fabB; and silencing includes at least one of FLD1, TGL3, wherein the microorganism is a microorganism with the potential to synthesize hydrophobic compounds. According to an embodiment of the present invention, the yield of hydrophobic compounds of the microorganism can be increased by more than 10%, such as the yield of lycopene is increased by more than 40%, the yield of natamycin is increased by 14%, the yield of spinosad is increased by 20%, the yield of astaxanthin is increased by 50%, and the product has low toxicity to cell growth.

根据本发明的实施例,上述微生物还可以进一步包括如下附加技术特征至少之一:According to an embodiment of the present invention, the above-mentioned microorganism may further include at least one of the following additional technical features:

根据本发明的实施例,所述PAH1,DGA1,OLE1,ACC1**来源于酿酒酵母,优选地,所述ACCA2,ACCB,ACCE,DGAT,LPPβ,OLE1A,OLE1B,OLE1C,OLE1D来源于链霉菌,优选地,所述EcACCA,EcACCB,EcACCC,EcACCD,pgpB,atfA,fabA,fabB来源于大肠杆菌。According to an embodiment of the present invention, the PAH1, DGA1, OLE1, ACC1** are derived from Saccharomyces cerevisiae, preferably, the ACCA2, ACCB, ACCE, DGAT, LPPβ, OLE1A, OLE1B, OLE1C, OLE1D are derived from Streptomyces, preferably, the EcACCA, EcACCB, EcACCC, EcACCD, pgpB, atfA, fabA, fabB are derived from Escherichia coli.

根据本发明的实施例,上述基因所编码多肽的氨基酸序列如SEQ ID NO:1,6~27所示。According to an embodiment of the present invention, the amino acid sequence of the polypeptide encoded by the above gene is shown in SEQ ID NOs: 1, 6-27.

MSEESLFESSPQKMEYEITNYSERHTELPGHFIGLNTVDKLEESPLRDFVKSHGGHTVISKILIANNGIAAVKEIRSVRKWAYETFGDDRTVQFVAMATPEDLEANAEYIRMADQYIEVPGGTNNNNYANVDLIVDIAERADVDAVWAGWGHASENPLLPEKLSQSKRKVIFIGPPGNAMRSLGDKISSTIVAQSAKVPCIPWSGTGVDTVHVDEKTGLVSVDDDIYQKGCCTSPEDGLQKAKRIGFPVMIKASEGGGGKGIRQVEREEDFIALYHQAANEIPGSPIFIMKLAGRARHLEVQLLADQYGTNISLFGRDCSVQRRHQKIIEEAPVTIAKAETFHEMEKAAVRLGKLVGYVSAGTVEYLYSHDDGKFYFLELNPRLQVEHPTTEMVSGVNLPAAQLQIAMGIPMHRISDIRTLYGMNPHSASEIDFEFKTQDATKKQRRPIPKGHCTACRITSEDPNDGFKPSGGTLHELNFRSSSNVWGYFSVGNNGNIHSFSDSQFGHIFAFGENRQASRKHMVVALKELSIRGDFRTTVEYLIKLLETEDFEDNTITTGWLDDLITHKMTAEKPDPTLAVICGAATKAFLASEEARHKYIESLQKGQVLSKDLLQTMFPVDFIHEGKRYKFTVAKSGNDRYTLFINGSKCDIILRQLADGGLLIAIGGKSHTIYWKEEVAATRLSVDSMTTLLEVENDPTQLRTPSPGKLVKFLVENGEHIIKGQPYAEIEVMKMQMPLVSQENGIVQLLKQPGSTIVAGDIMAIMTLDDPSKVKHALPFEGMLPDFGSPVIEGTKPAYKFKSLVSTLENILKGYDNQVIMNASLQQLIEVLRNPKLPYSEWKLHISALHSRLPAKLDEQMEELVARSLRRGAVFPARQLSKLIDMAVKNPEYNPDKLLGAVVEPLADIAHKYSNGLEAHEHSIFVHFLEEYYEVEKLFNGPNVREENIILKLRDENPKDLDKVALTVLSHSKVSAKNNLILAILKHYQPLCKLSSKVSAIFSTPLQHIVELESKATAKVALQAREILIQGALPSVKERTEQIEHILKSSVVKVAYGSSNPKRSEPDLNILKDLIDSNYVVFDVLLQFLTHQDPVVTAAAAQVYIRRAYRAYTIGDIRVHEGVTVPIVEWKFQLPSAAFSTFPTVKSKMGMNRAVAVSDLSYVANSQSSPLREGILMAVDHLDDVDEILSQSLEVIPRHQSSSNGPAPDRSGSSASLSNVANVCVASTEGFESEEEILVRLREILDLNKQELINASIRRITFMFGFKDGSYPKYYTFNGPNYNENETIRHIEPALAFQLELGRLSNFNIKPIFTDNRNIHVYEAVSKTSPLDKRFFTRGIIRTGHIRDDISIQEYLTSEANRLMSDILDNLEVTDTSNSDLNHIFINFIAVFDISPEDVEAAFGGFLERFGKRLLRLRVSSAEIRIIIKDPQTGAPVPLRALINNVSGYVIKTEMYTEVKNAKGEWVFKSLGKPGSMHLRPIATPYPVKEWLQPKRYKAHLMGTTYVYDFPELFRQASSSQWKNFSADVKLTDDFFISNELIEDENGELTEVEREPGANAIGMVAFKITVKTPEYPRGRQFVVVANDITFKIGSFGPQEDEFFNKVTEYARKRGIPRIYLAANSGARIGMAEEIVPLFQVAWNDAANPDKGFQYLYLTSEGMETLKKFDKENSVLTERTVINGEERFVIKTIIGSEDGLGVECLRGSGLIAGATSRAYHDIFTITLVTCRSVGIGAYLVRLGQRAIQVEGQPIILTGAPAINKMLGREVYTSNLQLGGTQIMYNNGVSHLTAVDDLAGVEKIVEWMSYVPAKRNMPVPILETKDTWDRPVDFTPTNDETYDVRWMIEGRETESGFEYGLFDKGSFFETLSGWAKGVVVGRARLGGIPLGVIGVETRTVENLIPADPANPNSAETLIQEPGQVWHPNSAFKTAQAINDFNNGEQLPMMILANWRGFSGGQRDMFNEVLKYGSFIVDALVDYKQPIIIYIPPTGELRGGSWVVVDPTINADQMEMYADVNARAGVLEPQGMVGIKFRREKLLDTMNRLDDKYRELRSQLSNKSLAPEVHQQISKQLADRERELLPIYGQISLQFADLHDRSSRMVAKGVISKELEWTEARRFFFWRLRRRLNEEYLIKRLSHQVGEASRLEKIARIRSWYPASVDHEDDRQVATWIEENYKTLDDKLKGLKLESFAQDLAKKIRSDHDNAIDGLSEVIKMLSTDDKEKLLKTLK(SEQ ID NO:1)。MSEESLFESSPQKMEYEITNYSERHTELPGHFIGLNTVDKLEESPLRDFVKSHGGHTVISKILIANNGIAAVKEIRSVRKWAYETFGDDRTVQFVAMATPEDLEANAEYIRMADQYIEVPGGTNNNNYANVDLIVDIAERADVDAVWAGWGHASENPLLPEKLSQSKRKVIFIGPPGNAMRSLGDKISSTIVAQSAKVPCIPWSGTGVDTVHVDEK TGLVSVDDDIYQKGCCTSPEDGLQKAKRIGFPVMIKASEGGGGKGIRQVEREEDFIALYHQAA NEIPGSPIFIMKLAGRARHLEVQLLADQYGTNISLFGRDCSVQRRHQKIIEEAPVTIAKAETFHEMEKAAVRLGKLVGYVSAGTVEYLYSHDDGKFYFLELNPRLQVEHPTTEMVSGVNLPAAQLQIAMGIPMHRISDIRTLYGMNPHSASEIDFEFKTQDATKKQRRPIPKGHCTACRITSEDPNDGFKPSGGTLHELNFRSSSNVWGY FSVGNNGNIHSFSDSQFGHIFAFGENRQASRKHMVVALKELSIRGDFRTTVEYLIKLLETEDFEDNTITT GWLDDLITHKMTAEKPDPTLAVICGAATKAFLASEEARHKYIESLQKGQVLSKDLLQTMFPVDFIHEGKRYKFTVAKSGNDRYTLFINGSKCDIILRQLADGGLLIAIGGKSHTIYWKEEVAATRLSVDSMTTLLEVENDPTQLRTPSPGKLVKFLVENGEHIIKGQPYAEIEVMKMQMPLVSQENGIVQLLKQPGSTIVAGDIMAIMTL DDPSKVKHALPFEGMLPDFGSPVIEGTKPAYKFKSLVSTLENILKGYDNQVIMNASLQQLIEVLRNPKL PYSEWKLHISALHSRLPAKLDEQMEELVARSLRRGAVFPARQLSKLIDMAVKNPEYNPDKLLGAVVEPLADIAHKYSNGLEAHEHSIFVHFLEEYYEVEKLFNGPNVREENIILKLRDENPKDLDKVALTVLSHSKVSAKNNLILAILKHYQPLCKLSSKVSAIFSTPLQHIVELESKATAKVALQAREILIQGALPSVKERTEQIEHILKS SVVKVAYGSSNPKRSEPDLNILKDLIDSNYVVFDVLLQFLTHQDPVVTAAAAQVYIRRAYRAYTIGDI RVHEGVTVPIVEWKFQLPSAAFSTFPTVKSKMGMNRAVAVSDLSYVANSQSSPLREGILMAVDHLDDVDEILSQSLEVIPRHQSSSNGPAPDRSGSSASLSNVANVCVASTEGFESEEEILVRLREILDLNKQELINASIRRITFMFGFKDGSYPKYYTFNGPNYNENETIRHIEPALAFQLELGRLSNFNIKPIFTDNRNIHVYEAVSKTSPLDKRFFTRGIIRTGHI RDDISIQEYLTSEANRLMSDILDNLEVTDTSNSDLNHIFINFIAVFDISP EDVEAAFGGFLERFGKRLLRLRVSSAEIRIIIKDPQTGAPVPLRALINNVSGYVIKTEMYTEVKNAKGEWVFKSLGKPGSMHLRPIATPYPVKEWLQPKRYKAHLMGTTYVYDFPELFRQASSSQWKNFSADVKLTDDFFISNELIEDENGELTEVEREPGANAIGMVAFKITVKTPEYPRGRQFVVVANDITFKIGSFGPQEDEFFNKVTEY ARKRGIPRIYLAANSGARIGMAEEIVPLFQVAWNDAANPDKGFQYLYLTSEGMETLKKFDKENSVLT ERTVINGEERFVIKTIIGSEDGLGVECLRGSGLIAGATSRAYHDIFTITLVTCRSVGIGAYLVRLGQRAIQVEGQPIILTGAPAINKMLGREVYTSNLQLGGTQIMYNNGVSHLTAVDDLAGVEKIVEWMSYVPAKRNMPVPILETKDTWDRPVDFTPTNDETYDVRWMIEGRETESGFEYGLFDKGSFFETLSGWAKGVVVGRARLGGIPLGVIG VETRTVENLIPADPANPNSAETLIQEPGQVWHPNSAFKTAQAINDFNNGEQLPMMILANWRGFS GGQRDMFNEVLKYGSFIVDALVDYKQPIIIYIPPTGELRGGSWVVVDPTINADQMEMYADVNARAGVLEPQGMVGIKFRREKLLDTMNRLDDKYRELRSQLSNKSLAPEVHQQISKQLADRERELLPIYGQISLQFADLHDRSRMVAKGVISKELEWTEARRFFFWRLRRRLNEEYLIKRLSHQVGEASRLEKIARIRSWYPASV DHEDDRQVATWEENYKTLDDKLKGLKLESFAQDLAKKIRSDHDNAIDGLSEVIKMLSTDDKEKLLKTLK (SEQ ID NO: 1).

MVDKRESYTKEDLLASGRGELFGAKGPQLPAPNMLMMDRVVKMTETGGNFDKGYVEAELDINPDLWFFGCHFIGDPVMPGCLGLDAMWQLVGFYLGWLGGEGKGRALGVGEVKFTGQVLPTAKKVTYRIHFKRIVNRRLIMGLADGEVLVDGRLIYTASDLKVGLFQDTSAF(SEQ ID NO:6)。MVDKRESYTKEDLLASGRGELFGAKGPQLPAPNMLMMDRVVKMTETGGNFDKGYVEAELDINPDLWFFGCHFIGDPVMPGGLDAMWQLVGFYLGWLGGEGKGRALGVGEVKFTGQVLPTAKKVTYRIHFKRIVNRRLIMGLADGEVLVDGRLIYTASDLKVGLFQDTSAF (SEQ ID NO: 6).

MPTSGTTIELIDDQFPKDDSASSGIVDEVDLTEANILATGLNKKAPRIVNGFGSLMGSKEMVSVEFDKKGNEKKSNLDRLLEKDNQEKEEAKTKIHISEQPWTLNNWHQHLNWLNMVLVCGMPMIGWYFALSGKVPLHLNVFLFSVFYYAVGGVSITAGYHRLWSHRSYSAHWPLRLFYAIFGCASVEGSAKWWGHSHRIHHRYTDTLRDPYDARRGLWYSHMGWMLLKPNPKYKARADITDMTDDWTIRFQHRHYILLMLLTAFVIPTLICGYFFNDYMGGLIYAGFIRVFVIQQATFCINSLAHYIGTQPFDDRRTPRDNWITAIVTFGEGYHNFHHEFPTDYRNAIKWYQYDPTKVIIYLTSLVGLAYDLKKFSQNAIEEALIQQEQKKINKKKAKINWGPVLTDLPMWDKQTFLAKSKENKGLVIISGIVHDVSGYISEHPGGETLIKTALGKDATKAFSGGVYRHSNAAQNVLADMRVAVIKESKNSAIRMASKRGEIYETGKFF(SEQ ID NO:7)。MPTSGTTIELIDDQFPKDDSASSGIVDEVDLTEANILATGLNKKAPRIVNGFGSLMGSKEMVSVEFDKKGNEKKSNLDRLLEKDNQEKEEAKTKIHISEQPWTLNNWHQHLNWLNMVLVCGMPMIGWYFALSGKVPLHLNVFLFSVFYYAVGGVSITAGYHRLWSHRSYSAHWPLRLFYAIFGCASVEGSAKWWGHSHRIHHRYTDTLRDPY DARRGLWYSHMGWMLLKPNPKYKARADITDMTDDWTIRFQHRHYI LLMLLTAFVIPTLICGYFFNDYMGGLIYAGFIRVFVIQQATFCINSLAHYIGTQPFDDRRTPRDNWITAIVTFGEGYHNFHHEFPTDYRNAIKWYQYDPTKVIIYLTSLVGLAYDLKKFSQNAIEEALIQQEQKKINKKKAKINWGPVLTDLPMWDKQTFLAKSKENKGLVIISGIVHDVSGYISEHPGGETLIKTALGKDAT KAFSGGVYRHSNAAQNVLADMRVAVIKESKNSAIRMASKRGEIYETGKFF (SEQ ID NO: 7).

MQYVGRALGSVSKTWSSINPATLSGAIDVIVVEHPDGRLSCSPFHVRFGKFQILKPSQKKVQVFINEKLSNMPMKLSDSGEAYFVFEMGDQVTDVPDELLVSPVMSATSSPPQSPETSILEGGTEGEGEGENENKKKEKKVLEEPDFLDINDTGDSGSKNSETTGSLSPTESSTTTPLDSVEERKLVEQRTKNFQQKLNKKLTEIHIPSKLDNNGDLLLDTEGYKPNKNMMHDTDIQLKQLLKDEFGNDSDISSFIKEDKNGNIKIVNPYEHLTDLSPPGTPPTMATSGSVLGLDAMESGSTLNSLSSSPSGSDTEDETSFSKEQSSKSEKTSKKGTAGSGETEKRYIRTIRLTNDQLKCLNLTYGENDLKFSVDHGKAIVTSKLFVWRWDVPIVISDIDGTITKSDALGHVLAMIGKDWTHLGVAKLFSEISRNGYNILYLTARSAGQADSTRSYLRSIEQNGSKLPNGPVILSPDRTMAALRREVILKKPEVFKIACLNDIRSLYFEDSDNEMDTEEKSTPFFAGFGNRITDALSYRTVGIPSSRIFTINTEGEVHMELLELAGYRSSYIHINELVDHFFPPVSLDSVDLRTNTSMVPGSPPNRTLDNFDSEITSGRKTLFRGNQEEKFTDVNFWRDPLVDIDNLSDISNDDSDNIDEDTDVSQQSNVSRNRANSVKTAKVTKAPQRNVSGSTNNNEVLAASSDVENASDLVGSHSSSGSTPNKSTMSKGDIGKQIYLELGSPLASPKLRYLDDMDDEDSNYNRTKSRRASSAAATSIDKEFKKLSVSKAGAPTRIVSKIDVSNDVHSLGNSDTESRREQSVNETGRNQLPHNSMDDKDLDSRVSDEFDDDEFDEDEFED(SEQ ID NO:8)。MQYVGRALGSVSKTWSSINPATLSGAIDVIVVEHPDGRLSCSPFHVRFGKFQILKPSQKKVQVFINEKLSNMPMKLSDSGEAYFVFEMGDQVTDVPDELLVSPVMSATSSPPQSPETSILEGGTEGEGEGENENKKKEKKVLEEPDFLDINDTGDSGSKNSETTGSLSPTESSTTTPLDSVEERKLVEQRTKNFQQKLNKKLTEIHIPSKLDNNG D LLLDTEGYKPNKNMMHDTDIQLKQLLKDEFGNDSDISSFIKEDKNGNIKIVNPYEHLTDLSPPGTPPTMATSGSVLGLDAMESGSTLNSSSPSGSDTEDETSFSKEQSSKSEKTSKKGTAGSGETEKRYIRTIRLTNDQLKCLNLTYGENDLKFSVDHGKAIVTSKLFVWRWDVPIVISDIDGTITKSDALGHVLAMIGKDWTHLGVAKLFSEIS RNGYNILYLTARSAGQADSTRSYLRSIEQNGSKLPNGPVILSPDRTMAALRREVILKKPEVFKIACLNDIRSLYFEDSDNEMDTEEKSTPFFAGFGNRITDALSYRTVGIPSSRIFTINTEGEVHMELLELAGYRSSYIHINELVDHFFPPVSLDSVDLRTNTSMVPGSPPNRTLDNFDSEITSGRKTLFRGNQEEKFTDVNFWRDPLVDIDNLSDISNDDSDNIDEDTDTD VSQQSNVSRNRANSVKTAKVTKAPQRNVSGSTNNNEVLAASSDVENASDLVGSHSSSGSTPNKSTMSKGDIGKQIYLELGSPLASPKLRYLDDMDDEDSNYNRTKSRRASSAAATSIDKEFKKLSVSKAGAPTRIVSKIDVSNDVHSLGNSDTESRREQSVNETGRNQLPHNSMDDKDLDSRVSDEFDDDEFDEDEFED (SEQ ID NO: 8).

MSGTFNDIRRRKKEEGSPTAGITERHENKSLSSIDKREQTLKPQLESCCPLATPFERRLQTLAVAWHTSSFVLFSIFTLFAISTPALWVLAIPYMIYFFFDRSPATGEVVNRYSLRFRSLPIWKWYCDYFPISLIKTVNLKPTFTLSKNKRVNEKNYKIRLWPTKYSINLKSNSTIDYRNQECTGPTYLFGYHPHGIGALGAFGAFATEGCNYSKIFPGIPISLMTLVTQFHIPLYRDYLLALGISSVSRKNALRTLSKNQSICIVVGGARESLLSSTNGTQLILNKRKGFIKLAIQTGNINLVPVFAFGEVDCYNVLSTKKDSVLGKMQLWFKENFGFTIPIFYARGLFNYDFGLLPFRAPINVVVGRPIYVEKKITNPPDDVVNHFHDLYIAELKRLYYENREKYGVPDAELKIVG(SEQ ID NO:9)。MSGTFNDIRRRKEEGSPTAGITERHENKSLSSIDKREQTLKPQLESCCPLATPFERRLQTLAVAWHTSSFVLFSIFTLFAISTPALWVLAIPYMIYFFFDRSPATGEVVNRYSLRFRSLPIWKWYCDYFPISLIKTVNLKPTFTLSKNKRVNEKNYKIRLWPTKYSINLKSNSTIDYRNQECTGPTYLFGYHPHGIGALGAFGAFATEGC NEW YORK (SEQ ID NO: 9).

MKINVSRPLQFLQWSSYIVVAFLIQLLIILPLSILIYHDFYLRLLPADSSNVVPLNTFNILNGVQFGTKFFQSIKSIPVGTDLPQTIDNGLSQLIPMRDNMEYKLDLNLQLYCQSKTDHLNLDNLLIDVYRGPGPLLGAPGGSNSKDEKIFHTSRPIVCLALTDSMSPQEIEQLGPSRLDVYDEEWLNTIRIEDKISLESSYETISVFLKTEIAQRNLIIHPESGIKFRMNFEQGLRNLMLRKRFLSYIIGISIFHCIICVLFFITGCTAFIFVRKGQEKSKKHS(SEQ ID NO:10)。MKINVSRPLQFLQWSSYIVVAFLIQLLIILPLSILIYHDFYLRLLPADSSNVVPLNTFNILNGVQFGTKFFQSIKSIPVGTDLPQTIDNGLSQLIPMRDNMEYKLDLNLQLYCQSKTDHLNLDNLLIDVYRGPGPLLGAPGGSNSKDEKIFHTSRPIVCLALTDSMSPQEIEQLGPSRLDVYDEEWLNTIRIEDKISLESSYETIS VFLKTEIAQRNLIIHPESGIKFRMNFEQGLRNLMLRKRFLSYIIGISIFHCIICVLFFITGCTAFIFVRKGQEKSKKHS (SEQ ID NO: 10).

MKETAQEYKVSAVIPTLLKNWILRVVYATLDHIPPFVWEILHVITDIYFFWVQKLINYVRPHSRVIYYNAIKKLDECDTYQMWCQQASVVDEITGANLWRRNFFSRRYDFNSVIEQYSILENMLREEKYDVVKEKFSTTGPCMLRNFAGIGDKKLFTKSLMGTKLLIEQYLTRILEGLDILNNQTLTPTSFFQRCKLSLGTTALILQGGSLFGLFHLGVIRGLLLQDLMPNIISGSSMGACVASLFGCLSNEQLKQLLTDDNLLNIIKNDVDLLKSCGYGNLEQHLNLGTLIQNLIHHGYSQDVYLFIRFVMKYIVKEKTFEEVYQITGKVFNIVIHPTDKSCPNLLNYVTTPNVLIKSAIECSLGSGVISEDTSLLCKNLENEIEPFLNINKNKQVKFLTPENANNPSITESPYTRLTELFNVNNFIVSLARPYLAPLVVNDLKHEIKTSKYYYYKHYPNMPPINANTVRKTQRSSSQSPIKAGTVEDLEPEPLMSPVPPSSAVNDSAEYIIPELGIPQLNFTEMEPLAFKFKYHLERKLKNIATMEFRHRMEVLDNLGLLCSLIKRLIIDEKTPRSATEIAVVPRMKSLSLTRIIEGQLNNIPYWIKSGERSTWPALALIKTRCAVEFKLDDIIRARRSR(SEQ ID NO:11)。MKETAQEYKVSAVIPTLLKNWILRVVYATLDHIPPFVWEILHVITDIYFFWVQKLINYVRPHSRVIYYNAIKKLDECDTYQMWCQQASVVDEITGANLWRRNFFSRRYDFNSVIEQYSILENMLREEKYDVVKEKFSTTGPCMLRNFAGIGDKKLFTKSLMGTKLLIEQYLTRILEGLDILNNQTLTPTSFFQRCKLSLGTTALILQGGSL FGLFHLGVIRGLLLQDLMPNIISGSSMGACVASLFGCLSNEQLKQLLTDDNLLNIIKNDVDLLKSCGYGNLEQHLNLGTLIQNLIHHGYSQDVYLFIRFVMKYIVKEKTFEE VYQITGKVFNIVIHPTDKSCPNLLNYVTTPNVLIKSAIECSLGSGVISEDTSLLCKNLENEIEPFLNINKNKQVKFLTPENANNPSITESPYTRLTELFNVNNFIVSLARPYLAPLVVNDLKHEIKTSKYYYYKHYPNMPPINANTVRKTQRSSSQSPIKAGTVEDLEPEPLMSPVPPSSAVNDSAEYIIPELGIPQLNFTEMEPLAFKFKYHLER KLKNIATMEFRHRMEVLDNLGLLCSLIKRLIIDEKTPRSATEIAVVPRMKSLSLTRIIEGQLNNIPYWIKSGERSTWPALALIKTRCAVEFKLDDIIRARRSR (SEQ ID NO: 11).

MRKVLIANRGEIAVRVARACRDAGIASVAVYADPDRDALHVRAADEAFALGGDTPATSYLDIAKVLKAARESGADAIHPGYGFLSENAEFAQAVLDAGLIWIGPPPHAIRDLGDKVAARHIAQRAGAPLVAGTPDPVSGADEVVAFAKEHGLPIAIKAAFGGGGRGLKVARTLEEVPELYDSAVREAVAAFGRGECFVERYLDKPRHVETQCLADTHGNVVVVSTRDCSLQRRHQKLVEEAPAPFLSEAQTEQLYSSSKAILKEAGYVGAGTVEFLVGMDGTISFLEVNTRLQVEHPVTEEVAGIDLVREMFRIADGEELGYDDPALRGHSFEFRINGEDPGRGFLPAPGTVTLFDAPTGPGVRLDAGVESGSVIGPAWDSLLAKLIVTGRTRAEALQRAARALDEFTVEGMATAIPFHRTVVRDPAFAPELTGSTDPFTVHTRWIETEFVNEIKPFTTPADTETDEESGRETVVVEVGGKRLEVSLPSSLGMSLARTGLAAGARPKRRAAKKSGPAASGDTLASPMQGTIVKIAVEEGQEVQEGDLIVVLEAMKMEQPLNAHRSGTIKGLTAEVGASLTSGAAICEIKD(SEQ ID NO:12)。MRKVLIANRGEIAVRVARACRDAGIASVAVYADPDRDALHVRAADEAFALGGDTPATSYLDIAKVLKAARESGADAIHPGYGFLSENAEFAQAVLDAGLIWIGPPPHAIRDLGDKVAARHIAQRAGAPLVAGTPDPVSGADEVVAFAKEHGLPIAIKAAFGGGGRGLKVARTLEEVPELYDSAVREAVAAFGRGECFVERYLDKPRHVETQCLADTHGNVVVV STRDCSLQRRHQKLVEEAPAPFLSEAQTEQLYSSSKAILKEAGYVGAGTVEFLVGMDGTISFLEVNTRLQVEHP VTEEVAGIDLVREMFRIADGEELGYDDPALRGHSFEFRINGEDPGRGFLPAPGTVTLFDAPTGPGVRLDAGVESGSVIGPAWDSLLAKLIVTGRTRAEALQRAARALDEFTVEGMATAIPFHRTVVRDPAFAPELTGSTDPFTVHTRWIETEFVNEIKPFTTPADTETDEESGRETVVVEVGGKRLEVSLPSSLGMSLARTGLAAGARPKRRAAKKSGPAASGDTLASPMQ GTIVKIAVEEGQEVQEGDLIVVLEAMKMEQPLNAHRSGTIKGLTAEVGASLTSGAAICEIKD (SEQ ID NO: 12).

MTVLDEAPGEPTDARGRVAELHGIRAAALAGPSEKATAAQHAKGKLTARERIELLLDPGSFREVEQLRRHRATGFGLEAKKPYTDGVITGWGTVEGRTVFVYAHDFRIFGGALGEAHATKIHKIMDMAIAAGAPLVSLNDGAGARIQEGVSALAGYGGIFQRNTKASGVIPQISVMLGPCAGGAAYSPALTDFVFMVRDTSQMFITGPDVVKAVTGEEITQNGLGGADVHAETSGVCHFAYDDEETCLAEVRYLLSLLPQNNRENPPRAESSDPVDRRSDTLLDLVPADGNRPYDMTKVIEELVDEGEYLEVHERWARNIICALARLDGRVVGIVANQPQALAGVLDIEASEKAARFVQMCDAFNIPIITLLDVPGFLPGVDQEHGGIIRHGAKLLYAYCNATVPRISLILRKAYGGAYIVMDSQSIGADLTYAWPTNEIAVMGAEGAANVIFRRQIADAEDPEAMRARMVKEYKSELMHPYYAAERGLVDDVIDPAETREVLITSLAMLHTKHADLPSRKHGNPPQ(SEQ ID NO:13)。MTVLDEAPGEPTDARGRVAELHGIRAAALAGPSEKATAAQHAKGKLTARERIELLLDPGSFREVEQLRRHRATGFGLEAKKPYTDGVITGWGTVEGRTVFVYAHDFRIFGGALGEAHATKIHKIMDMAIAAGAPLVSLNDGAGARIQEGVSALAGYGGIFQRNTKASGVIPQISVMLGPCAGGAAYSPALTDFVFMVRDTSQMFITGPDVVKAVTGEEITQNG LGGADVHAETSGVCHFAYDDEETCLAEVRYLLSLLPQNNREN PPRAESSDPVDRRSDTLLDLVPADGNRPYDMTKVIEELVDEGEYLEVHERWARNIICALARLDGRVVGIVANQPQALAGVLDIEASEKAARFVQMCDAFNIPIITLLDVPGFLPGVDQEHGGIIRHGAKLLYAYCNATVPRISLILRKAYGGAYIVMDSQSIGADLTYAWPTNEIAVMGAEGAANVIFRRQIADAEDPEAMRARMVKEYKSELMH PYYAAERGLVDDVIDPAETREVLITSLAMLHTKHADLPSRKHGNPPQ (SEQ ID NO: 13).

MSPADIRVEKGHAEPEEVAAITALLLARAAARPAEIAPTHGGGRARAGWRRLEREPGFRAPHSWR(SEQID NO:14)。MSPADIRVEKGHAEPEEVAAITALLLARAAARPAEIAPTHGGGRARAGWRRLEREPGFRAPHSWR (SEQ ID NO: 14).

MTPDPLAPLDLAFWNIESAEHPMHLGALGVFEADSPTAGALAADLLAARAPAVPGLRMRIRDTWQPPMALRRPFAFGGATREPDPRFDPLDHVRLHAPATDFHARAGRLMERPLERGRPPWEAHVLPGADGGSFAVLFKFHHALADGLRALTLAAGVLDPMDLPAPRPRPEQPPRGLLPDVRALPDRLRGALSDAGRALDIGAAAALSTLDVRSSPALTAASSGTRRTAGVSVDLDDVHHVRKTTGGTVNDVLIAVVAGALRRWLDERGDGSEGVAPRALIPVSRRRPRSAHPQGNRLSGYLMRLPVGDPDPLARLGTVRAAMDRNKDAGPGRGAGAVALLADHVPALGHRLGGPLVSGAARLWFDLLVTSVPLPSLGLRLGGHPLTEVYPLAPLARGHSLAVAVSTYRGRVHYGLLADAKAVPDLDRLAVAVAEEVETLLTACRP(SEQ ID NO:15)。MTPDPLAPLDLAFWNIESAEHPMHLGALGVFEADSPTAGALAADLLAARAPAVPGLRMRIRDTWQPPMALRRPFAFGGATREPDPRFDPLDHVRLHAPATDFHARAGRLMERPLERGRPPWEAHVLPGADGGSFAVLFKFHHALADGLRALTLAAGVLDPMDLPAPRPRPEQPPRGLLPDVRALPDRLRGALSDAGRALDIGAAAALSTLDVRSSPALTAASSGT RRTAGVSVDLDDVHHVRKTTGGTVNDVLIAVVAGALRRWLDERGDGSEGVAPRALIPVSRRRPRSAHPQGNRLSGYLMRLPVGDPDPLARLGTVRAAMDRNKDAGPGRGAGAVALLADHVPALGHRLGGPLVSGAARLWFDLLVTSVPLPSLGLRLGGHPLTEVYPLAPLARGHSLAVAVSTYRGRVHYGLLADAKAVPDLDRLAVAVAEEVETLLTACRP(SEQ ID NO :15).

MRTERKPTRLDRVFARLDREPERPALLDVPEMSRHRIALFAGTLAFYIAIVWAVVITSWLVRLDWQVMFFRPYQQWPEIHAFVDYYVVLGQRGPTAVMVAAWLGWRSWRQHTLRPLLALGVSLLLLNVTVGAAKYGMGRLGPHYATTIGANEMWLGGDIFPSGHTANAVVTWGILAYLASTHRTRRWLSAISAVTSLGVGMSTVYLGTHWLSDVLLGWVAGLLILLALPWFEPLITRAEAWILGLRDRWYTRRDRRSTTRPPLGPPVPVSPPGSGSRPQAPAREPVAAPRTARAPAHLAPGPHTARSDRTPVTPAGSRRPPHSDRHARNTAPTARPLSGG(SEQ ID NO:16)。MRTERKPTRLDRVFARLDREPERPALLDVPEMSRHRIALFAGTLAFYIAIVWAVVITSWLVRLDWQVMFFRPYQQWPEIHAFVDYYVVLGQRGPTAVMVAAWLGWRSWRQHTLRPLLALGVSLLLLNVTVGAAKYGMGRLGPHYATTIGANEMWLGGDIFPSGHTANAVVTWGILAYLASTHRTRRWLSAISAVTSLGVGMSTVYLGTHWLSDV LLGWVAGLLILLALPWFEPLITRAEAWILGLRDRWYTRRDRRSTTRPPLGPPVPVSPPGSGSRPQAPAREPVAAPRTARAPAHLAPGPHTARSDRTPVTPAGSRRPPHSDRHARNTAPTARPLSGG (SEQ ID NO: 16).

MTTSSDVIPDAPQPAGDAAGPSATLGGEQKRSIEQITLLLFITLPFLALVAAVPLAWGWGVSWLDLGLLVFFYFLGCHGITIGFHRHFTHGSFKAKRPLKIALAIAGSMAVEGPLVRWVADHRKHHKFSDDEGDPHSPWRYGETVPALIKGLWWAHIAWMFDEEQTPQEKYAPDLIKDPALRAVSRQFILWTVVSLALPALIGGLVTMSWWGAFTGFFWGSLVRVALLHHVTWSINSICHAVGKRPFKSRDRSGNVWWLAILSCGESWHNLHHADPTSARHGVMRGQLDSSARLIRWFEQLGWAYDVRWPSRSRIDSRRNTDQDGARRRKETAKAA(SEQ ID NO:17)。MTTSSDVIPDAPQPAGDAAGPSATLGGEQKRSIEQITLLLFITLPFLALVAAVPLAWGWGVSWLDLGLLVFFYFLGCHGITIGFHRHFTHGSFKAKRPLKIALAIAGSMAVEGPLVRWVADHRKHHKFSDDEGDPHSPWRYGETVPALIKGLWWAHIAWMFDEEQTPQEKYAPDLIKDPALRAVSRQFILWTVVSLALPALIGGLVTMSWWGAFT GFFWGSLVRVALLHHVTWSINSICHAVGKRPFKSRDRSGNVWWLAILSCGESWHNLHHADPTSARHGVMRGQLDSSARLIRWFEQLGWAYDVRWPSRSRIDSRRNTDQDGARRRKETAKAA (SEQ ID NO: 17).

MTMATTATRSDTPGSDFARLSKKVADAGLLGRRPGYYTLRITAVTGLYAAGWAAFVLVGASWWTLAIAAFLAVMYGQVALVAHDMAHRQVFRRRRASELSGRIAGASIGMSYGWWQDKHTRHHANPNTEDLDPDIGPDLLVWSPDQARAATGLPRLLGRWQAFLFFPLLTLEGFNLHVASGRAMANRRLKRRALDGALLLAHCAVYLTALFWVLPPGMAIAFLAVHQCLFGVYLGSAFAPNHKGMPILTADDRPDFLRRQVLTSRNVNGGLFTDLALGGLNHQIEHHLFPSMPSPNLRKARAIVRRYCRDLGVDYAETGLVASYRLALTSLHDAGTPLRRTRVRA(SEQ ID NO:18)。MTMATTATRSDTPGSDFARLSKKVADAGLLGRRPGYYTLRITAVTGLYAAGWAAFVLVGASWWTLAIAAFLAVMYGQVALVAHDMAHRQVFRRRRASELSGRIAGASIGMSYGWWQDKHTRHHANPNTEDLDPDIGPDLLVWSPDQARAATGLPRLLGRWQAFLFFPLLTLEGFNLHVASGRAMANRRLKRRALDGALLLAHCAVYLTALFWVLPPGMAIAFLAVHQCL FGVYLGSAFAPNHKGMPILTADDRPDFLRRQVLTSRNVNGGLFTDLALLGGLNHQIEHHLFPSMPSPNLRKARAIVRRYCRDLGVDYAETGLVASYRLALTSLHDAGTPLRRTRVRA (SEQ ID NO: 18).

MPLPRETLPPDTGGSREGSEFTPLLRDVREQQLLERRTGWYARTIAVNALGLAAVGTGMALLGDSWWVLALAPVLAVLCARTAFIGHDAGHAQISGSRAVNRRIGLVHGNLLLGMSYAWWNDKHNRHHANPNHIDKDPDVAADVLVFTSGQAATRTGFRGRLTRHQAWLFFPLTLLEGLALKLHGFQHLRRQRGRARLVEGALLVAHVAGYVTLLLATMPLAHALVFAALHQALFGLHLGMAFAPNHKGMDMPDPDSEAEKWGHLRRQVLTSRNVRGGFLTDWFLGGLNYQIEHHLFPSMPRPHLGLAQAAVKAHCRDLGIPYAETGLVDSYRQALRHMHEVGEPLRADI(SEQ ID NO:19)。MPLPRETLPPDTGGSREGSEFTPLLRDVREQQLLERRTGWYARTIAVNALGLAAVGTGMALLGDSWWVLALAPVLAVLCARTAFIGHDAGHAQISGSRAVNRRIGLVHGNLLLGMSYAWWNDKHNRHHANPNHIDKDPDVAADVLVFTSGQAATRTGFRGRLTRHQAWLFFPLTLLEGLALKLHGFQHLRRQRGRARLVEGALLVAHVAGYVTLLLATMPLAHA LVFAALHQALFGLHLGMAFAPNHKGMDMPDPDSEAEKWGHLRRQVLTSRNVRGGFLTDWFLGGLNYQIEHHLFPSMPRPHLGLAQAAVKAHCRDLGIPYAETGLVDSYRQALRHMHEVGEPLRADI (SEQ ID NO: 19).

MLVESLPTPAQEKDRERGSDFSELSRRIAGAGLLRRRPLYYTVRFGAVALALAGGVAAFVALGDSWSQLFVAVALAVVFGQLGLAAHDLAHRQVFTRRRPSEAGGLLTANLLLGMSYGWWMNKHTRHHANPNHEEKDPDVSPDILVWSRGQASRATGLPRFVGRHQAALFFPLLTLEGLNLSFNSFKALGSRAVKRPVLEGTLLVAHFAVYFGGLFTVLSPGKALVFLAVHQGLFGIYLGSVFAPNHKGMPMIEEGMRLDFLRRQVLTSRNVRGGALVDAFMGGLNYQIEHHLFPSMPTPALGRAQAITEAYCAELGVPYHQTGLLASHREALRHMRSVGEPLRAAR(SEQ ID NO:20)。MLVESLPTPAQEKDRERGSDFSELSRRIAGAGLLRRRPLYYTVRFGAVALALAGGVAAFVALGDSWSQLFVAVALAVVFGQLGLAAHDLAHRQVFTRRRPSEAGGLLTANLLLGMSYGWWMNKHTRHHANPNHEEKDPDVSPDILVWSRGQASRATGLPRFVGRHQAALFFPLLTLEGLNLSFNSFKALGSRAVKRPVLEGTLLVAHFAVYFGGLFTVLSPG KALVFLAVHQGLFGIYLGSVFAPNHKGMPMIEEGMRLDFLRRQVLTSRNVRGGALVDAFMGGLNYQIEHHLFPSMPTPALGRAQAITEAYCAELGVPYHQTGLLASHREALRHMRSVGEPLRAAR (SEQ ID NO: 20).

MSLNFLDFEQPIAELEAKIDSLTAVSRQDEKLDINIDEEVHRLREKSVELTRKIFADLGAWQIAQLARHPQRPYTLDYVRLAFDEFDELAGDRAYADDKAIVGGIARLDGRPVMIIGHQKGRETKEKIRRNFGMPAPEGYRKALRLMQMAERFKMPIITFIDTPGAYPGVGAEERGQSEAIARNLREMSRLGVPVVCTVIGEGGSGGALAIGVGDKVNMLQYSTYSVISPEGCASILWKSADKAPLAAEAMGIIAPRLKELKLIDSIIPEPLGGAHRNPEAMAASLKAQLLADLADLDVLSTEDLKNRRYQRLMSYGYA(SEQ ID NO:21)。MSLNFLDFEQPIAELEAKIDSLTAVSRQDEKLDINIDEEVHRLREKSVELTRKIFADLGAWQIAQLARHPQRPYTLDYVRLAFDEFDELAGDRAYADDKAIVGGIARLDGRPVMIIGHQKGRETKEKIRRNFGMPAPEGYRKALRLMQMAERFKMPIITFIDTPGAYPGVGAEERGQSEAIARNLREMSRLGVPVVCTVIGEGGSGGALAIGVG DKVNMLQYSTYSVISPEGCASILWKSADKAPLAAEAMGIIAPRLKELKLIDSIIPEPLGGAHRNPEAMAASLKAQLLADLADLDVLSTEDLKNRRYQRLMSYGYA (SEQ ID NO: 21).

MDIRKIKKLIELVEESGISELEISEGEESVRISRAAPAASFPVMQQAYAAPMMQQPAQSNAAAPATVPSMEAPAAAEISGHIVRSPMVGTFYRTPSPDAKAFIEVGQKVNVGDTLCIVEAMKMMNQIEADKSGTVKAILVESGQPVEFDEPLVVIE(SEQ ID NO:22)。MDIRKIKKLIELVEESGISELEISEGEESVRISRAAPAASFPVMQQAYAAPMMQQPAQSNAAAPATVPSMEAPAAAEISGHIVRSPMVGTFYRTPSPDAKAFIEVGQKVNVGDTLCIVEAMKMMNQIEADKSGTVKAILVESGQPVEFDEPLVVIE (SEQ ID NO: 22).

MLDKIVIANRGEIALRILRACKELGIKTVAVHSSADRDLKHVLLADETVCIGPAPSVKSYLNIPAIISAAEITGAVAIHPGYGFLSENANFAEQVERSGFIFIGPKAETIRLMGDKVSAIAAMKKAGVPCVPGSDGPLGDDMDKNRAIAKRIGYPVIIKASGGGGGRGMRVVRGDAELAQSISMTRAEAKAAFSNDMVYMEKYLENPRHVEIQVLADGQGNAIYLAERDCSMQRRHQKVVEEAPAPGITPELRRYIGERCAKACVDIGYRGAGTFEFLFENGEFYFIEMNTRIQVEHPVTEMITGVDLIKEQLRIAAGQPLSIKQEEVHVRGHAVECRINAEDPNTFLPSPGKITRFHAPGGFGVRWESHIYAGYTVPPYYDSMIGKLICYGENRDVAIARMKNALQELIIDGIKTNVDLQIRIMNDENFQHGGTNIHYLEKKLGLQEK(SEQ ID NO:23)。MLDKIVIANRGEIALRILRACKELGIKTVAVHSSADRDLKHVLLADETVCIGPAPSVKSYLNIPAIISAAEITGAVAIHPGYGFLSENANFAEQVERSGFIFIGPKAETIRLMGDKVSAIAAMKKAGVPCVPGSDGPLGDDMDKNRAIAKRIGYPVIIKASGGGGGRGMRVVRGDAELAQSISMTRAEAKAAFSNDMVYMEKYLENPRHVEIQVLADGQGNAIY LA ERDCSMQRRHQKVVEEAPAPGITPELRRYIGERCAKACVDIGYRGAGTFEFLFENGEFYFIEMNTRIQVEHPVTEMITGVDLIKEQLRIAAGQPLSIKQEEVHVRGHAVECRINAEDPNTFLPSPGKITRFHAPGGFGVRWESHIYAGYTVPPYYDSMIGKLICYGENRDVAIARMKNALQELIIDGIKTNVDLQIRIMNDENFQHGGTNI HYLEKKLGLQEK (SEQ ID NO: 23).

MSWIERIKSNITPTRKASIPEGVWTKCDSCGQVLYRAELERNLEVCPKCDHHMRMTARNRLHSLLDEGSLVELGSELEPKDVLKFRDSKKYKDRLASAQKETGEKDALVVMKGTLYGMPVVAAAFEFAFMGGSMGSVVGARFVRAVEQALEDNCPLICFSASGGARMQEALMSLMQMAKTSAALAKMQERGLPYISVLTDPTMGGVSASFAMLGDLNIAEPKALIGFAGPRVIEQTVREKLPPGFQRSEFLIEKGAIDMIVRRPEMRLKLASILAKLMNLPAPNPEAPREGVVVPPVPDQEPEA(SEQ ID NO:24)。MSWIERIKSNITPTRKASIPEGVWTKCDSCGQVLYRAELERNLEVCPKCDHHMRMTARNRLHSLLDEGSLVELGSELEPKDVLKFRDSKKYKDRLASAQKETGEKDALVVMKGTLYGMPVVAAAFEFAFMMGGSMGSVVGARFVRAVEQALEDNCPLICFSASGGARMQEALMSLMQMAKTSAALAKMQERGLPYISVLTDPTMGGVSASFAMLGDLNIAEP KALIGFAGPRVIEQTVREKLPPGFQRSEFLIEKGAIDMIVRRPEMRLKLASILAKLMNLPAPNPEAPREGVVVPPVPDQEPEA (SEQ ID NO: 24).

MRSIARRTAVGAALLLVMPVAVWISGWRWQPGEQSWLLKAAFWVTETVTQPWGVITHLILFGWFLWCLRFRIKAAFVLFAILAAAILVGQGVKSWIKDKVQEPRPFVIWLEKTHHIPVDEFYTLKRAERGNLVKEQLAEEKNIPQYLRSHWQKETGFAFPSGHTMFAASWALLAVGLLWPRRRTLTIAILLVWATGVMGSRLLLGMHWPRDLVVATLISWALVAVATWLAQRICGPLTPPAEENREIAQREQES(SEQ ID NO:25)。MRSIARRTAVGAALLLVMPVAVWISGWRWQPGEQSWLLKAAFWVTETVTQPWGVITHLILFGWFLWCLRFRIKAAFVLFAILAAAILVGQGVKSWIKDKVQEPRPFVIWLEKTHHIPVDEFYTLKRAERGNLVKEQLAEEKNIPQYLRSHWQKETGFAFPSGHTMFAASWALLAVGLLWPRRRTLTIAILLVWATGVMGSRLLLGMHWP RDLVVATLISWALVAVATWLAQRICGPLTPPAEENREIAQREQES (SEQ ID NO: 25).

MRPLHPIDFIFLSLEKRQQPMHVGGLFLFQIPDNAPDTFIQDLVNDIRISKSIPVPPFNNKLNGLFWDEDEEFDLDHHFRHIALPHPGRIRELLIYISQEHSTLLDRAKPLWTCNIIEGIEGNRFAMYFKIHHAMVDGVAGMRLIEKSLSHDVTEKSIVPPWCVEGKRAKRLREPKTGKIKKIMSGIKSQLQATPTVIQELSQTVFKDIGRNPDHVSSFQAPCSILNQRVSSSRRFAAQSFDLDRFRNIAKSLNVTINDVVLAVCSGALRAYLMSHNSLPSKPLIAMVPASIRNDDSDVSNRITMILANLATHKDDPLQRLEIIRRSVQNSKQRFKRMTSDQILNYSAVVYGPAGLNIISGMMPKRQAFNLVISNVPGPREPLYWNGAKLDALYPASIVLDGQALNITMTSYLDKLEVGLIACRNALPRMQNLLTHLEEEIQLFEGVIAKQEDIKTAN(SEQ ID NO:26)。MRPLHPIDFIFLSLEKRQQPMHVGGLFLFQIPDNAPDTFIQDLVNDIRISKSIPVPPFNNKLNGLFWDEDEEFDLDHFRHIALPHPGRIRELLIYISQEHSTLLDRAKPLWTCNIIEGIEGNRFAMYFKIHHAMVDGVAGMRLIEKSLSHDVTEKSIVPPWCVEGKRAKRLREPKTGKIKKIMSGIKSQLQATPTVIQELSQTVFKDIGRNPDH VSSFQAPCSILNQRVS SSRRFAAQSFDLDRFRNIAKSLNVTINDVVLAVCSGALRAYLMSHNSLPSKPLIAMVPASIRNDDSDVSNRITMILANLATHKDDPLQRLEIIRRSVQNSKQRFKRMTSDQILNYSAVVYGPAGLNIISGMMPKRQAFNLVISNVPGPREPLYWNGAKLDALYPASIVLDGQALNITMTSYLDKLEVGLIACRNALPRMQNLLTHLEEEIQLFEGVIA KQEDIKTAN (SEQ ID NO: 26).

MKRAVITGLGIVSSIGNNQQEVLASLREGRSGITFSQELKDSGMRSHVWGNVKLDTTGLIDRKVVRFMSDASIYAFLSMEQAIADAGLSPEAYQNNPRVGLIAGSGGGSPRFQVFGADAMRGPRGLKAVGPYVVTKAMASGVSACLATPFKIHGVNYSISSACATSAHCIGNAVEQIQLGKQDIVFAGGGEELCWEMACEFDAMGALSTKYNDTPEKASRTYDAHRDGFVIAGGGGMVVVEELEHALARGAHIYAEIVGYGATSDGADMVAPSGEGAVRCMKMAMHGVDTPIDYLNSHGTSTPVGDVKELAAIREVFGDKSPAISATKAMTGHSLGAAGVQEAIYSLLMLEHGFIAPSINIEELDEQAAGLNIVTETTDRELTTVMSNSFGFGGTNATLVMRKLKD(SEQ ID NO:7)。MKRAVITLGIVSSIGNNQQEVLASLREGRSGITFSQELKDSGMRSHVWGNVKLDTTGLIDRKVVRFMSDASIYAFLSMEQAIADAGLSPEAYQNNPRVGLIAGSGGGSPRFQVFGADAMRGPRGLKAVGPYVVTKAMASGVSACLATPFKIHGVNYSISSACATSAHCIGNAVEQIQLGKQDIVFAGGGEELCWEMACEFDAMGALSTKYNDTPEKA SRTYDAHRDGFVIAGGGGMVVEELEHALARGAHIYAEIVGYGATSDGADMVAPSGEGAVRCMKMAMHGVDTPIDYLNSHGTSTPVGDVKELAAIREVFGDKSPAISATKAMTGHSLGAAGVQEAIYSLLMLEHGFIAPSINIEELDEQAAGLNIVTETTDRELTTVMSNSFGFGGTNATLVMRKLKD (SEQ ID NO: 7).

发明人发现,来源于上述微生物的基因过表达于具有合成疏水化合物潜能的微生物,可显著促进微生物中疏水化合物的积累。The inventors have found that overexpression of the genes derived from the above-mentioned microorganisms in microorganisms having the potential to synthesize hydrophobic compounds can significantly promote the accumulation of hydrophobic compounds in the microorganisms.

根据本发明的实施例,所述微生物包括选自酵母菌、大肠杆菌、放线菌、枯草芽孢杆菌、谷氨酸棒杆菌、黑曲霉、米曲霉、绿色木霉以及里氏木霉的至少之一。发明人发现,在上述微生物中过表达上述基因的至少之一以及沉默包括选自FLD1,TGL3的至少之一,微生物中疏水化合物的积累得到进一步显著提高。According to an embodiment of the present invention, the microorganism includes at least one selected from yeast, Escherichia coli, actinomycetes, Bacillus subtilis, Corynebacterium glutamicum, Aspergillus niger, Aspergillus oryzae, Trichoderma viride and Trichoderma reesei. The inventors found that by overexpressing at least one of the above genes and silencing at least one selected from FLD1 and TGL3 in the above microorganism, the accumulation of hydrophobic compounds in the microorganism is further significantly improved.

根据本发明的实施例,所述疏水化合物包括选自番茄红素、胡萝卜素、虾青素、纳他霉素、多杀菌素聚酮、二倍半萜、三萜以及四萜类化合物的至少之一。根据本发明实施例的微生物中上述疏水化合物的产量更高。According to an embodiment of the present invention, the hydrophobic compound comprises at least one selected from lycopene, carotene, astaxanthin, natamycin, spinosad polyketide, diterpenes, triterpenes and tetraterpenes. The yield of the hydrophobic compound in the microorganism according to the embodiment of the present invention is higher.

在本发明的第二方面,本发明提出了一种提高微生物疏水化合物发酵产量的方法。根据本发明的实施例,所述化合物包括:提高所述微生物体内脂质含量,其中,所述微生物是具有合成疏水化合物潜能的微生物。发明人在实验中意外地发现,提高具有合成疏水化合物潜能的微生物体内的脂质含量,可显著提高微生物疏水化合物的发酵产量,微生物疏水化合物的发酵产量可提高10%以上,如番茄红素的产量提高了40%以上,纳他霉素的产量提高了14%,多杀菌素的产量提高了20%,虾青素的产量提高了50%,产物对细胞生长的毒性小。In the second aspect of the present invention, the present invention proposes a method for increasing the fermentation yield of microbial hydrophobic compounds. According to an embodiment of the present invention, the compound includes: increasing the lipid content in the microorganism, wherein the microorganism is a microorganism with the potential to synthesize hydrophobic compounds. The inventor unexpectedly found in the experiment that increasing the lipid content in the microorganism with the potential to synthesize hydrophobic compounds can significantly increase the fermentation yield of microbial hydrophobic compounds, and the fermentation yield of microbial hydrophobic compounds can be increased by more than 10%, such as the yield of lycopene increased by more than 40%, the yield of natamycin increased by 14%, the yield of spinosad increased by 20%, and the yield of astaxanthin increased by 50%, and the product has low toxicity to cell growth.

根据本发明的实施例,上述方法还可以进一步包括如下附加技术特征至少之一:According to an embodiment of the present invention, the above method may further include at least one of the following additional technical features:

根据本发明的实施例,所述脂质为甘油三酯。发明人发现,提高微生物体内甘油三脂的含量,对促进疏水化合物发酵产量的效果更加显著。According to an embodiment of the present invention, the lipid is triglyceride. The inventors have found that increasing the content of triglyceride in microorganisms has a more significant effect on promoting the fermentation yield of hydrophobic compounds.

根据本发明的实施例,所述提高微生物体内脂质含量是通过提高甘油三酯的合成量、脂滴的大小以及不饱和脂肪酸的含量的至少之一实现的。进而疏水化合物发酵产量进一步提高。According to an embodiment of the present invention, the increase in lipid content in the microorganism is achieved by increasing at least one of the synthesis of triglycerides, the size of lipid droplets, and the content of unsaturated fatty acids, thereby further increasing the fermentation yield of hydrophobic compounds.

根据本发明的实施例,所述提高微生物体内脂质含量是通过在所述微生物体内过表达包括选自下列基因的至少之一:PAH1,DGA1,OLE1,ACC1**,ACCA2,ACCB,ACCE,DGAT,LPPβ,OLE1A,OLE1B,OLE1C,OLE1D,EcACCA,EcACCB,EcACCC,EcACCD,pgpB,atfA,fabA,fabB;以及沉默包括选自FLD1,TGL3的至少之一实现的。通过上述方式,可有效提高微生物体内脂质含量,进而为疏水性产物在体内的积累提供了承载环境,并尽可能小地减少疏水性产物在细胞内的毒性,在进一步提高疏水性产物的积累的同时,可进一步有效降低疏水性产物积累对细胞生长的影响。According to an embodiment of the present invention, the lipid content in the microorganism is increased by overexpressing at least one of the following genes in the microorganism: PAH1, DGA1, OLE1, ACC1**, ACCA2, ACCB, ACCE, DGAT, LPPβ, OLE1A, OLE1B, OLE1C, OLE1D, EcACCA, EcACCB, EcACCC, EcACCD, pgpB, atfA, fabA, fabB; and silencing at least one of FLD1 and TGL3. By the above method, the lipid content in the microorganism can be effectively increased, thereby providing a carrying environment for the accumulation of hydrophobic products in the body, and reducing the toxicity of hydrophobic products in the cells as much as possible. While further increasing the accumulation of hydrophobic products, the effect of the accumulation of hydrophobic products on cell growth can be further effectively reduced.

根据本发明的实施例,所述过表达是通过向所述微生物中引入构建体实现的,所述构建体包括待过表达目的基因以及调控表达型启动子,所述调控表达型启动子与所述目的基因可操作的连接。进而可实现以可控的方式过表达目的基因,目的基因在细胞生长期过表达,在产物积累期停止表达。According to an embodiment of the present invention, the overexpression is achieved by introducing a construct into the microorganism, the construct comprising a target gene to be overexpressed and a regulated expression promoter, the regulated expression promoter being operably connected to the target gene. Thus, the target gene can be overexpressed in a controllable manner, the target gene is overexpressed during the cell growth period, and expression stops during the product accumulation period.

根据本发明的实施例,所述调控表达型启动子为pHXT1。pHXT1为葡萄糖控制型启动子,进而可实现目的基因更便捷和高效的可控表达。According to an embodiment of the present invention, the regulated expression promoter is pHXT1. pHXT1 is a glucose-controlled promoter, which can achieve more convenient and efficient controllable expression of the target gene.

根据本发明的实施例,所述pHXT1具有SEQ ID NO:28所示的核苷酸序列。According to an embodiment of the present invention, the pHXT1 has the nucleotide sequence shown in SEQ ID NO:28.

TGCAGGTCTCATCTGGAATATAATTCCCCCCTCCTGAAGCAAATTTTTCCTTTGAGCCGGAATTTTTGATATTCCGAGTTCTTTTTTTCCATTCGCGGAGGTTATTCCATTCCTAAACGAGTGGCCACAATGAAACTTCAATTCATATCGACCGACTATTTTTCTCCGAACCAAAAAAATAGCAGGGCGAGATTGGAGCTGCGGAAAAAAGAGGAAAAAATTTTTTCGTAGTTTTCTTGTGCAAATTAGGGTGTAAGGTTTCTAGGGCTTATTGGTTCAAGCAGAAGAGACAACAATTGTAGGTCCTAAATTCAAGGCGGATGTAAGGAGTATTGGTTTCGAAAGTTTTTCCGAAGCGGCATGGCAGGGACTACTTGCGCATGCGCTCGGATTATCTTCATTTTTGCTTGCAAAAACGTAGAATCATGGTAAATTACATGAAGAATTCTCTTTTTTTTTTTTTTTTTTTTTTTTTTACCTCTAAAGAGTGTTGACCAACTGAAAAAACCCTTCTTCAAGAGAGTTAAACTAAGACTAACCATCATAACTTCCAAGGAATTAATCGATATCTTGCACTCCTGATTTTTCTTCAAAGAGACAGCGCAAAGGATTATGACACTGTTGCATTGAGTCAAAAGTTTTTCCGAAGTGACCCAGTGCTCTTTTTTTTTTTCCGTGAAGGACTGACAAATATGCGCACAAGATCCAATACGTAATGGAAATTCGGAAAAACTAGGAAGAAATGCTGCAGGGCATTGCCGTGCCGATCTTTTGTCTTTCAGATATATGAGAAAAAGAATATTCATCAAGTGCTGATAGAAGAATACCACTCATATGACGTGGGCAGAAGACAGCAAACGTAAACATGAGCTGCTGCGACATTTGATGGCTTTTATCCGACAAGCCAGGAAACTCCACCATTATCTAATGTAGCAAAATATTTCTTAACACCCGAAGTTGCGTGTCCCCCTCACGTTTTTAATCATTTGAATTAGTATATTGAAATTATATATAAAGGCAACAATGTCCCCATAATCAATTCCATCTGGGGTCTCATGTTCTTTCCCCACCTTAAAATCTATAAAGATATCATAATCGTCAACTAGTTGATATACGTAAAATC(SEQ IDNO:28)。TGCAGGTCTCATCTGGAATATAATTCCCCCCTCCTGAAGCAAATTTTTCCTTTGAGCCGGAATTTTTGATATTCCGAGTTCTTTTTTTCCATTCGCGGAGGTTATTCCATTCCTAAACGAGTGGCCACAATGAAACTTCAATTCATATCGACCGACTATTTTTCTCCGAACCAAAAAAATAGCAGGGCGAGATTGGAGCTGCGGAAAAAAGAGGAAAAAAATTTTTTCGTAGTTTTCTTGTGCAAATTAGGGTGTAAGGTTTCTAGG GCTTATTGGTTCAAG CAGAAGAGACAACAATTGTAGGTCCTAAATTCAAGGCGGATGTAAGGAGTATTGGTTTCGAAAGTTTTTCCGAAGCGGCATGGCAGGGACTACTTGCGCATGCGCTCGGATTATCTTCATTTTTGCTTGCAAAAACGTAGAATCATGGTAAATTACATGAAGAATTCTCTTTTTTTTTTTTTTTTTTTTTTTACCTCTAAAGAGTGTTGACCAACTGAAAAAACCCTTCTTCAAGAGAGTTAAACTAAGACTAACCATC ATAACTTCCAAGGAATTAAT CGATATCTTGCACTCCTGATTTTTCTTCAAAGAGACAGCGCAAAGGATTATGACACTGTTGCATTGAGTCAAAAGTTTTTCCGAAGTGACCCAGTGCTCTTTTTTTTTCCGTGAAGGACTGACAAATATGCGCACAAGATCCAATACGTAATGGAAATTCGGAAAAACTAGGAAGAAATGCTGCAGGGCATTGCCGTGCCGATCTTTTGTCTTTCAGATATATGAGAAAAAGAATATTCATCAAGTGCTGATAGAAGAATAACCACT CATATGACGTGGGGC AGAAGACAGCAAACGTAAACATGAGCTGCTGCGACATTTGATGGCTTTTATCCGACAAGCCAGGAAACTCCACCATTATCTAATGTAGCAAAATATTTCTTAACACCCGAAGTTGCGTGTCCCCCTCACGTTTTTAATCATTTGAATTAGTATATTGAAATTATATATAAAGGCAACAATGTCCCCATAATCAATTCCATCTGGGGTCTCATGTTCTTTCCCCACCTTAAAATCTATAAAGATATCATAATCGTCAACTAGTTGATA TACGTAAAATC (SEQ ID NO: 28).

根据本发明的实施例,所述微生物包括选自酵母菌、大肠杆菌、放线菌、枯草芽孢杆菌、谷氨酸棒杆菌、黑曲霉、米曲霉、绿色木霉以及里氏木霉等的至少之一。提高上述微生物中的脂质含量,微生物中疏水化合物的积累得到进一步显著提高。According to an embodiment of the present invention, the microorganism comprises at least one selected from yeast, Escherichia coli, actinomycetes, Bacillus subtilis, Corynebacterium glutamicum, Aspergillus niger, Aspergillus oryzae, Trichoderma viride and Trichoderma reesei, etc. By increasing the lipid content in the above microorganisms, the accumulation of hydrophobic compounds in the microorganisms is further significantly improved.

根据本发明的实施例,所述疏水化合物包括选自番茄红素、胡萝卜素、虾青素、纳他霉素、多杀菌素、聚酮、二倍半萜、三萜以及四萜类化合物的至少之一。利用根据本发明实施例的方法,上述疏水化合物的产量更高。According to an embodiment of the present invention, the hydrophobic compound comprises at least one selected from lycopene, carotene, astaxanthin, natamycin, spinosad, polyketide, diterpenoid, triterpenoid and tetraterpenoid compounds. Using the method according to an embodiment of the present invention, the yield of the hydrophobic compound is higher.

在本发明的第三方面,本发明提出了前面所述微生物在提高疏水化合物发酵产量中的用途。如前所述,根据本发明实施例的微生物具有高产疏水化合物的性能,根据本发明实施例的微生物,可有效用于疏水化合物发酵生产中,疏水化合物的产量高并对微生物的毒性小。In the third aspect of the present invention, the present invention proposes the use of the aforementioned microorganism in increasing the yield of hydrophobic compound fermentation. As mentioned above, the microorganism according to the embodiment of the present invention has the performance of high yield of hydrophobic compounds. The microorganism according to the embodiment of the present invention can be effectively used in the fermentation production of hydrophobic compounds, and the yield of hydrophobic compounds is high and the toxicity to the microorganism is low.

需要说明的是,本申请中的基因所公开的其所编码的多肽的氨基酸序列,意味着任意编码具有此氨基酸序列的多肽的核苷酸序列均在本申请的保护范围内。It should be noted that the amino acid sequence of the polypeptide encoded by the gene disclosed in the present application means that any nucleotide sequence encoding a polypeptide having this amino acid sequence is within the protection scope of the present application.

需要说明的是,本申请中的基因所公开的其所编码的多肽的氨基酸序列,意味着与所公开的氨基酸序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少99%同一性的多肽;或It should be noted that the amino acid sequence of the polypeptide encoded by the gene disclosed in the present application means a polypeptide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% identity with the disclosed amino acid sequence; or

与所公开的氨基酸序列具有一个或者多个氨基酸的取代、缺失和/或添加的多肽均在本申请的保护范围内。Polypeptides having one or more amino acid substitutions, deletions and/or additions to the disclosed amino acid sequences are all within the scope of protection of the present application.

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be given in part in the following description and in part will be obvious from the following description, or will be learned through practice of the present invention.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easily understood from the description of the embodiments in conjunction with the following drawings, in which:

图1是根据本发明实施例的过表达甘油三酯的番茄红素生产菌比原始番茄红素生产菌TM606产量有不同程度的提升的结果图。FIG. 1 is a result diagram showing that the yield of lycopene-producing bacteria overexpressing triglyceride according to an embodiment of the present invention is improved to varying degrees compared with the original lycopene-producing bacteria TM606.

具体实施方式DETAILED DESCRIPTION

下面详细描述本发明的实施例,以高产番茄红素的酿酒酵母、高产虾青素的大肠杆菌、高产纳他霉素的链霉菌和高产多杀菌素的糖多孢菌为代表。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。The embodiments of the present invention are described in detail below, with Saccharomyces cerevisiae with high lycopene production, Escherichia coli with high astaxanthin production, Streptomyces with high natamycin production, and Saccharopolyspora with high spinosad production as representatives. The embodiments described below are exemplary and are only used to explain the present invention, and should not be construed as limitations of the present invention. Without departing from the spirit and essence of the present invention, modifications or substitutions made to the methods, steps or conditions of the present invention are within the scope of the present invention. If the specific techniques or conditions are not indicated in the embodiments, the techniques or conditions described in the literature in the art or in accordance with the product instructions shall be followed. The reagents or instruments used without indicating the manufacturer are all conventional products that can be purchased commercially.

以下实施例中,所述PAH1,DGA1,OLE1,ACCA2,ACCB,ACCE,DGAT,LPPβ,OLE1A,OLE1B,OLE1C,OLE1D,EcACCA,EcACCB,EcACCC,EcACCD,pgpB,atfA,fabA,fabB基因所编码多肽的氨基酸序列参见序列表。In the following examples, the amino acid sequences of the polypeptides encoded by the PAH1, DGA1, OLE1, ACCA2, ACCB, ACCE, DGAT, LPPβ, OLE1A, OLE1B, OLE1C, OLE1D, EcACCA, EcACCB, EcACCC, EcACCD, pgpB, atfA, fabA, and fabB genes are shown in the sequence listing.

实施例1番茄红素生产菌所需质粒构建Example 1 Construction of plasmids required for lycopene production

实施例中所用引物见表1。The primers used in the examples are shown in Table 1.

表1:构建番茄红素工程菌株所用引物Table 1: Primers used to construct lycopene engineering strains

Figure BDA0003813798540000081
Figure BDA0003813798540000081

Figure BDA0003813798540000091
Figure BDA0003813798540000091

Figure BDA0003813798540000101
Figure BDA0003813798540000101

Figure BDA0003813798540000111
Figure BDA0003813798540000111

Figure BDA0003813798540000121
Figure BDA0003813798540000121

Figure BDA0003813798540000131
Figure BDA0003813798540000131

实施例所构建质粒及质粒构建所用片段按相应引物及模板进行PCR扩增,详见表2。The plasmids constructed in the examples and the fragments used for plasmid construction were amplified by PCR using the corresponding primers and templates, as shown in Table 2 for details.

表2:本实施例构建的质粒Table 2: Plasmids constructed in this example

Figure BDA0003813798540000132
Figure BDA0003813798540000132

Figure BDA0003813798540000141
Figure BDA0003813798540000141

Figure BDA0003813798540000151
Figure BDA0003813798540000151

Figure BDA0003813798540000161
Figure BDA0003813798540000161

PCR反应体系:30.5μL H2O,10μL 5×reaction buffer,4μL 2.5mM dNTPs,2μL10mM正向引物,2μL 10mM反向引物,1μL模板DNA(1-100ng),0.5μL Phusion High-FidelityDNA Polymerase。PCR反应程序:98℃预变性30s;98℃变性10s,56℃退火30s,72℃延伸(30s/K),30个循环;最后以72℃延伸10min。PCR reaction system: 30.5μL H 2 O, 10μL 5×reaction buffer, 4μL 2.5mM dNTPs, 2μL 10mM forward primer, 2μL 10mM reverse primer, 1μL template DNA (1-100ng), 0.5μL Phusion High-Fidelity DNA Polymerase. PCR reaction program: 98℃ pre-denaturation for 30s; 98℃ denaturation for 10s, 56℃ annealing for 30s, 72℃ extension (30s/K), 30 cycles; finally extension at 72℃ for 10min.

实施例所构建质粒均以酵母组装方法构建:不同质粒按表2所列片段进行组装。The plasmids constructed in the examples were all constructed using the yeast assembly method: different plasmids were assembled according to the fragments listed in Table 2.

将PCR片段切胶回收,按每个片段用量300ng计算所用体积。The PCR fragments were cut from the gel and recovered, and the volume used was calculated based on 300 ng of each fragment.

根据每个质粒所需,取相应片段,混匀,计算体积,加10%体积的3M NaAc,2%体积10mg/mL glycogen,混匀后,加2倍体积无水乙醇混匀,-80℃放置2h,13,000rpm,4℃离心20min,弃上清。加500μL 70%乙醇洗一次,13,200rpm室温离心3min,弃上清,晾干,加4μLddH2O重溶,待用。According to the needs of each plasmid, take the corresponding fragment, mix well, calculate the volume, add 10% volume of 3M NaAc, 2% volume of 10mg/mL glycogen, mix well, add 2 times volume of anhydrous ethanol, place at -80℃ for 2h, centrifuge at 13,000rpm, 4℃ for 20min, discard the supernatant. Add 500μL 70% ethanol to wash once, centrifuge at 13,200rpm at room temperature for 3min, discard the supernatant, dry, add 4μL ddH 2 O to re-dissolve, and set aside.

将已处理好的混合片段通过醋酸锂法转化酿酒酵母,涂布相应YPD抗性平板,30℃培养。(菌落生长大概需3天左右)。待菌落生长至适宜大小,挑取单克隆至YPD相应抗性的液体培养基,30℃,220rpm培养20h,提质粒,转化E.coli DH10B,涂布LB固体平板(Ampicillin抗性),37℃培养2天左右,挑取单克隆至LB-Amp液体培养基,37℃,220rpm培养16h提质粒,酶切验证。The processed mixed fragments were transformed into Saccharomyces cerevisiae by the lithium acetate method, coated with the corresponding YPD resistance plate, and cultured at 30°C. (The colony growth takes about 3 days). When the colony grows to an appropriate size, a single clone is picked and transferred to the liquid medium with the corresponding YPD resistance, cultured at 30°C, 220rpm for 20h, plasmids are extracted, and transformed into E.coli DH10B, coated with LB solid plate (Ampicillin resistance), cultured at 37°C for about 2 days, and a single clone is picked and transferred to LB-Amp liquid medium, cultured at 37°C, 220rpm for 16h to extract plasmids, and enzyme digestion verification is performed.

实施例2酿酒酵母番茄红素菌株的构建Example 2 Construction of Saccharomyces cerevisiae Lycopene Strain

构建酿酒酵母番茄红素菌株TM606,构建方法如下:The lycopene-producing yeast strain TM606 was constructed as follows:

表达tHMG1提高MVA途径的转化率;沉默GAL1,7,10利用半乳糖诱导生产番茄红素;构建方法为将质粒pZY141用NotI酶切后回收目标片段,按200ng用量通过醋酸锂法酵母转化整合到Saccharomyces cerevisiae(CEN.PK2-1D)菌株中,用含有相应营养缺陷的平板进行筛选得到目的菌株,PCR验证。The expression of tHMG1 improves the conversion rate of the MVA pathway; the silencing of GAL1, 7, 10 utilizes galactose to induce the production of lycopene; the construction method is to digest the plasmid pZY141 with NotI to recover the target fragment, integrate it into the Saccharomyces cerevisiae (CEN.PK2-1D) strain by lithium acetate yeast transformation at a dosage of 200 ng, screen the target strain using a plate containing the corresponding nutritional deficiency, and verify it by PCR.

表达来源于成团泛球菌的PaCrtB(SEQ ID NO:3),来源于植物红豆杉的TmCrtE(SEQ ID NO:2),来源于三孢不拉霉的BtCrtI(SEQ ID NO:4)异源合成番茄红素,并调整拷贝数。PaCrtB (SEQ ID NO: 3) from Panococcus agglomerans, TmCrtE (SEQ ID NO: 2) from Taxus chinensis, and BtCrtI (SEQ ID NO: 4) from Trispora pyrenoidosa were expressed to heterologously synthesize lycopene, and the copy number was adjusted.

MAYTAMAAGTQSLQLRTVASYQECNSMRSCFKLTPFKSFHGVNFNVPSLGAANCEIMGHLKLGSLPYKQCSVSSKSTKTMAQLVDLAETEKAEGKDIEFDFNEYMKSKAVAVDAALDKAIPLEYPEKIHESMRYSLLAGGKRVRPALCIAACELVGGSQDLAMPTACAMEMIHTMSLIHDDLPCMDNDDFRRGKPTNHKVFGEDTAVLAGDALLSFAFEHIAVATSKTVPSDRTLRVISELGKTIGSQGLVGGQVVDITSEGDANVDLKTLEWIHIHKTAVLLECSVVSGGILGGATEDEIARIRRYARCVGLLFQVVDDILDVTKSSEELGKTAGKDLLTDKATYPKLMGLEKAKEFAAELATRAKEELSSFDQIKAAPLLGLADYIAFRQN(SEQ ID NO:2)。MAYTAMAAGTQSLQLRTVASYQECNSMRSCFKLTPFKSFHGVNFNVPSLGAANCEIMGHLKLGSLPYKQCSVSSKSTKTMAQLVDLAETEKAEGKDIEFDFNEYMKSKAVAVDAALDKAIPLEYPEKIHESMRYSLLAGGKRVRPALCIAACELVGGSQDLAMPTACAMEMIHTMSLIHDDLPCMDNDDFRRGKPTNHKVFGEDTAVLAGDALLSFAFE HIAVATSKTVPSDRTLRVISELGKTIGSQGLVGGQVVDITSEGDANVDLKTLEWIHIHKTAVLLECSVVSGGILGGATEDEIARIRRYARCVGLLFQVVDDILDVTKSSEELGKTAGKDLLTDKATYPKLMGLEKAKEFAAELATRAKEELSSFDQIKAAPLLGLADYIAFRQN (SEQ ID NO: 2).

MSQPPLLDHATQTMANGSKSFATAAKLFDPATRRSVLMLYTWCRHCDDVIDDQTHGFASEAAAEEEATQRLARLRTLTLAAFEGAEMQDPAFAAFQEVALTHGITPRMALDHLDGFAMDVAQTRYVTFEDTLRYCYHVAGVVGLMMARVMGVRDERVLDRACDLGLAFQLTNIARDIIDDAAIDRCYLPAEWLQDAGLTPENYAARENRAALARVAERLIDAAEPYYISSQAGLHDLPPRCAWAIATARSVYREIGIKVKAAGGSAWDRRQHTSKGEKIAMLMAAPGQVIRAKTTRVTPRPAGLWQRPV(SEQ ID NO:3)。MSQPPLLDHATQTMANGSKSFATAAKLFDPATRRSVLMLYTWCRHCDDVIDDQTHGFASEAAAEEEATQRLARLRTLTLAAFEGAEMQDPAFAAFQEVALTHGITPRMALDHLDGFAMDVAQTRYVTFEDTLRYCYHVAGVVGLMMARVMGVRDERVLDRACDLGLAFQLTNIARDIIDDAAIDRCYLPAEWLQDAGLTPENYAARENRAALARVAERLIDAAEPYY ISSQAGLHDLPPRCAWAIATARSVYREIGIKVKAAGGSAWDRRQHTSKGEKIAMLMAAPGQVIRAKTTRVTPRPAGLWQRPV (SEQ ID NO: 3).

MSDQKKHIVVIGAGIGGTATAARLAREGFRVTVVEKNDFSGGRCSFIHHDGHRFDQGPSLYLMPKLFEDAFADLDERIGDHLDLLRCDNNYKVHFDDGDAVQLSSDLTKMKGELDRIEGPLGFGRFLDFMKETHVHYEQGTFIAIKRNFETIWDLIRLQYVPEIFRLHLFGKIYDRASKYFQTKKMRMAFTFQTMYMGMSPYDAPAVYSLLQYTEFAEGIWYPRGGFNMVVQKLESIASKKYGAEFRYQSPVAKINTVDKDKRVTGVTLESGEVIEADAVVCNADLVYAYHHLLPPCNWTKKTLASKKLTSSSISFYWSMSTKVPQLDVHNIFLAEAYKESFDEIFNDFGLPSEASFYVNVPSRIDESAAPPNKDSIIVLVPIGHMKSKTGNSAEENYPELVNRARKMVLEVIERRLGVNNFANLIEHEEVNDPSVWQSKFNLWRGSILGLSHDVFQVLWFRPSTKDSTNRYDNLFFVGASTHPGTGVPIVLAGSKLTSDQVCKSFGQNPLPRKLQDSQKKYAPEQTRKTESHWIYYCLACYFVTFLFFYFFPRDDTTTPASFINQLLPNVFQGQNSNDIRI(SEQ ID NO:4)。MSDQKKHIVVIGAGIGGTATAARLAREGFRVTVVEKNDFSGGRCSFIHHDGHRFDQGPSLYLMPKLFEDAFADLDERIGDHLDLLRCDNNYKVHFDDGDAVQLSSDLTKMKGELDRIEGPLGFGRFLDFMKETHVHYEQGTFIAIKRNFETIWDLIRLQYVPEIFRLHLFGKIYDRASKYFQTKKMRMAFTFQTMYMGMSPYDAPAVY SLLQYTEFAEGIWYPRGGFNMVVQKLESIASKKYGAEFRYQSPVAKINTVDKDKRVTGVTLESGEVIEADAVVCNADLVYAYHHL LPPCNWTKKTLASKKLTSSSISFYWSMSTKVPQLDVHNIFLAEAYKESFDEIFNDFGLPSEASFYVNVPSRIDESAAPPNKDSIIVLVPIGHMKSKTGNSAEENYPELVNRARKMVLEVIERRLGVNNFANLIEHEEVNDPSVWQSKFNLWRGSILGLSHDVFQVLWFRPSTKDSTNRYDNLFFVGASTHPGTGVPIVLAGSKLTSDQVCKSFGQ NPLPRKLQDSQKKYAPEQTRKTESHWIYYCLACYFVTFLFFYFFPRDDTTTPASFINQLLPNVFQGQNSNDIRI (SEQ ID NO: 4).

构建方法为将质粒pZY151,pZY184,pZY196,用NotI酶切后回收目标片段,通过醋酸锂法酵母转化连续整合到上述菌株中,用含有相应营养缺陷的平板进行筛选得到目的菌株,PCR验证。The construction method is to digest plasmids pZY151, pZY184, and pZY196 with NotI, recover the target fragment, continuously integrate it into the above strains through lithium acetate yeast transformation, screen with plates containing corresponding nutritional deficiencies to obtain the target strains, and verify by PCR.

表达POS5基因平衡酵母体内的还原力;构建方法为将质粒pTM206,用NotI酶切后回收目标片段,转化整合到上述菌株中,用含有相应抗性平板进行筛选得到目的菌株,PCR验证。The POS5 gene was expressed to balance the reducing power in yeast. The construction method was to digest the plasmid pTM206 with NotI, recover the target fragment, transform and integrate it into the above strain, screen it with a plate containing the corresponding resistance to obtain the target strain, and verify it with PCR.

表达ADH2,ACS6(SEQ ID NO:5),ALD6基因增加合成番茄红素的前体物质的供应。The expression of ADH2, ACS6 (SEQ ID NO: 5), and ALD6 genes increases the supply of precursor substances for the synthesis of lycopene.

MSQTHKHAIPANIADRCLINPEQYETKYKQSINDPDTFWGEQGKILDWITPYQKVKNTSFAPGNVSIKWYEDGTLNLAANCLDRHLQENGDRTAIIWEGDDASQSKHISYRELHRDVCRFANTLLDLGIKKGDVVAIYMPMVPEAAVAMLACARIGAVHSVIFGGFSPEAIAGRIIDSSSRLVITADEGVRAGRSIPLKKNVDDALKNPNVTSVEHVIVLKRTGNDIDWQEGRDLWWRDLIEKASPEHQPEAMNAEDPLFILYTSGSTGKPKGVLHTTGGYLVYAATTFKYVFDYHPGDIYWCTADVGWVTGHSYLLYGPLACGATTLMFEGVPNWPTPARMCQVVDKHQVNILYTAPTAIRALMAEGDKAIEGTDRSSLRILGSVGEPINPEAWEWYWKKIGKEKCPVVDTWWQTETGGFMITPLPGAIELKAGSATRPFFGVQPALVDNEGHPQEGATEGNLVITDSWPGQARTLFGDHERFEQTYFSTFKNMYFSGDGARRDEDGYYWITGRVDDVLNVSGHRLGTAEIESALVAHPKIAEAAVVGIPHAIKGQAIYAYVTLNHGEEPSPELYAEVRNWVRKEIGPLATPDVLHWTDSLPKTRSGKIMRRILRKIAAGDTSNLGDTSTLADPGVVEKPLEEKQAIAMPS(SEQ ID NO:5)。MSQTHKHAIPANIADRCLINPEQYETKYKQSINDPDTFWGEQGKILDWITPYQKVKNTSFAPGNVSIKWYEDGTLNLAANCLDRHLQENGDRTAIIWEGDDASQSKHISYRELHRDVCRFANTLLDLGIKKGDVVAIYMPMVPEAAVAMLACARIGAVHSVIFGGFSPEAIAGRIIDSSSRLVITADEGVRAGRSIPLKKNVDDALKNPNVTS VEHVIVLKRTGNDIDWQEGRDLWWRDLIEKASPEHQPEAMNAEDPLFILYTSGSTGKPKGVLHTTGGYLVYAATTFKYVFDYHPGDIYWCTADVGWVTGHSYLLYGPLACGATTL MFEGVPNWPTPARMCQVVDKHQVNILYTAPTAIRALMAEGDKAIEEGTDRSSLRILGSVGEPINPEAWEWYWKKIGKEKCPVVDTWWQTETGGFMITPLPGAIELKAGSATRPFFGVQPALVDNEGHPQEGATEGNLVITDSWPGQARTLFGDHERFEQTYFSTFKNMYFSGDGARRDEDGYYWITGRVDDVLNVSGHRLGTAEIESALVAHPKIA EAAVVGIPHAIKGQAIYAYVTLNHGEEPSPELYAEVRNWVRKEIGPLATPDVLHWTDSLPKTRSGKIMRRILRKIAAGDTSNLGDTSTLADPGVVEKPLEEKQAIAMPS (SEQ ID NO: 5).

构建方法为将质粒pTM303,用NotI酶切后回收目标片段,转化整合到上述菌株中,用含有相应抗性平板进行筛选得到目的菌株,PCR验证。The construction method is to digest the plasmid pTM303 with NotI to recover the target fragment, transform and integrate it into the above-mentioned strain, screen it with a plate containing corresponding resistance to obtain the target strain, and verify it with PCR.

沉默Ypl062W,Exg1基因,从整体上调节酵母合成番茄红素系统。构建方法:在需要灭活的Ypl062W基因中以潮霉素抗性基因为标记构建相应的敲除盒片段,Exg1基因以G418抗性基因为标记构建相应的敲除盒片段,将片段通过醋酸锂法酵母转化分别整合到上述工程菌中,用含有潮霉素抗性的平板进行筛选,PCR进行验证。Silencing Ypl062W and Exg1 genes regulates the yeast lycopene synthesis system as a whole. Construction method: In the Ypl062W gene to be inactivated, the corresponding knockout cassette fragment is constructed with the hygromycin resistance gene as a marker, and the Exg1 gene is constructed with the G418 resistance gene as a marker. The fragments are respectively integrated into the above-mentioned engineering bacteria through lithium acetate yeast transformation, screened with a plate containing hygromycin resistance, and verified by PCR.

当菌株需要重复使用抗性筛选标记时,使用如下方法丢掉标记:When the strain needs to reuse the resistance selection marker, use the following method to discard the marker:

将待丢标记菌株转化pSH47质粒,待长出菌落后,挑取多个菌落于5mL YPD培养基中30℃,220rpm过夜培养,3,000rpm室温离心5min,弃上清,用5mL不含葡萄糖含1%半乳糖的YPDG培养基洗2次,加5mL该培养基于30℃,220rpm过夜培养,涂布含有终浓度为1g/L 5-氟-乳清酸的SC非营养缺陷型固体培养基30℃培养。待长出菌落后,挑取单克隆涂布待丢标记的相应YPD固体平板进行验证。Transform the strain to be marked with pSH47 plasmid, and after colonies grow, pick multiple colonies and culture them in 5 mL YPD medium at 30°C, 220 rpm overnight, centrifuge at 3,000 rpm for 5 min at room temperature, discard the supernatant, wash twice with 5 mL YPDG medium without glucose and containing 1% galactose, add 5 mL of the medium and culture at 30°C, 220 rpm overnight, and spread on SC non-nutrition-deficient solid medium containing 5-fluoro-orotic acid with a final concentration of 1 g/L and culture at 30°C. After colonies grow, pick a single clone and spread on the corresponding YPD solid plate of the marker to be marked for verification.

实施例3高产脂质合成的番茄红素菌株构建Example 3 Construction of a high-yield lycopene-producing strain

本实施例所用改造策略如下:The transformation strategy used in this embodiment is as follows:

(1)以提高甘油三酯合成为主,通过过表达PAH1(SEQ ID NO:8),DGA1(SEQ ID NO:9)基因提高甘油三酯下游合成通量,构建菌株为TM6065,构建方法如下:(1) To improve triglyceride synthesis, the downstream synthesis flux of triglyceride was increased by overexpressing PAH1 (SEQ ID NO: 8) and DGA1 (SEQ ID NO: 9). The strain TM6065 was constructed. The construction method was as follows:

将质粒pTM705用NotI酶切后回收目标片段,按200ng用量通过醋酸锂法酵母转化整合到TM606菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。The plasmid pTM705 was digested with NotI to recover the target fragment, and 200 ng of the fragment was integrated into the TM606 strain by the lithium acetate yeast transformation method. The strain with resistance was screened using a plate containing the corresponding resistance and verified by PCR.

(2)以提高甘油三酯合成的前体为主,通过过表达带有两个突变位点的ACC1**(SEQ ID NO:1)基因,提高甘油三酯上游合成通量,构建菌株为TM6066,构建方法如下:(2) To improve the precursor of triglyceride synthesis, the upstream synthesis flux of triglyceride was increased by overexpressing the ACC1** (SEQ ID NO: 1) gene with two mutation sites, and the strain TM6066 was constructed. The construction method is as follows:

将质粒pTM706用NotI酶切后回收目标片段,按如上方法转化整合到TM606菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。The plasmid pTM706 was digested with NotI to recover the target fragment, which was transformed and integrated into the TM606 strain as above. The strain with resistance was screened with a plate containing the corresponding resistance and verified by PCR.

(3)在提高甘油三酯合成基础上减少甘油三酯的降解,通过在菌株TM6065基础上敲除TGL3(SEQ ID NO:11)基因构建菌株TM6068,构建方法如下:(3) On the basis of improving triglyceride synthesis and reducing triglyceride degradation, strain TM6068 was constructed by knocking out the TGL3 (SEQ ID NO: 11) gene based on strain TM6065. The construction method is as follows:

将质粒pTM708用NotI酶切后回收目标片段,转化整合到TM606菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。The plasmid pTM708 was digested with NotI to recover the target fragment, which was then transformed and integrated into the TM606 strain. The strain with resistance was screened using a plate containing the corresponding resistance and verified by PCR.

(4)以增加胞内脂滴大小为主,通过敲除FLD1基因(SEQ ID NO:10)促进脂滴聚合,构建菌株为TM701,构建方法如下:(4) In order to increase the size of intracellular lipid droplets, lipid droplet aggregation was promoted by knocking out the FLD1 gene (SEQ ID NO: 10). The strain TM701 was constructed. The construction method was as follows:

将质粒pTM701用NotI酶切后回收目标片段,转化整合到TM606菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。The plasmid pTM701 was digested with NotI to recover the target fragment, which was then transformed and integrated into the TM606 strain. The strain with resistance was screened using a plate containing the corresponding resistance and verified by PCR.

(5)以增加胞内不饱和脂肪酸为主,通过过表达OLE1(SEQ ID NO:7)基因,构建菌株为TM704,构建方法如下:(5) To increase intracellular unsaturated fatty acids, strain TM704 was constructed by overexpressing the OLE1 (SEQ ID NO: 7) gene. The construction method is as follows:

将质粒pTM704用NotI酶切后回收目标片段,转化整合到TM606菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。The plasmid pTM704 was digested with NotI to recover the target fragment, which was then transformed and integrated into the TM606 strain. The strain with resistance was screened using a plate containing the corresponding resistance and verified by PCR.

(6)甘油三酯上下游合成组合的方法,构建菌株TM60656或TM60686,分别将质粒pTM705/pTM708,pTM706用NotI酶切后回收目标片段后整合到TM606菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。(6) A method for combining upstream and downstream synthesis of triglycerides was used to construct strain TM60656 or TM60686. The plasmids pTM705/pTM708 and pTM706 were respectively digested with NotI to recover the target fragments and then integrated into the TM606 strain. The strains with resistance were screened using plates containing corresponding resistance and verified by PCR.

(7)结合胞内甘油三酯的上下游合成与胞内脂滴大小,构建菌株为TM70156/TM70186,构建方法如下:(7) Combining the upstream and downstream synthesis of intracellular triglycerides and the size of intracellular lipid droplets, the strain TM70156/TM70186 was constructed. The construction method is as follows:

分别将质粒pTM705/pTM708,pTM706用NotI酶切后回收目标片段,转化整合到TM701中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。Plasmids pTM705/pTM708 and pTM706 were digested with NotI to recover the target fragments, which were transformed and integrated into TM701. The resistant strains were screened using plates containing corresponding resistance and verified by PCR.

(8)以增加胞内不饱和脂肪酸结合脂滴大小,构建菌株为TM707,构建方法如下:(8) In order to increase the size of intracellular unsaturated fatty acids bound to lipid droplets, the strain TM707 was constructed, and the construction method was as follows:

将质粒pTM707用NotI酶切后回收目标片段,转化整合到TM606菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。The plasmid pTM707 was digested with NotI to recover the target fragment, which was then transformed and integrated into the TM606 strain. The strain with resistance was screened using a plate containing the corresponding resistance and verified by PCR.

(9)结合提高胞内甘油三酯的上下游合成与胞内不饱和脂肪酸含量,构建菌株为TM70456/TM70486,构建方法如下:(9) In combination with improving the upstream and downstream synthesis of intracellular triglycerides and the content of intracellular unsaturated fatty acids, the strain TM70456/TM70486 was constructed, and the construction method was as follows:

分别将质粒pTM705/pTM708,pTM706用NotI酶切后回收目标片段,转化整合到TM704菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。Plasmids pTM705/pTM708 and pTM706 were digested with NotI to recover the target fragments, which were transformed and integrated into the TM704 strain. The strains with resistance were screened using plates containing corresponding resistance and verified by PCR.

(10)结合提高胞内甘油三酯的上下游合成,胞内不饱和脂肪酸含量,提高脂滴大小的方法,构建菌株为TM70756/TM70786,构建方法如下:(10) Combined with the method of increasing the upstream and downstream synthesis of intracellular triglycerides, the content of intracellular unsaturated fatty acids, and the size of lipid droplets, the strain TM70756/TM70786 was constructed. The construction method is as follows:

分别将质粒pTM705/pTM708,pTM706用NotI酶切后回收目标片段,转化整合到TM707菌株中,用含有相应抗性的平板进行筛选得到带有抗性的菌株,PCR验证。Plasmids pTM705/pTM708 and pTM706 were digested with NotI to recover the target fragments, which were transformed and integrated into the TM707 strain. The strains with resistance were screened using plates containing corresponding resistance and verified by PCR.

实施例4番茄红素工程菌摇瓶培养发酵过程Example 4 Lycopene engineering bacteria shake flask culture fermentation process

在本实施例中,发明人详细介绍了实施例3所获得的部分工程菌株的发酵培养过程。In this example, the inventors introduce in detail the fermentation culture process of some of the engineered strains obtained in Example 3.

摇瓶发酵采用两级种子培养,将平板上的重组菌株挑到含有5mL YPD培养基的PA瓶中,30℃摇床过夜培养(一般14-18h)后,菌体长到对数生长期(OD600在5-8左右),获得一级种子液,以1%接种量将菌株转移至含有50mL YPD培养基的250mL摇瓶中,摇瓶培养约14-18h后得到二级种子液。以菌体终浓度为OD600=0.5计算并接种二级种子液至含有200mL发酵培养基YPD(含1%半乳糖)的500mL摇瓶中,30℃ 220rpm进行摇瓶发酵。96h后取样保存于-80℃冰箱,待测番茄红素产量积累。The shake flask fermentation adopts two-stage seed culture. The recombinant strain on the plate is picked into a PA bottle containing 5mL YPD medium. After overnight culture at 30°C (generally 14-18h), the bacteria grow to the logarithmic growth phase ( OD600 is about 5-8), and the first-stage seed liquid is obtained. The strain is transferred to a 250mL shake flask containing 50mL YPD medium with a 1% inoculation amount. After about 14-18h of shake flask culture, the second-stage seed liquid is obtained. The final concentration of the bacteria is calculated as OD600 = 0.5 and inoculated into a 500mL shake flask containing 200mL fermentation medium YPD (containing 1% galactose), and the shake flask fermentation is carried out at 30°C 220rpm. After 96h, the sample is stored in a -80°C refrigerator to measure the accumulation of lycopene production.

实施例5产物萃取及检测Example 5 Product extraction and detection

在本实施例中,发明人对发酵处理后所获得的产物进行萃取并检测番茄红素的产量。In this example, the inventors extracted the product obtained after the fermentation treatment and detected the yield of lycopene.

从冰箱中取出样品解冻,取500μL发酵液于15mL离心管(冰上预冷),5,000rpm,4℃离心2min收集菌体,去上清。加入4mL丙酮(HPLC级别),0.2g玻璃珠,1%抗氧化剂,震荡5min,冰浴超声5-10min,5,000rpm,4℃离心2min,转移上清至50mL离心管中;重复上述提取过程并收集提取液,直至菌体无明显黄色;混匀收集到的萃取液,取2mL,12,000rpm离心10min,取上清至棕色进样瓶中,进行HPLC分析。Take out the sample from the refrigerator and thaw, take 500μL of fermentation liquid in a 15mL centrifuge tube (precooled on ice), centrifuge at 5,000rpm, 4℃ for 2min to collect the bacteria, and remove the supernatant. Add 4mL acetone (HPLC grade), 0.2g glass beads, 1% antioxidant, shake for 5min, ultrasonicate in an ice bath for 5-10min, centrifuge at 5,000rpm, 4℃ for 2min, transfer the supernatant to a 50mL centrifuge tube; repeat the above extraction process and collect the extract until the bacteria have no obvious yellow color; mix the collected extract, take 2mL, centrifuge at 12,000rpm for 10min, take the supernatant to a brown injection bottle, and perform HPLC analysis.

检测方法:番茄红素检测使用四元HPLC进行的,检测器为紫外检测器,吸收波长474nm,色谱柱为Agilent Zorbax C18(150mm*4.6mm*5μm),流动相A(乙腈:水=9:1)和流动相B(甲醇:异丙醇=3:2)按如下条件分析:0-90%B(0-15min),90%B(15-30min),90%-0B(30-35min),流速1mL/min。Detection method: Lycopene detection was carried out using quaternary HPLC, the detector was a UV detector, the absorption wavelength was 474nm, the chromatographic column was Agilent Zorbax C18 (150mm*4.6mm*5μm), mobile phase A (acetonitrile: water = 9:1) and mobile phase B (methanol: isopropanol = 3:2) were analyzed under the following conditions: 0-90% B (0-15min), 90% B (15-30min), 90% -0B (30-35min), flow rate 1mL/min.

检测结果如图1所示,可以看出,过表达甘油三酯的番茄红素生产菌比原始番茄红素生产菌TM606产量有不同程度的提升。The test results are shown in FIG1 , and it can be seen that the lycopene production of the triglyceride-overexpressing bacteria is improved to varying degrees compared with the original lycopene production bacteria TM606.

实施例6构建过表达甘油三酯的纳他霉素生产菌及发酵Example 6 Construction of Natamycin Producing Bacteria Overexpressing Triglyceride and Fermentation

纳他霉素是一种无臭、无味,低剂量且安全性高的食品防腐剂,由纳他链霉菌发酵制得,是一种白色至乳白色的无臭无味的结晶粉末,它的作用机理是与真菌的麦角甾醇以及其他甾醇基团结合,阻遏麦角甾醇生物合成,从而使细胞膜畸变,最终导致渗漏,引起细胞死亡。在焙烤食品用纳他霉素对面团进行表面处理,有明显的延长保质期作用。纳他霉素微溶于水,难溶于大部分有机溶剂。室温下水中溶解度为30~100mg/L。pH低于3或高于9时,其溶解度会有提高,但会降低纳他霉素的稳定性。Natamycin is an odorless, tasteless, low-dose and highly safe food preservative made by fermentation of Streptomyces natamycin. It is a white to milky white odorless and tasteless crystalline powder. Its mechanism of action is to combine with ergosterol and other sterol groups of fungi to inhibit ergosterol biosynthesis, thereby deforming the cell membrane, eventually leading to leakage and cell death. In baked foods, using natamycin to treat the dough surface has a significant effect of extending the shelf life. Natamycin is slightly soluble in water and difficult to dissolve in most organic solvents. The solubility in water at room temperature is 30-100 mg/L. When the pH is lower than 3 or higher than 9, its solubility will increase, but the stability of natamycin will be reduced.

在本实施例中,发明人在纳他链霉菌中构建如表2所示的质粒,具体方式参照实施例1中将来源于链霉菌的相应基因通过PCR得到相应片段,利用Gibson方法(DanielG.Gibson,Enzymatic Assembly of Overlapping DNA Fragments,Methods inEnzymology,Volume 498,2011,Pages 349-361.)按顺序连接在相应启动子后连接在载体pSET152中ermE*启动子后,构建形成各需要质粒。将构建好的质粒通过电转化到大肠杆菌ET12567/pUZ8002中,将转化后大肠杆菌在2毫升LB中37度培养过夜,取200微升菌液转接于5毫升LB中37度培养。与此同时对纳他链霉菌孢子做热激和预萌发处理,将纳他链霉菌孢子悬浮于2毫升TES缓冲液中,在50度水浴10分钟,冷却至室温后加入等体积的孢子预萌发培养基,与先前准备好的大肠杆菌一起置于37度摇床培养2.5个小时,用LB培养基对大肠杆菌进行洗涤2次,与此同时通过离心收集链霉菌孢子,将大肠杆菌与链霉菌孢子混合均匀,按108:1010之比与大肠杆菌细胞等量混合,并涂布于含有SFM培养基的平板上,吹干并置于30度培养箱中培养,18小时后用含有平板终浓度为8mg/L阿伯拉霉素抗性的1毫升无菌水对的平板进行覆盖,置30度培养箱中培养培养3天后可以看见白色的接合转移子。对于突变株初步验证,首先引物V-apr-F(5’-GCTCATCGGTCAGCTTCTCA 3’)和V-apr-R(5’-TCGCATTCTTCGCATCCC 3’)被用来验证阿伯拉抗性基因的存在,如果该突变株含有阿伯拉抗性基因,应该得到726bp的PCR产物。In this example, the inventors constructed plasmids as shown in Table 2 in Streptomyces nata. The specific method is to obtain the corresponding fragments by PCR from the corresponding genes derived from Streptomyces in Example 1, and then connect them to the corresponding promoters and the ermE* promoter in the vector pSET152 in sequence using the Gibson method (Daniel G. Gibson, Enzymatic Assembly of Overlapping DNA Fragments, Methods in Enzymology, Volume 498, 2011, Pages 349-361.) to construct the required plasmids. The constructed plasmids were transformed into Escherichia coli ET12567/pUZ8002 by electroporation, and the transformed Escherichia coli was cultured in 2 ml LB at 37 degrees overnight, and 200 microliters of bacterial solution was transferred to 5 ml LB and cultured at 37 degrees. At the same time, the natalidomyces spores were subjected to heat shock and pre-germination treatment. The natalidomyces spores were suspended in 2 ml of TES buffer, in a 50-degree water bath for 10 minutes, and after cooling to room temperature, an equal volume of spore pre-germination medium was added, and the spores were cultured in a 37-degree shaker together with the previously prepared Escherichia coli for 2.5 hours. The Escherichia coli was washed twice with LB medium. At the same time, Streptomyces spores were collected by centrifugation, and the Escherichia coli and Streptomyces spores were mixed evenly. The mixture was mixed with an equal amount of Escherichia coli cells at a ratio of 10 8 :10 10 , and spread on a plate containing SFM medium, blown dry and placed in a 30-degree incubator for culture. After 18 hours, the plate was covered with 1 ml of sterile water containing a final concentration of 8 mg/L apramycin resistance on the plate, and cultured in a 30-degree incubator. White conjugative transfer products can be seen after 3 days of culture. For the initial verification of the mutant strain, first primers V-apr-F (5'-GCTCATCGGTCAGCTTCTCA 3') and V-apr-R (5'-TCGCATTCTTCGCATCCC 3') were used to verify the presence of the Abra resistance gene. If the mutant strain contains the Abra resistance gene, a PCR product of 726 bp should be obtained.

将原始纳他链霉菌J1002和新构建的过表达甘油三酯的纳他霉素生产菌在SFM平板(黄豆饼粉20g/L,甘露醇20g/L,琼脂16g/L,自来水1L,pH7.5)30度培养7天后,挑取4小块约共3.2cm2的含孢子琼脂块接种于250毫升摇瓶中含有30mL COM培养基(10g/L玉米淀,10g/L燕麦粉,5g/L麦芽提取物,2g/L酵母提取物,15g/L琼脂,pH7.2)中30℃,220rpm培养48h后,取3mL种子培养物转移到25mL NPM培养基(50.0g/L玉米淀粉,18.0g/L大豆粉,10.0g/L酵母提取物,1.5g/L CaCO3,pH 7.2)在摇床中30℃,220rpm培养120h.The original Streptomyces natatomica J1002 and the newly constructed natamycin-producing strain overexpressing triglycerides were cultured on SFM plates (20 g/L soybean cake powder, 20 g/L mannitol, 16 g/L agar, 1 L tap water, pH 7.5) at 30 degrees for 7 days, and then 4 small pieces of spore-containing agar blocks with a total size of about 3.2 cm2 were picked and inoculated into 30 mL COM medium (10 g/L corn starch, 10 g/L oatmeal, 5 g/L malt extract, 2 g/L yeast extract, 15 g/L agar, pH 7.2) in a 250 mL shake flask. After culturing for 48 h at 30 degrees Celsius and 220 rpm, 3 mL of seed culture was transferred to 25 mL NPM medium (50.0 g/L corn starch, 18.0 g/L soybean powder, 10.0 g/L yeast extract, 1.5 g/L CaCO3, pH 7.2 ). 7.2) Incubate in a shaker at 30°C, 220 rpm for 120 h.

取0.5mL发酵液7,000rpm离心5分钟,去上清,加入1.5mL甲醇冰醋酸溶液(甲醇:冰醋酸=95:5,v/v)混合沉淀.超声20min后7,000rpm离心5分钟,去50μl上清加入950μl甲醇冰醋酸溶液(甲醇:冰醋酸=95:5,v/v)用于HPLC检测.HPLC检测条件为:分析柱AgilentZORBAX SB-C18(4.6×250nm),流速0.5mL min-1,UV 303nm检测.流动相为甲醇:水:冰醋酸=60:40:5(V/V/V).Take 0.5 mL of fermentation broth and centrifuge at 7,000 rpm for 5 minutes, remove the supernatant, add 1.5 mL of methanol glacial acetic acid solution (methanol: glacial acetic acid = 95:5, v/v) to mix and precipitate. After ultrasonication for 20 minutes, centrifuge at 7,000 rpm for 5 minutes, remove 50 μl of supernatant and add 950 μl of methanol glacial acetic acid solution (methanol: glacial acetic acid = 95:5, v/v) for HPLC detection. HPLC detection conditions are: analytical column Agilent ZORBAX SB-C18 (4.6×250 nm), flow rate 0.5 mL min -1 , UV 303 nm detection. The mobile phase is methanol: water: glacial acetic acid = 60:40:5 (V/V/V).

结果如表3所示,新构建的菌株比原始生产菌株J1002纳他霉素产量均有不同程度的提高。The results are shown in Table 3. The natamycin production of the newly constructed strains was improved to varying degrees compared with the original production strain J1002.

表3:纳他霉素相关菌株信息Table 3: Natamycin related strain information

Figure BDA0003813798540000221
Figure BDA0003813798540000221

实施例7构建过表达甘油三酯的多杀菌素生产菌及发酵Example 7 Construction of a spinosad-producing bacterium overexpressing triglycerides and fermentation

多杀菌素又名多杀霉素是在刺糖多胞菌(Saccharopolyspora spinosa)发酵液中提取的一种大环内酯类无公害高效生物杀虫剂。多杀菌素为浅灰色的固体结晶,带有一种类似轻微陈腐泥土的气味。多杀菌素在水中的溶解度很低,易溶于有机溶剂,例如:甲醇、乙醇、已腈、丙酮、二甲基亚砜、二甲基甲酰胺等。Spinosad, also known as spinosad, is a macrolide non-toxic and highly effective biopesticide extracted from the fermentation broth of Saccharopolyspora spinosa. Spinosad is a light grey solid crystal with a slightly stale earthy smell. Spinosad has a very low solubility in water and is easily soluble in organic solvents, such as methanol, ethanol, cyanonitrile, acetone, dimethyl sulfoxide, dimethylformamide, etc.

在本实施例中,发明人在多杀菌素生产菌中过各相关基因,将实施例6中构建的质粒按照类似的方法接合转移进入多杀菌素生产菌中。新构建的菌株见表3所示。In this example, the inventors expressed relevant genes in the spinosyn-producing bacteria, and transferred the plasmid constructed in Example 6 into the spinosyn-producing bacteria by conjugation in a similar manner. The newly constructed strains are shown in Table 3.

刺糖多孢菌原始菌株购自中国微生物菌株保持中心(CGMCC),菌株编号为CGMCC4.1365。菌株复壮采用复壮培养基(酵母提取物1g/L,牛肉提取物1g/L,Casein AcidsHydrolysate 2g/L,葡萄糖10g/L,琼脂15g/L,pH7.3)。取在复壮液体培养基中培养3天后培养物1mL转接于装有30mL发酵种子培养基的250mL弹簧摇瓶中。种子培养基:TSB30g/L,酵母提取物3g/L,牛肉提取物3g/L,MgSO4·7H2O 2g/L,葡萄糖10g/L,玉米浆2.5g/L,pH 7.0。发酵种子在30℃,转速为220rpm的摇床中培养50h后接种于发酵培养基。其中发酵培养基为:葡萄糖40g/L,牛肉提取物10g/L,MgSO4·7H2O 2g/L,NaCl 2g/L,大豆胨2g/L,可溶性淀粉30g/L,CaCO3 2.4g/L,酵母提取物0.34g/L,蛋白胨6.34g/L,pH 7.2。发酵培养基采用250mL弹簧摇瓶,装液量为50mL,种子接种量为10%。发酵条件30℃,转速为220rpm。The original strain of Saccharopolyspora spinosa was purchased from the China Microbial Strain Maintenance Center (CGMCC), and the strain number is CGMCC4.1365. The strain was rejuvenated using rejuvenation medium (yeast extract 1g/L, beef extract 1g/L, Casein Acids Hydrolysate 2g/L, glucose 10g/L, agar 15g/L, pH7.3). After 3 days of culture in the rejuvenation liquid medium, 1mL of the culture was transferred to a 250mL spring shake flask containing 30mL of fermentation seed medium. Seed medium: TSB 30g/L, yeast extract 3g/L, beef extract 3g/L, MgSO 4 ·7H 2 O 2g/L, glucose 10g/L, corn steep liquor 2.5g/L, pH 7.0. The fermentation seeds were cultured in a shaker at 30°C and a speed of 220rpm for 50h and then inoculated into the fermentation medium. The fermentation medium is: glucose 40g/L, beef extract 10g/L, MgSO 4 ·7H 2 O 2g/L, NaCl 2g/L, soytone 2g/L, soluble starch 30g/L, CaCO 3 2.4g/L, yeast extract 0.34g/L, peptone 6.34g/L, pH 7.2. The fermentation medium uses a 250mL spring shake flask with a liquid volume of 50mL and a seed inoculation amount of 10%. The fermentation conditions are 30°C and the rotation speed is 220rpm.

多杀菌素(CAS No:168316-95-8)标准品购于Sigma公司(产品货号:33706),该标准品包含多杀菌素A和多杀菌素D两种组分,HPLC纯度为97%。HPLC分析的色谱分析采用的流动相为10%的A相(0.2%乙酸铵水溶液)和90%的B相(甲醇);色谱柱为DOINEX的C18柱(3μm,4.6,150mm);流速0.8mL/min;采用PDA检测器,检测波长245nm。MS检测器为LCQ FLEET(Thermo scientific)。HPLC标准曲线的汇总:称取5mg多杀菌素标准品,加入1mL HPLC级甲醇,溶解混匀后即可得5g/L的母液,对标准品做系列稀释,用HPLC检测。取发酵培养物0.2mL,逐次加入总体积为0.8mL的乙腈,涡旋振荡混合混合2min后4℃冰箱放置过夜。12000rpm离心10min后取上清液用0.45μm尼龙膜过滤后盛装于棕色HPLC样品瓶后即可上机分析。Spinosad (CAS No: 168316-95-8) standard was purchased from Sigma (product number: 33706). The standard contains two components, spinosyn A and spinosyn D, with an HPLC purity of 97%. The mobile phase used for HPLC analysis was 10% phase A (0.2% ammonium acetate aqueous solution) and 90% phase B (methanol); the chromatographic column was a DOINEX C18 column (3μm, 4.6, 150mm); the flow rate was 0.8mL/min; a PDA detector was used, and the detection wavelength was 245nm. The MS detector was LCQ FLEET (Thermo scientific). Summary of HPLC standard curve: Weigh 5mg of spinosyn standard, add 1mL of HPLC grade methanol, dissolve and mix to obtain a 5g/L mother solution, make a series of dilutions of the standard, and detect it by HPLC. Take 0.2 mL of the fermentation culture, add 0.8 mL of acetonitrile gradually, vortex and mix for 2 minutes, and place in a refrigerator at 4°C overnight. Centrifuge at 12000 rpm for 10 minutes, take the supernatant, filter it with a 0.45 μm nylon membrane, and put it in a brown HPLC sample bottle for analysis.

发酵结果如表4所示,J1016-1比CGMCC4.1365多杀菌素产量均有不同程度的提高。The fermentation results are shown in Table 4. The spinosad production of J1016-1 was higher than that of CGMCC4.1365 to varying degrees.

表4:多杀菌素相关菌株信息Table 4: Information on spinosad-related strains

Figure BDA0003813798540000231
Figure BDA0003813798540000231

实施例8过表达甘油三酯的虾青素生产菌的构建Example 8 Construction of astaxanthin-producing bacteria overexpressing triglycerides

天然虾青素(又称酮式类胡萝卜素或虾红素)是目前人类在自然界发现的最强的天然抗氧化剂。虾青素具有超强的抗氧化活性,比维生素E强百倍以上,被称为“超级维生素E”,它能有效清除细胞内的氧自由基,也是唯一能通过血脑屏障的类胡萝卜素,具有增强免疫力、缓解疲劳、增强细胞再生能力、预防癌症、治疗心血管疾病、减少衰老细胞的堆积、抑制肥胖、保护眼睛和中枢神经、抗紫外线等功效。近年来,虾青素已开始被广泛应用于药品、保健品、化妆品、食品添加剂、水产养殖等方面。随着我国国民经济的发展,对其需求也日益增加。Natural astaxanthin (also known as ketocarotenoid or astaxanthin) is the strongest natural antioxidant found in nature. Astaxanthin has super antioxidant activity, more than 100 times stronger than vitamin E, and is called "super vitamin E". It can effectively remove oxygen free radicals in cells and is the only carotenoid that can pass through the blood-brain barrier. It has the effects of enhancing immunity, relieving fatigue, enhancing cell regeneration, preventing cancer, treating cardiovascular diseases, reducing the accumulation of aging cells, inhibiting obesity, protecting eyes and central nervous system, and resisting ultraviolet rays. In recent years, astaxanthin has begun to be widely used in medicines, health products, cosmetics, food additives, aquaculture, etc. With the development of my country's national economy, the demand for it is also increasing.

在本实施例中,发明人在质粒pMH1、pFZ81(Fayin Zhu,In vitro reconstitutionof mevalonate pathway and targeted engineering of farnesene overproduction inEscherichia coli,Biotechnol.Bioeng.2014;111:1396-1405.),及质粒pFZ153(Tian Ma,Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp.ATCC55669for heterologous overproduction in Escherichia coli,Biotechnol.J.2015;11(2):228-237.)的基础上按表5所示构建质粒,并按表6所示质粒组合转化E.coli MG1655感受态细胞,构建大肠杆菌虾青素生产菌株。In this embodiment, the inventors constructed plasmids as shown in Table 5 based on plasmids pMH1, pFZ81 (Fayin Zhu, In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli, Biotechnol. Bioeng. 2014; 111: 1396-1405.), and plasmid pFZ153 (Tian Ma, Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC55669 for heterologous overproduction in Escherichia coli, Biotechnol. J. 2015; 11 (2): 228-237.), and transformed E. coli MG1655 competent cells according to the plasmid combination shown in Table 6 to construct an Escherichia coli astaxanthin production strain.

本实施例质粒构建具体方式参照实施例1,将相应基因通过PCR扩增,利用Gibson方法(Daniel G.Gibson,Enzymatic Assembly of Overlapping DNA Fragments,Methodsin Enzymology,Volume 498,2011,Pages 349-361.)按顺序连接在相应启动子后,构建形成各需要质粒。The specific method of constructing the plasmid in this example is as described in Example 1. The corresponding gene is amplified by PCR and sequentially connected to the corresponding promoter using the Gibson method (Daniel G. Gibson, Enzymatic Assembly of Overlapping DNA Fragments, Methods in Enzymology, Volume 498, 2011, Pages 349-361.) to construct the required plasmids.

表5:大肠杆菌虾青素合成质粒构建Table 5: E. coli astaxanthin synthesis plasmid construction

Figure BDA0003813798540000241
Figure BDA0003813798540000241

表6:大肠杆菌虾青素合成菌株构建Table 6: Construction of Escherichia coli astaxanthin synthesis strain

菌株Strains 描述describe 产量(mg/L)Yield (mg/L) TM8011TM8011 pMH1,pFZ81,pFZ153pMH1, pFZ81, pFZ153 7272 TM8012TM8012 pTM801,pFZ81,pFZ153pTM801, pFZ81, pFZ153 8585 TM8013TM8013 pMH1,pTM802,pFZ153pMH1, pTM802, pFZ153 9090 TM8014TM8014 pTM801,pTM802,pFZ153pTM801, pTM802, pFZ153 9898 TM8015TM8015 pTM801,pTM803,pFZ153pTM801, pTM803, pFZ153 110110

菌株构建完成后按如下方法进行摇瓶发酵:After the strain construction is completed, shake flask fermentation is carried out as follows:

转化后,挑转化子于含有34μg/mL氯霉素、50μg/mL卡那霉素、100μg/mL氨苄青霉素的LB培养基中于37℃、220rpm培养过夜。以1%接种量转接200mL含有34μg/mL氯霉素、50μg/mL卡那霉素、100μg/mL氨苄青霉素的LB培养基30℃、200rpm培养。OD600达到0.7-0.9时加终浓度0.1mM IPTG(异丙基-β-D-硫代半乳糖苷)诱导,培养15h后取样2mL,12,000rpm离心3min,去上清,加1mL萃取剂(V丙酮:V甲醇=4:1),震荡打散菌体后,超声10min,13,000rpm、4℃离心10min,取上清按下述方法进行高效液相色谱(HPLC)检测,操作过程避光。After transformation, the transformants were selected and cultured overnight in LB medium containing 34 μg/mL chloramphenicol, 50 μg/mL kanamycin, and 100 μg/mL ampicillin at 37°C and 220 rpm. 200 mL of LB medium containing 34 μg/mL chloramphenicol, 50 μg/mL kanamycin, and 100 μg/mL ampicillin was transferred with a 1% inoculum and cultured at 30°C and 200 rpm. When OD600 reached 0.7-0.9, 0.1 mM IPTG (isopropyl-β-D-thiogalactoside) was added for induction. After 15 h of culture, 2 mL of the sample was taken, centrifuged at 12,000 rpm for 3 min, the supernatant was removed, 1 mL of the extractant (V acetone: V methanol = 4:1) was added, the cells were shaken and dispersed, ultrasonicated for 10 min, centrifuged at 13,000 rpm and 4°C for 10 min, and the supernatant was taken for high performance liquid chromatography (HPLC) detection according to the following method. The operation process was protected from light.

四元HPLC(Thermo Fisher Ultimate 3000),色谱柱Agilent Zorbax C18(4.6-mm×150-mm×5-μm)。色谱条件如下:流动相A(乙腈:水=9:1,V/V)和流动相B(甲醇:异丙醇=3:2,V/V)。0min:0%B,15min:90%B,30min:90%B,35min:0%B。流速1mL/min。柱温:25℃。检测器:紫外检测器,检测波长474nm。Quaternary HPLC (Thermo Fisher Ultimate 3000), chromatographic column Agilent Zorbax C18 (4.6-mm×150-mm×5-μm). Chromatographic conditions are as follows: mobile phase A (acetonitrile: water = 9:1, V/V) and mobile phase B (methanol: isopropanol = 3:2, V/V). 0 min: 0% B, 15 min: 90% B, 30 min: 90% B, 35 min: 0% B. Flow rate 1 mL/min. Column temperature: 25°C. Detector: UV detector, detection wavelength 474 nm.

结果如表6所示,改造后的工程菌的虾青素产量更高。The results are shown in Table 6, and the astaxanthin production of the modified engineered bacteria is higher.

实施例9控制微生物体内的甘油三酯过表达Example 9 Controlling triglyceride overexpression in microorganisms

在实施例3的基础上,我们将PAH1,DGA,ACC1,OLE1基因的启动子更换为pHXT1(SEQID NO:28),该启动子的特征为在有葡萄糖的条件下所过表达的相关基因可以表达,在没有葡萄糖的条件下,不表达相关基因,因此通过我们的发酵控制,可以实现番茄红素生产菌株在发酵前期积累甘油三酯,后期葡萄糖被消耗完以后,不再积累甘油三酯,从而控制微生物体内的脂类含量,使微生物在发酵后期可利用更多的底物和能量合成番茄红素,从而进一步提高番茄红素的产量。具体构建的方法参照实施例1-2,将启动子进行替换。菌株详情见表7,按照实施例4-5的发酵和检测方法进行检测,结果显示,通过控制甘油三酯的表达,番茄红素的产量进一步提高。On the basis of Example 3, we replaced the promoters of the PAH1, DGA, ACC1, and OLE1 genes with pHXT1 (SEQID NO: 28), which is characterized by the overexpression of related genes in the presence of glucose, and the non-expression of related genes in the absence of glucose. Therefore, through our fermentation control, the lycopene production strain can accumulate triglycerides in the early stage of fermentation, and no longer accumulate triglycerides after glucose is consumed in the later stage, thereby controlling the lipid content in the microorganism, so that the microorganism can use more substrates and energy to synthesize lycopene in the later stage of fermentation, thereby further increasing the yield of lycopene. The specific construction method refers to Example 1-2, and the promoter is replaced. The strain details are shown in Table 7, and the fermentation and detection methods of Examples 4-5 are used for detection. The results show that the yield of lycopene is further increased by controlling the expression of triglycerides.

表7:番茄红素工程菌株改造信息及产量Table 7: Lycopene engineering strain transformation information and yield

新构建菌株Newly constructed strains 原始菌株Original strain 替换为pHXT1启动子的基因Gene replaced with pHXT1 promoter 敲除基因Knockout gene 产量(mg/L)Yield (mg/L) TM6065HTM6065H TM6065TM6065 PAH1,DGA1PAH1,DGA1 ---- 355355 TM6066HTM6066H TM6066TM6066 ACC1**ACC1** ---- TM6068HTM6068H TM6068TM6068 PAH1,DGA1PAH1,DGA1 TGL3TGL3 TM704HTM704H TM704TM704 OLE1OLE1 FLD1FLD1 340340 TM60656HTM60656H TM60656TM60656 PAH1,DGA1,ACC1**PAH1, DGA1, ACC1** ---- 460460 TM60686HTM60686H TM60686TM60686 PAH1,DGA1,ACC1**PAH1, DGA1, ACC1** TGL3TGL3 388388 TM70156HTM70156H TM70156TM70156 PAH1,DGA1,ACC1**PAH1, DGA1, ACC1** FLD1FLD1 380380 TM70186HTM70186H TM70186TM70186 PAH1,DGA1,ACC1**PAH1, DGA1, ACC1** TGL3,FLD1TGL3,FLD1 356356 TM707HTM707H TM707TM707 OLE1OLE1 ---- 352352 TM70456HTM70456H TM70456TM70456 PAH1,DGA1,ACC1**,OLE1PAH1,DGA1,ACC1**,OLE1 FLD1FLD1 452452 TM70486HTM70486H TM70486TM70486 PAH1,DGA1,ACC1**,OLE1PAH1,DGA1,ACC1**,OLE1 TGL3,FLD1TGL3,FLD1 403403 TM70756HTM70756H TM70756TM70756 PAH1,DGA1,ACC1**,OLE1PAH1,DGA1,ACC1**,OLE1 ---- 475475 TM70786HTM70786H TM70786TM70786 PAH1,DGA1,ACC1**,OLE1PAH1,DGA1,ACC1**,OLE1 TGL3TGL3 387387

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction.

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it is to be understood that the above embodiments are exemplary and are not to be construed as limitations of the present invention. A person skilled in the art may change, modify, replace and vary the above embodiments within the scope of the present invention.

Claims (11)

1.一种微生物,其特征在于,包括:1. A microorganism, characterized in that it comprises: 过表达包括选自下列基因的至少之一:Overexpression includes at least one selected from the following genes: ACCA2,ACCB,ACCE,DGAT,LPPβ,OLE1A,OLE1B,OLE1C,OLE1D,EcACC A,EcACCB,EcACCC,EcACCD,pgpB,atfA,fabA,fabB;ACCA2, ACCB, ACCE, DGAT, LPPβ, OLE1A, OLE1B, OLE1C, OLE1D, EcACC A, EcACCB, EcACCC, EcACCD, pgpB, atfA, fabA, fabB; 其中,所述微生物是具有合成疏水化合物潜能的微生物。Wherein, the microorganism is a microorganism with the potential to synthesize hydrophobic compounds. 2.根据权利要求1所述的微生物,其特征在于,所述ACCA2,ACCB,ACCE,DGAT,LPPβ,OLE1A,OLE1B,OLE1C,OLE1D来源于链霉菌,2. The microorganism according to claim 1, characterized in that ACCA2, ACCB, ACCE, DGAT, LPPβ, OLE1A, OLE1B, OLE1C, and OLE1D are derived from Streptomyces, 任选地,所述EcACCA,EcACCB,EcACCC,EcACCD,pgpB,atfA,fabA,fabB来源于大肠杆菌,Optionally, the EcACCA, EcACCB, EcACCC, EcACCD, pgpB, atfA, fabA, and fabB are derived from Escherichia coli, 任选地,所述fabA编码具有SEQ ID NO:6所示氨基酸序列的多肽,Optionally, the fabA encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 6, 任选地,所述ACCA2编码具有SEQ ID NO:12所示氨基酸序列的多肽,Optionally, the ACCA2 encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 12, 任选地,所述ACCB编码具有SEQ ID NO:13所示氨基酸序列的多肽,Optionally, the ACCB encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 13, 任选地,所述ACCE编码具有SEQ ID NO:14所示氨基酸序列的多肽,Optionally, the ACCE encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 14, 任选地,所述DGAT编码具有SEQ ID NO:15所示氨基酸序列的多肽,Optionally, the DGAT encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 15, 任选地,所述LPPb编码具有SEQ ID NO:16所示氨基酸序列的多肽,Optionally, the LPPb encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 16, 任选地,所述OLE1A编码具有SEQ ID NO:17所示氨基酸序列的多肽,Optionally, the OLE1A encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 17, 任选地,所述OLE1B编码具有SEQ ID NO:18所示氨基酸序列的多肽,Optionally, the OLE1B encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 18, 任选地,所述OLE1C编码具有SEQ ID NO:19所示氨基酸序列的多肽,Optionally, the OLE1C encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 19, 任选地,所述OLE1D编码具有SEQ ID NO:20所示氨基酸序列的多肽,Optionally, the OLE1D encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 20, 任选地,所述EcACCA编码具有SEQ ID NO:21所示氨基酸序列的多肽,Optionally, the EcACCA encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 21, 任选地,所述EcACCB编码具有SEQ ID NO:22所示氨基酸序列的多肽,Optionally, the EcACCB encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 22, 任选地,所述EcACCC编码具有SEQ ID NO:23所示氨基酸序列的多肽,Optionally, the EcACCC encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 23, 任选地,所述EcACCD编码具有SEQ ID NO:24所示氨基酸序列的多肽,Optionally, the EcACCD encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 24, 任选地,所述pgpB编码具有SEQ ID NO:25所示氨基酸序列的多肽,Optionally, the pgpB encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 25, 任选地,所述atfA编码具有SEQ ID NO:26所示氨基酸序列的多肽,Optionally, the atfA encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 26, 任选地,所述fabB编码具有SEQ ID NO:27所示氨基酸序列的多肽。Optionally, the fabB encodes a polypeptide having the amino acid sequence shown in SEQ ID NO:27. 3.根据权利要求1所述的微生物,其特征在于,所述微生物包括选自酵母菌、大肠杆菌、放线菌、枯草芽孢杆菌、谷氨酸棒杆菌、黑曲霉、米曲霉、绿色木霉以及里氏木霉的至少之一。3. The microorganism according to claim 1, characterized in that the microorganism comprises at least one selected from yeast, Escherichia coli, actinomycetes, Bacillus subtilis, Corynebacterium glutamicum, Aspergillus niger, Aspergillus oryzae, Trichoderma viride and Trichoderma reesei. 4.根据权利要求1所述的微生物,其特征在于,所述疏水化合物包括选自番茄红素、胡萝卜素、虾青素、纳他霉素、多杀菌素、聚酮、二倍半萜、三萜以及四萜类化合物的至少之一。4. The microorganism according to claim 1, characterized in that the hydrophobic compound comprises at least one selected from lycopene, carotene, astaxanthin, natamycin, spinosad, polyketide, diterpenoid, triterpenoid and tetraterpenoid compounds. 5.一种提高微生物疏水化合物发酵产量的方法,其特征在于,包括:提高微生物体内脂质含量,其中,所述微生物是具有合成疏水化合物潜能的微生物。5. A method for increasing the fermentation yield of hydrophobic compounds in microorganisms, characterized in that it includes: increasing the lipid content in the microorganism, wherein the microorganism is a microorganism with the potential to synthesize hydrophobic compounds. 6.根据权利要求5所述的方法,其特征在于,所述脂质为甘油三酯。The method according to claim 5 , wherein the lipid is triglyceride. 7.根据权利要求5所述的方法,其特征在于,所述提高微生物体内脂质含量是通过提高甘油三酯的合成量、脂滴的大小以及不饱和脂肪酸的含量的至少之一实现的。7. The method according to claim 5, characterized in that the increasing of lipid content in the microorganism is achieved by increasing at least one of the synthesis amount of triglycerides, the size of lipid droplets and the content of unsaturated fatty acids. 8.根据权利要求5所述的方法,其特征在于,所述提高微生物体内脂质含量是通过在所述微生物体内过表达包括选自下列基因的至少之一:ACCA2,ACCB,ACCE,DGAT,LPPβ,OLE1A,OLE1B,OLE1C,OLE1D,EcACCA,EcACCB,EcACCC,EcACCD,pgpB,atfA,fabA,fabB实现的,8. The method according to claim 5, characterized in that the increase in lipid content in the microorganism is achieved by overexpressing at least one of the following genes in the microorganism: ACCA2, ACCB, ACCE, DGAT, LPPβ, OLE1A, OLE1B, OLE1C, OLE1D, EcACCA, EcACCB, EcACCC, EcACCD, pgpB, atfA, fabA, fabB, 其中,所述fabA编码具有SEQ ID NO:6所示氨基酸序列的多肽,Wherein, the fabA encodes a polypeptide having an amino acid sequence shown in SEQ ID NO: 6, 所述ACCA2编码具有SEQ ID NO:12所示氨基酸序列的多肽,The ACCA2 encodes a polypeptide having an amino acid sequence shown in SEQ ID NO: 12, 所述ACCB编码具有SEQ ID NO:13所示氨基酸序列的多肽,The ACCB encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 13, 所述ACCE编码具有SEQ ID NO:14所示氨基酸序列的多肽,The ACCE encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 14, 所述DGAT编码具有SEQ ID NO:15所示氨基酸序列的多肽,The DGAT encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 15, 所述LPPb编码具有SEQ ID NO:16所示氨基酸序列的多肽,The LPPb encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 16, 所述OLE1A编码具有SEQ ID NO:17所示氨基酸序列的多肽,The OLE1A encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 17, 所述OLE1C编码具有SEQ ID NO:19所示氨基酸序列的多肽,The OLE1C encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 19, 所述OLE1D编码具有SEQ ID NO:20所示氨基酸序列的多肽,The OLE1D encodes a polypeptide having an amino acid sequence shown in SEQ ID NO: 20, 所述EcACCA编码具有SEQ ID NO:21所示氨基酸序列的多肽,The EcACCA encodes a polypeptide having an amino acid sequence shown in SEQ ID NO: 21, 所述EcACCB编码具有SEQ ID NO:22所示氨基酸序列的多肽,The EcACCB encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 22, 所述EcACCC编码具有SEQ ID NO:23所示氨基酸序列的多肽,The EcACCC encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 23, 所述EcACCD编码具有SEQ ID NO:24所示氨基酸序列的多肽,The EcACCD encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 24, 所述pgpB编码具有SEQ ID NO:25所示氨基酸序列的多肽,The pgpB encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 25, 所述atfA编码具有SEQ ID NO:26所示氨基酸序列的多肽,The atfA encodes a polypeptide having an amino acid sequence as shown in SEQ ID NO: 26, 所述fabB编码具有SEQ ID NO:27所示氨基酸序列的多肽。The fabB encodes a polypeptide having an amino acid sequence shown in SEQ ID NO: 27. 9.根据权利要求8所述的方法,其特征在于,所述过表达是通过向所述微生物中引入构建体实现的,所述构建体包括待过表达目的基因以及调控表达型启动子,所述调控表达型启动子与所述目的基因可操作的连接,9. The method according to claim 8, characterized in that the overexpression is achieved by introducing a construct into the microorganism, wherein the construct comprises a target gene to be overexpressed and a regulated expression promoter, wherein the regulated expression promoter is operably connected to the target gene, 优选地,所述诱导型启动子为pHXT1,Preferably, the inducible promoter is pHXT1, 任选地,所述PHXT1具有SEQ ID NO:28所示的核苷酸序列。Optionally, the PHXT1 has the nucleotide sequence shown in SEQ ID NO:28. 10.根据权利要求5所述的方法,其特征在于,所述微生物包括选自酵母菌、大肠杆菌、放线菌、枯草芽孢杆菌、谷氨酸棒杆菌、黑曲霉、米曲霉、绿色木霉以及里氏木霉等的至少之一,10. The method according to claim 5, characterized in that the microorganism comprises at least one selected from yeast, Escherichia coli, actinomycetes, Bacillus subtilis, Corynebacterium glutamicum, Aspergillus niger, Aspergillus oryzae, Trichoderma viride and Trichoderma reesei, etc. 任选地,所述疏水化合物包括选自番茄红素、胡萝卜素、虾青素、纳他霉素、多杀菌素、聚酮、二倍半萜、三萜、四萜类化合物的至少之一。Optionally, the hydrophobic compound comprises at least one selected from lycopene, carotene, astaxanthin, natamycin, spinosad, polyketide, diterpenoid, triterpenoid, tetraterpenoid compound. 11.权利要求1~4所述微生物在提高疏水化合物发酵产量中的用途。11. Use of the microorganism according to claims 1 to 4 in increasing the fermentation yield of hydrophobic compounds.
CN202211020662.6A 2017-10-13 2017-10-13 Microorganisms and method for improving fermentation yield of microbial hydrophobic compounds Pending CN115838644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211020662.6A CN115838644A (en) 2017-10-13 2017-10-13 Microorganisms and method for improving fermentation yield of microbial hydrophobic compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710955112.6A CN109666595B (en) 2017-10-13 2017-10-13 Microorganism and method for improving fermentation yield of hydrophobic compound of microorganism
CN202211020662.6A CN115838644A (en) 2017-10-13 2017-10-13 Microorganisms and method for improving fermentation yield of microbial hydrophobic compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201710955112.6A Division CN109666595B (en) 2017-10-13 2017-10-13 Microorganism and method for improving fermentation yield of hydrophobic compound of microorganism

Publications (1)

Publication Number Publication Date
CN115838644A true CN115838644A (en) 2023-03-24

Family

ID=66100385

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710955112.6A Active CN109666595B (en) 2017-10-13 2017-10-13 Microorganism and method for improving fermentation yield of hydrophobic compound of microorganism
CN202211020662.6A Pending CN115838644A (en) 2017-10-13 2017-10-13 Microorganisms and method for improving fermentation yield of microbial hydrophobic compounds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710955112.6A Active CN109666595B (en) 2017-10-13 2017-10-13 Microorganism and method for improving fermentation yield of hydrophobic compound of microorganism

Country Status (2)

Country Link
CN (2) CN109666595B (en)
WO (1) WO2019072081A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410274B (en) * 2019-08-23 2023-01-24 上海医药工业研究院 Genetic engineering bacterium for producing ascomycin and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026484A1 (en) * 2005-07-27 2007-02-01 Kinney Anthony J Method to increase hydrophobic compound titer in a recombinant microorganism
CN106687595A (en) * 2014-05-01 2017-05-17 诺沃吉公司 Increasing cellular lipid production by increasingthe activity of diacylglycerol acyltransferase and decreasing the activity of triacylglycerol lipase
CN107129995A (en) * 2014-09-03 2017-09-05 武汉生物技术研究院 A method for constructing astaxanthin-producing genetically engineered bacteria

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724041B2 (en) * 2014-05-29 2020-07-28 Novogy, Inc. Increasing lipid production and optimizing lipid composition
US10260077B2 (en) * 2014-05-29 2019-04-16 Novogy, Inc. Increasing lipid production in oleaginous yeast
CN107164254B (en) * 2016-09-13 2020-05-15 湖北广济药业股份有限公司 Microorganisms and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026484A1 (en) * 2005-07-27 2007-02-01 Kinney Anthony J Method to increase hydrophobic compound titer in a recombinant microorganism
CN106687595A (en) * 2014-05-01 2017-05-17 诺沃吉公司 Increasing cellular lipid production by increasingthe activity of diacylglycerol acyltransferase and decreasing the activity of triacylglycerol lipase
CN107129995A (en) * 2014-09-03 2017-09-05 武汉生物技术研究院 A method for constructing astaxanthin-producing genetically engineered bacteria

Also Published As

Publication number Publication date
WO2019072081A1 (en) 2019-04-18
CN109666595B (en) 2022-10-28
CN109666595A (en) 2019-04-23

Similar Documents

Publication Publication Date Title
JP6341936B2 (en) High production strain of 5-aminolevulinic acid and its production method and use
Tokuoka et al. Identification of a novel polyketide synthase–nonribosomal peptide synthetase (PKS–NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae
CN106318878B (en) High-yield astaxanthin rhodotorula engineering bacteria and construction method thereof
CN104651287B (en) A kind of engineering bacteria and application for synthetic glycerine glucoside
Zhu et al. Enhanced synthesis of Coenzyme Q10 by reducing the competitive production of carotenoids in Rhodobacter sphaeroides
WO2021185039A1 (en) Method for constructing ergothioneine-producing strain
CN110423732A (en) A kind of enzyme expressed in saccharomyces cerevisiae and high yield α-and γ-tocotrienols genetic engineering bacterium and its construction method
CN116286900B (en) Acetate permease A gene RkAcpa and its application
CN107805640A (en) A kind of method for improving secondary metabolism of Streptomyces Product yields
CN104946552B (en) The engineering strain of safe and efficient production shenqinmycin and its application
CN103215281B (en) Biosynthetic gene cluster of grincamycin and P-1894B and application thereof
CN101386829A (en) A kind of Streptomyces avermitilis genetically engineered bacteria and its application
US20210324391A1 (en) Recombinant microorganism, preparation method therefor and application thereof in producing coenzyme q10
CN115838644A (en) Microorganisms and method for improving fermentation yield of microbial hydrophobic compounds
CN110317765A (en) A kind of E. coli expression strains of high yield geraniol glucoside and its application
CN111549045B (en) Vitamin K improvement by utilizing recombinant bacillus natto 2 Method for producing yield
CN104278015B (en) One plant height effect is overexpressed the phaffia rhodozyma bacterial strain of endogenous chemical activators enzyme gene
CN114525212B (en) An engineering strain of Monascus pilosa and its application
CN115011614A (en) Application of Pa22 Gene as Negative Regulator in Improving the Yield of Pantoea agglomerans for Synthesis of Oscillin A
CN118580979B (en) Engineering bacterium for high-yield astaxanthin and construction method and application thereof
CN110396521B (en) Application of SAV6604 gene in increasing yield of abamectin
CN104830851A (en) Recombinant bacterium of formate dehydrogenase and application of recombinant bacterium
CN105907778A (en) Streptomyces gilvosporeus recombinant expression plasmid, and engineering bacterium and application thereof
CN106929530A (en) A method for improving tolerance of yeast cells to compound inhibitors
CN105586281B (en) Application of proline in enhancing strain tolerance, application of gene, expression vector and application thereof, strain and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination