CN115919360A - Ultrasonic 3D Whole Body Imaging System - Google Patents
Ultrasonic 3D Whole Body Imaging System Download PDFInfo
- Publication number
- CN115919360A CN115919360A CN202310035417.0A CN202310035417A CN115919360A CN 115919360 A CN115919360 A CN 115919360A CN 202310035417 A CN202310035417 A CN 202310035417A CN 115919360 A CN115919360 A CN 115919360A
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- ultrasonic probe
- ring
- probe
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 35
- 239000000523 sample Substances 0.000 claims abstract description 75
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 238000007654 immersion Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 5
- 239000008232 de-aerated water Substances 0.000 claims 1
- 238000002601 radiography Methods 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 12
- 238000002604 ultrasonography Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 210000003754 fetus Anatomy 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 206010035610 Pleural Neoplasms Diseases 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 201000003437 pleural cancer Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
技术领域technical field
本发明有关于一种三维全身造影系统,特别是指一种利用超音波执行三维全身造影的系统。The invention relates to a three-dimensional whole-body imaging system, in particular to a system for performing three-dimensional whole-body imaging by using ultrasonic waves.
背景技术Background technique
近年来随着生医产业的迅速发展,生医技术也逐步有进一步的突破。一般在执行病患的三维影像造影时,多半是采用核磁共振的方式,将病患曝露于磁场中,用适当的电磁波照射病患,以改变氢原子的旋转排列方向,使之共振,然后分析释放的电磁波。虽然核磁共振相较于X射线及断层扫瞄对人体的伤害较小,然而,在核磁共振聚焦或测量过程中所用到的大角度射频场发射,其电磁能量有可能在患者组织内转化成热能,使组织温度升高,仍然有可能对人体造成伤害。In recent years, with the rapid development of the biomedical industry, biomedical technology has gradually made further breakthroughs. Generally, when performing three-dimensional imaging of patients, most of them use nuclear magnetic resonance to expose the patient to a magnetic field and irradiate the patient with appropriate electromagnetic waves to change the rotation and arrangement of hydrogen atoms and make them resonate, and then analyze released electromagnetic waves. Although nuclear magnetic resonance is less harmful to the human body than X-ray and tomographic scanning, however, the electromagnetic energy of the large-angle radio frequency field emission used in the focusing or measurement of nuclear magnetic resonance may be converted into heat energy in the patient's tissue , to raise the temperature of the tissue, it is still possible to cause harm to the human body.
相较于核磁共振,超声波具有无创、无放射性而在医疗中普遍使用。尤其是产科领域,由于胎儿对放射辐射的敏感性,基本不会对胎儿或母亲采用X射线及断层扫瞄等诊断设备,此时超音波成像技术就成为最佳选择。Compared with nuclear magnetic resonance, ultrasound is non-invasive and non-radioactive, so it is widely used in medical treatment. Especially in the field of obstetrics, due to the sensitivity of the fetus to radiation, diagnostic equipment such as X-rays and tomographic scans are basically not used on the fetus or mother. At this time, ultrasonic imaging technology has become the best choice.
相较于过去技术,超音波扫描具有以下优势功效:1.无放射性,且安全性高于X射线、断层扫瞄、核磁共振。2.实时性,看到的影像是实时的,不需要等待胶片冲洗或数码成像的时间,这不仅节约时间,且可实时进行监测,可以应用在心血管领域,测出血液流速,从而诊断病变情况。Compared with past technologies, ultrasonic scanning has the following advantages and effects: 1. No radioactivity, and is safer than X-rays, tomographic scans, and nuclear magnetic resonance. 2. Real-time performance, the image seen is real-time, and there is no need to wait for film development or digital imaging, which not only saves time, but also can be monitored in real time, and can be applied in the cardiovascular field to measure blood flow velocity and diagnose pathological changes .
然而现有的超音波检测一般都是进行二维检测,即使借助超音波可快速诊断病变情况,但是皆为人体局部非全身造影,超音波检查劣势(显像不足);对部分介质的传导性差(如硬组织骨骼)在穿透性与成像性即显不足,以致于脑部超音波成像就极为受限,因为声阻抗差异过大,当探头与受探查组织之间有气体时,超音波显像质量很差。由于前方受到胃肠道气体干扰,使得胰腺成像非常困难,肺脏成像也是不可能的(除非是探查胸腔积液与肿瘤);另外亦受限于超音波的探查深度,使得远离体表的结构成像困难,特别是肥胖病人。以致于医学超音波检查效果大打折扣。However, the existing ultrasonic detection is generally two-dimensional detection. Even if the lesion can be quickly diagnosed with the help of ultrasound, all of them are local non-whole body contrast images of the human body. (such as hard tissue and bone) are insufficient in penetrability and imaging, so that the ultrasound imaging of the brain is extremely limited, because the difference in acoustic impedance is too large, when there is gas between the probe and the tissue to be probed, ultrasound Image quality is poor. Due to the interference of gastrointestinal gas in front, it is very difficult to image the pancreas, and it is impossible to image the lungs (unless it is to detect pleural effusion and tumor); in addition, it is also limited by the detection depth of ultrasound, which makes imaging of structures far away from the body surface Difficulty, especially in obese patients. As a result, the effect of medical ultrasound examination is greatly reduced.
发明内容Contents of the invention
为达到上述目的,本发明提供一种超音波三维全身造影系统,包括一超音波导波介质容器、一超音波探头数组以及一超音波造影仪。该超音波导波介质容器具有一检测空间,于该检测空间内充填设置有导波介质,并用以供检体浸入。该超音波探头数组设置于该超音波导波介质容器的内部,该超音波探头数组包括有多个探头单元集成为环型数组,环设于该检测空间内的周侧。该超音波造影仪经由该超音波探头数组各像素反馈的数据建构三维影像模型。To achieve the above purpose, the present invention provides an ultrasonic three-dimensional whole-body imaging system, which includes an ultrasonic waveguide medium container, an array of ultrasonic probes and an ultrasonic contrast apparatus. The ultrasonic waveguide medium container has a detection space, and the waveguide medium is filled and arranged in the detection space, and is used for immersion of specimens. The ultrasonic probe array is arranged inside the ultrasonic waveguide medium container, and the ultrasonic probe array includes a plurality of probe units integrated into a ring array, which is arranged around the detection space. The ultrasonic imaging apparatus constructs a three-dimensional image model through the data fed back by each pixel of the ultrasonic probe array.
可选的,该导波介质为水、去气水、显影剂或导波胶。Optionally, the wave guiding medium is water, degassed water, developer or wave guiding glue.
可选的,该超音波导波介质容器上设置有隔音层。Optionally, a sound insulation layer is arranged on the ultrasonic waveguide medium container.
本发明的另一目的,在于提供一种超音波三维全身造影系统,包括一超音波导波介质容器、一移动式超音波探头以及一超音波造影仪。该超音波导波介质容器具有一检测空间,于该检测空间内充填设置有导波介质,并用以供检体浸入。该移动式超音波探头包括一线性载台以及一设置于该线性载台上的环型超音波探头数组,该环型超音波探头数组包括有多个探头单元集成为环型数组,该环型超音波探头通过该线性载台延该检测空间移动。该超音波造影仪依据该线性载台的移动速度及该环型超音波探头反馈的数据建构三维影像模型。Another object of the present invention is to provide an ultrasonic three-dimensional whole-body imaging system, which includes an ultrasonic waveguide medium container, a mobile ultrasonic probe, and an ultrasonic contrast apparatus. The ultrasonic waveguide medium container has a detection space, and the waveguide medium is filled and arranged in the detection space, and is used for immersion of specimens. The mobile ultrasonic probe includes a linear carrier and a ring-shaped ultrasonic probe array arranged on the linear carrier. The ring-shaped ultrasonic probe array includes a plurality of probe units integrated into a ring-shaped array. The ultrasonic probe moves along the detection space through the linear stage. The ultrasonic imaging apparatus constructs a three-dimensional image model according to the moving speed of the linear carrier and the data fed back by the annular ultrasonic probe.
可选的,该导波介质为水、去气水、显影剂或导波胶。Optionally, the wave guiding medium is water, degassed water, developer or wave guiding glue.
可选的,该超音波导波介质容器上设置有隔音层。Optionally, a sound insulation layer is arranged on the ultrasonic waveguide medium container.
是以,本发明比起现有技术具有以下的优势功效:Therefore, compared with the prior art, the present invention has the following advantages:
1.本发明通过超音波探头数组对病患进行三维全身造影,可以针对超音波不易穿过的组织进行多维影像重建,避免成像性不足的缺失。1. The present invention performs three-dimensional whole-body radiography on patients through an array of ultrasonic probes, and can perform multi-dimensional image reconstruction for tissues that are difficult for ultrasonic waves to pass through, avoiding the lack of insufficient imaging.
2.本发明通过超音波探头数组对病患进行三维全身造影,可以有效的避免对人体伤害的可能性。2. The present invention performs three-dimensional whole-body radiography on the patient through an array of ultrasonic probes, which can effectively avoid the possibility of harm to the human body.
3.本发明可以通过超音波探头数组直接输出病患或患部的三维影像,不需再经过二维影像的转换。3. The present invention can directly output the three-dimensional image of the patient or the affected part through the array of ultrasonic probes, without the conversion of the two-dimensional image.
附图说明Description of drawings
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
图1本发明第一实施例的方块示意图。FIG. 1 is a schematic block diagram of a first embodiment of the present invention.
图2本发明第一实施例的外观示意图。Fig. 2 is a schematic view of the appearance of the first embodiment of the present invention.
图3本发明第二实施例的方块示意图。FIG. 3 is a schematic block diagram of a second embodiment of the present invention.
图4本发明第二实施例的外观示意图。Fig. 4 is a schematic diagram of the appearance of the second embodiment of the present invention.
附图标记说明:Explanation of reference signs:
100 超音波三维全身造影系统100 Ultrasonic three-dimensional whole-body imaging system
10A 超音波导波介质容器10A Ultrasonic waveguide wave dielectric container
11A 导波介质11A waveguide medium
12A 隔音层12A Sound insulation layer
20A 超音波探头数组20A Ultrasonic probe array
21A 探头单元21A Probe unit
30A 超音波造影仪30A Ultrasonic Contrast Apparatus
S1 检测空间S1 detection space
200 超音波三维全身造影系统200 Ultrasonic three-dimensional whole-body imaging system
10B 超音波导波介质容器10B Ultrasonic waveguide wave dielectric container
11B 导波介质11B waveguide medium
20B 移动式超音波探头20B Mobile Ultrasonic Probe
21B 线性载台21B linear stage
22B 环型超音波探头数组22B Ring type ultrasonic probe array
221B 探头单元221B Probe unit
30B 超音波造影仪30B Ultrasonic Contrast Apparatus
S2 检测空间S2 detection space
具体实施方式Detailed ways
有关本发明的详细说明及技术内容,现就配合图式说明如下。再者,本发明中的图式,为说明方便,其比例未必照实际比例绘制,该等图式及其比例并非用以限制本发明的范围,在此先行叙明。The detailed description and technical content of the present invention are described as follows with respect to the accompanying drawings. Furthermore, for the convenience of description, the proportions of the drawings in the present invention are not necessarily drawn according to the actual scale. These drawings and their proportions are not intended to limit the scope of the present invention, and are described here first.
以下举一具体实施例就本发明的技术内容提出详细的说明,请参阅图1及图2,为本发明第一实施例的方块示意图及外观示意图,如图所示:A specific embodiment is given below to provide a detailed description of the technical content of the present invention. Please refer to FIGS.
本实施例揭示一种超音波三维全身造影系统,包括超音波三维全身造影系统100,包括一超音波导波介质容器10A、一超音波探头数组20A以及一超音波造影仪30A。This embodiment discloses an ultrasonic three-dimensional whole-body imaging system, including an ultrasonic three-dimensional whole-
所述的超音波导波介质容器10A具有一检测空间S1,于该检测空间S1内充填设置有导波介质11A,并用以供检体浸入。于一较佳实施例中,该超音波导波介质容器10A上设置有隔音层12A,该隔音层12A可以为吸音材或降噪材,设置于该超音波导波介质容器10A相对该超音波探头数组20A的任意位置上(例如外侧、内侧、壳体内侧),用以阻隔该超音波探头数组20A与外部。为了达到较佳的检测效果,该导波介质11A为水、去气水、显影剂或导波胶等,于本发明中不予以限制。The ultrasonic waveguide
所述的超音波探头数组20A设置于该超音波导波介质容器10A的内部,该超音波探头数组20A包括有多个探头单元21A集成为环型数组(数量为Lth*Hth),环设于该检测空间S1内的周侧。The
在医学超音波检查中,压电换能器(一般是陶瓷的)的相位数组产生的短而强的声音脉冲制造声波。电线和换能器都封装在探头单元21A中,电脉冲使陶瓷振荡产生一系列的声音脉冲。声波的频率可表现为1至13兆赫中的任一频率,远超于人耳能听到的频率。所述的超音波泛指任何频率超过人耳能听到的范围的声波。而医学超音波的目的在于使由换能器散射出的声波汇总产生单一聚焦成弧形的声波。频率越高相应的波长越短,所得影像的分辨率越高。但是随着声波频率的增高,声波的衰减也越快。所以为了探查更深的组织,较佳可使用较低的频率(3-5兆赫)。In medical sonography, short, intense sound pulses produced by phased arrays of piezoelectric transducers (usually ceramic) create sound waves. Both the wires and the transducer are housed in the
为了使声波有效地传导入检体(即阻抗匹配),探头单元21A的表面由橡胶包被。声波部分地从不同组织之间的界面反射回探头,即为回声,由非常小的结构散射的声波也产生回声。The surface of the
接收回声时,声波返回探头单元21A,与探头单元21A发射声波相似,只是过程相反。返回的声波使探头单元21A的换能器振荡并使振荡转化为电脉冲,脉冲由探头单元21A发送至该超音波造影仪30A,由超音波造影仪30A处理成数字图像。When the echo is received, the sound wave returns to the
所述的超音波造影仪30A为一种图像处理装置,经由该超音波探头数组20A各像素(探头单元21A)反馈的数据以建构三维影像模型。该超音波造影仪30A主要接收超音波探头数组20A的三种不同参数,包括接收到回声的探头单元21A(即响应的数组位置)、回声的信号强度、超音波的飞行时间(响应时间)。The
于超音波造影仪30A获得以上三个数据后,即可借由上面的数据重建对象的三维模型。为了建立影像中的三维模型,多个探头单元21A的响应可以通过分时多任务进行,通过响应的探头单元21A的位置及超音波飞行时间可以确立单一像素的坐标(即三维空间中所获得的相对坐标或世界坐标),影像转换为三维影像时必须对应于探头单元21A的位置进行修正以映像至三维空间,例如设定世界坐标系的参考点并依据该参考点为基准进行映射运算;通过回声的信号强度及超音波飞行时间则可以确立不同区域的组织密度而建构深度上的组织分层,通过设定特定阈值的方式,可以将重建的三维影像进行滤波,而单独获得感兴趣区域的影像(例如血液系统、脏器结构、病理组织、良性和恶性肿瘤等影像)。此外,影像穿透的深度(即采样深度)则可以通过设定超音波的功率及频率而变更,依此可重建相对浅层或深层的影像。于另一较佳实施例中,可以通过设定不同特定阈值的方式将影像填入不同的灰阶值或颜色,以凸显个别组织的影像。After the above three data are obtained by the
除了上述的算法外,于一较佳实施例中,本发明亦可以使用于单输入多输出(SIMO)、多输入单输出(MISO)、多输入多输出(MIMO)等模型,于本发明中不予以限制。In addition to the above-mentioned algorithm, in a preferred embodiment, the present invention can also be used in models such as single-input multiple-output (SIMO), multiple-input single-output (MISO), multiple-input multiple-output (MIMO), etc., in the present invention No restrictions are imposed.
于本实施例中,围绕受检目标的超音波探头数组20A,超音波造影仪30A预设医学假定声速恒为1540m/s。虽然产生回声仍有可能会丧失一部分声能,但对于声波被吸收而产生的衰减而言影响很小。In this embodiment, the
以下举另一具体实施例提出详细的说明,本实施例与前一实施例的差异主要在于超音波探头数组的设置形式,其它相同部分下面即不再与以赘述,请参阅图3及图4,为本发明第二实施例的方块示意图及外观示意图,如图所示:Give another specific embodiment below and propose detailed description, the difference between this embodiment and the previous embodiment mainly lies in the setting form of the ultrasonic probe array, and other identical parts will not be described in detail below, please refer to Fig. 3 and Fig. 4 , is a schematic block diagram and a schematic appearance diagram of the second embodiment of the present invention, as shown in the figure:
本实施例揭示一种超音波三维全身造影系统200,包括一超音波导波介质容器10B、一移动式超音波探头20B、一超音波造影仪30B。This embodiment discloses an ultrasonic three-dimensional whole-
所述的超音波导波介质容器10B具有一检测空间S2,于该检测空间S2内充填设置有导波介质11B,并用以供检体浸入。于一较佳实施例中,该超音波导波介质容器10B上设置有隔音层,该隔音层可以为吸音材或降噪材,设置于该超音波导波介质容器10B相对该移动式超音波探头20B的任意位置上(例如外侧、内侧、壳体内侧),用以阻隔该移动式超音波探头20B与外部。为了达到较佳的检测效果,该导波介质11B为水、去气水、显影剂或导波胶等,于本发明中不予以限制。The ultrasonic waveguide
所述的移动式超音波探头20B包括一线性载台21B以及一设置于该线性载台21B上的环型超音波探头数组22B,该环型超音波探头数组22B包括有多个探头单元221B集成为环型数组,该环型超音波探头数组22B通过该线性载台21B沿该检测空间S2往复移动。为了重建三维模型,该环型超音波探头数组22B除了回授接收到回声的探头单元221B(即响应的数组位置)、回声的信号强度、超音波的飞行时间(响应时间)三种不同参数外,进一步回授该线性载台21B的移动速率,经由该移动速率修正响应的数组位置。The mobile
所述的超音波造影仪30B为一种图像处理装置,经由该环型超音波探头数组22B各像素反馈的数据以建构三维影像模型。该超音波造影仪30B主要接收环型超音波探头数组22B的四种不同参数,包括接收到回声的探头单元221B(即响应的数组位置)、线性载台的移动速率、回声的信号强度、超音波的飞行时间(响应时间)。The
综上所述,本发明通过超音波探头数组对病患进行三维全身造影,可以针对超音波不易穿过的组织进行多维影像重建,避免成像性不足的缺失。此外,本发明通过超音波探头数组对病患进行三维全身造影,可以有效的避免对人体伤害的可能性。再者,本发明可以通过超音波探头数组直接输出病患或患部的三维影像,不需再经过二维影像的转换。To sum up, the present invention performs three-dimensional whole-body imaging on patients through an array of ultrasonic probes, and can perform multi-dimensional image reconstruction for tissues that are difficult for ultrasonic waves to pass through, avoiding the lack of insufficient imaging. In addition, the present invention performs three-dimensional whole-body radiography on the patient through an array of ultrasonic probes, which can effectively avoid the possibility of harming the human body. Furthermore, the present invention can directly output the three-dimensional image of the patient or the affected part through the array of ultrasonic probes, without the conversion of the two-dimensional image.
以上已将本发明做一详细说明,但以上所述内容,仅为本发明的一较佳实施例而已,当不能以此限定本发明实施的范围,即凡依本发明申请专利范围所作的均等变化与修饰,皆应仍属本发明的专利涵盖范围内。The present invention has been described in detail above, but the above-described content is only a preferred embodiment of the present invention, and should not limit the scope of the present invention with this, that is, all equivalents made according to the patent scope of the present invention Changes and modifications should still fall within the scope of patent coverage of the present invention.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310035417.0A CN115919360A (en) | 2019-03-26 | 2019-03-26 | Ultrasonic 3D Whole Body Imaging System |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910232956.7A CN111743567A (en) | 2019-03-26 | 2019-03-26 | Ultrasound 3D Whole Body Imaging System |
| CN202310035417.0A CN115919360A (en) | 2019-03-26 | 2019-03-26 | Ultrasonic 3D Whole Body Imaging System |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910232956.7A Division CN111743567A (en) | 2019-03-26 | 2019-03-26 | Ultrasound 3D Whole Body Imaging System |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115919360A true CN115919360A (en) | 2023-04-07 |
Family
ID=72671304
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310035417.0A Pending CN115919360A (en) | 2019-03-26 | 2019-03-26 | Ultrasonic 3D Whole Body Imaging System |
| CN201910232956.7A Pending CN111743567A (en) | 2019-03-26 | 2019-03-26 | Ultrasound 3D Whole Body Imaging System |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910232956.7A Pending CN111743567A (en) | 2019-03-26 | 2019-03-26 | Ultrasound 3D Whole Body Imaging System |
Country Status (1)
| Country | Link |
|---|---|
| CN (2) | CN115919360A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6878115B2 (en) * | 2002-03-28 | 2005-04-12 | Ultrasound Detection Systems, Llc | Three-dimensional ultrasound computed tomography imaging system |
| WO2008066680A2 (en) * | 2006-11-10 | 2008-06-05 | Penrith Corporation | Transducer array imaging system |
| JP2009225904A (en) * | 2008-03-21 | 2009-10-08 | Gifu Univ | System for assisting mammographic diagnosis |
| US20120029358A1 (en) * | 2005-03-03 | 2012-02-02 | Sonowise, Inc. | Three -Dimensional Ultrasound Systems, Methods, and Apparatuses |
| CN106901734A (en) * | 2017-02-28 | 2017-06-30 | 深圳大学 | A bioacoustic conductivity detection device for biological tissue |
| TW201825051A (en) * | 2017-01-06 | 2018-07-16 | 陳炯年 | An ultrasonic imaging apparatus |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6135960A (en) * | 1998-08-31 | 2000-10-24 | Holmberg; Linda Jean | High-resolution, three-dimensional whole body ultrasound imaging system |
-
2019
- 2019-03-26 CN CN202310035417.0A patent/CN115919360A/en active Pending
- 2019-03-26 CN CN201910232956.7A patent/CN111743567A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6878115B2 (en) * | 2002-03-28 | 2005-04-12 | Ultrasound Detection Systems, Llc | Three-dimensional ultrasound computed tomography imaging system |
| US20120029358A1 (en) * | 2005-03-03 | 2012-02-02 | Sonowise, Inc. | Three -Dimensional Ultrasound Systems, Methods, and Apparatuses |
| WO2008066680A2 (en) * | 2006-11-10 | 2008-06-05 | Penrith Corporation | Transducer array imaging system |
| JP2009225904A (en) * | 2008-03-21 | 2009-10-08 | Gifu Univ | System for assisting mammographic diagnosis |
| TW201825051A (en) * | 2017-01-06 | 2018-07-16 | 陳炯年 | An ultrasonic imaging apparatus |
| CN106901734A (en) * | 2017-02-28 | 2017-06-30 | 深圳大学 | A bioacoustic conductivity detection device for biological tissue |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111743567A (en) | 2020-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Gemmeke et al. | 3D ultrasound computer tomography for medical imaging | |
| US6567688B1 (en) | Methods and apparatus for scanning electromagnetically-induced thermoacoustic tomography | |
| US8480584B2 (en) | Non-invasive subject-information imaging method and apparatus | |
| US8870770B2 (en) | Low-cost device for C-scan acoustic wave imaging | |
| Patch et al. | Toward quantitative whole organ thermoacoustics with a clinical array plus one very low-frequency channel applied to prostate cancer imaging | |
| US9360551B2 (en) | Object information acquiring apparatus and control method thereof | |
| JP5496031B2 (en) | Acoustic wave signal processing apparatus, control method thereof, and control program | |
| Opieliński et al. | Imaging results of multi-modal ultrasound computerized tomography system designed for breast diagnosis | |
| JP2015065975A (en) | Subject information acquisition device and control method therefor | |
| Rouyer et al. | Conformal ultrasound imaging system for anatomical breast inspection | |
| CN114176554B (en) | Multi-pulse-width microwave excitation multi-scale thermo-acoustic imaging method and system | |
| CN106846458A (en) | Stereoscopic ultrasonic model building method and device based on 3D printing | |
| RU2378989C2 (en) | Method of diagnostics by means of ultrasonic, sonic and electromagnetic waves | |
| CN116942200A (en) | Non-multiplexing ultrasonic multi-mode imaging system and method | |
| CN117158911B (en) | A multi-sound velocity adaptive photoacoustic tomography image reconstruction method | |
| TW202031201A (en) | Ultrasound three-dimensional tomography imaging system | |
| Filoux et al. | High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging | |
| CN115919360A (en) | Ultrasonic 3D Whole Body Imaging System | |
| TWM603614U (en) | Ultrasound three-dimensional tomography imaging system | |
| Lasaygues et al. | Circular antenna for breast ultrasonic diffraction tomography | |
| Robins | Towards ultrasound full-waveform inversion in medical imaging | |
| US20230309958A1 (en) | Integrated Microwave-Ultrasound Breast Imaging System | |
| TWI688375B (en) | Ultrasound oral cavity imaging apparatus | |
| Opielinski et al. | Ultrasonic projection imaging of biological media | |
| Yamanaka et al. | Method for extracting microcalcifications with analysis of isotropy of scattered acoustic signals in ring-array transducer system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |