CN115905787A - A high-precision indoor positioning method based on fuzzy transfer learning model - Google Patents
A high-precision indoor positioning method based on fuzzy transfer learning model Download PDFInfo
- Publication number
- CN115905787A CN115905787A CN202211292065.9A CN202211292065A CN115905787A CN 115905787 A CN115905787 A CN 115905787A CN 202211292065 A CN202211292065 A CN 202211292065A CN 115905787 A CN115905787 A CN 115905787A
- Authority
- CN
- China
- Prior art keywords
- data
- formula
- transfer learning
- model
- fuzzy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013526 transfer learning Methods 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000012545 processing Methods 0.000 claims abstract description 43
- 238000013508 migration Methods 0.000 claims abstract description 16
- 230000005012 migration Effects 0.000 claims abstract description 16
- 238000005070 sampling Methods 0.000 claims description 100
- 230000006870 function Effects 0.000 claims description 36
- 238000012549 training Methods 0.000 claims description 29
- 230000004913 activation Effects 0.000 claims description 24
- 230000015654 memory Effects 0.000 claims description 20
- 238000009826 distribution Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 14
- 238000012546 transfer Methods 0.000 claims description 12
- 230000006403 short-term memory Effects 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 10
- 238000013528 artificial neural network Methods 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 6
- 238000013480 data collection Methods 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 4
- 230000003993 interaction Effects 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 241001135555 Sandfly fever Sicilian virus Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Image Analysis (AREA)
Abstract
本发明公开了基于模糊迁移学习模型的高精度室内定位方法,该方法首先由目标区域数据采集模块采集目标区域的指纹特征集;然后由目标区域数据处理模块对采集的指纹特征集进行数据处理;接着由基于模糊迁移模型的室内定位模块接收经过数据处理模块处理后的数据,并根据该数据进行分析计算得到目标结果数据,该目标结果数据即为定位结果数据;该方法不仅实现了高精度室内定位,还降低了各类成本。
The invention discloses a high-precision indoor positioning method based on a fuzzy transfer learning model. In the method, a fingerprint feature set of a target area is firstly collected by a target area data acquisition module; and then data processing is performed on the collected fingerprint feature set by a target area data processing module; Then, the indoor positioning module based on the fuzzy migration model receives the data processed by the data processing module, and analyzes and calculates the target result data according to the data, which is the positioning result data; this method not only realizes high-precision indoor Positioning also reduces various costs.
Description
技术领域Technical Field
本发明属于室内定位技术领域,具体是涉及一种基于模糊迁移学习模型的高精度室内定位方法。The present invention belongs to the technical field of indoor positioning, and in particular relates to a high-precision indoor positioning method based on a fuzzy transfer learning model.
背景技术Background Art
近年来,随着物联网技术(internet of things,IOT)的快速发展和无线网络(wireless network)的普及,基于位置的服务(location based services,LBS)越来越深入人们生活的方方面面。LBS包括对不同环境中的目标对象的位置计算,LBS的关键就是对用户位置的准确获取,按应用场景LBS划分为室外定位和室内定位。In recent years, with the rapid development of the Internet of Things (IOT) and the popularization of wireless networks, location-based services (LBS) have become more and more deeply integrated into all aspects of people's lives. LBS involves calculating the location of target objects in different environments. The key to LBS is to accurately obtain the user's location. According to the application scenario, LBS is divided into outdoor positioning and indoor positioning.
在室外环境中,全球导航卫星系统(global navigation satellite system,GNSS)可以实现准确定位,然而,GNSS在室内环境的定位粒度较大,无法满足室外环境中高精度定位的需求。在室内环境中,由于室内场景中广泛部署了无线网络,这样就使得利用无线信号进行室内定位的方式收到越来越多的关注和应用,利用无线信号进行室内定位的方式包括基于信号指纹的定位方法,该基于信号指纹的定位方法无需部署额外设备,因此应用方便更加具有可扩展性,一直是室内定位技术领域的研究热点。基于信号指纹的定位方法一般包括指纹地图构建过程和指纹匹配定位过程。其中,指纹地图构建阶段要求对整个感知区域离线采样指纹数据库,对整个感知区域都需要进行离线采样就需要耗费大量的人工和时间,这样一来,当采样区域较大时,比如有多个楼层的时候,对整个感知区域所需的采样时间将急剧增大,特别是,在采样过程中遇到某些楼层或房间由于一些特殊原因而不被允许开放的情形时,就导致人工无法获得这些区域的指纹信息,从而严重影响室内定位结果。综上所述,因此合理控制采样成本(包括时间成本、人工成本和设备成本)并保证定位精度是亟待解决的实际问题。In outdoor environments, the global navigation satellite system (GNSS) can achieve accurate positioning. However, the positioning granularity of GNSS in indoor environments is large and cannot meet the needs of high-precision positioning in outdoor environments. In indoor environments, since wireless networks are widely deployed in indoor scenes, the method of using wireless signals for indoor positioning has received more and more attention and application. The method of using wireless signals for indoor positioning includes a positioning method based on signal fingerprints. The positioning method based on signal fingerprints does not require the deployment of additional equipment, so it is convenient to apply and more scalable, and has always been a research hotspot in the field of indoor positioning technology. The positioning method based on signal fingerprints generally includes a fingerprint map construction process and a fingerprint matching positioning process. Among them, the fingerprint map construction stage requires offline sampling of the fingerprint database for the entire perception area. If the entire perception area needs to be sampled offline, it will take a lot of manpower and time. In this way, when the sampling area is large, such as when there are multiple floors, the sampling time required for the entire perception area will increase sharply. In particular, when some floors or rooms are not allowed to be opened due to some special reasons during the sampling process, it will lead to the inability to obtain the fingerprint information of these areas manually, which seriously affects the indoor positioning results. In summary, it is a practical problem to be solved urgently to reasonably control the sampling cost (including time cost, labor cost and equipment cost) and ensure the positioning accuracy.
机器学习方法中的迁移学习可以通过对源域数据的学习,实现在相似或相关区域的复用,使得目标学习变成可积累学习,从而降低了对目标域模型的构建成本,并提高学习效果。面向源域构建学习模型是一种简单却有效(simple yet effective)的迁移学习方式,面向源域构建学习模型是利用源域样本搭建初始模型,并保存相应的参数,然后将目标域数据作用于该模型,并进行参数微调,以适应自身的数据集。然而,在真实的应用场景中,由于目标区域的采样空间的缺失与不同,因此所采样的指纹与源域指纹的数据分布存在差异,从而导致基于源域指纹获得的定位模型并不能在目标域指纹上表现出良好的性能,导致室内定位并不准确。Transfer learning in machine learning methods can achieve reuse in similar or related areas by learning from source domain data, making target learning accumulative learning, thereby reducing the cost of building the target domain model and improving the learning effect. Building a learning model for the source domain is a simple yet effective transfer learning method. Building a learning model for the source domain is to use source domain samples to build an initial model and save the corresponding parameters, then apply the target domain data to the model and fine-tune the parameters to adapt to its own data set. However, in real application scenarios, due to the lack and difference of the sampling space of the target area, there is a difference in the data distribution of the sampled fingerprint and the source domain fingerprint, which results in the positioning model obtained based on the source domain fingerprint not being able to perform well on the target domain fingerprint, resulting in inaccurate indoor positioning.
因此,需要提出一种新型的室内定位方法。Therefore, a new indoor positioning method needs to be proposed.
发明内容Summary of the invention
发明目的:为了克服现有技术中存在的室内定位精度差、且室内定位成本高等不足,本发明提供一种基于模糊迁移学习模型的高精度室内定位方法,不仅实现了高精度室内定位,还降低了各类成本,包括时间成本、人工成本和设备成本。Purpose of the invention: In order to overcome the shortcomings of the prior art such as poor indoor positioning accuracy and high indoor positioning cost, the present invention provides a high-precision indoor positioning method based on a fuzzy transfer learning model, which not only achieves high-precision indoor positioning, but also reduces various costs, including time cost, labor cost and equipment cost.
技术方案:为解决上述技术问题,本发明的提供了基于模糊迁移学习模型的高精度室内定位系统,该系统包括依次连通的目标区域数据采集模块、目标区域数据处理模块、基于模糊迁移模型的室内定位模块和数据输出模块;Technical solution: To solve the above technical problems, the present invention provides a high-precision indoor positioning system based on a fuzzy transfer learning model, the system comprising a target area data acquisition module, a target area data processing module, an indoor positioning module based on a fuzzy transfer model and a data output module connected in sequence;
其中目标区域数据采集模块用于采集目标区域的指纹特征集;The target area data acquisition module is used to collect the fingerprint feature set of the target area;
其中目标区域数据处理模块用于针对上述采集到的目标区域的指纹特征集进行数据处理,得到适用于下一模块处理的数据;The target area data processing module is used to process the fingerprint feature set of the target area collected above to obtain data suitable for processing by the next module;
其中基于模糊迁移模型的室内定位模块用于接收经过数据处理模块处理后的数据,并根据该数据进行分析计算得到目标结果数据,该目标结果数据即为定位结果数据;The indoor positioning module based on the fuzzy migration model is used to receive the data processed by the data processing module, and analyze and calculate the data to obtain the target result data, which is the positioning result data;
其中数据输出模块用于输出定位结果数据,供用户参考;The data output module is used to output the positioning result data for user reference;
所述方法包括以下步骤:The method comprises the following steps:
步骤1,首先由基于模糊迁移学习模型的高精度室内定位系统中的目标区域数据采集模块采集目标区域的指纹特征集;
步骤2,然后由基于模糊迁移学习模型的高精度室内定位系统中的目标区域数据处理模块针对上述采集到的目标区域的指纹特征集进行数据处理,得到适用于下一模块处理的数据;
步骤3,接着由基于模糊迁移学习模型的高精度室内定位系统中的基于模糊迁移模型的室内定位模块接收经过数据处理模块处理后的数据,并根据该数据进行分析计算得到目标结果数据,该目标结果数据即为定位结果数据;
步骤4,最后由基于模糊迁移学习模型的高精度室内定位系统中的数据输出模块输出定位结果数据,供用户参考。Step 4: Finally, the data output module in the high-precision indoor positioning system based on the fuzzy transfer learning model outputs the positioning result data for user reference.
进一步地,生成所述基于模糊迁移模型的室内定位模块具体包括以下步骤:Furthermore, generating the indoor positioning module based on the fuzzy migration model specifically includes the following steps:
步骤S1,通过样本区域数据采集模块对样本区域进行数据采集,采集得到样本区域的指纹特征集;Step S1, collecting data from a sample area through a sample area data collection module to obtain a fingerprint feature set of the sample area;
步骤S2,通过样本区域数据处理模块针对上述采集到的样本区域的指纹特征集进行数据处理,得到适用于下一模块处理的数据;Step S2, performing data processing on the fingerprint feature set of the sample area collected above by the sample area data processing module to obtain data suitable for processing by the next module;
步骤S3,通过样本区域数据样本划分模块将上述数据处理后的样本区域的指纹特征集进行划分,得到训练集样本数据和测试集样本数据;Step S3, dividing the fingerprint feature set of the sample area after the data processing by the sample area data sample division module to obtain training set sample data and test set sample data;
步骤S4,基于训练集样本数据对基础模型进行训练,得到训练后的模型,该模型作为基于模糊迁移模型的室内定位模块,用于对目标区域采集的数据集进行分析计算,得到定位结果数据,供用户参考。Step S4, training the basic model based on the training set sample data to obtain a trained model, which is used as an indoor positioning module based on the fuzzy migration model to analyze and calculate the data set collected in the target area to obtain positioning result data for user reference.
进一步地,所述步骤S2包括以下步骤:Furthermore, the step S2 comprises the following steps:
S21设采样点P的采样时长为Γ,短时段设为τ,则在t时间段内即从时间t后的短时段τ内,采样点P采样到的RSS向量用公式(1)表示为:S21 Assume that the sampling time length of the sampling point P is Γ, and the short period is τ. Then, in the time period t, that is, in the short period τ after time t, the RSS vector sampled by the sampling point P is expressed by formula (1):
则在下一个时间段内(t+t→t+2τ),采样点P采样到的RSS向量用公式(2)表示为:Then in the next time period (t+t→t+2τ), the RSS vector sampled at the sampling point P is expressed by formula (2):
则在t时间段内即从时间t后的短时段τ内,采样点P的近邻Pi采样到的RSS向量用公式(3)表示为:Then, in the time period t, that is, in the short period τ after time t, the RSS vector sampled by the neighbor P i of the sampling point P is expressed by formula (3):
S22通过公式(4)计算采样点P在t时间的ISF:S22 calculates the ISF of sampling point P at time t using formula (4):
ISF(P,t)=RSS(P,t→t+τ)+RSS(P,t+τ→t+2τ)=[ISf1,ISf2,…,ISfn] 公式(4)ISF(P,t)=RSS(P,t→t+τ)+RSS(P,t+τ→t+2τ)=[ISf 1 ,ISf 2 ,…,ISf n ] Formula (4)
上述公式(4)中, In the above formula (4),
S23通过公式(5)计算采样点P在t时间的CSF:S23 calculates the CSF of sampling point P at time t by formula (5):
CSF(P,t)=RSS(P,t→t+τ)+RSS(Pi,t→t+τ)=[CSf1,CSf2,…,CSfn] 公式(5)CSF(P,t)=RSS(P,t→t+τ)+RSS(P i ,t→t+τ)=[CSf 1 ,CSf 2 ,…,CSf n ] Formula (5)
上述公式(5)中, In the above formula (5),
S24由此得到采样点P在T时间的短时特征集为:SFS(P,t)=ISF(P,t)∪CSF(P,t);S24 thus obtains the short-term feature set of the sampling point P at time T: SFS(P, t) = ISF(P, t) ∪ CSF(P, t);
S25由此得到采样点P在整个采样时段Γ的短时特征集用公式(6)表示为:S25 thus obtains the short-term feature set of the sampling point P in the entire sampling period Γ, which is expressed by formula (6):
SFS(P,Γ)=∑t∈ΓSFS(P,t) 公式(6)SFS(P, Γ) = ∑ t∈Γ SFS(P, t) Formula (6)
通过上述步骤得到采样点的短时特征集SFS。Through the above steps, the short-term feature set SFS of the sampling points is obtained.
进一步地,所述步骤S4包括以下步骤:Furthermore, the step S4 comprises the following steps:
S41首先,通过优化长短期记忆神经网络训练短时特征数据SFS,得到OptimizedLSTM,用于初步构建迁移学习的Pre-Model;S41 First, by optimizing the long short-term memory neural network to train the short-term feature data SFS, we get the OptimizedLSTM, which is used to preliminarily build the Pre-Model of transfer learning;
S42然后,引入注意力机制的思想,使用面向稀疏数据的轻量级机制SENet对上述初步构建的迁移学习的Pre-Model进行优化,得到Optimization SE-LSTM,该OptimizationSE-LSTM为优化后的训练模型。S42 Then, the idea of attention mechanism is introduced, and the lightweight mechanism SENet for sparse data is used to optimize the Pre-Model of transfer learning preliminarily constructed above to obtain Optimization SE-LSTM, which is the optimized training model.
进一步地,所述S41包括以下步骤,设在μ时刻向LSTM网络输入的短时特征集为sfs(μ),则经过LSTM网络中的Input Gate,并结合Memory Cell中μ-1时刻数值h(μ-1),得到输入值:Furthermore, the S41 includes the following steps: assuming that the short-term feature set input to the LSTM network at time μ is sfs(μ), then the input value is obtained by passing through the Input Gate in the LSTM network and combining the value h(μ-1) at time μ-1 in the Memory Cell:
I(μ)=σ(ws,I*sfs(μ)+wh,I*h(μ-1)) 公式(7)I(μ)=σ(w s,I *sfs(μ)+w h,I *h(μ-1)) Formula (7)
上述公式(7)中,σ表示激活函数;ws,I和wh,I为函数I的参数;sfs(μ)为μ时刻输入的短时特征,h(μ-1)为Memory Cell中μ-1时刻数值;In the above formula (7), σ represents the activation function; ws,I and wh ,I are the parameters of function I; sfs(μ) is the short-term feature input at time μ, and h(μ-1) is the value of the Memory Cell at time μ-1;
同时,Input Gate产生一个候选值向量:At the same time, the Input Gate generates a candidate value vector:
上述公式(8)中,ws,c和wh,c为函数的参数;σ表示激活函数;sfs(μ)为μ时刻输入的短时特征,h(μ-1)为Memory Cell中μ-1时刻数值;In the above formula (8), w s,c and w h,c are functions ; σ represents the activation function; sfs(μ) is the short-term feature input at time μ, and h(μ-1) is the value of μ-1 in the Memory Cell;
然后,Forget Gate读取μ时刻的sfs和μ-1时刻数值h,并利用激活函数在给定区间输出一个数值,以表示该值的接受程度:Then, Forget Gate reads the sfs at time μ and the value h at time μ-1, and uses the activation function to output a value in a given interval to indicate the degree of acceptance of the value:
F(μ)=σ(ws,f*sfs(μ)+wh,f*h(μ-1)) 公式(9)F(μ)=σ(w s,f *sfs(μ)+w h,f *h(μ-1)) Formula (9)
上述公式(9)中,ws,f和wh,f为函数F的参数;σ表示激活函数;sfs(μ)为μ时刻输入短时特征,h(μ-1)为Memory Cell中μ-1时刻数值;In the above formula (9), w s,f and w h,f are parameters of function F; σ represents the activation function; sfs(μ) is the short-term feature input at time μ, and h(μ-1) is the value of the Memory Cell at time μ-1;
接着,根据上述公式(7)、公式(8)和公式(9),更新状态信息:Next, according to the above formulas (7), (8) and (9), the status information is updated:
最后,Output Gate根据状态信息输出μ时刻的结果,同时更新了Memory Cell,Memory Cell通过公式(11)更新,更新方式如下:Finally, the Output Gate outputs the result at time μ according to the status information and updates the Memory Cell at the same time. The Memory Cell is updated according to formula (11) as follows:
h(μ)=O(μ)*tanh(c(μ)) 公式(11)h(μ)=O(μ)*tanh(c(μ)) Formula (11)
上述公式(11)中,通过公式(12)计算得到O(μ):In the above formula (11), O(μ) is calculated by formula (12):
O(μ)=σ(ws,O*Δsfs(μ)+wh,O*h(μ-1)) 公式(12)O(μ)=σ(w s,O *Δsfs(μ)+w h,O *h(μ-1)) Formula (12)
上述公式(12)中,相邻时刻的向量差Δsfs(μ)=sfs(μ)-sfs(μ-1);In the above formula (12), the vector difference between adjacent moments Δsfs(μ)=sfs(μ)-sfs(μ-1);
以上通过长短期记忆神经网络LSTM训练短时特征数据SFS,得到Optimized LSTM,用于初步构建迁移学习的Pre-Model。In the above, the short-term feature data SFS is trained through the long short-term memory neural network LSTM to obtain the Optimized LSTM, which is used to preliminarily build the Pre-Model of transfer learning.
进一步地,采用ReLU函数作为激活函数σ。Furthermore, the ReLU function is used as the activation function σ.
进一步地,所述S42包括以下步骤:7、根据权利要求6所述的基于模糊迁移学习模型的高精度室内定位方法,Further, the S42 comprises the following steps: 7. The high-precision indoor positioning method based on the fuzzy transfer learning model according to
首先,产生一个全局分布的嵌入的信道特征响应,允许训练模型所有层使用,对特征数据进行全局平均池化来表示在特征通道上响应的全局分布:First, a globally distributed embedded channel feature response is generated, allowing all layers of the training model to use it, and the feature data is globally averaged pooled to represent the global distribution of responses on the feature channel:
上述公式(13)中,H表示SFS中的元素数量,W表示每个元素的长度;In the above formula (13), H represents the number of elements in SFS, and W represents the length of each element;
然后,挖掘特征通道之间的关系,使用两层非线性激活函数学习通道之间非线性交互作用,以得到合适的权重:Then, the relationship between feature channels is explored, and two layers of nonlinear activation functions are used to learn the nonlinear interactions between channels to obtain appropriate weights:
S(μ)=σ(w2*δ(w1*Z(μ))) 公式(14)S(μ)=σ(w 2 *δ(w 1 *Z(μ))) Formula (14)
上述公式(14)中,σ表示sigmoid激活函数,δ表示ReLU激活函数,w1和w2表示缩放参数;In the above formula (14), σ represents the sigmoid activation function, δ represents the ReLU activation function, and w1 and w2 represent scaling parameters;
最后,利用channel-wise multiplication实现输出:Finally, channel-wise multiplication is used to achieve output:
上述公式(15)中,S(μ)为公式(14),O(μ)为公式(12);In the above formula (15), S(μ) is the formula (14), O(μ) is the formula (12);
以上通过引入面向稀疏数据的轻量级机制SENet,对上述初步构建的迁移学习的预模型O-LSTM进行优化得到OSE-LSTM。In the above, by introducing SENet, a lightweight mechanism for sparse data, the pre-model O-LSTM of transfer learning initially constructed above is optimized to obtain OSE-LSTM.
进一步地,对所述OSE-LSTM进一步优化:首先,利用模糊聚类方法,根据源域区域中采样点的分布情况为目标域的采样点建立类标签;然后,利用标记了类标签的目标域数据和获得的迁移学习的预模型PreModel进行迁移学习,从而构建满足不同缺失情形和不同楼层的模糊迁移学习模型。Furthermore, the OSE-LSTM is further optimized: first, the fuzzy clustering method is used to establish class labels for the sampling points in the target domain according to the distribution of the sampling points in the source domain area; then, transfer learning is performed using the target domain data marked with class labels and the obtained transfer learning pre-model PreModel, thereby constructing a fuzzy transfer learning model that meets different missing situations and different floors.
有益效果:本发明与现有技术比较,具有的优点是:Beneficial effects: Compared with the prior art, the present invention has the following advantages:
1、本发明方法通过细粒度地挖掘采样点的特征,设计了基于短时特征(Short-time Feature)的指纹构建方法,更加细粒度地展示了指纹的特征,同时,由于短时特征的稀疏性和时序性,优化了LSTM和SENet,提出OSE-LSTM模型作为迁移学习的预模型,不仅减少了指纹地图构建过程的采样时间,还保证了准确的定位精度;1. The method of the present invention designs a fingerprint construction method based on short-time features by mining the features of sampling points in a fine-grained manner, which displays the features of fingerprints in a more fine-grained manner. At the same time, due to the sparsity and temporal nature of short-time features, LSTM and SENet are optimized, and the OSE-LSTM model is proposed as a pre-model for transfer learning, which not only reduces the sampling time of the fingerprint map construction process, but also ensures accurate positioning accuracy;
2、本发明方法提出了基于模糊聚类的特征迁移方法,针对不同分布的差异性所导致的数据分布不同的问题,保证了源域和目标域的特征分布的相似性,增强了迁移学习的鲁棒性,进而提高了室内定位的精度;2. The method of the present invention proposes a feature transfer method based on fuzzy clustering. Aiming at the problem of different data distribution caused by the differences in different distributions, the similarity of feature distributions of the source domain and the target domain is ensured, the robustness of transfer learning is enhanced, and the accuracy of indoor positioning is improved;
3、本发明方法提出了基于模糊迁移学习模型(Fuzzy Transfer Learning,FTL),实现了在不同楼层、不同采样率情形下的准确定位,并将基于模糊迁移学习模型与现有技术在不同楼层、不同采样率、不同设备下进行了充分的实验对比,实验结果证明了本发明方法具有有效性和可靠性。3. The method of the present invention proposes a fuzzy transfer learning model (FTL), which achieves accurate positioning on different floors and at different sampling rates. The fuzzy transfer learning model is fully compared with the prior art on different floors, at different sampling rates and with different devices. The experimental results prove that the method of the present invention is effective and reliable.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明基于模糊迁移学习模型的系统结构图。FIG1 is a system structure diagram of the present invention based on the fuzzy transfer learning model.
图2为生成基于模糊迁移模型的室内定位模块步骤流程图。FIG2 is a flowchart showing the steps of generating an indoor positioning module based on a fuzzy migration model.
图3为样本区域结构图。Figure 3 is a diagram of the sample area structure.
图4为迁移学习的预模型Pre-Model的实现框图。FIG4 is a block diagram of the implementation of the pre-model Pre-Model for transfer learning.
图5为实施例9中定位模型迁移至各个楼层的具体实验结果图5。FIG. 5 is a specific experimental result of migrating the positioning model to each floor in Example 9. ...
图6为实施例10中使目标域的采样率为80%时实验结果图。FIG. 6 is a diagram showing the experimental results when the sampling rate of the target domain is set to 80% in Example 10.
图7为实施例10中使目标域的采样率为30%时实验结果图。FIG. 7 is a diagram showing the experimental results when the sampling rate of the target domain is set to 30% in Example 10.
图8为实施例11中不同采样间隔时定位结果的误差实验结果图。FIG8 is a graph showing the error experimental results of the positioning results at different sampling intervals in Example 11.
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例对本发明作更进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
本实施例的基于模糊迁移学习模型的高精度室内定位方法(Fuzzy TransferLearning Model for Accuracy Localization),提供了基于模糊迁移学习模型的高精度室内定位系统,参照图1,该基于模糊迁移学习模型的高精度室内定位系统包括依次连通的目标区域数据采集模块、目标区域数据处理模块、基于模糊迁移模型的室内定位模块和数据输出模块;The high-precision indoor positioning method based on the fuzzy transfer learning model (Fuzzy Transfer Learning Model for Accuracy Localization) of this embodiment provides a high-precision indoor positioning system based on the fuzzy transfer learning model. Referring to FIG. 1 , the high-precision indoor positioning system based on the fuzzy transfer learning model includes a target area data acquisition module, a target area data processing module, an indoor positioning module based on the fuzzy transfer model, and a data output module that are connected in sequence;
上述目标区域数据采集模块用于采集目标区域的指纹特征集;The target area data acquisition module is used to acquire the fingerprint feature set of the target area;
上述目标区域数据处理模块用于针对上述采集到的目标区域的指纹特征集进行数据处理,得到适用于下一模块处理的数据;The target area data processing module is used to process the fingerprint feature set of the target area collected above to obtain data suitable for processing by the next module;
上述基于模糊迁移模型的室内定位模块用于接收经过数据处理模块处理后的数据,并根据该数据进行分析计算得到目标结果数据,该目标结果数据即为定位结果数据;The indoor positioning module based on the fuzzy migration model is used to receive the data processed by the data processing module, and analyze and calculate the data to obtain the target result data, which is the positioning result data;
上述数据输出模块用于输出定位结果数据,供用户参考。The above data output module is used to output positioning result data for user reference.
上述基于模糊迁移学习模型的高精度室内定位系统工作时,首先由目标区域数据采集模块采集目标区域的指纹特征集;然后由目标区域数据处理模块针对上述采集到的目标区域的指纹特征集进行数据处理,得到适用于下一模块处理的数据;接着,由基于模糊迁移模型的室内定位模块接收经过数据处理模块处理后的数据,并根据该数据进行分析计算得到目标结果数据,该目标结果数据即为定位结果数据;最后由数据输出模块输出定位结果数据,供用户参考。When the high-precision indoor positioning system based on the fuzzy transfer learning model is working, the target area data acquisition module first collects the fingerprint feature set of the target area; then the target area data processing module performs data processing on the fingerprint feature set of the target area collected above to obtain data suitable for processing by the next module; then, the indoor positioning module based on the fuzzy transfer model receives the data processed by the data processing module, and analyzes and calculates the data to obtain the target result data, which is the positioning result data; finally, the data output module outputs the positioning result data for user reference.
本实施例的基于模糊迁移学习模型的高精度室内定位方法,具体包括以下步骤:The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment specifically includes the following steps:
步骤1,首先,由基于模糊迁移学习模型的高精度室内定位系统中的目标区域数据采集模块采集目标区域的指纹特征集;Step 1: First, the target area data acquisition module in the high-precision indoor positioning system based on the fuzzy transfer learning model collects the fingerprint feature set of the target area;
步骤2,然后,由基于模糊迁移学习模型的高精度室内定位系统中的目标区域数据处理模块针对上述采集到的目标区域的指纹特征集进行数据处理,得到适用于下一模块处理的数据;
步骤3,接着,由基于模糊迁移学习模型的高精度室内定位系统中的基于模糊迁移模型的室内定位模块接收经过数据处理模块处理后的数据,并根据该数据进行分析计算得到目标结果数据,该目标结果数据即为定位结果数据;Step 3: Then, the indoor positioning module based on the fuzzy transfer model in the high-precision indoor positioning system based on the fuzzy transfer learning model receives the data processed by the data processing module, and analyzes and calculates the data to obtain target result data, which is the positioning result data;
步骤4,最后,由基于模糊迁移学习模型的高精度室内定位系统中的数据输出模块输出定位结果数据,供用户参考。Step 4: Finally, the data output module in the high-precision indoor positioning system based on the fuzzy transfer learning model outputs the positioning result data for user reference.
以上通过基于模糊迁移学习模型的高精度室内定位系统,可以实现对目标区域的室内定位,且定位精度高。The above high-precision indoor positioning system based on the fuzzy transfer learning model can achieve indoor positioning of the target area with high positioning accuracy.
实施例2Example 2
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例1,在实施例1中提出的基于模糊迁移模型的室内定位模块,生成基于模糊迁移模型的室内定位模块具体包括以下步骤,参照图2:The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on Example 1. The indoor positioning module based on the fuzzy transfer model proposed in Example 1 generates an indoor positioning module based on the fuzzy transfer model, and specifically includes the following steps, with reference to FIG. 2:
步骤S1,通过样本区域数据采集模块对样本区域进行数据采集,采集得到样本区域的指纹特征集;Step S1, collecting data from a sample area through a sample area data collection module to obtain a fingerprint feature set of the sample area;
步骤S2,通过样本区域数据处理模块针对上述采集到的样本区域的指纹特征集进行数据处理,得到适用于下一模块处理的数据;Step S2, performing data processing on the fingerprint feature set of the sample area collected above by the sample area data processing module to obtain data suitable for processing by the next module;
步骤S3,通过样本区域数据样本划分模块将上述数据处理后的样本区域的指纹特征集进行划分,得到训练集样本数据和测试集样本数据;Step S3, dividing the fingerprint feature set of the sample area after the data processing by the sample area data sample division module to obtain training set sample data and test set sample data;
步骤S4,基于训练集样本数据对基础模型进行训练,得到训练后的模型,该模型作为基于模糊迁移模型的室内定位模块,用于对目标区域采集的数据集进行分析计算,得到定位结果数据,供用户参考。Step S4, training the basic model based on the training set sample data to obtain a trained model, which is used as an indoor positioning module based on the fuzzy migration model to analyze and calculate the data set collected in the target area to obtain positioning result data for user reference.
实施例3Example 3
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例2,其中步骤S1中,通过样本区域数据采集模块对样本区域进行数据采集,采集得到样本区域的指纹特征集;The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on
一般来说,每个采样点的特征就是接收到的AP的RSS值组成的指纹。在指纹地图构建过程中,每个采样点都被采集一定时长,得到一个信号集。该集合中的each term都记录了AP名、RSS值和时间戳等信息。为了表示简单和抑制异常值的影响,大都把每个采样点得到的相同AP的RSS值求平均作为该AP在该点的RSS值,从而得到一个一维指纹向量。显然,这种对所有采样信号平均化的处理方式忽略了每个AP的实时特点,导致信号的细节波动被“过滤”,因此无法细粒度地获得采样点的指纹特征。Generally speaking, the feature of each sampling point is the fingerprint composed of the RSS value of the received AP. In the process of constructing the fingerprint map, each sampling point is sampled for a certain period of time to obtain a signal set. Each term in the set records information such as the AP name, RSS value, and timestamp. In order to simplify the representation and suppress the influence of outliers, the RSS value of the same AP obtained at each sampling point is usually averaged as the RSS value of the AP at that point, thereby obtaining a one-dimensional fingerprint vector. Obviously, this method of averaging all sampled signals ignores the real-time characteristics of each AP, resulting in the "filtering" of the signal's detailed fluctuations, and therefore the fingerprint features of the sampling points cannot be obtained in a fine-grained manner.
因此,综上所述,需要细粒度地获得采样点的指纹特征,为了更加细粒度地得到采样点的特征,本实施例通过提取采样点指纹信号集的短时特征(Short-time Feature)来构建采样点的特征集,即采样点的短时特征集,更加细粒度地展示了指纹的特征。Therefore, in summary, it is necessary to obtain the fingerprint features of the sampling points in a fine-grained manner. In order to obtain the features of the sampling points in a more fine-grained manner, this embodiment constructs a feature set of the sampling points by extracting the short-time features of the fingerprint signal set of the sampling points, that is, the short-time feature set of the sampling points, which shows the features of the fingerprint in a more fine-grained manner.
本实施例通过样本区域数据处理模块针对上述采集到的样本区域的指纹特征集进行数据处理,得到采样点的短时特征集,具体包括以下步骤:In this embodiment, the sample area data processing module performs data processing on the fingerprint feature set of the sample area collected above to obtain a short-term feature set of the sampling point, which specifically includes the following steps:
S21参照图3,设定样本区域中共有n个AP,样本区域中的采样点P的位置坐标为(x,y),在图3中的五角星位置即为采样点P的位置,采样点P的近邻Pi的坐标为其中1≤i≤4,在图3中圆环点的位置均为采样点P的近邻Pi的位置,设采样点P的采样时长为Γ,短时段设为τ,则在t时间段内即从时间t后的短时段τ内,采样点P采样到的RSS向量用公式(1)表示为:S21 refers to FIG3 , and assumes that there are n APs in the sample area, and the position coordinates of the sampling point P in the sample area are (x, y). The position of the five-pointed star in FIG3 is the position of the sampling point P, and the coordinates of the neighbor P i of the sampling point P are Where 1≤i≤4, the positions of the circular points in Figure 3 are all the positions of the neighbors P i of the sampling point P. Assume that the sampling time of the sampling point P is Γ, and the short time period is τ. Then, in the time period t, that is, in the short time period τ after time t, the RSS vector sampled by the sampling point P is expressed by formula (1):
则在下一个时间段内(t+τ→t+2τ),采样点P采样到的RSS向量用公式(2)表示为:Then in the next time period (t+τ→t+2τ), the RSS vector sampled at the sampling point P is expressed by formula (2):
则在t时间段内即从时间t后的短时段τ内,采样点P的近邻Pi采样到的RSS向量用公式(3)表示为:Then, in the time period t, that is, in the short period τ after time t, the RSS vector sampled by the neighbor P i of the sampling point P is expressed by formula (3):
S22通过公式(4)计算采样点P在t时间的ISF为:S22 calculates the ISF of sampling point P at time t using formula (4):
ISF(P,t)=RSS(P,t→t+τ)+RSS(P,t+τ→t+2τ)=[ISf1,ISf2,…,ISfn] 公式(4)ISF(P, t)=RSS(P, t→t+τ)+RSS(P, t+τ→t+2τ)=[ISf 1 , ISf 2 ,…, ISf n ] Formula (4)
上述公式(4)中,其中, In the above formula (4),
S23通过公式(5)计算采样点P在t时间的CSF:S23 calculates the CSF of sampling point P at time t by formula (5):
CSF(P,t)=RSS(P,t→t+τ)+RSS(Pi,t→t+τ)=[CSf1,CSf2,…,CSfn] 公式(5)CSF(P,t)=RSS(P,t→t+τ)+RSS(P i ,t→t+τ)=[CSf 1 , CSf 2 ,…, CSf n ] Formula (5)
上述公式(5)中,其中, In the above formula (5),
S24由此得到采样点P在T时间的短时特征集为:SFS(P,t)=ISF(P,t)∪CSF(P,t);S24 thus obtains the short-term feature set of the sampling point P at time T: SFS(P, t) = ISF(P, t) ∪ CSF(P, t);
S25由此得到采样点P在整个采样时段Γ的短时特征集用公式(6)表示为:S25 thus obtains the short-term feature set of the sampling point P in the entire sampling period Γ, which is expressed by formula (6):
SFS(P,Γ)=∑t∈ΓSFS(P,t) 公式(6)SFS(P, Γ) = ∑ t∈Γ SFS(P, t) Formula (6)
通过上述步骤得到采样点的短时特征集SFS,更加细粒度地得到采样点的特征,基于该短时特征集训练出来的模型,更加提高了定位模型的准确性。The short-term feature set SFS of the sampling point is obtained through the above steps, and the features of the sampling point are obtained in a more fine-grained manner. The model trained based on the short-term feature set further improves the accuracy of the positioning model.
作为优选的实施例,在计算ISF和CSF时,可能会出现同一个AP在相邻时间段或相邻采样点都出现的情形,当然出现这种情形为极少概率,为了统一化RSS向量长度,本实施例对两次出现RSS值求平均,抑制了该AP在较短时间段内出现异常而带来的影响,进一步提高了定位模型的准确性。As a preferred embodiment, when calculating ISF and CSF, the same AP may appear in adjacent time periods or adjacent sampling points. Of course, the probability of such a situation is extremely small. In order to unify the RSS vector length, this embodiment averages the RSS values that appear twice, suppressing the impact of the abnormality of the AP in a shorter time period, and further improving the accuracy of the positioning model.
实施例4Example 4
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例3,其中,步骤S3,通过样本区域数据样本划分模块将上述数据处理后的样本区域的指纹特征集进行划分,得到训练集样本数据和测试集样本数据;The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on
本实施例将通过实施例2得到的采样点的短时特征集SFS进行划分,划分结果不限定一种,例如划分结果可以为:70%划分为训练集样本数据,剩余30%划分为测试集样本数据;划分结果也可以为:100%全部划分为训练集样本数据,以获得有效的定位模型。This embodiment divides the short-term feature set SFS of the sampling points obtained by Example 2, and the division result is not limited to one. For example, the division result can be: 70% is divided into training set sample data, and the remaining 30% is divided into test set sample data; the division result can also be: 100% is all divided into training set sample data to obtain an effective positioning model.
本实施例中对所有采样的SFS进行训练,以获得有效的定位模型。In this embodiment, all sampled SFSs are trained to obtain an effective positioning model.
上述步骤S4中基于训练集样本数据对基础模型进行训练,得到训练后的模型,该模型作为基于模糊迁移模型的室内定位模块,用于对目标区域采集的数据集进行分析计算,得到定位结果数据,供用户参考,本实施例中为了更加有效地处理时序数据SFS,选择长短期记忆神经网络(Long Short-term Memory,LSTM)模型作为基础模型,并基于所有采样的SFS对基础模型进行训练,用于构建迁移学习的预模型Pre-Model,具体包括以下步骤:In the above step S4, the basic model is trained based on the training set sample data to obtain a trained model. The model is used as an indoor positioning module based on the fuzzy migration model to analyze and calculate the data set collected in the target area to obtain positioning result data for user reference. In this embodiment, in order to more effectively process the time series data SFS, a long short-term memory neural network (Long Short-term Memory, LSTM) model is selected as the basic model, and the basic model is trained based on all sampled SFS to construct a pre-model Pre-Model for transfer learning, which specifically includes the following steps:
S41首先,通过优化长短期记忆神经网络(Long Short-term Memory,LSTM)训练SFS数据,得到Optimized LSTM(O-LSTM),用于初步构建迁移学习的Pre-Model;S41 First, by optimizing the long short-term memory neural network (LSTM) to train the SFS data, we get the Optimized LSTM (O-LSTM) for the preliminary construction of the Pre-Model for transfer learning.
S42然后,由于SFS中ISF和CSF的构建方式不同,因此进一步引入注意力机制的思想,使用了一种面向稀疏数据的轻量级机制SENet(Squeeze-and-Excitation Network)对上述初步构建的迁移学习的Pre-Model进行优化,得到Optimization SE-LSTM(OSE-LSTM),增强Pre-Model的定位精度。S42Then, due to the different construction methods of ISF and CSF in SFS, the idea of attention mechanism is further introduced, and a lightweight mechanism SENet (Squeeze-and-Excitation Network) for sparse data is used to optimize the above-mentioned preliminarily constructed transfer learning Pre-Model to obtain Optimization SE-LSTM (OSE-LSTM) to enhance the positioning accuracy of Pre-Model.
通过上述步骤得到,优化后的训练模型,用为迁移学习的预模型Pre-Model,在实际应用过程中,将该迁移学习的预模型Pre-Model迁移到目标区域,不管该目标区域与样本区域是否相邻,都能实现高精度的室内定位。The optimized training model obtained through the above steps is used as the pre-model Pre-Model for transfer learning. In actual application, the pre-model Pre-Model for transfer learning is migrated to the target area. Regardless of whether the target area is adjacent to the sample area, high-precision indoor positioning can be achieved.
实施例5Example 5
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例4,其中步骤S41:首先,通过优化长短期记忆神经网络(Long Short-term Memory,LSTM)训练SFS数据,得到Optimized LSTM(O-LSTM),用于初步构建迁移学习的Pre-Model;具体包括以下步骤:由于LSTM使用了Memory Cell来选择性的存储信息,并通过Input Gate,Forget Gateand Output Gate三种门控状态来实时调控所传输数据,本实施例主要包括以下三个步骤:1)输入短时特征集sfs,首先经过Input Gate生成输入值;2)然后,Forget Gate选择遗忘Memory Cell中上一刻的信息;3)最后,Output Gate判断是否将这一时刻的信息进行输出。具体是:在模性训练过程中,设μ时刻输入短时特征sfs(μ),则它经过LSTM网络中的InputGate,并结合Memory Cell中μ-1时刻数值h(μ-1),得到输入值:The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on
I(μ)=σ(ws,I*sfs(μ)+wh,I*h(μ-1)) 公式(7)I(μ)=σ(w s,I *sfs(μ)+w h,I *h(μ-1)) Formula (7)
上述公式(7)中,σ表示激活函数;ws,I和wh,I为函数I的参数;sfs(μ)为μ时刻输入短时特征,h(μ-1)为Memory Cell中μ-1时刻数值;In the above formula (7), σ represents the activation function; ws,I and wh ,I are the parameters of function I; sfs(μ) is the short-term feature input at time μ, and h(μ-1) is the value of the Memory Cell at time μ-1;
同时,Input Gate产生一个候选值向量:At the same time, the Input Gate generates a candidate value vector:
上述公式(8)中,ws,c和wh,c为函数的参数;σ表示激活函数;sfs(μ)为μ时刻输入短时特征,h(μ-1)为Memory Cell中μ-1时刻数值;In the above formula (8), w s,c and w h,c are functions Parameters; σ represents the activation function; sfs(μ) is the short-term feature input at time μ, and h(μ-1) is the value of the Memory Cell at time μ-1;
随后,Forget Gate读取μ时刻的sfs和μ-1时刻数值h,并利用激活函数在给定区间输出一个数值,以表示该值的接受程度:Then, Forget Gate reads the sfs at time μ and the value h at time μ-1, and uses the activation function to output a value in a given interval to indicate the degree of acceptance of the value:
F(μ)=σ(ws,f*sfs(μ)+wh,f*h(μ-1)) 公式(9)F(μ)=σ(w s,f *sfs(μ)+w h,f *h(μ-1)) Formula (9)
上述公式(9)中,ws,f和wh,f为函数F的参数;σ表示激活函数;sfs(μ)为μ时刻输入短时特征,h(μ-1)为Memory Cell中μ-1时刻数值;In the above formula (9), w s,f and w h,f are parameters of function F; σ represents the activation function; sfs(μ) is the short-term feature input at time μ, and h(μ-1) is the value of the Memory Cell at time μ-1;
接着,根据上述公式(7)、公式(8)和公式(9),更新状态信息:Next, according to the above formulas (7), (8) and (9), the status information is updated:
上述公式(10)中,F(μ)为公式(9);I(μ)为公式(7);为公式(8);c(μ)为当前状态信息,c(μ-1)为上一时刻状态信息;In the above formula (10), F(μ) is the formula (9); I(μ) is the formula (7); is formula (8); c(μ) is the current state information, c(μ-1) is the state information at the previous moment;
最后,Output Gate根据状态信息输出μ时刻的结果,同时更新了Memory Cell,Memory Cell通过公式(11)更新,更新方式如下:Finally, the Output Gate outputs the result at time μ according to the status information and updates the Memory Cell at the same time. The Memory Cell is updated according to formula (11) as follows:
h(μ)=O(μ)*tanh(c(μ)) 公式(11)h(μ)=O(μ)*tanh(c(μ)) Formula (11)
上述公式(11)中,通过公式(12)计算得到O(μ):In the above formula (11), O(μ) is calculated by formula (12):
当采用SFS训练定位模型,hμ-1与xμ的稀疏性较大,因此相邻时刻输入数据的相似性较大,根据输入向量的时间依赖性,使用相邻时刻的向量差Δsfs(μ)生成输出数据:When SFS is used to train the positioning model, the sparsity of h μ-1 and x μ is large, so the similarity of the input data at adjacent moments is large. According to the time dependency of the input vector, the vector difference Δsfs(μ) at adjacent moments is used to generate the output data:
O(μ)=σ(ws,O*Δsfs(μ)+wh,O*h(μ-1)) 公式(12)O(μ)=σ(w s,O *Δsfs(μ)+w h,O *h(μ-1)) Formula (12)
上述公式(12)中,Δsfs(μ)=sfs(μ)-sfs(μ-1);In the above formula (12), Δsfs(μ)=sfs(μ)-sfs(μ-1);
本实施例使用上述方式进行更新,通过优化长短期记忆神经网络(Long Short-term Memory,LSTM)训练SFS数据,得到Optimized LSTM,用于初步构建迁移学习的Pre-Model,极大降低了训练过程的乘法运算以及数据的加载量,减少了模型的训练时间。This embodiment uses the above method for updating. By optimizing the long short-term memory neural network (Long Short-term Memory, LSTM) to train the SFS data, an Optimized LSTM is obtained for the preliminary construction of the Pre-Model for transfer learning, which greatly reduces the multiplication operations and data loading in the training process and reduces the training time of the model.
在本实施例中采用ReLU函数作为激活函数σ,原因是它更适应稀疏表示,并有效抑制了SFS数据在训练中产生梯度消失问题(gradient vanishing),使整个网络更容易收敛,进一步提高了定位精度。In this embodiment, the ReLU function is used as the activation function σ because it is more suitable for sparse representation and effectively suppresses the gradient vanishing problem of SFS data during training, making the entire network easier to converge and further improving the positioning accuracy.
实施例6Example 6
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例5,面向SFS的稀疏性,ISF表示自身的指纹特征,而CSF则表示与周围近邻的关联特征且数据量大,根据这些差异,为提升定位精度,本实施例引入注意力机制的思想,使用了一种面向稀疏数据的轻量级机制SENet(Squeeze-and-Excitation Network)对上述初步构建的迁移学习的Pre-Model进行优化,得到Optimization SE-LSTM(OSE-LSTM),更好的表现特征之间的关系,以增强Pre-Model的定位精度。具体是:The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on Example 5. In view of the sparsity of SFS, ISF represents its own fingerprint features, while CSF represents the associated features with the surrounding neighbors and has a large amount of data. According to these differences, in order to improve the positioning accuracy, this embodiment introduces the idea of the attention mechanism and uses a lightweight mechanism SENet (Squeeze-and-Excitation Network) for sparse data to optimize the above-mentioned preliminarily constructed transfer learning Pre-Model to obtain Optimization SE-LSTM (OSE-LSTM), which better expresses the relationship between features to enhance the positioning accuracy of the Pre-Model. Specifically:
首先,产生一个全局分布的嵌入的信道特征响应,允许训练模型所有层使用,对特征数据进行全局平均池化(global average pooling)来表示在特征通道上响应的全局分布:First, a globally distributed embedded channel feature response is generated, allowing all layers of the training model to use it, and global average pooling is performed on the feature data to represent the global distribution of responses on the feature channel:
上述公式(13)中,H表示SFS中的元素数量,W表示每个元素的长度;In the above formula (13), H represents the number of elements in SFS, and W represents the length of each element;
然后,挖掘特征通道之间的关系,使用两层非线性激活函数学习通道之间非线性交互作用,以得到合适的权重:Then, the relationship between feature channels is explored, and two layers of nonlinear activation functions are used to learn the nonlinear interactions between channels to obtain appropriate weights:
S(μ)=σ(w2*δ(w1*Z(μ))) 公式(14)S(μ)=σ(w 2 *δ(w 1 *Z(μ))) Formula (14)
上述公式(14)中,σ表示sigmoid激活函数,δ表示ReLU激活函数,w1和w2表示缩放参数;In the above formula (14), σ represents the sigmoid activation function, δ represents the ReLU activation function, and w1 and w2 represent scaling parameters;
最后,利用channel-wise multiplication实现输出:Finally, channel-wise multiplication is used to achieve output:
上述公式(15)中,S(μ)为公式(14),O(μ)为公式(12)。In the above formula (15), S(μ) is the same as formula (14), and O(μ) is the same as formula (12).
参照图4,图4为迁移学习的预模型Pre-Model的实现框图,基于短时特征集SFS进行LSTM的训练得到O(μ),再通过也引入SENet(Squeeze-and-Excitation Network),得到S(μ),最终得到它能够兼顾短时数据的时序性和稀疏性,同时考虑了SFS中ISF和CSF两类生成策略不同的数据,实现了准确的定位精度。Referring to Figure 4, Figure 4 is a block diagram of the implementation of the pre-model Pre-Model of transfer learning. Based on the short-term feature set SFS, LSTM is trained to obtain O(μ), and then SENet (Squeeze-and-Excitation Network) is introduced to obtain S(μ), and finally It can take into account the temporal sequence and sparsity of short-term data, and at the same time consider the two types of data with different generation strategies, ISF and CSF in SFS, to achieve accurate positioning accuracy.
实施例7Example 7
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例6,迁移学习能够将在源域中解决任务时学习到的知识迁移到目标域,并利用所拥有的少量目标域数据,构造出具有泛化能力的模型。由于源域区间是完整的,因此利用这一区域的采样数据构建的PreModel可用于迁移和复用到缺失采样的目标域区间。迁移学习的效果极大地依赖于源域数据与目标域数据的分布相似性。然而,目标域的缺失程度(位置、大小等)都是不确定的,导致已采样的数据与源域数据的分布存在不同的差异性,因此,仅简单利用微调的方式难以实现目标域的准确定位。The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on Example 6. Transfer learning can transfer the knowledge learned when solving tasks in the source domain to the target domain, and use the small amount of target domain data to construct a model with generalization ability. Since the source domain interval is complete, the PreModel constructed using the sampled data in this area can be used to migrate and reuse to the target domain interval where samples are missing. The effect of transfer learning depends greatly on the distribution similarity between the source domain data and the target domain data. However, the degree of missingness (position, size, etc.) of the target domain is uncertain, resulting in different differences in the distribution of the sampled data and the source domain data. Therefore, it is difficult to achieve accurate positioning of the target domain by simply using fine-tuning.
本实施例对模糊迁移学习模型进一步优化。首先,利用模糊聚类方法,根据源域区域中采样点的分布情况为目标域的采样点建立类标签(class label),从而将源域数据与目标域数据按类分割,这就避免了由于两者的整体数据分布的差异性影响了迁移学习的效果;然后,利用标记了类标签的目标域数据和获得的迁移学习的预模型PreModel进行迁移学习,从而构建满足不同缺失情形和不同楼层的模糊迁移学习模型。具体包括以下步骤:This embodiment further optimizes the fuzzy transfer learning model. First, using the fuzzy clustering method, class labels are established for the sampling points in the target domain according to the distribution of the sampling points in the source domain area, so that the source domain data and the target domain data are divided by class, which avoids the difference in the overall data distribution between the two affecting the effect of transfer learning; then, transfer learning is performed using the target domain data marked with class labels and the obtained transfer learning pre-model PreModel, so as to construct a fuzzy transfer learning model that meets different missing situations and different floors. Specifically, the following steps are included:
(1)利用传统聚类方式对源域的采样点进行聚类,并标记类标签。其中,采样点的特征为短时特征集SFS;(1) Use traditional clustering methods to cluster the sampling points in the source domain and mark the class labels. The features of the sampling points are short-term feature sets (SFS);
(2)根据源域的类别数,并利用模糊聚类方法对目标域数据进行聚类,每个采样点都得到一个聚类标签TLf;(2) According to the number of categories in the source domain, the target domain data is clustered using the fuzzy clustering method, and each sampling point is given a cluster label TL f ;
(3)由于目标域数据与源域数据的采样空间相似(甚至相同),因此根据源域中采样点的类标签标记目标域中对应位置采样点,得到一个理论类别标签TLt;(3) Since the sampling spaces of the target domain data and the source domain data are similar (or even identical), the sampling points at the corresponding positions in the target domain are labeled according to the class labels of the sampling points in the source domain to obtain a theoretical category label TL t ;
(4)若源域数据中采样点P的短时特征集SFS的元素sfs(P)的TLf与TLt相同或者相邻,则sfs(P)的类别标签被置为TLf;(4) If the TL f and TL t of the element sfs(P) of the short-term feature set SFS of the sampling point P in the source domain data are the same or adjacent, the category label of sfs(P) is set to TL f ;
(5)若TLf和TLt不相邻,则有:(5) If TL f and TL t are not adjacent, then:
当存在类TLx与它们都相邻,则sfs(P)的类别标签被置为TLx;When there is a class TL x adjacent to them, the class label of sfs(P) is set to TL x ;
若不存在与它们都相邻的类,则将该条记录删除,即SFS(P)=SFS(P)-{sfs(P)};If there is no class adjacent to them, the record is deleted, that is, SFS(P) = SFS(P)-{sfs(P)};
通过上述步骤(1)-(5),目标域数据均被添加了一个类别标签。利用标记了类标签的目标域数据和PreModel进行迁移学习,从而构建满足不同缺失情形和不同楼层的模糊迁移学习模型,实现对模糊迁移学习模型进一步优化。Through the above steps (1)-(5), a category label is added to the target domain data. The target domain data marked with the class label and PreModel are used for transfer learning to build a fuzzy transfer learning model that meets different missing situations and different floors, thereby further optimizing the fuzzy transfer learning model.
在实际应用过程中,将该优化后的模糊迁移学习模型迁移到目标区域,不管该目标区域与样本区域是否相邻,都能实现高精度的室内定位。In actual application, the optimized fuzzy transfer learning model is migrated to the target area, and high-precision indoor positioning can be achieved regardless of whether the target area is adjacent to the sample area.
实施例8Example 8
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例7,本实施例选择教学楼作为定位实验场景,它有五层结构相似的楼层,每层面积为1450m2,实验使用三类设备进行采样,分别是智能手机5个、平板2个和PDA 1个。为了充分验证本发明的定位效果,本实验对5个楼层都进行了完整采样,采样点密度为1.2*1.2米,采样高度为1米。每个采样点的采集时间为3分钟。本实验对比不同定位模型(LSTM、SE-LSTM和OSE-LSTM)的性能,更好地验证本文所提出的定位模型的鲁棒性,对不同的定位方法进行对比实验。采样间隔固定为1.2米,随机选定某一楼层作为实验区域,使用HUAWEI Mate7、HUAWEI Mate8、Honor、VIVO x6和MI 6五部设备进行模型性能对比,分别对其编号为设备1-5。使用平均误差距离AED作为定位性能评估标准。实验结果如下表1所示,表1为不同定位方法平均定位误差距离(单位:m):The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on Example 7. This embodiment selects a teaching building as a positioning experiment scene. It has five floors with similar structures, and the area of each floor is 1450m2 . The experiment uses three types of devices for sampling, namely 5 smart phones, 2 tablets and 1 PDA. In order to fully verify the positioning effect of the present invention, this experiment has completely sampled all 5 floors, with a sampling point density of 1.2*1.2 meters and a sampling height of 1 meter. The acquisition time of each sampling point is 3 minutes. This experiment compares the performance of different positioning models (LSTM, SE-LSTM and OSE-LSTM), better verifies the robustness of the positioning model proposed in this article, and conducts comparative experiments on different positioning methods. The sampling interval is fixed to 1.2 meters, and a floor is randomly selected as the experimental area. Five devices, HUAWEI Mate7, HUAWEI Mate8, Honor, VIVO x6 and
表1Table 1
通过上述表1所示,本发明的OSE-LSTM方法最终得到的定位结果误差最低,进一步说明了本发明方法提出的OSE-LSTM方法能够实现高精度室内定位。As shown in Table 1, the positioning result finally obtained by the OSE-LSTM method of the present invention has the lowest error, which further illustrates that the OSE-LSTM method proposed by the present invention can achieve high-precision indoor positioning.
实施例9Example 9
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例7,本实施例为了更好的对比定位模型进行迁移的定位性能差异,选择教学楼的第一层走廊作为实验区域。为了避免设备异构性对当前实验造成的负影响,使用HUAWEI Mate7、HUAWEI Mate8、Honor、VIVO x6和MI 6五部设备在该楼层所采集数据的指纹特征平均值作为初始数据进行模型的训练与定位精度测试,采样间隔为1.2米。其中,训练集为70%,测试集为30%。使用平均误差距离AED作为定位性能评估标准。选定第一楼层全指纹点数据训练完成的基础定位模型OSE-LSTM,接着将定位模型OSE-LSTM迁移至其他楼层。并通过对目标域数据采用不同的采样率来进行微调训练,分别使用传统的迁移学习方法和本文所提出的模糊迁移方法进行实验验证。最后,实验对比了传统WKNN算法在不同楼层的不同采样率时的定位结果。定位模型迁移至各个楼层的具体实验结果如表2和图5所示,其中AF表示相邻楼层,NAF表示不相邻楼层(三四五楼),TTL表示传统迁移学习,FTL表示模糊迁移学习,表2为传统迁移学习与模糊迁移学习在不同楼层使用不同采样率平均定位误差距离(单位:m):The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on Example 7. In order to better compare the positioning performance differences of the migration of the positioning model, this embodiment selects the first-floor corridor of the teaching building as the experimental area. In order to avoid the negative impact of device heterogeneity on the current experiment, the average value of the fingerprint features of the data collected by five devices, HUAWEI Mate7, HUAWEI Mate8, Honor, VIVO x6 and
表2Table 2
从上述实验结果可以看出,随着采样密度的减少,模型定位精度也出现不同程度的下滑。但是相较于传统迁移学习方法,本文所提出的模糊迁移学习方法的精度更高,且在迁移至相邻楼层时的性能明显优于不相邻楼层,能够更加适应复杂多变的环境。From the above experimental results, it can be seen that with the decrease of sampling density, the positioning accuracy of the model also declines to varying degrees. However, compared with the traditional transfer learning method, the fuzzy transfer learning method proposed in this paper has higher accuracy, and its performance when migrating to adjacent floors is significantly better than that of non-adjacent floors, and it can better adapt to complex and changing environments.
实施例10Example 10
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例7,本实施例通过OSE-LSTM模型,验证不同设备在进行模糊迁移至不同楼层的定位性能结果情况。预训练模型的数据来自第一楼层的全部指纹特征,使用HUAWEI Mate7、MI 6、HUAWEI HonorT1-823、MI Pad 3、UROVO i6300A五部设备,分别编号为设备1-5。分别使目标域的采样率为80%和30%,训练方法统一使用微调训练,使用平均误差距离AED作为定位性能评估标准。使目标域的采样率为80%时实验结果如下表3和图6所示,表3为80%采样率时不同楼层平均定位误差距离(单位:m):The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on Example 7. This embodiment verifies the positioning performance results of different devices when fuzzy migration to different floors through the OSE-LSTM model. The data of the pre-trained model comes from all the fingerprint features of the first floor, using five devices: HUAWEI Mate7,
表3Table 3
使目标域的采样率为30%时实验结果如下表4和图7所示,表3为80%采样率时不同楼层平均定位误差距离(单位:m):The experimental results are shown in Table 4 and Figure 7 when the sampling rate of the target domain is 30%. Table 3 shows the average positioning error distance of different floors when the sampling rate is 80% (unit: m):
表4Table 4
从实验结果可以看出,在迁移至不相邻楼层时的定位误差较大,原因是楼层之间相距越远,其空间结构分布差异就越大,造成源域与目标域之间的数据分布也越大。同时,在采样率较低时,定位模型迁移至不同楼层后的结果在不同设备之间的定位误差存在一定的抖动。本实施例所提出的模糊迁移学习方法在迁移至其它楼层时具有更高的鲁棒性。It can be seen from the experimental results that the positioning error is large when migrating to non-adjacent floors. The reason is that the farther the floors are from each other, the greater the difference in their spatial structure distribution, resulting in a larger data distribution between the source domain and the target domain. At the same time, when the sampling rate is low, the positioning error between different devices after the positioning model is migrated to different floors has a certain jitter. The fuzzy transfer learning method proposed in this embodiment has higher robustness when migrating to other floors.
实施例11Embodiment 11
本实施例的基于模糊迁移学习模型的高精度室内定位方法,基于实施例7,本实施例为验证不同采样密度对定位模型的正负影响,选用教学楼某一楼层内五部设备所采集的不同间隔采样点的数据作为原始数据,统一使用OSE-LSTM定位模型,最小采样矩形分别为1.2*1.2、1.2*2.4、2.4*2.4(单位:米)。并选取训练集为70%,测试集为30%。实验结果如图8所示。从图8中可以看出,随着采样间隔的扩大,误差呈上升趋势。但从总体上看,不同采样间隔对定位结果的误差的影响较小。The high-precision indoor positioning method based on the fuzzy transfer learning model of this embodiment is based on Example 7. In order to verify the positive and negative effects of different sampling densities on the positioning model, this embodiment selects data from sampling points of different intervals collected by five devices on a certain floor of a teaching building as the original data, and uniformly uses the OSE-LSTM positioning model. The minimum sampling rectangles are 1.2*1.2, 1.2*2.4, and 2.4*2.4 (unit: meter). The training set is 70% and the test set is 30%. The experimental results are shown in Figure 8. As can be seen from Figure 8, as the sampling interval expands, the error tends to increase. But overall, the influence of different sampling intervals on the error of the positioning result is small.
综合以上实验可以看出,本发明在不同设备之间具有较高的鲁棒性。在采样率为80%时,迁移至相邻层的定位误差仅为1.38米,在采样率为30%时,迁移至相邻层的定位误差仅为1.92米,能在保证定位精度的前提下大大减少指纹数据的采样工作。与此同时,对比传统迁移,本发明分别提升18.1%和12.6%。From the above experiments, it can be seen that the present invention has high robustness between different devices. When the sampling rate is 80%, the positioning error of migration to the adjacent layer is only 1.38 meters, and when the sampling rate is 30%, the positioning error of migration to the adjacent layer is only 1.92 meters, which can greatly reduce the sampling work of fingerprint data while ensuring the positioning accuracy. At the same time, compared with traditional migration, the present invention improves by 18.1% and 12.6% respectively.
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principle of the present invention. These improvements and modifications should also be regarded as the scope of protection of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211292065.9A CN115905787B (en) | 2022-10-21 | 2022-10-21 | A high-precision indoor positioning method based on fuzzy transfer learning model |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211292065.9A CN115905787B (en) | 2022-10-21 | 2022-10-21 | A high-precision indoor positioning method based on fuzzy transfer learning model |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115905787A true CN115905787A (en) | 2023-04-04 |
| CN115905787B CN115905787B (en) | 2023-09-29 |
Family
ID=86473433
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211292065.9A Active CN115905787B (en) | 2022-10-21 | 2022-10-21 | A high-precision indoor positioning method based on fuzzy transfer learning model |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115905787B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119617577A (en) * | 2024-12-31 | 2025-03-14 | 江苏佳融环境科技有限公司 | Direct expansion constant temperature and humidity machine air conditioning control method and system based on cloud computing |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016136099A (en) * | 2015-01-23 | 2016-07-28 | サトーホールディングス株式会社 | Positioning system and positioning method |
| CN110958569A (en) * | 2019-12-11 | 2020-04-03 | 军事科学院系统工程研究院网络信息研究所 | Indoor positioning method based on MIMO channel characteristic value |
| CN111898523A (en) * | 2020-07-29 | 2020-11-06 | 电子科技大学 | A target detection method for special vehicles in remote sensing images based on transfer learning |
| CN112584311A (en) * | 2020-12-15 | 2021-03-30 | 西北工业大学 | Indoor three-dimensional space fingerprint positioning method based on WKNN fusion |
| US20210274496A1 (en) * | 2020-02-27 | 2021-09-02 | Psj International Ltd. | Positioning system and positioning method based on wi-fi fingerprints |
| CN114269006A (en) * | 2021-12-24 | 2022-04-01 | 河海大学 | A method and device for indoor AP clustering selection based on information gain rate |
| CN114710742A (en) * | 2022-02-28 | 2022-07-05 | 盐城师范学院 | Indoor positioning method for constructing fingerprint map based on multi-chain interpolation |
-
2022
- 2022-10-21 CN CN202211292065.9A patent/CN115905787B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016136099A (en) * | 2015-01-23 | 2016-07-28 | サトーホールディングス株式会社 | Positioning system and positioning method |
| CN110958569A (en) * | 2019-12-11 | 2020-04-03 | 军事科学院系统工程研究院网络信息研究所 | Indoor positioning method based on MIMO channel characteristic value |
| US20210274496A1 (en) * | 2020-02-27 | 2021-09-02 | Psj International Ltd. | Positioning system and positioning method based on wi-fi fingerprints |
| CN111898523A (en) * | 2020-07-29 | 2020-11-06 | 电子科技大学 | A target detection method for special vehicles in remote sensing images based on transfer learning |
| CN112584311A (en) * | 2020-12-15 | 2021-03-30 | 西北工业大学 | Indoor three-dimensional space fingerprint positioning method based on WKNN fusion |
| CN114269006A (en) * | 2021-12-24 | 2022-04-01 | 河海大学 | A method and device for indoor AP clustering selection based on information gain rate |
| CN114710742A (en) * | 2022-02-28 | 2022-07-05 | 盐城师范学院 | Indoor positioning method for constructing fingerprint map based on multi-chain interpolation |
Non-Patent Citations (1)
| Title |
|---|
| 张笑凯: ""基于迁移学习和指纹的室内定位算法"", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119617577A (en) * | 2024-12-31 | 2025-03-14 | 江苏佳融环境科技有限公司 | Direct expansion constant temperature and humidity machine air conditioning control method and system based on cloud computing |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115905787B (en) | 2023-09-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111400620B (en) | User Trajectory Position Prediction Method Based on Spatio-temporal Embedding Self-Attention | |
| He et al. | Graph attention spatial-temporal network with collaborative global-local learning for citywide mobile traffic prediction | |
| CN109743683B (en) | A method of using deep learning fusion network model to determine the location of mobile phone users | |
| CN110928993B (en) | User position prediction method and system based on deep cyclic neural network | |
| CN107111794B (en) | Predicting and exploiting variability of travel time in a mapping service | |
| CN107247961B (en) | A Trajectory Prediction Method Using Fuzzy Trajectory Sequence | |
| CN110969854A (en) | A kind of traffic flow forecasting method, system and terminal equipment | |
| CN111061966B (en) | A Missing Object Search Method Based on Reinforcement Learning Algorithm | |
| CN108965017B (en) | Method and device for predicting network traffic | |
| CN103442331A (en) | Terminal equipment position determining method and terminal equipment | |
| CN110267292A (en) | Cellular network traffic prediction method based on 3D convolutional neural network | |
| CN112071062A (en) | A Travel Time Estimation Method Based on Graph Convolutional Network and Graph Attention Network | |
| Zhang et al. | Graph-based traffic forecasting via communication-efficient federated learning | |
| CN113139140A (en) | Tourist attraction recommendation method based on space-time perception GRU and combined with user relation preference | |
| CN112766600A (en) | Urban area crowd flow prediction method and system | |
| CN109041218A (en) | Method for predicting user position and intelligent hardware | |
| CN112469116B (en) | Positioning method, positioning device, electronic equipment and computer readable storage medium | |
| CN115905787B (en) | A high-precision indoor positioning method based on fuzzy transfer learning model | |
| CN120110565A (en) | A method for constructing three-dimensional channel maps based on conditional generative diffusion model | |
| Li et al. | Can we enhance the quality of mobile crowdsensing data without ground truth? | |
| CN119255288A (en) | A base station sleep method based on traffic prediction | |
| CN107577727B (en) | An Analysis Method of Group Mobility Behavior Characteristics | |
| CN114238533A (en) | User commuting route planning method, device, computer equipment and storage medium | |
| CN117851850B (en) | User itinerary identification method and device based on neural network | |
| Zhang et al. | Next point-of-interest recommendation for cold-start users with spatial-temporal meta-learning |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |