[go: up one dir, main page]

CN115939931A - A semiconductor laser control system - Google Patents

A semiconductor laser control system Download PDF

Info

Publication number
CN115939931A
CN115939931A CN202211732389.XA CN202211732389A CN115939931A CN 115939931 A CN115939931 A CN 115939931A CN 202211732389 A CN202211732389 A CN 202211732389A CN 115939931 A CN115939931 A CN 115939931A
Authority
CN
China
Prior art keywords
voltage
module
current
controlled
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211732389.XA
Other languages
Chinese (zh)
Inventor
葛济铭
陈泳屹
赵天野
张德晓
徐岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiguang Semiconductor Technology Co ltd
Original Assignee
Jiguang Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiguang Semiconductor Technology Co ltd filed Critical Jiguang Semiconductor Technology Co ltd
Priority to CN202211732389.XA priority Critical patent/CN115939931A/en
Publication of CN115939931A publication Critical patent/CN115939931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明涉及半导体激光器控制领域,具体涉及一种半导体激光器控制系统可以提供3路压控电压源模块输出,4路压控电流源模块输出,有多种电压、电流输出组合,通过上位机控制可驱动不同种类的激光器,设计中的压控电压源、压控电流源相对独立,可实现对每一路电压、电流的大小和频率单独控制,通过特定的处理电路,实现电压、电流的连续输出、输出同步性好等特点,以高性能DSP运算处理器为核心的微处理器控制模块,经过查表计算,实施控制各路压控电流源的电流值和压控电压源的电压值,可以控制半导体激光器实现纳秒级的快速波长调谐。

Figure 202211732389

The present invention relates to the field of semiconductor laser control, in particular to a semiconductor laser control system that can provide 3-way voltage-controlled voltage source module output and 4-way voltage-controlled current source module output, with various voltage and current output combinations, which can be controlled by a host computer. To drive different types of lasers, the voltage-controlled voltage source and voltage-controlled current source in the design are relatively independent, which can realize the independent control of the magnitude and frequency of each voltage and current, and realize continuous output of voltage and current through specific processing circuits. With the characteristics of good output synchronization, the microprocessor control module with high-performance DSP computing processor as the core, through table look-up calculation, implements the control of the current value of each voltage-controlled current source and the voltage value of the voltage-controlled voltage source, which can control Semiconductor lasers achieve fast wavelength tuning in the nanosecond range.

Figure 202211732389

Description

一种半导体激光器控制系统A semiconductor laser control system

技术领域technical field

本发明涉及半导体激光器控制领域,特别涉及一种半导体激光器控制系统。The invention relates to the field of semiconductor laser control, in particular to a semiconductor laser control system.

背景技术Background technique

半导体激光器凭借结构紧凑、光束质量好、寿命长及性能稳定等优点,在通讯、材料加工制造、军事、医疗等领域大展拳脚。激光设备应用领域很广。特别是在光学断面成像技术(Optical Coherence Tomography,OCT)中作为关键的光电子器件,半导体激光器的性能直接关系到OCT系统的成像分辨和可探测的截面深度等核心技术指标。With the advantages of compact structure, good beam quality, long life and stable performance, semiconductor lasers are widely used in communication, material processing and manufacturing, military, medical and other fields. Laser equipment has a wide range of applications. Especially as a key optoelectronic device in Optical Coherence Tomography (OCT), the performance of semiconductor lasers is directly related to core technical indicators such as imaging resolution and detectable section depth of the OCT system.

四段式宽调谐快速扫频半导体激光器包括:半导体光放大单元(SOA)、两个无源腔体区A、激光区B、相位调节区C和功率放大区D。在实现激光芯片超宽扫频范围的同时,仍能保证足够的小的动态线宽和足够高的边模抑制比,通过改变功率放大区D的注入电流,可达到进一步提高输出功率的目的。所以四段式宽调谐快速扫频半导体激光器能为新一代OCT系统提供高性能的激光光源和应用系统环境。The four-segment wide-tuning fast-sweep semiconductor laser includes: a semiconductor optical amplifier unit (SOA), two passive cavity regions A, a laser region B, a phase adjustment region C and a power amplification region D. While realizing the ultra-wide scanning frequency range of the laser chip, it can still ensure a sufficiently small dynamic linewidth and a sufficiently high side mode suppression ratio. By changing the injection current of the power amplification area D, the purpose of further increasing the output power can be achieved. Therefore, the four-segment wide-tuning fast-sweep semiconductor laser can provide a high-performance laser light source and application system environment for the new generation of OCT systems.

目前可调谐半导体激光器的调谐实现原理主要分为:电压/电流调谐、温度调谐和机械调谐三种。四段式宽调谐快速扫频半导体激光器采用电压/电流调谐方式。波长调节是通过改变两个无源腔体区A反向PN节的偏置电压,当施加电压改变时,可以影响反偏PN结处的载流子积累密度,进而对无源腔体区A中的材料折射率进行调节,从而获得可调的梳妆反射谱。两个无源腔体区A的长度可以不同,这样梳妆反射谱的峰-峰值略有差别,可以产生游标效应,对激光区B的激光进行单纵模的反馈。通过分别改变两个无源腔体区A的电压,利用游标效应,可以实现大范围调谐和激光器的快速扫频工作。相位调节区C的工作原理与两端的无源腔体区A一样,通过改变施加在调节区C两端的电压来调节中间部分整体的相位,使得激射波长的波长峰能够和两端无源腔体区A通过游标效应选择出来的激射波长峰值对上,从而减小激射线宽。At present, the tuning realization principles of tunable semiconductor lasers are mainly divided into three types: voltage/current tuning, temperature tuning and mechanical tuning. The four-segment wide-tuning fast-sweep semiconductor laser adopts the voltage/current tuning method. Wavelength adjustment is by changing the bias voltage of the reverse PN junction of the two passive cavity regions A. When the applied voltage changes, it can affect the carrier accumulation density at the reverse biased PN junction, and then affect the passive cavity region A The refractive index of the material is adjusted to obtain a tunable comb reflectance spectrum. The lengths of the two passive cavity regions A can be different, so that the peak-to-peak value of the comb reflection spectrum is slightly different, which can produce a vernier effect and perform single longitudinal mode feedback on the laser light in the laser region B. By changing the voltages of the two passive cavity regions A respectively and utilizing the vernier effect, wide-range tuning and fast frequency-sweeping of the laser can be realized. The working principle of the phase adjustment area C is the same as that of the passive cavity area A at both ends. By changing the voltage applied to both ends of the adjustment area C, the overall phase of the middle part is adjusted, so that the wavelength peak of the lasing wavelength can be matched with the passive cavity at both ends. The peak of the lasing wavelength selected by the vernier effect in the body region A is aligned, thereby reducing the width of the lasing line.

但现有的可调谐激光器控制系控制波长的精度不高且不稳定,并且统满足不了四段式宽调谐快速扫频半导体激光器的使用功能,不能同时提供三路独立电压源控制两个无源腔体A区、一个相位调节区C,三路独立电流源分别控制功率放大器D、激光区B、半导体光放大单元SOA,外加一路半导体制冷片控制模块,目前市场急需解决该问题。However, the existing tunable laser control system does not have high precision and is unstable in controlling the wavelength, and the system cannot meet the use function of four-segment wide-tuning fast-sweeping semiconductor lasers, and cannot provide three independent voltage sources to control two passive cavities at the same time. Area A, a phase adjustment area C, three independent current sources respectively control the power amplifier D, the laser area B, the semiconductor optical amplifier unit SOA, and one semiconductor cooling chip control module. The current market urgently needs to solve this problem.

发明内容Contents of the invention

有鉴于此,本发明实施例中提供一种半导体激光器控制系统,实现纳秒级的快速波长调谐。In view of this, an embodiment of the present invention provides a semiconductor laser control system, which realizes nanosecond-level fast wavelength tuning.

本发明实施例中提供的一种半导体激光器控制系统,包括微处理器控制模块、多路相互独立的DAC转换模块、多路相互独立的压控电压源模块、多路相互独立的压控电流源模块、多路相互独立的ADC转换模块、多路相互独立的电压采集模块、多路相互独立的电流采集模块、温度采样反馈模块以及通讯模块;A semiconductor laser control system provided in an embodiment of the present invention includes a microprocessor control module, multiple independent DAC conversion modules, multiple independent voltage-controlled voltage source modules, and multiple independent voltage-controlled current sources module, multiple independent ADC conversion modules, multiple independent voltage acquisition modules, multiple independent current acquisition modules, temperature sampling feedback modules, and communication modules;

所述微处理器控制模块通过所述通讯模块与上位机通讯、接收所述上位机的控制指令控制半导体激光器工作并将所述半导体激光器的工作数据信息回传至所述上位机,其中,所述半导体激光器包括第一无源腔体区、第二无源腔体区、相位调节区、激光区、功率放大器、半导体光放大单元;The microprocessor control module communicates with the host computer through the communication module, receives the control instructions of the host computer to control the semiconductor laser to work, and returns the working data information of the semiconductor laser to the host computer, wherein the The semiconductor laser includes a first passive cavity area, a second passive cavity area, a phase adjustment area, a laser area, a power amplifier, and a semiconductor optical amplification unit;

所述DAC转换模块用于根据所述微处理器控制模块的控制指令将电压分成目标数量份的模拟电压,所述模拟电压用于所述半导体激光器的控制压控电压源模块或压控电流源模块;The DAC conversion module is used to divide the voltage into a target number of analog voltages according to the control instructions of the microprocessor control module, and the analog voltage is used for the control voltage-controlled voltage source module or voltage-controlled current source of the semiconductor laser module;

所述压控电压源模块用于根据输入电压信号的不同改变输出电压,利用所述输出电压控制所述半导体激光器的无源腔体区以及相位调节区以;The voltage-controlled voltage source module is used to change the output voltage according to the difference of the input voltage signal, and use the output voltage to control the passive cavity area and the phase adjustment area of the semiconductor laser to;

所述压控电流源模块用于根据输入电压信号的不同改变输出电流,所述输出电流用于控制述半导体激光器的功率放大器、激光区以及半导体光放大单元;The voltage-controlled current source module is used to change the output current according to the difference of the input voltage signal, and the output current is used to control the power amplifier, the laser area and the semiconductor optical amplification unit of the semiconductor laser;

所述ADC转换模块用于将所述电压采集模块、所述电流采集模块采集到的电压信号、电流信号转换成目标数量的数字信号,并将所述数字信号发送给所述微处理器控制模块;The ADC conversion module is used to convert the voltage signal and current signal collected by the voltage acquisition module and the current acquisition module into digital signals of a target quantity, and send the digital signals to the microprocessor control module ;

所述电流采集模块用于采集所在电路的电流信号,并将电流信号转换为电压信号传递给所述ADC转换模块;The current collection module is used to collect the current signal of the circuit, and convert the current signal into a voltage signal and transmit it to the ADC conversion module;

所述电压采集模块用于采集所在电路的电压信号,并将电压信号传递给ADC转换模块;The voltage acquisition module is used to collect the voltage signal of the circuit where it is located, and transmit the voltage signal to the ADC conversion module;

所述温度采样反馈模块,与所述微处理器控制模块电连接,用于实际监测半导体激光器温度;The temperature sampling feedback module is electrically connected to the microprocessor control module and is used to actually monitor the temperature of the semiconductor laser;

所述通讯模块用于微处理器控制模块与所述上位机通讯。The communication module is used for communication between the microprocessor control module and the host computer.

作为一种可选的方案,所述多路相互独立的DAC转换模块包括7路独立的DAC转换模块,分别为第一DAC转换模块、第二DAC转换模块、第三DAC转换模块、第四DAC转换模块、第五DAC转换模块、第六DAC转换模块和第七DAC转换模块;As an optional solution, the multiple independent DAC conversion modules include 7 independent DAC conversion modules, which are respectively the first DAC conversion module, the second DAC conversion module, the third DAC conversion module, and the fourth DAC conversion module. A conversion module, a fifth DAC conversion module, a sixth DAC conversion module and a seventh DAC conversion module;

所述多路相互独立的压控电压源模块包括3路独立的压控电压源模块,分别为第一压控电压源模块、第二压控电压源模块以及第三压控电压源模块;The multiple independent voltage-controlled voltage source modules include 3 independent voltage-controlled voltage source modules, which are respectively a first voltage-controlled voltage source module, a second voltage-controlled voltage source module and a third voltage-controlled voltage source module;

多路相互独立的压控电流源模块为3路独立的压控电流源模块,分别为第一压控电流源模块、第二压控电流源模块及第三压控电流源模块;The multiple independent voltage-controlled current source modules are 3 independent voltage-controlled current source modules, which are respectively the first voltage-controlled current source module, the second voltage-controlled current source module and the third voltage-controlled current source module;

所述多路相互独立的ADC转换模块包括7路独立的ADC转换模块,分别为第一ADC转换模块、第二ADC转换模块、第三ADC转换模块、第四ADC转换模块、第五ADC转换模块、第六ADC转换模块以及第七ADC转换模块;The multiple independent ADC conversion modules include 7 independent ADC conversion modules, which are respectively the first ADC conversion module, the second ADC conversion module, the third ADC conversion module, the fourth ADC conversion module, and the fifth ADC conversion module , the sixth ADC conversion module and the seventh ADC conversion module;

所述多路相互独立的电压采集模块为3路独立的电压采集模块,分别为第一电压采集模块、第二电压采集模块以及第三电压采集模块;The multiple independent voltage acquisition modules are three independent voltage acquisition modules, which are respectively a first voltage acquisition module, a second voltage acquisition module and a third voltage acquisition module;

所述多路相互独立的电流采集模块为4路独立的电流采集模块,分别为第一电流采集模块、第二电流采集模块、第三电流采集模块以及第四电流采集模块。The multiple independent current acquisition modules are four independent current acquisition modules, which are respectively a first current acquisition module, a second current acquisition module, a third current acquisition module and a fourth current acquisition module.

作为一种可选的方案,所述第一DAC转换模块通过所述第一压控电流源模块与所述半导体光放大单元连接,所述第一DAC转换模块输出的第一模拟电压信号控制所述第一压控电流源模块输出第一调谐电流信号调谐所述半导体光放大单元;As an optional solution, the first DAC conversion module is connected to the semiconductor optical amplification unit through the first voltage-controlled current source module, and the first analog voltage signal output by the first DAC conversion module controls the The first voltage-controlled current source module outputs a first tuning current signal to tune the semiconductor optical amplifying unit;

所述第二DAC转换模块通过所述第二压控电流源模块与所述功率放大器连接,所述第二DAC转换模块输出的第二模拟电压信号控制所述第二压控电流源模块输出第二调谐电流信号调谐所述功率放大器;The second DAC conversion module is connected to the power amplifier through the second voltage-controlled current source module, and the second analog voltage signal output by the second DAC conversion module controls the second voltage-controlled current source module to output the first two tuning current signals to tune the power amplifier;

所述第三DAC转换模块通过所述第一压控电压源模块与所述第一无源腔体区连接,所述第三DAC转换模块输出的第三模拟电压信号控制所述第一压控电压源模块输出第一调谐电压信号调谐第一无源腔体区;The third DAC conversion module is connected to the first passive cavity region through the first voltage-controlled voltage source module, and the third analog voltage signal output by the third DAC conversion module controls the first voltage-controlled The voltage source module outputs a first tuning voltage signal to tune the first passive cavity region;

所述第四DAC转换模块通过所述第三压控电流源模块与所述激光区连接,所述第四DAC转换模块输出的第四模拟电压信号控制所述第三压控电流源模块输出第三调谐电流信号调谐所述激光区;The fourth DAC conversion module is connected to the laser area through the third voltage-controlled current source module, and the fourth analog voltage signal output by the fourth DAC conversion module controls the third voltage-controlled current source module to output the first three tuning current signals to tune the laser zone;

所述第五DAC转换模块通过所述第二压控电压源模块与所述相位调节区连接,所述第五DAC转换模块输出的第五模拟电压信号控制所述第二压控电压源模块输出第二调谐电压信号调谐所述相位调节区;The fifth DAC conversion module is connected to the phase adjustment area through the second voltage-controlled voltage source module, and the fifth analog voltage signal output by the fifth DAC conversion module controls the output of the second voltage-controlled voltage source module the second tuning voltage signal tunes the phase adjustment area;

所述第六DAC转换模块通过所述第三压控电压源模块与所述第二无源腔体区连接,所述第六DAC转换模块输出的第六模拟电压信号控制所述第三压控电压源模块输出第三调谐电压信号调谐第二无源腔体区。The sixth DAC conversion module is connected to the second passive cavity region through the third voltage-controlled voltage source module, and the sixth analog voltage signal output by the sixth DAC conversion module controls the third voltage-controlled The voltage source module outputs a third tuning voltage signal to tune the second passive cavity region.

作为一种可选的方案,所述微处理器控制模块通过所述第一DAC转换模块控制所述第一压控电流源输出第一电流,所述第一电流采集模块采集所述第一压控电流源输出的所述第一电流并将采集得到的第一电流信号传递给所述第一ADC转换模块,所述第一电流采集模块、所述第一ADC转换模块将所述第一电流信号转换为第一数字信号传递给所述微处理器控制模块;As an optional solution, the microprocessor control module controls the first voltage-controlled current source to output the first current through the first DAC conversion module, and the first current acquisition module acquires the first voltage Control the first current output by the current source and transmit the collected first current signal to the first ADC conversion module, the first current acquisition module and the first ADC conversion module convert the first current The signal is converted into a first digital signal and transmitted to the microprocessor control module;

所述微处理器控制模块通过所述第二DAC转换模块控制所述第二压控电流源输出第二电流,所述第二电流采集模块采集所述第二压控电流源输出的所述第二电流并将采集得到的第二电流信号传递给所述第二ADC转换模块,所述第二电流采集模块、所述第二ADC转换模块将所述第二电流信号转换为第二数字信号传递给所述微处理器控制模块;The microprocessor control module controls the second voltage-controlled current source to output a second current through the second DAC conversion module, and the second current collection module collects the first current output from the second voltage-controlled current source. Two currents and transfer the collected second current signal to the second ADC conversion module, the second current acquisition module and the second ADC conversion module convert the second current signal into a second digital signal for transmission to the microprocessor control module;

所述微处理器控制模块通过所述第三DAC转换模块控制所述第一压控电压源输出第一电压,所述第一电压采集模块采集所述第一压控电压源输出的所述第一电压并将采集得到的第一电压信号传递给所述第三ADC转换模块,所述第一电压采集模块、所述第三ADC转换模块将所述第一电压信号转换为第三数字信号传递给所述微处理器控制模块;The microprocessor control module controls the first voltage-controlled voltage source to output a first voltage through the third DAC conversion module, and the first voltage acquisition module collects the first voltage outputted by the first voltage-controlled voltage source. a voltage and transmit the collected first voltage signal to the third ADC conversion module, and the first voltage acquisition module and the third ADC conversion module convert the first voltage signal into a third digital signal for transmission to the microprocessor control module;

所述微处理器控制模块通过所述第四DAC转换模块控制所述第三压控电流源输出第三电流,所述第三电流采集模块采集所述第三压控电流源输出的所述第三电流并将采集得到的第三电流信号传递给所述第四ADC转换模块,所述第三电流采集模块、所述第四ADC转换模块将所述第三电流信号转换为第四数字信号传递给所述微处理器控制模块;The microprocessor control module controls the third voltage-controlled current source to output a third current through the fourth DAC conversion module, and the third current collection module collects the first current output from the third voltage-controlled current source. Three currents and transfer the collected third current signal to the fourth ADC conversion module, the third current acquisition module and the fourth ADC conversion module convert the third current signal into a fourth digital signal for transmission to the microprocessor control module;

所述微处理器控制模块通过所述第五DAC转换模块控制所述第二压控电压源输出第二电压,所述第二电压采集模块采集所述第二压控电压源输出的所述第二电压并将采集得到的第二电压信号传递给所述第五ADC转换模块,所述第二电压采集模块、所述第五ADC转换模块将所述第二电压信号转换为第五数字信号传递给所述微处理器控制模块;The microprocessor control module controls the second voltage-controlled voltage source to output a second voltage through the fifth DAC conversion module, and the second voltage acquisition module collects the second voltage output from the second voltage-controlled voltage source. second voltage and transmit the collected second voltage signal to the fifth ADC conversion module, the second voltage acquisition module and the fifth ADC conversion module convert the second voltage signal into a fifth digital signal for transmission to the microprocessor control module;

所述微处理器控制模块通过所述第六DAC转换模块控制所述第三压控电压源输出第三电压,所述第三电压采集模块采集所述第三压控电压源输出的所述第三电压并将采集得到的第三电压信号传递给所述第六ADC转换模块,所述第三电压采集模块、所述第六ADC转换模块将所述第三电压信号转换为第六数字信号传递给所述微处理器控制模块。The microprocessor control module controls the third voltage-controlled voltage source to output a third voltage through the sixth DAC conversion module, and the third voltage acquisition module collects the third voltage output from the third voltage-controlled voltage source. Three voltages and transfer the collected third voltage signal to the sixth ADC conversion module, the third voltage acquisition module and the sixth ADC conversion module convert the third voltage signal into a sixth digital signal for transmission to the microprocessor control module.

作为一种可选的方案,还包括用于采集所述半导体激光器温度的热敏电阻、用于调节所述半导体激光器温度的半导体制冷片以及用于控制所述半导体制冷片工作的半导体制冷控制模块,所述第七DAC转换模块控制通过所述半导体制冷控制模块与所述半导体制冷片电连接,所述第四电流采集模块与所述半导体制冷片电连接,所述第七ADC转换模块通过所述所述第四电流采集模块采集所述半导体制冷片的制冷控制电流,所述热敏电阻与所述半导体激光器、所述半导体制冷片封装为一体,所述微处理器控制模块通过所述所述温度采样反馈模块获取所述热敏电阻的温度,所述温度采样反馈模块通过所述热敏电阻采集所述半导体激光器的管芯温度,并将测量温度值反馈给所述微处理器控制模块,所述微处理器控制模块根据所述测量温度值控制所述压控电流源模块调整所述半导体制冷片的的制冷控制电流进行制冷效率调节。As an optional solution, it also includes a thermistor for collecting the temperature of the semiconductor laser, a semiconductor cooling chip for adjusting the temperature of the semiconductor laser, and a semiconductor cooling control module for controlling the operation of the semiconductor cooling chip , the seventh DAC conversion module is controlled to be electrically connected to the semiconductor cooling chip through the semiconductor cooling control module, the fourth current collection module is electrically connected to the semiconductor cooling chip, and the seventh ADC conversion module is connected to the semiconductor cooling chip through the The fourth current acquisition module collects the cooling control current of the semiconductor cooling chip, the thermistor is packaged with the semiconductor laser and the semiconductor cooling chip as a whole, and the microprocessor control module passes the The temperature sampling feedback module acquires the temperature of the thermistor, the temperature sampling feedback module collects the die temperature of the semiconductor laser through the thermistor, and feeds back the measured temperature value to the microprocessor control module The microprocessor control module controls the voltage-controlled current source module to adjust the cooling control current of the semiconductor cooling chip according to the measured temperature value to adjust the cooling efficiency.

作为一种可选的方案,还包括用于存储控制系统控制数据的数据存储模块和用于给控制系统散热并保持处于恒温工作环境的散热模块,所述数据存储模块、所述散热模块分别与所述微处理器控制模块电连接。As an optional solution, it also includes a data storage module for storing the control data of the control system and a heat dissipation module for cooling the control system and maintaining a constant temperature working environment, the data storage module and the heat dissipation module are respectively connected with the The microprocessor control module is electrically connected.

作为一种可选的方案,所述半导体制冷控制模块包括H桥驱动电路,所述H桥驱动电路与所述半导体制冷片电连接,通过所述第七DAC转换模块控制所述H桥驱动电路的供电电流控制所述半导体制冷片的制冷效率。As an optional solution, the semiconductor refrigeration control module includes an H-bridge drive circuit, the H-bridge drive circuit is electrically connected to the semiconductor refrigeration chip, and the H-bridge drive circuit is controlled by the seventh DAC conversion module The power supply current controls the refrigeration efficiency of the semiconductor refrigeration sheet.

作为一种可选的方案,所述散热模块为风冷散热器,所述风冷散热器包括风扇、散热片以及导热管。As an optional solution, the heat dissipation module is an air-cooled radiator, and the air-cooled radiator includes a fan, a heat sink, and a heat pipe.

作为一种可选的方案,所述微处理器控制模块包括PGA可编程逻辑控制器或ARM处理器。As an optional solution, the microprocessor control module includes a PGA programmable logic controller or an ARM processor.

作为一种可选的方案,所述半导体激光器为四段式宽调谐快速扫频半导体激光器。As an optional solution, the semiconductor laser is a four-segment wide-tuned fast frequency-sweeping semiconductor laser.

本发明实施例中提供的半导体激光器控制系统可以提供3路压控电压源模块输出,4路压控电流源模块输出,有多种电压、电流输出组合,通过上位机9控制可驱动不同种类的激光器,设计中的压控电压源、压控电流源相对独立,可实现对每一路电压、电流的大小和频率单独控制,通过特定的处理电路,实现电压、电流的连续输出、输出同步性好等特点,以高性能DSP运算处理器为核心的微处理器控制模块,经过查表计算,实施控制各路压控电流源的电流值和压控电压源的电压值,可以控制半导体激光器实现纳秒级的快速波长调谐。The semiconductor laser control system provided in the embodiment of the present invention can provide 3-way voltage-controlled voltage source module output and 4-way voltage-controlled current source module output. There are various voltage and current output combinations, and different types of lasers can be driven through the control of the host computer 9. Laser, the voltage-controlled voltage source and voltage-controlled current source in the design are relatively independent, which can realize the independent control of the magnitude and frequency of each voltage and current, and realize the continuous output of voltage and current with good output synchronization through specific processing circuits and other characteristics, the microprocessor control module with high-performance DSP computing processor as the core, after table look-up calculation, implements the control of the current value of each voltage-controlled current source and the voltage value of the voltage-controlled voltage source, and can control the semiconductor laser to realize nanometer Fast wavelength tuning in seconds.

附图说明Description of drawings

图1为本发明实施例中提供一种半导体激光器控制系统的结构框图;Fig. 1 provides a structural block diagram of a semiconductor laser control system in an embodiment of the present invention;

图2为本发明实施例中提供一种半导体激光器控制系统中温度采样反馈模块的结构示意图;2 is a schematic structural diagram of a temperature sampling feedback module in a semiconductor laser control system provided in an embodiment of the present invention;

图3为本发明实施例中提供一种半导体激光器控制系统中半导体制冷片闭环控温功能的结构示意图。FIG. 3 is a schematic structural diagram of a closed-loop temperature control function of a semiconductor refrigerating plate in a semiconductor laser control system provided in an embodiment of the present invention.

附图标记:微处理器控制模块1、温度采样反馈模块2、通讯模块3、热敏电阻4、半导体制冷片5、半导体制冷控制模块6、数据存储模块7、散热模块8、上位机9、惠斯通桥电路211、仪表放大电路212、ADC转换电路213、比例积分电路214;Reference signs: microprocessor control module 1, temperature sampling feedback module 2, communication module 3, thermistor 4, semiconductor cooling chip 5, semiconductor cooling control module 6, data storage module 7, heat dissipation module 8, upper computer 9, Wheatstone bridge circuit 211, instrument amplifier circuit 212, ADC conversion circuit 213, proportional integral circuit 214;

第一无源腔体区11、第二无源腔体区12、相位调节区13、激光区14、功率放大器15、半导体光放大单元16;The first passive cavity area 11, the second passive cavity area 12, the phase adjustment area 13, the laser area 14, the power amplifier 15, and the semiconductor optical amplification unit 16;

第一DAC转换模块21、第二DAC转换模块22、第三DAC转换模块23、第四DAC转换模块24、第五DAC转换模块25、第六DAC转换模块26、第七DAC转换模块27;The first DAC conversion module 21, the second DAC conversion module 22, the third DAC conversion module 23, the fourth DAC conversion module 24, the fifth DAC conversion module 25, the sixth DAC conversion module 26, and the seventh DAC conversion module 27;

第一压控电压源模块31、第二压控电压源模块32、第三压控电压源模块33;A first voltage-controlled voltage source module 31, a second voltage-controlled voltage source module 32, and a third voltage-controlled voltage source module 33;

第一压控电流源模块41、第二压控电流源模块42、第三压控电流源模块43;A first voltage-controlled current source module 41, a second voltage-controlled current source module 42, and a third voltage-controlled current source module 43;

第一ADC转换模块51、第二ADC转换模块52、第三ADC转换模块53、第四ADC转换模块54、第五ADC转换模块55、第六ADC转换模块56、第七ADC转换模块57;The first ADC conversion module 51, the second ADC conversion module 52, the third ADC conversion module 53, the fourth ADC conversion module 54, the fifth ADC conversion module 55, the sixth ADC conversion module 56, and the seventh ADC conversion module 57;

第一电压采集模块61、第二电压采集模块62、第三电压采集模块63;The first voltage acquisition module 61, the second voltage acquisition module 62, the third voltage acquisition module 63;

第一电流采集模块71、第二电流采集模块72、第三电流采集模块73、第四电流采集模块74。The first current collection module 71 , the second current collection module 72 , the third current collection module 73 , and the fourth current collection module 74 .

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the following will clearly and completely describe the technical solutions in the embodiments of the present invention in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is an embodiment of a part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.

本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。The terms "first", "second", "third", "fourth" and the like in the description and claims of the present invention and the above drawings are used to distinguish similar objects, but not necessarily to describe specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.

本发明实施例中提供的一种半导体激光器控制系统,包括微处理器控制模块1、多路相互独立的DAC转换模块、多路相互独立的压控电压源模块、多路相互独立的压控电流源模块、多路相互独立的ADC转换模块、多路相互独立的电压采集模块、多路相互独立的电流采集模块、温度采样反馈模块2以及通讯模块3;A semiconductor laser control system provided in an embodiment of the present invention includes a microprocessor control module 1, multiple independent DAC conversion modules, multiple independent voltage-controlled voltage source modules, and multiple independent voltage-controlled current modules. Source module, multiple independent ADC conversion modules, multiple independent voltage acquisition modules, multiple independent current acquisition modules, temperature sampling feedback module 2 and communication module 3;

所述微处理器控制模块1通过所述通讯模块3与上位机9通讯、接收所述上位机9的控制指令控制半导体激光器工作并将所述半导体激光器的工作数据信息回传至所述上位机9,微处理器控制模块1可以包括FPGA可编程逻辑控制器或ARM处理器以及相关辅助电路,具有强大的DSP运算能力,控制半导体激光器工作的控制指令可以指示例调节激光输出功率、调节激光输出相位、调节激光输出波长、控制半导体制冷片5制冷温度等,对此不做限定。The microprocessor control module 1 communicates with the host computer 9 through the communication module 3, receives control instructions from the host computer 9 to control the operation of the semiconductor laser, and returns the working data information of the semiconductor laser to the host computer. 9. Microprocessor control module 1 can include FPGA programmable logic controller or ARM processor and related auxiliary circuits. It has powerful DSP computing capabilities. The control instructions for controlling the operation of semiconductor lasers can instruct examples to adjust laser output power and laser output. The phase, adjusting the laser output wavelength, controlling the cooling temperature of the semiconductor cooling sheet 5, etc. are not limited.

本实施例中,半导体激光器可以包括第一无源腔体区11、第二无源腔体区12、相位调节区13、激光区14、功率放大器15、半导体光放大单元16,但需要说明的是,本控制系统并不包含该半导体激光器,这里引出仅为了方便说明控制系统的各元器件的连接和控制关系,下文不做赘述。In this embodiment, the semiconductor laser may include a first passive cavity region 11, a second passive cavity region 12, a phase adjustment region 13, a laser region 14, a power amplifier 15, and a semiconductor optical amplification unit 16, but it needs to be explained Yes, this control system does not include the semiconductor laser, which is introduced here only for the convenience of explaining the connection and control relationship of each component of the control system, and will not be described in detail below.

所述DAC转换模块用于根据所述微处理器控制模块1的控制指令将电压分成目标数量份的模拟电压,所述模拟电压用于所述半导体激光器的控制压控电压源模块或压控电流源模块,DAC转换模块可以采用高频DAC转换器,具体地,在控制四段式半导体激光器时可以选用7路相互独立的DAC转换模块,目标数量即为214即为16384,7路相互独立的DAC转换模块可以包括14位以上DAC转换芯片及其外围电路、EMC滤波电路,可以根据微处理器控制模块1的指令将0~3.3V(或0~5.5V)分成不低于16384份的模拟电压,输出的模拟电压用于控制压控电压源模块或压控电流源模块。The DAC conversion module is used to divide the voltage into a target number of analog voltages according to the control instruction of the microprocessor control module 1, and the analog voltage is used for the control voltage-controlled voltage source module or voltage-controlled current of the semiconductor laser. The source module and the DAC conversion module can use high-frequency DAC converters. Specifically, when controlling the four-segment semiconductor laser, 7 independent DAC conversion modules can be selected. The target number is 2 14 , which is 16384, and the 7 channels are independent of each other. The DAC conversion module can include more than 14-bit DAC conversion chip and its peripheral circuit, EMC filter circuit, and can divide 0~3.3V (or 0~5.5V) into not less than 16384 parts according to the instruction of the microprocessor control module 1 An analog voltage, the output analog voltage is used to control a voltage-controlled voltage source module or a voltage-controlled current source module.

所述压控电压源模块用于根据输入电压信号的不同改变输出电压,利用所述输出电压控制所述半导体激光器的第一无源腔体区11、第二无源腔体区12、相位调节区13,压控电压源模块可以包括精密运放电路、精密电阻组成的负反馈电路、MOS管输出电路、加速电路;The voltage-controlled voltage source module is used to change the output voltage according to the difference of the input voltage signal, and use the output voltage to control the first passive cavity region 11, the second passive cavity region 12, and the phase adjustment of the semiconductor laser Zone 13, the voltage-controlled voltage source module can include a precision operational amplifier circuit, a negative feedback circuit composed of precision resistors, a MOS tube output circuit, and an acceleration circuit;

所述压控电流源模块用于根据输入电压信号的不同改变输出电流,所述输出电流用于控制述半导体激光器的功率放大器15、激光区14以及半导体光放大单元16,压控电流源模块可以包括精密运放电路、精密电阻组成的负反馈电路、MOS管输出电路、加速电路;The voltage-controlled current source module is used to change the output current according to the difference of the input voltage signal, and the output current is used to control the power amplifier 15, the laser region 14 and the semiconductor optical amplification unit 16 of the semiconductor laser, and the voltage-controlled current source module can be Including precision operational amplifier circuit, negative feedback circuit composed of precision resistors, MOS tube output circuit, acceleration circuit;

所述ADC转换模块用于将所述电压采集模块、所述电流采集模块采集到的电压信号、电流信号转换成目标数量的数字信号,并将所述数字信号发送给所述微处理器控制模块1,ADC转换模块可以采用高频转换器,具体地,ADC转换模块可以包括14位以上ADC转换芯片以及外围电路、集成运放运算电路,目标数量即为214即为16384,将电压采集模块、电流采集模块采集到的电压信号、电流信号转换成0~16384的数字信号,并将数字信号发送给微处理器控制模块1。The ADC conversion module is used to convert the voltage signal and current signal collected by the voltage acquisition module and the current acquisition module into digital signals of a target quantity, and send the digital signals to the microprocessor control module 1. The ADC conversion module can use a high-frequency converter. Specifically, the ADC conversion module can include more than 14-bit ADC conversion chips, peripheral circuits, and integrated operational amplifier circuits. The target number is 2. 14 is 16384. The voltage acquisition module 1. The voltage signal and current signal collected by the current acquisition module are converted into digital signals ranging from 0 to 16384, and the digital signals are sent to the microprocessor control module 1 .

所述电流采集模块用于采集所在电路的电流信号,并将电流信号转换为电压信号传递给所述ADC转换模块,具体地,电流采集模块可以包括精密取样电阻、电压跟随器、差分运算放大器、仪表放大器、加法运算器。The current acquisition module is used to collect the current signal of the circuit where it is located, and convert the current signal into a voltage signal and transmit it to the ADC conversion module. Specifically, the current acquisition module may include a precision sampling resistor, a voltage follower, a differential operational amplifier, Instrumentation amplifier, adding operator.

所述电压采集模块用于采集所在电路的电压信号,并将电压信号传递给ADC转换模块,电压采集模块可以包括电压跟随器、差分运算放大器、仪表放大器、加法运算器。The voltage acquisition module is used to acquire the voltage signal of the circuit where it is located, and transmits the voltage signal to the ADC conversion module. The voltage acquisition module may include a voltage follower, a differential operational amplifier, an instrumentation amplifier, and an adding operator.

结合图2所示,所述温度采样反馈模块2,与所述微处理器控制模块1电连接,用于实际监测半导体激光器温度,温度采样反馈模块2可以包括惠斯通桥电路211、仪表放大电路212、比例积分电路214、ADC转换电路213、EMC滤波电路(图中未示出);As shown in Fig. 2, the temperature sampling feedback module 2 is electrically connected with the microprocessor control module 1 for actually monitoring the temperature of the semiconductor laser, and the temperature sampling feedback module 2 may include a Wheatstone bridge circuit 211, an instrument amplifier Circuit 212, proportional integral circuit 214, ADC conversion circuit 213, EMC filter circuit (not shown in the figure);

所述通讯模块3用于微处理器控制模块1与所述上位机9通讯,通讯模块3可以传递不同讯号的连接器,包含转换RS-232、RS-422/485信号等通讯网络,以使系统架构中的驱动、控制与致动组件的串行讯息兼容,本领域普通技术人员可以灵活选择,满足使用场景需求即可,对此不做限定。The communication module 3 is used for the communication between the microprocessor control module 1 and the upper computer 9, and the communication module 3 can transmit connectors of different signals, including conversion of communication networks such as RS-232 and RS-422/485 signals, so that The drive, control, and serial information of the actuation components in the system architecture are compatible, and those skilled in the art can flexibly choose as long as they meet the requirements of the usage scenarios, and there is no limitation on this.

上位机9可以直接发出操控命令的计算机,便于工作人员对控制系统进行控制管理,可以采用工控机,对此不做限定。The upper computer 9 is a computer that can directly issue control commands, which is convenient for the staff to control and manage the control system, and an industrial computer can be used, which is not limited.

结合图1所示,本发明实施例中提供的半导体激光器控制系统,以面对四段式宽调谐快速扫频半导体激光器为例,半导体激光器控制系统的各器件可以有以下配置,便于满足控制要求,具体地,所述多路相互独立的DAC转换模块包括7路独立的DAC转换模块,分别为第一DAC转换模块21、第二DAC转换模块22、第三DAC转换模块23、第四DAC转换模块24、第五DAC转换模块25、第六DAC转换模块26和第七DAC转换模块27,所述多路相互独立的压控电压源模块包括3路独立的压控电压源模块,分别为第一压控电压源模块31、第二压控电压源模块32以及第三压控电压源模块33,多路相互独立的压控电流源模块为3路独立的压控电流源模块,分别为第一压控电流源模块41、第二压控电流源模块42及第三压控电流源模块43,所述多路相互独立的ADC转换模块包括7路独立的ADC转换模块,分别为第一ADC转换模块51、第二ADC转换模块52、第三ADC转换模块53、第四ADC转换模块54、第五ADC转换模块55、第六ADC转换模块56以及第七ADC转换模块57,所述多路相互独立的电压采集模块为3路独立的电压采集模块,分别为第一电压采集模块61、第二电压采集模块62以及第三电压采集模块63,所述多路相互独立的电流采集模块为4路独立的电流采集模块,分别为第一电流采集模块71、第二电流采集模块72、第三电流采集模块73以及第四电流采集模块74。As shown in Figure 1, the semiconductor laser control system provided in the embodiment of the present invention, taking the four-segment wide-tuning fast-sweeping semiconductor laser as an example, each device of the semiconductor laser control system can have the following configurations, which is convenient to meet the control requirements. Ground, the multiple independent DAC conversion modules include 7 independent DAC conversion modules, which are respectively the first DAC conversion module 21, the second DAC conversion module 22, the third DAC conversion module 23, and the fourth DAC conversion module 24 , the fifth DAC conversion module 25, the sixth DAC conversion module 26 and the seventh DAC conversion module 27, the multiple independent voltage-controlled voltage source modules include 3 independent voltage-controlled voltage source modules, respectively the first voltage Controlled voltage source module 31, second voltage-controlled voltage source module 32 and third voltage-controlled voltage source module 33, multiple independent voltage-controlled current source modules are 3 independent voltage-controlled current source modules, respectively the first voltage-controlled current source module The control current source module 41, the second voltage control current source module 42 and the third voltage control current source module 43, the multiple independent ADC conversion modules include 7 independent ADC conversion modules, respectively the first ADC conversion module 51. The second ADC conversion module 52, the third ADC conversion module 53, the fourth ADC conversion module 54, the fifth ADC conversion module 55, the sixth ADC conversion module 56 and the seventh ADC conversion module 57, the multiple channels are independent of each other The voltage acquisition module is 3 independent voltage acquisition modules, which are respectively the first voltage acquisition module 61, the second voltage acquisition module 62 and the third voltage acquisition module 63, and the multiple independent current acquisition modules are 4 independent current acquisition modules. The current acquisition modules are respectively a first current acquisition module 71, a second current acquisition module 72, a third current acquisition module 73 and a fourth current acquisition module 74.

在一些实施例中,所述第一DAC转换模块21通过所述第一压控电流源模块41与所述半导体光放大单元16连接,所述第一DAC转换模块21输出的第一模拟电压信号控制所述第一压控电流源模块41输出第一调谐电流信号调谐所述半导体光放大单,所述第二DAC转换模块22通过所述第二压控电流源模块42与所述功率放大器15连接,所述第二DAC转换模块22输出的第二模拟电压信号控制所述第二压控电流源模块42输出第二调谐电流信号调谐所述功率放大器15,所述第三DAC转换模块23通过所述第一压控电压源模块31与所述第一无源腔体区11连接,所述第三DAC转换模块23输出的第三模拟电压信号控制所述第一压控电压源模块31输出第一调谐电压信号调谐第一无源腔体区11,所述第四DAC转换模块24通过所述第三压控电流源模块43与所述激光区14连接,所述第四DAC转换模块24输出的第四模拟电压信号控制所述第三压控电流源模块43输出第三调谐电流信号调谐所述激光区14,所述第五DAC转换模块25通过所述第二压控电压源模块32与所述相位调节区13连接,所述第五DAC转换模块25输出的第五模拟电压信号控制所述第二压控电压源模块32输出第二调谐电压信号调谐所述相位调节区,所述第六DAC转换模块26通过所述第三压控电压源模块33与所述第二无源腔体区12连接,所述第六DAC转换模块26输出的第六模拟电压信号控制所述第三压控电压源模块33输出第三调谐电压信号调谐第二无源腔体区12。In some embodiments, the first DAC conversion module 21 is connected to the semiconductor optical amplification unit 16 through the first voltage-controlled current source module 41, and the first analog voltage signal output by the first DAC conversion module 21 Controlling the first voltage-controlled current source module 41 to output a first tuning current signal to tune the semiconductor optical amplifier, the second DAC conversion module 22 communicates with the power amplifier 15 through the second voltage-controlled current source module 42 connected, the second analog voltage signal output by the second DAC conversion module 22 controls the second voltage-controlled current source module 42 to output a second tuning current signal to tune the power amplifier 15, and the third DAC conversion module 23 passes The first voltage-controlled voltage source module 31 is connected to the first passive cavity area 11, and the third analog voltage signal output by the third DAC conversion module 23 controls the first voltage-controlled voltage source module 31 to output The first tuning voltage signal tunes the first passive cavity region 11, the fourth DAC conversion module 24 is connected to the laser region 14 through the third voltage-controlled current source module 43, and the fourth DAC conversion module 24 The fourth analog voltage signal output controls the third voltage-controlled current source module 43 to output a third tuning current signal to tune the laser area 14, and the fifth DAC conversion module 25 passes through the second voltage-controlled voltage source module 32 Connected to the phase adjustment area 13, the fifth analog voltage signal output by the fifth DAC conversion module 25 controls the second voltage-controlled voltage source module 32 to output a second tuning voltage signal to tune the phase adjustment area, the The sixth DAC conversion module 26 is connected to the second passive cavity region 12 through the third voltage-controlled voltage source module 33, and the sixth analog voltage signal output by the sixth DAC conversion module 26 controls the third The voltage-controlled voltage source module 33 outputs a third tuning voltage signal to tune the second passive cavity region 12 .

在一些实施例中,所述微处理器控制模块1通过所述第一DAC转换模块21控制所述第一压控电流源输出第一电流,所述第一电流采集模块71采集所述第一压控电流源输出的所述第一电流并将采集得到的第一电流信号传递给所述第一ADC转换模块51,所述第一电流采集模块71、所述第一ADC转换模块51将所述第一电流信号转换为第一数字信号传递给所述微处理器控制模块1,所述微处理器控制模块1通过所述第二DAC转换模块22控制所述第二压控电流源输出第二电流,所述第二电流采集模块72采集所述第二压控电流源输出的所述第二电流并将采集得到的第二电流信号传递给所述第二ADC转换模块52,所述第二电流采集模块72、所述第二ADC转换模块52将所述第二电流信号转换为第二数字信号传递给所述微处理器控制模块1,所述微处理器控制模块1通过所述第三DAC转换模块23控制所述第一压控电压源输出第一电压,所述第一电压采集模块61采集所述第一压控电压源输出的所述第一电压并将采集得到的第一电压信号传递给所述第三ADC转换模块53,所述第一电压采集模块61、所述第三ADC转换模块53将所述第一电压信号转换为第三数字信号传递给所述微处理器控制模块1,所述微处理器控制模块1通过所述第四DAC转换模块24控制所述第三压控电流源输出第三电流,所述第三电流采集模块73采集所述第三压控电流源输出的所述第三电流并将采集得到的第三电流信号传递给所述第四ADC转换模块54,所述第三电流采集模块73、所述第四ADC转换模块54将所述第三电流信号转换为第四数字信号传递给所述微处理器控制模块1,所述微处理器控制模块1通过所述第五DAC转换模块25控制所述第二压控电压源输出第二电压,所述第二电压采集模块62采集所述第二压控电压源输出的所述第二电压并将采集得到的第二电压信号传递给所述第五ADC转换模块55,所述第二电压采集模块62、所述第五ADC转换模块55将所述第二电压信号转换为第五数字信号传递给所述微处理器控制模块1,所述微处理器控制模块1通过所述第六DAC转换模块26控制所述第三压控电压源输出第三电压,所述第三电压采集模块63采集所述第三压控电压源输出的所述第三电压并将采集得到的第三电压信号传递给所述第六ADC转换模块56,所述第三电压采集模块63、所述第六ADC转换模块56将所述第三电压信号转换为第六数字信号传递给所述微处理器控制模块1。In some embodiments, the microprocessor control module 1 controls the first voltage-controlled current source to output the first current through the first DAC conversion module 21, and the first current acquisition module 71 acquires the first The first current output by the voltage-controlled current source and the collected first current signal are transmitted to the first ADC conversion module 51, and the first current collection module 71 and the first ADC conversion module 51 convert the first current signal to the first ADC conversion module 51. The first current signal is converted into a first digital signal and transmitted to the microprocessor control module 1, and the microprocessor control module 1 controls the second voltage-controlled current source to output the first digital signal through the second DAC conversion module 22. Two currents, the second current collection module 72 collects the second current output by the second voltage-controlled current source and transmits the collected second current signal to the second ADC conversion module 52, the first The second current acquisition module 72, the second ADC conversion module 52 converts the second current signal into a second digital signal and transmits it to the microprocessor control module 1, and the microprocessor control module 1 passes through the second digital signal The three DAC conversion module 23 controls the first voltage-controlled voltage source to output the first voltage, and the first voltage acquisition module 61 collects the first voltage output by the first voltage-controlled voltage source and collects the obtained first voltage. The voltage signal is transmitted to the third ADC conversion module 53, and the first voltage acquisition module 61 and the third ADC conversion module 53 convert the first voltage signal into a third digital signal and transmit it to the microprocessor Control module 1, the microprocessor control module 1 controls the third voltage-controlled current source to output a third current through the fourth DAC conversion module 24, and the third current acquisition module 73 acquires the third voltage-controlled current source The third current output by the current source and the acquired third current signal are transmitted to the fourth ADC conversion module 54, and the third current acquisition module 73 and the fourth ADC conversion module 54 convert the third current signal to the fourth ADC conversion module 54. The three current signals are converted into fourth digital signals and transmitted to the microprocessor control module 1, and the microprocessor control module 1 controls the second voltage-controlled voltage source to output a second voltage through the fifth DAC conversion module 25 , the second voltage acquisition module 62 acquires the second voltage output by the second voltage-controlled voltage source and transmits the acquired second voltage signal to the fifth ADC conversion module 55, the second voltage The acquisition module 62 and the fifth ADC conversion module 55 convert the second voltage signal into a fifth digital signal and transmit it to the microprocessor control module 1, and the microprocessor control module 1 passes the sixth DAC The conversion module 26 controls the third voltage-controlled voltage source to output a third voltage, and the third voltage acquisition module 63 collects the third voltage output by the third voltage-controlled voltage source and collects the obtained third voltage signal Delivered to the sixth ADC conversion module 56, the third voltage acquisition module 63 and the sixth ADC conversion module 56 convert the third voltage signal into a sixth digital signal and transmit it to the microprocessor control module 1.

结合图3所示,在一些实施例中,还包括用于采集所述半导体激光器温度的热敏电阻4、用于调节所述半导体激光器温度的半导体制冷片5以及用于控制所述半导体制冷片5工作的半导体制冷控制模块6,所述半导体制冷控制模块6用于根据所述微处理器控制模块1的指令调整所述半导体制冷片5的制冷功率,所述第七DAC转换模块27控制通过所述半导体制冷控制模块6与所述半导体制冷片5电连接,所述第四电流采集模块74与所述半导体制冷片5电连接,所述第七ADC转换模块57通过所述所述第四电流采集模块74采集所述半导体制冷片5的制冷控制电流,所述热敏电阻4与所述半导体激光器、所述半导体制冷片5封装为一体,所述微处理器控制模块1通过所述所述温度采样反馈模块2获取所述热敏电阻4的温度,所述温度采样反馈模块2通过所述热敏电阻4采集所述半导体激光器的管芯温度,并将测量温度值反馈给所述微处理器控制模块1,所述微处理器控制模块1根据所述测量温度值控制所述压控电流源模块调整所述半导体制冷片5的的制冷控制电流进行制冷效率调节。As shown in FIG. 3 , in some embodiments, it also includes a thermistor 4 for collecting the temperature of the semiconductor laser, a semiconductor cooling chip 5 for adjusting the temperature of the semiconductor laser, and a semiconductor cooling chip for controlling the temperature of the semiconductor laser. 5 working semiconductor refrigeration control module 6, the semiconductor refrigeration control module 6 is used to adjust the refrigeration power of the semiconductor refrigeration chip 5 according to the instructions of the microprocessor control module 1, and the seventh DAC conversion module 27 controls through The semiconductor cooling control module 6 is electrically connected to the semiconductor cooling chip 5, the fourth current collection module 74 is electrically connected to the semiconductor cooling chip 5, and the seventh ADC conversion module 57 passes through the fourth The current collection module 74 collects the cooling control current of the semiconductor cooling chip 5, the thermistor 4 is packaged with the semiconductor laser and the semiconductor cooling chip 5, and the microprocessor control module 1 passes through the semiconductor cooling chip 5. The temperature sampling feedback module 2 acquires the temperature of the thermistor 4, the temperature sampling feedback module 2 collects the die temperature of the semiconductor laser through the thermistor 4, and feeds back the measured temperature value to the micro The processor control module 1, the microprocessor control module 1 controls the voltage-controlled current source module to adjust the cooling control current of the semiconductor cooling chip 5 to adjust the cooling efficiency according to the measured temperature value.

在一些实施例中,所述半导体制冷控制模块6包括H桥驱动电路,所述H桥驱动电路与所述半导体制冷片5电连接,通过压变电流源模块提供输出电流,通过压控电压源模块提供输出电压,通过所述第七DAC转换模块27控制所述H桥驱动电路的供电电流控制所述半导体制冷片5的制冷效率。In some embodiments, the semiconductor refrigeration control module 6 includes an H-bridge driving circuit, the H-bridge driving circuit is electrically connected to the semiconductor refrigeration sheet 5, and the output current is provided through the voltage-variable current source module, and the voltage-controlled voltage source is used to provide the output current. The module provides an output voltage, and the seventh DAC conversion module 27 controls the power supply current of the H-bridge drive circuit to control the cooling efficiency of the semiconductor cooling chip 5 .

在一些实施例中,半导体激光器控制系统还包括用于存储控制系统控制数据的数据存储模块7和用于给控制系统散热并保持处于恒温工作环境的散热模块8,所述数据存储模块7、所述散热模块8分别与所述微处理器控制模块1电连接,本实施例中,数据存储模块7可以采用FLASH存储器,本领域普通技术人员可以灵活选择,对此不做限定。In some embodiments, the semiconductor laser control system also includes a data storage module 7 for storing control system control data and a heat dissipation module 8 for cooling the control system and maintaining a constant temperature working environment, the data storage module 7, the The heat dissipation modules 8 are respectively electrically connected to the microprocessor control module 1. In this embodiment, the data storage module 7 can use a FLASH memory, which can be flexibly selected by those skilled in the art, and is not limited thereto.

在一些实施例中,所述散热模块8为风冷散热器,所述风冷散热器可以包括风扇、散热片以及导热管,本领域普通技术人员可以灵活选择,对此不做限定。In some embodiments, the heat dissipation module 8 is an air-cooled radiator, and the air-cooled radiator may include a fan, a heat sink, and a heat pipe, which can be flexibly selected by those of ordinary skill in the art, and is not limited thereto.

实施例1Example 1

本发明实施例中提供的半导体激光器控制系统在进行记录电流、电压组合与输出波长、功率的关系操作时,可以进行以下操作。The semiconductor laser control system provided in the embodiment of the present invention can perform the following operations when performing the relationship operation between the combination of recording current and voltage and the output wavelength and power.

微处理器控制模块1通过DAC转换模块改变压控电流源模块的电流以及压控电压源模块的电压,进而分别控制四段式激光器的两个无源腔体区、相位调节区13、激光区14、功率放大器15、半导体光放大单元16,具体地,所述第一DAC转换模块21通过所述第一压控电流源模块41与所述半导体光放大单元16连接,所述第一DAC转换模块21输出的第一模拟电压信号控制所述第一压控电流源模块41输出第一调谐电流信号调谐所述半导体光放大单,所述第二DAC转换模块22通过所述第二压控电流源模块42与所述功率放大器15连接,所述第二DAC转换模块22输出的第二模拟电压信号控制所述第二压控电流源模块42输出第二调谐电流信号调谐所述功率放大器15,所述第三DAC转换模块23通过所述第一压控电压源模块31与所述第一无源腔体区11连接,所述第三DAC转换模块23输出的第三模拟电压信号控制所述第一压控电压源模块31输出第一调谐电压信号调谐第一无源腔体区11,所述第四DAC转换模块24通过所述第三压控电流源模块43与所述激光区14连接,所述第四DAC转换模块24输出的第四模拟电压信号控制所述第三压控电流源模块43输出第三调谐电流信号调谐所述激光区14,所述第五DAC转换模块25通过所述第二压控电压源模块32与所述相位调节区13连接,所述第五DAC转换模块25输出的第五模拟电压信号控制所述第二压控电压源模块32输出第二调谐电压信号调谐所述相位调节区13,所述第六DAC转换模块26通过所述第三压控电压源模块33与所述第二无源腔体区12连接,所述第六DAC转换模块26输出的第六模拟电压信号控制所述第三压控电压源模块33输出第三调谐电压信号调谐第二无源腔体区12。The microprocessor control module 1 changes the current of the voltage-controlled current source module and the voltage of the voltage-controlled voltage source module through the DAC conversion module, and then respectively controls the two passive cavity areas, the phase adjustment area 13, and the laser area of the four-segment laser. 14. Power amplifier 15, semiconductor optical amplification unit 16, specifically, the first DAC conversion module 21 is connected to the semiconductor optical amplification unit 16 through the first voltage-controlled current source module 41, and the first DAC conversion The first analog voltage signal output by the module 21 controls the first voltage-controlled current source module 41 to output the first tuning current signal to tune the semiconductor optical amplifier, and the second DAC conversion module 22 passes the second voltage-controlled current The source module 42 is connected to the power amplifier 15, and the second analog voltage signal output by the second DAC conversion module 22 controls the second voltage-controlled current source module 42 to output a second tuning current signal to tune the power amplifier 15, The third DAC conversion module 23 is connected to the first passive cavity region 11 through the first voltage-controlled voltage source module 31, and the third analog voltage signal output by the third DAC conversion module 23 controls the The first voltage-controlled voltage source module 31 outputs a first tuning voltage signal to tune the first passive cavity region 11, and the fourth DAC conversion module 24 is connected to the laser region 14 through the third voltage-controlled current source module 43 , the fourth analog voltage signal output by the fourth DAC conversion module 24 controls the third voltage-controlled current source module 43 to output a third tuning current signal to tune the laser area 14, and the fifth DAC conversion module 25 passes the The second voltage-controlled voltage source module 32 is connected to the phase adjustment area 13, and the fifth analog voltage signal output by the fifth DAC conversion module 25 controls the second voltage-controlled voltage source module 32 to output a second tuning voltage signal Tuning the phase adjustment area 13, the sixth DAC conversion module 26 is connected to the second passive cavity area 12 through the third voltage-controlled voltage source module 33, and the output of the sixth DAC conversion module 26 is The sixth analog voltage signal controls the third voltage-controlled voltage source module 33 to output a third tuning voltage signal to tune the second passive cavity region 12 .

电流值大小用14位的AD值表示,各电流调节范围在100~16000。电压值大小用14位的AD值表示,各电压调节范围在100~16000。两个无源腔体区的电压步进为50,相位调节区13电压步进为50,激光区14注入电流步进为50,功率放大器15D注入电流步进为50,半导体光放大单元16的注入步进电流步进为50。本步骤轮流固定其中任意5个控制区的电压或电流,另一个电流或电压值由小大到依次递增。当任意五个DAC转换模块的控制区的电压或电流值固定,另一个电压或电流值渐进变化时,对应的激光器输出波长有重复性和转折性跳跃。相同波长相同功率对应的各控制区电压或电流组合有多组。整理分析数据,按照波长从小到大,功率从小到大依次记录每种电流、电压组合对应的激光器的输出波长和功率值,其中相同波长和功率组合只取一种对应组合数据。The current value is represented by 14-bit AD value, and the adjustment range of each current is 100-16000. The voltage value is represented by 14-bit AD value, and the adjustment range of each voltage is 100-16000. The voltage step of the two passive cavity regions is 50, the voltage step of the phase adjustment region 13 is 50, the injection current step of the laser region 14 is 50, the injection current step of the power amplifier 15D is 50, and the semiconductor optical amplification unit 16 The injection step current step is 50. This step fixes the voltage or current of any five control areas in turn, and the other current or voltage value increases sequentially from small to large. When the voltage or current value in the control area of any five DAC conversion modules is fixed, and the other voltage or current value is gradually changed, the corresponding laser output wavelength has repetitive and turning jumps. There are multiple sets of voltage or current combinations in each control zone corresponding to the same wavelength and the same power. Organize and analyze the data, and record the output wavelength and power value of the laser corresponding to each current and voltage combination in order according to the wavelength from small to large, and the power from small to large. Among them, only one corresponding combination data is taken for the same wavelength and power combination.

实施例2Example 2

本发明实施例中提供的半导体激光器控制系统具有输出功率校准功能,在控制系统输出电流、电压的校准时可以进行以下操作。The semiconductor laser control system provided in the embodiment of the present invention has an output power calibration function, and the following operations can be performed when calibrating the output current and voltage of the control system.

将半导体激光器与本半导体激光器控制系统相连,进入校准功能时,微处理器控制模块1通过第一DAC转换模块21控制第一压控电流源模块41输出电流,第一电流采集模块71采集第一压控电流源模块41输出的电流并将信号传递给第一ADC转换模块51。第一电流采集模块71、第一ADC转换模块51将电流信号转换为数字信号传递给微处理器控制模块1。The semiconductor laser is connected with the semiconductor laser control system, when entering the calibration function, the microprocessor control module 1 controls the output current of the first voltage-controlled current source module 41 through the first DAC conversion module 21, and the first current acquisition module 71 collects the first The voltage-controlled current source module 41 outputs the current and transmits the signal to the first ADC conversion module 51 . The first current acquisition module 71 and the first ADC conversion module 51 convert the current signal into a digital signal and transmit it to the microprocessor control module 1 .

以第一ADC转换模块51传递给微处理器控制模块1的值校准第一压控电流源模块41输出的电流,例如:第一DAC转换模块21中DAC转换芯片是14位,输出电压值是0-5V,分辨率是0.3mV,即微控制处理器对第一DAC转换模块21输出0时,第一DAC转换模块21对第一压控电流源模块41输出0V,当微控制处理器模块对第一DAC转换模块21输出1时,第一DAC转换模块21对第一压控电流源模块41输出0.3mV,第一ADC转换模块51测量范围是0-100mA,ADC转换芯片为14位(即214为16384)、分辨率为100÷16384=0.0061mA。The value that the first ADC conversion module 51 transmits to the microprocessor control module 1 calibrates the current output by the first voltage-controlled current source module 41, for example: the DAC conversion chip in the first DAC conversion module 21 is 14 bits, and the output voltage value is 0-5V, the resolution is 0.3mV, that is, when the microcontroller processor outputs 0 to the first DAC conversion module 21, the first DAC conversion module 21 outputs 0V to the first voltage-controlled current source module 41, when the microcontroller processor module When the first DAC conversion module 21 outputs 1, the first DAC conversion module 21 outputs 0.3mV to the first voltage-controlled current source module 41, the measurement range of the first ADC conversion module 51 is 0-100mA, and the ADC conversion chip is 14 bits ( That is, 2 14 is 16384), and the resolution is 100÷16384=0.0061mA.

当微处理器控制模块1对第一DAC转换模块21输出X时,第一ADC转换模块51对微处理器控制模块1输出16时(16+0.0061=0.0976≈When the microprocessor control module 1 outputs X to the first DAC conversion module 21, the first ADC conversion module 51 outputs 16 to the microprocessor control module 1 (16+0.0061=0.0976≈

0.1mA),此时,微处理器控制模块1的校准程序认为当微处理器控制模块1对第一DAC转换模块21输出X时,第一压控电流源模块41输出为0.1mA。同理从0mA开始直到半导体光放大单元16最大电流为止以0.1mA为步进值标定第一压控电流源模块41输出电流。0.1mA), at this time, the calibration program of the microprocessor control module 1 considers that when the microprocessor control module 1 outputs X to the first DAC conversion module 21, the output of the first voltage-controlled current source module 41 is 0.1mA. Similarly, the output current of the first voltage-controlled current source module 41 is calibrated in steps of 0.1 mA from 0 mA to the maximum current of the semiconductor optical amplifier unit 16 .

微处理器控制模块1通过第三DAC转换模块23控制第一压控电压源模块31输出电压,第一电压采集模块61采集第一压控电压源模块31输出的电压并将信号传递给第三ADC转换模块53。第三电压采集模块63、第三ADC转换模块53将电压信号转换为数字信号传递给微处理器控制模块1。例如:第三DAC转换模块23中DAC转换芯片是16位(65536),输出电压值是0-5V,分辨率是5+1000÷6536=0.076mV,即微控制处理器模块对第三DAC转换模块23输出0时,第三DAC转换模块23对第一压控电压源模块31输出0V,当微控制处理器模块对第三DAC转换模块23输出1时,第三DAC转换模块23对第一压控电压源输出0.076mV。第三ADC转换模块53测量范围是0-5V,ADC转换芯片为16位(65536)、分辨率为5+1000÷65536=0.076mV。当微处理器控制模块1对第三DAC转换模块23输出为X时,第三DAC转换模块23对微处理器控制模块1输出13时(13+0.076=0.988≈1mV),微处理器控制模块1的校准程序认为当微处理器控制模块1对第三DAC转换模块23输出X时,第三压控电压源模块33输出为1mV,同理从0V开始直到第二无源腔体区12最大电流为止以1mV为步进值标定压控电压源1输出电压。The microprocessor control module 1 controls the output voltage of the first voltage-controlled voltage source module 31 through the third DAC conversion module 23, and the first voltage acquisition module 61 collects the voltage output by the first voltage-controlled voltage source module 31 and transmits the signal to the third ADC conversion module 53. The third voltage acquisition module 63 and the third ADC conversion module 53 convert the voltage signal into a digital signal and transmit it to the microprocessor control module 1 . For example: the DAC conversion chip in the third DAC conversion module 23 is 16 (65536), the output voltage value is 0-5V, and the resolution is 5+1000÷6536=0.076mV, that is, the micro-control processor module converts the third DAC When the module 23 outputs 0, the third DAC conversion module 23 outputs 0V to the first voltage-controlled voltage source module 31; The voltage-controlled voltage source outputs 0.076mV. The measurement range of the third ADC conversion module 53 is 0-5V, the ADC conversion chip is 16 bits (65536), and the resolution is 5+1000÷65536=0.076mV. When the microprocessor control module 1 outputs X to the third DAC conversion module 23, when the third DAC conversion module 23 outputs 13 to the microprocessor control module 1 (13+0.076=0.988≈1mV), the microprocessor control module The calibration program of 1 considers that when the microprocessor control module 1 outputs X to the third DAC conversion module 23, the output of the third voltage-controlled voltage source module 33 is 1mV, and similarly starts from 0V until the second passive cavity area 12 reaches the maximum Calibrate the output voltage of the voltage-controlled voltage source 1 with a step value of 1mV until the current is reached.

可以理解的是,第二压控电流源模块42、第三压控电流源模块43、半导体制冷控制模块6的输出电流值标定同理参照与第一压控电流源进行,第二压控电压源、第三压控电压源的输出电压值标定同理参照与第一压控电压源,此处不重复赘述。It can be understood that the calibration of the output current values of the second voltage-controlled current source module 42, the third voltage-controlled current source module 43, and the semiconductor refrigeration control module 6 is carried out with reference to the first voltage-controlled current source in the same way, and the second voltage-controlled voltage The calibration of the output voltage values of the first voltage-controlled voltage source and the third voltage-controlled voltage source is the same as that of the first voltage-controlled voltage source, and will not be repeated here.

实施例3Example 3

本发明实施例中提供的半导体激光器控制系统在进行各通道输出电流、电压、功率显示时可以进行以下操作。The semiconductor laser control system provided in the embodiment of the present invention can perform the following operations when displaying the output current, voltage, and power of each channel.

参照实施例2可知,半导体激光器控制系统有电流采集模块、电压采集模块、ADC转换模块,可以采集各压变电流源输出电流值,压变电压源输出电压值,以及半导体制冷控制模块6的输出电流值。在静态输出或低速扫频工作情况下,电流采集模块、电压采集模块、ADC转换模块可以实时采集各压变电流源输出的电流值,压变电压源输出的电压值,以及半导体激光器控制模块的输出电流值并将数据反馈给上位机9操作系统。在高速扫频工作情况下,电流采集模块、电压采集模块、ADC转换模块的实时采集会影响扫频速度,此时电流、电压采集功能关闭。各压变电流源模块输出的电流值、压变电压源模块输出的电压值以及半导体制冷控制模块6的输出电流值将以参照实施例2校准的数值反馈给上位机9。当然,为了保证反馈数据的准确性,可以在高速扫频工作前进行一次参照实施例2输出电流、电压的校准工作,此处不重复赘述。With reference to Embodiment 2, it can be seen that the semiconductor laser control system has a current acquisition module, a voltage acquisition module, and an ADC conversion module, which can collect the output current value of each voltage variable current source, the output voltage value of the voltage variable voltage source, and the output of the semiconductor refrigeration control module 6 current value. In the case of static output or low-speed frequency sweeping, the current acquisition module, voltage acquisition module, and ADC conversion module can collect the current value output by each voltage variable current source, the voltage value output by the voltage variable voltage source, and the semiconductor laser control module in real time. Output the current value and feed back the data to the upper computer 9 operating system. In the case of high-speed frequency sweeping, the real-time acquisition of the current acquisition module, voltage acquisition module, and ADC conversion module will affect the frequency sweep speed. At this time, the current and voltage acquisition functions are turned off. The current value output by each variable current source module, the voltage value output by the variable voltage source module and the output current value of the semiconductor refrigeration control module 6 will be fed back to the host computer 9 with the values calibrated with reference to the second embodiment. Of course, in order to ensure the accuracy of the feedback data, a calibration of the output current and voltage of the reference embodiment 2 can be performed before the high-speed frequency sweep operation, and details will not be repeated here.

实施例3Example 3

本发明实施例中提供的半导体激光器控制系统在进行半导体激光器温度标定时可以进行以下操作。The semiconductor laser control system provided in the embodiment of the present invention can perform the following operations when performing semiconductor laser temperature calibration.

目前大多数半导体激光器采用热敏电阻4作为监测半导体激光器温度的温度传感器,热敏电阻4与半导体制冷片5、半导体激光器封装在一起。本发明的半导体激光器控制系统的温度采样反馈模块2测温原理是半导体激光器中的热敏电阻4与其他精密电阻组成惠斯通桥电路211。当半导体激光器温度改变时,热敏电阻4的阻值改变,导致惠斯通桥电路211电位发生改变。电位变化信号经过仪表放大电路、比例积分电路、ADC转换电路转后变成0~4096之间的数字信号,温度采样反馈模块2采集的是电压信号,并将电压信号转换为12位数字信号对应0~4096。为了实现精准控温,可以预先建立电压信号与实测温度间对应关系表。At present, most semiconductor lasers use a thermistor 4 as a temperature sensor for monitoring the temperature of the semiconductor laser, and the thermistor 4 is packaged together with the semiconductor cooling plate 5 and the semiconductor laser. The temperature measurement principle of the temperature sampling feedback module 2 of the semiconductor laser control system of the present invention is that the thermistor 4 in the semiconductor laser and other precision resistors form a Wheatstone bridge circuit 211 . When the temperature of the semiconductor laser changes, the resistance of the thermistor 4 changes, causing the potential of the Wheatstone bridge circuit 211 to change. The potential change signal is converted into a digital signal between 0 and 4096 after being converted by the instrument amplifier circuit, proportional integral circuit, and ADC conversion circuit. The temperature sampling feedback module 2 collects the voltage signal and converts the voltage signal into a 12-bit digital signal corresponding to 0~4096. In order to achieve precise temperature control, a correspondence table between the voltage signal and the measured temperature can be established in advance.

在热敏电阻4标定过程中,为了避免激光器工作过程中温度测量异常,热敏电阻4测量温度标定范围一定要大于半导体激光器的存储温度范围,将热敏电阻4通过导线与半导体控制系统相连,将热敏电阻4放入恒温箱内,温度设定值为测量最低温度,恒温半小时后,测量温度,此时系统内显示的数值为0~4096之间的某一数值,将此数值与当前测量温度值对应。将恒温箱温度升高1℃恒温半小时后继续重复测量过程,记录测量温度与测量电压间的对应关系。如此循环测试,直至恒温箱内的设定温度大于半导体激光器的存储温度上限10℃,结束标定。本数据表内测量温度数据的间距为1℃,当测量数据小于所需间距时,是用线性内插法计算出测量出的温度值,并按四舍五入精确至0.01℃,并将整理出的电压信号与实测温度间对应关系表表存储至数据存储模块7中备用。During the calibration process of the thermistor 4, in order to avoid abnormal temperature measurement during the working process of the laser, the measurement temperature calibration range of the thermistor 4 must be greater than the storage temperature range of the semiconductor laser, and the thermistor 4 is connected to the semiconductor control system through a wire. Put the thermistor 4 into the constant temperature box, set the temperature as the lowest temperature for measurement, and measure the temperature after half an hour of constant temperature. At this time, the value displayed in the system is a certain value between 0 and 4096. Compare this value with Corresponds to the current measured temperature value. Increase the temperature of the incubator by 1°C and keep the temperature for half an hour, then repeat the measurement process, and record the corresponding relationship between the measured temperature and the measured voltage. Repeat the test in this way until the set temperature in the incubator is 10°C higher than the upper limit of the storage temperature of the semiconductor laser, and the calibration ends. The interval of measured temperature data in this data sheet is 1°C. When the measured data is smaller than the required interval, the measured temperature value is calculated by linear interpolation, and rounded to an accuracy of 0.01°C, and the sorted out voltage The correspondence table between the signal and the measured temperature is stored in the data storage module 7 for future use.

实施例4Example 4

本发明实施例中提供的半导体激光器控制系统在进行半导体制冷片5闭环控温功能时可以进行以下操作。The semiconductor laser control system provided in the embodiment of the present invention can perform the following operations when performing the closed-loop temperature control function of the semiconductor cooling plate 5 .

半导体激光器的发射波长与管芯的温度密切相关,温度升高将导致波长变长,为了保证半导体激光器输出波长的精度和可重复性,确保半导体激光器长期稳定工作半导体激光管芯与热敏电阻4、半导体制冷片5封装在一起。温度采样反馈模块2通过热敏电阻4采集半导体激光器的管芯温度,并将测量温度值反馈给微处理器控制模块1,微处理器控制模块1根据采样温度,通过算法进行PID计算,通过第七DAC转换器模块控制压变电流源模块给H桥驱动电路供电,H桥驱动电路与半导体制冷片5相连。通过改变H桥驱动电路的供电电流来控制半导体制冷片5的制冷效率,使半导体制冷片5保持恒温。The emission wavelength of the semiconductor laser is closely related to the temperature of the die, and the temperature rise will cause the wavelength to become longer. In order to ensure the accuracy and repeatability of the output wavelength of the semiconductor laser, to ensure the long-term stable operation of the semiconductor laser, the semiconductor laser die and thermistor 4 , semiconductor refrigeration sheet 5 are packaged together. The temperature sampling feedback module 2 collects the die temperature of the semiconductor laser through the thermistor 4, and feeds back the measured temperature value to the microprocessor control module 1, and the microprocessor control module 1 performs PID calculation through an algorithm according to the sampling temperature. The seven DAC converter modules control the voltage variable current source module to supply power to the H-bridge driving circuit, and the H-bridge driving circuit is connected to the semiconductor cooling chip 5 . By changing the power supply current of the H-bridge drive circuit to control the cooling efficiency of the semiconductor cooling chip 5, the semiconductor cooling chip 5 is kept at a constant temperature.

当系统刚上电时,由于系统复位,热敏电阻4采集稳定信号延迟等原因,导致稳定采集数据有几豪秒至几秒延迟,为了保证系统稳定,避免半导体制冷片5的电流振荡或过冲,在系统刚上电或重启时控制半导体制冷片5的压变电流源输出电流为0,直至系统正常工作,热敏电阻4温度采集数据稳定后,半导体制冷片5开始正常工作。如果启用热保护功能,当温度采集反馈模块连续5次采集到的温度异常或超过激光器允许使用的温度范围时,微处理器控制模块1立即控制第一DAC转换模块211至第六DAC转换模块26输出0电压,停止压变电压源模块和压变电流源模块的对外输出,保护半导体激光器,需要说明的是,在测试过程中热保护功能可关闭。When the system is just powered on, due to the system reset, the thermistor 4 is delayed in collecting stable signals, etc., resulting in a delay of several milliseconds to several seconds in the stable collection of data, in order to ensure the stability of the system, avoid the current oscillation or excessive When the system is just powered on or restarted, the output current of the variable current source of the semiconductor cooling chip 5 is controlled to be 0 until the system works normally. After the temperature collection data of the thermistor 4 is stable, the semiconductor cooling chip 5 starts to work normally. If the thermal protection function is enabled, the microprocessor control module 1 immediately controls the first DAC conversion module 211 to the sixth DAC conversion module 26 when the temperature collected by the temperature acquisition feedback module is abnormal for 5 consecutive times or exceeds the allowable temperature range of the laser. Output 0 voltage, stop the external output of the variable voltage source module and the variable current source module, and protect the semiconductor laser. It should be noted that the thermal protection function can be turned off during the test.

实施例5Example 5

本发明实施例中提供的半导体激光器控制系统在宽调谐波长输出时可以进行以下操作。The semiconductor laser control system provided in the embodiment of the present invention can perform the following operations when outputting a wide tuning wavelength.

当半导体激光器控制系统启动后,微处理器控制模块1发送指令调取数据存储模块7中存储的各个控制区偏置电压或电流与半导体激光器输出光的波长与功率对应关系表,将对应关系表存储到微处理器控制模块1自身的RAM中,同时调取温度标定表,微处理器控制模块1通过通讯模块3与上位机9通讯,接收上位机9发出的控制指令,控制指令中包括四段式激光器输出光的起始波长、步进波长、步进时间、终止波长等参数。After the semiconductor laser control system is started, the microprocessor control module 1 sends an instruction to retrieve each control area bias voltage or current stored in the data storage module 7 and the wavelength and power correspondence table of the semiconductor laser output light, and the correspondence table Stored in the RAM of the microprocessor control module 1 itself, and at the same time retrieve the temperature calibration table, the microprocessor control module 1 communicates with the host computer 9 through the communication module 3, and receives the control instructions sent by the host computer 9. The control instructions include four Parameters such as the starting wavelength, stepping wavelength, stepping time, and ending wavelength of the output light of the segment laser.

微处理器控制模块1根据接收到的控制指令中控制参数和保存在RAM中的电流、电压组合与输出波长、功率对应关系表,编写对两个无源腔体区、一个相位调节区13、功率放大器15、激光区14、半导体光放大单元16六个控制模块的电压或电流控制程序。编写完控制程序后,控制系统开始控制四段式激光器发光。微处理器控制模块1通过SPI通讯和GPIO引脚为第一DAC模块1至第六DAC模块发出数模转换指令。Microprocessor control module 1 writes two passive cavity areas, one phase adjustment area 13, Power amplifier 15, laser area 14, semiconductor optical amplifying unit 16 control the voltage or current control program of the six modules. After writing the control program, the control system starts to control the four-segment laser to emit light. The microprocessor control module 1 issues digital-to-analog conversion instructions for the first DAC module 1 to the sixth DAC module through SPI communication and GPIO pins.

所述第一DAC转换模块21通过所述第一压控电流源模块41与所述半导体光放大单元16连接,所述第一DAC转换模块21输出的第一模拟电压信号控制所述第一压控电流源模块41输出第一调谐电流信号调谐所述半导体光放大单元16,所述第二DAC转换模块22通过所述第二压控电流源模块42与所述功率放大器15连接,所述第二DAC转换模块22输出的第二模拟电压信号控制所述第二压控电流源模块42输出第二调谐电流信号调谐所述功率放大器15,所述第三DAC转换模块23通过所述第一压控电压源模块31与所述第一无源腔体区11连接,所述第三DAC转换模块23输出的第三模拟电压信号控制所述第一压控电压源模块31输出第一调谐电压信号调谐第一无源腔体区11,所述第四DAC转换模块24通过所述第三压控电流源模块43与所述激光区14连接,所述第四DAC转换模块24输出的第四模拟电压信号控制所述第三压控电流源模块43输出第三调谐电流信号调谐所述激光区14,所述第五DAC转换模块25通过所述第二压控电压源模块32与所述相位调节区13连接,所述第五DAC转换模块25输出的第五模拟电压信号控制所述第二压控电压源模块32输出第二调谐电压信号调谐所述相位调节区13,所述第六DAC转换模块26通过所述第三压控电压源模块33与所述第二无源腔体区12连接,所述第六DAC转换模块26输出的第六模拟电压信号控制所述第三压控电压源模块33输出第三调谐电流信号调谐第二无源腔体区12。The first DAC conversion module 21 is connected to the semiconductor optical amplification unit 16 through the first voltage-controlled current source module 41, and the first analog voltage signal output by the first DAC conversion module 21 controls the first voltage The control current source module 41 outputs the first tuning current signal to tune the semiconductor optical amplifying unit 16, the second DAC conversion module 22 is connected to the power amplifier 15 through the second voltage control current source module 42, and the first The second analog voltage signal output by the second DAC conversion module 22 controls the second voltage-controlled current source module 42 to output a second tuning current signal to tune the power amplifier 15, and the third DAC conversion module 23 passes the first voltage The controlled voltage source module 31 is connected to the first passive cavity area 11, and the third analog voltage signal output by the third DAC conversion module 23 controls the first voltage controlled voltage source module 31 to output the first tuning voltage signal Tuning the first passive cavity region 11, the fourth DAC conversion module 24 is connected to the laser region 14 through the third voltage-controlled current source module 43, and the fourth analog output of the fourth DAC conversion module 24 The voltage signal controls the third voltage-controlled current source module 43 to output a third tuning current signal to tune the laser zone 14, and the fifth DAC conversion module 25 adjusts the phase with the second voltage-controlled voltage source module 32 zone 13, the fifth analog voltage signal output by the fifth DAC conversion module 25 controls the second voltage-controlled voltage source module 32 to output a second tuning voltage signal to tune the phase adjustment zone 13, and the sixth DAC conversion The module 26 is connected to the second passive cavity area 12 through the third voltage-controlled voltage source module 33, and the sixth analog voltage signal output by the sixth DAC conversion module 26 controls the third voltage-controlled voltage source The module 33 outputs the third tuning current signal to tune the second passive cavity region 12 .

第一DAC转换模块211至第六DAC转换模块26转换率≥600MHz,辅以特别设计的积分电路。可以将微处理器控制模块1输出的阶跃信号转换成线性度较高的模拟电压信号,模拟电压信号驱动由高速精密运放组成的压控电流源模块、压控电流源模块,可以输出连续可控并且精度高的电压或电流。微处理器控制模块1根据外部对激光器输出波长的设定要求,按照电流、电压组合与输出波长、功率对应关系表,选择该波长、功率对应的两个无源腔体区、一个相位调节区13、功率放大器15、激光区14、半导体光放大单元16六个注入电流或电压值,实现波长快速调谐。The conversion rates of the first DAC conversion module 211 to the sixth DAC conversion module 26 are ≥600 MHz, supplemented by a specially designed integration circuit. The step signal output by the microprocessor control module 1 can be converted into an analog voltage signal with high linearity, and the analog voltage signal drives the voltage-controlled current source module and the voltage-controlled current source module composed of high-speed precision operational amplifiers, and can output continuous Controllable and precise voltage or current. The microprocessor control module 1 selects two passive cavity areas and one phase adjustment area corresponding to the wavelength and power according to the external setting requirements for the output wavelength of the laser and according to the current and voltage combination and the output wavelength and power correspondence table 13. Power amplifier 15, laser area 14, and semiconductor optical amplifying unit 16 inject current or voltage values to realize fast wavelength tuning.

本实施例中,半导体激光器为四段式宽调谐快速扫频半导体激光器,需要说明的是,本发明实施例中半导体激光器控制系统还可以提供向下兼容驱动其他种类激光器,例如一段式半导体激光器、两段式半导体激光器、三段式半导体激光器。只需要半导体激光器控制系统输出的电压源、电流源数量以及输出电压、电流量程满足其他激光器输出要求即可。按照激光器需求将热敏电阻4的引脚和半导体制冷片5的引脚与本半导体激光器控制系统相连,其他电流调谐信号与压控电流源模块相连,电压信号与压控电压源模块相连,连接时注意确定电源量程。通过上位机9软件通讯即可控制半导体激光器控制系统驱动相应的激光器发光。如果需要实现精准控制波长和温度,可参考实施例1和实施例2对激光器进行波长、功率还有温度的标定。In this embodiment, the semiconductor laser is a four-segment wide-tuning fast frequency-sweeping semiconductor laser. It should be noted that the semiconductor laser control system in the embodiment of the present invention can also provide downward compatibility to drive other types of lasers, such as a one-segment semiconductor laser, two-segment type semiconductor laser, three-segment type semiconductor laser. It is only necessary that the number of voltage sources and current sources output by the semiconductor laser control system, as well as the output voltage and current range meet the output requirements of other lasers. Connect the pins of the thermistor 4 and the pins of the semiconductor cooling plate 5 with the semiconductor laser control system according to the requirements of the laser, connect the other current tuning signals with the voltage-controlled current source module, connect the voltage signal with the voltage-controlled voltage source module, and connect Pay attention to determine the power range. The semiconductor laser control system can be controlled to drive the corresponding laser to emit light through the software communication of the upper computer 9 . If precise control of the wavelength and temperature is required, the wavelength, power and temperature of the laser can be calibrated with reference to Embodiment 1 and Embodiment 2.

本发明实施例中提供的半导体激光器控制系统可以提供3路压控电压源模块输出,4路压控电流源模块输出,有多种电压、电流输出组合,通过上位机9控制可驱动不同种类的激光器,设计中的压控电压源、压控电流源相对独立,可实现对每一路电压、电流的大小和频率单独控制,通过特定的处理电路,实现电压、电流的连续输出、输出同步性好等特点,以高性能DSP运算处理器为核心的微处理器控制模块,经过查表计算,实施控制各路压控电流源的电流值和压控电压源的电压值,可以控制半导体激光器实现纳秒级的快速波长调谐。The semiconductor laser control system provided in the embodiment of the present invention can provide 3-way voltage-controlled voltage source module output and 4-way voltage-controlled current source module output. There are various voltage and current output combinations, and different types of lasers can be driven through the control of the host computer 9. Laser, the voltage-controlled voltage source and voltage-controlled current source in the design are relatively independent, which can realize the independent control of the magnitude and frequency of each voltage and current, and realize the continuous output of voltage and current with good output synchronization through specific processing circuits and other characteristics, the microprocessor control module with high-performance DSP computing processor as the core, after table look-up calculation, implements the control of the current value of each voltage-controlled current source and the voltage value of the voltage-controlled voltage source, and can control the semiconductor laser to realize nanometer Fast wavelength tuning in seconds.

应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, the steps described in the present disclosure may be performed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present invention can be achieved, no limitation is imposed herein.

上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above specific implementation methods do not constitute a limitation to the protection scope of the present invention. It should be apparent to those skilled in the art that various modifications, combinations, sub-combinations and substitutions may be made depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1. A semiconductor laser control system is characterized by comprising a microprocessor control module, a plurality of paths of mutually independent DAC conversion modules, a plurality of paths of mutually independent voltage-controlled voltage source modules, a plurality of paths of mutually independent voltage-controlled current source modules, a plurality of paths of mutually independent ADC conversion modules, a plurality of paths of mutually independent voltage acquisition modules, a plurality of paths of mutually independent current acquisition modules, a temperature sampling feedback module and a communication module;
the microprocessor control module is communicated with an upper computer through the communication module 3, receives a control instruction of the upper computer to control the semiconductor laser to work and transmits back working data information of the semiconductor laser to the upper computer, wherein the semiconductor laser comprises a first passive cavity area, a second passive cavity area, a phase adjusting area, a laser area, a power amplifier and a semiconductor light amplifying unit;
the DAC conversion module is used for dividing voltage into a target number of analog voltages according to a control instruction of the microprocessor control module, and the analog voltages are used for controlling a voltage-controlled voltage source module or a voltage-controlled current source module of the semiconductor laser;
the voltage-controlled voltage source module is used for changing output voltage according to different input voltage signals and controlling a passive cavity area and a phase adjusting area of the semiconductor laser by using the output voltage;
the voltage-controlled current source module is used for changing output current according to different input voltage signals, and the output current is used for controlling a power amplifier, a laser area and a semiconductor optical amplification unit of the semiconductor laser;
the ADC conversion module is used for converting the voltage signals and the current signals acquired by the voltage acquisition module and the current acquisition module into digital signals with target quantity and sending the digital signals to the microprocessor control module;
the current acquisition module is used for acquiring a current signal of the circuit, converting the current signal into a voltage signal and transmitting the voltage signal to the ADC conversion module;
the voltage acquisition module is used for acquiring voltage signals of the circuit and transmitting the voltage signals to the ADC module;
the temperature sampling feedback module is electrically connected with the microprocessor control module and is used for actually monitoring the temperature of the semiconductor laser;
the communication module is used for communicating the microprocessor control module with the upper computer.
2. The semiconductor laser control system of claim 1, wherein the plurality of mutually independent DAC conversion modules comprises 7 mutually independent DAC conversion modules, namely a first DAC conversion module, a second DAC conversion module, a third DAC conversion module, a fourth DAC conversion module, a fifth DAC conversion module, a sixth DAC conversion module and a seventh DAC conversion module;
the multiple independent voltage-controlled voltage source modules comprise 3 independent voltage-controlled voltage source modules which are respectively a first voltage-controlled voltage source module, a second voltage-controlled voltage source module and a third voltage-controlled voltage source module;
the multiple independent voltage-controlled current source modules are 3 independent voltage-controlled current source modules which are respectively a first voltage-controlled current source module, a second voltage-controlled current source module and a third voltage-controlled current source module;
the multiple independent ADC conversion modules comprise 7 independent ADC conversion modules which are respectively a first ADC conversion module, a second ADC conversion module, a third ADC conversion module, a fourth ADC conversion module, a fifth ADC conversion module, a sixth ADC conversion module and a seventh ADC conversion module;
the multiple independent voltage acquisition modules are 3 independent voltage acquisition modules which are respectively a first voltage acquisition module, a second voltage acquisition module and a third voltage acquisition module;
the current acquisition modules which are mutually independent in multiple paths are 4 independent current acquisition modules which are respectively a first current acquisition module, a second current acquisition module, a third current acquisition module and a fourth current acquisition module.
3. The semiconductor laser control system of claim 2, wherein the first DAC conversion module is connected to the semiconductor optical amplification unit via the first voltage-controlled current source module, and a first analog voltage signal output by the first DAC conversion module controls the first voltage-controlled current source module to output a first tuning current signal to tune the semiconductor optical amplification unit;
the second DAC conversion module is connected with the power amplifier through the second voltage-controlled current source module, and a second analog voltage signal output by the second DAC conversion module controls the second voltage-controlled current source module to output a second tuning current signal to tune the power amplifier;
the third DAC conversion module is connected with the first passive cavity area through the first voltage-controlled voltage source module, and a third analog voltage signal output by the third DAC conversion module controls the first voltage-controlled voltage source module to output a first tuning voltage signal to tune the first passive cavity area;
the fourth DAC conversion module is connected with the laser area through the third voltage-controlled current source module, and a fourth analog voltage signal output by the fourth DAC conversion module controls the third voltage-controlled current source module to output a third tuning current signal to tune the laser area;
the fifth DAC conversion module is connected with the phase adjustment area through the second voltage-controlled voltage source module, and a fifth analog voltage signal output by the fifth DAC conversion module controls the second voltage-controlled voltage source module to output a second tuning voltage signal to tune the phase adjustment area;
the sixth DAC conversion module is connected to the second passive cavity through the third voltage-controlled voltage source module, and a sixth analog voltage signal output by the sixth DAC conversion module controls the third voltage-controlled voltage source module to output a third tuning voltage signal to tune the second passive cavity.
4. The semiconductor laser control system according to claim 2, wherein the microprocessor control module controls the first voltage-controlled current source to output a first current through the first DAC conversion module, the first current collection module collects the first current output by the first voltage-controlled current source and transmits a collected first current signal to the first ADC conversion module, and the first current collection module and the first ADC conversion module convert the first current signal into a first digital signal and transmit the first digital signal to the microprocessor control module;
the microprocessor control module controls the second voltage-controlled current source to output a second current through the second DAC conversion module, the second current acquisition module acquires the second current output by the second voltage-controlled current source and transmits an acquired second current signal to the second ADC conversion module, and the second current acquisition module and the second ADC conversion module convert the second current signal into a second digital signal and transmit the second digital signal to the microprocessor control module;
the microprocessor control module controls the first voltage-controlled voltage source to output a first voltage through the third DAC conversion module, the first voltage acquisition module acquires the first voltage output by the first voltage-controlled voltage source and transmits an acquired first voltage signal to the third ADC conversion module, and the first voltage acquisition module and the third ADC conversion module convert the first voltage signal into a third digital signal and transmit the third digital signal to the microprocessor control module;
the microprocessor control module controls the third voltage-controlled current source to output a third current through the fourth DAC conversion module, the third current collection module collects the third current output by the third voltage-controlled current source and transmits a collected third current signal to the fourth ADC conversion module, and the third current collection module and the fourth ADC conversion module convert the third current signal into a fourth digital signal and transmit the fourth digital signal to the microprocessor control module;
the microprocessor control module controls the second voltage-controlled voltage source to output a second voltage through the fifth DAC conversion module, the second voltage acquisition module acquires the second voltage output by the second voltage-controlled voltage source and transmits an acquired second voltage signal to the fifth ADC conversion module, and the second voltage acquisition module and the fifth ADC conversion module convert the second voltage signal into a fifth digital signal and transmit the fifth digital signal to the microprocessor control module;
the microprocessor control module controls the third voltage-controlled voltage source to output a third voltage through the sixth DAC conversion module, the third voltage acquisition module acquires the third voltage output by the third voltage-controlled voltage source and transmits an acquired third voltage signal to the sixth ADC conversion module, and the third voltage acquisition module and the sixth ADC conversion module convert the third voltage signal into a sixth digital signal and transmit the sixth digital signal to the microprocessor control module.
5. The semiconductor laser control system according to claim 2, further comprising a thermistor for collecting a temperature of the semiconductor laser, a semiconductor chilling plate for adjusting the temperature of the semiconductor laser, and a semiconductor chilling control module for controlling operation of the semiconductor chilling plate, wherein the seventh DAC conversion module controls the semiconductor chilling control module 6 to be electrically connected to the semiconductor chilling plate, the fourth current collection module is electrically connected to the semiconductor chilling plate, the seventh ADC conversion module collects a chilling control current of the semiconductor chilling plate through the fourth current collection module, the thermistor is packaged with the semiconductor laser and the semiconductor chilling plate into a whole, the microprocessor control module obtains a temperature of the thermistor through the temperature sampling feedback module, the temperature sampling feedback module collects a die temperature of the semiconductor laser through the thermistor and feeds a measured temperature value back to the microprocessor control module, and the microprocessor control module controls the voltage-controlled current source module to adjust the chilling control current of the semiconductor chilling plate according to the measured temperature value to adjust the chilling efficiency.
6. The semiconductor laser control system according to claim 1 or 5, further comprising a data storage module for storing control data of the control system and a heat dissipation module for dissipating heat of the control system and maintaining the control system in a constant temperature working environment, wherein the data storage module and the heat dissipation module are electrically connected to the microprocessor control module respectively.
7. The semiconductor laser control system of claim 1, wherein the semiconductor refrigeration control module comprises an H-bridge driving circuit, the H-bridge driving circuit is electrically connected to the semiconductor refrigeration chip, and the seventh DAC conversion module controls a supply current of the H-bridge driving circuit to control the refrigeration efficiency of the semiconductor refrigeration chip.
8. The semiconductor laser control system of claim 6, wherein the heat dissipation module is an air-cooled heat sink comprising a fan, a heat sink, and a heat pipe.
9. A semiconductor laser control system as claimed in claim 1 wherein the microprocessor control module comprises a PGA programmable logic controller or an ARM processor.
10. The semiconductor laser control system of claim 2 wherein the semiconductor laser is a four-segment wide-tuning fast swept semiconductor laser.
CN202211732389.XA 2022-12-30 2022-12-30 A semiconductor laser control system Pending CN115939931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211732389.XA CN115939931A (en) 2022-12-30 2022-12-30 A semiconductor laser control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211732389.XA CN115939931A (en) 2022-12-30 2022-12-30 A semiconductor laser control system

Publications (1)

Publication Number Publication Date
CN115939931A true CN115939931A (en) 2023-04-07

Family

ID=86557690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211732389.XA Pending CN115939931A (en) 2022-12-30 2022-12-30 A semiconductor laser control system

Country Status (1)

Country Link
CN (1) CN115939931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554787A (en) * 2024-01-09 2024-02-13 深圳市柠檬光子科技有限公司 Test circuit and test method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105569A1 (en) * 2003-11-14 2005-05-19 Hisashi Senga Laser control unit, laser control circuit, and laser-power adjustment method
CN102522697A (en) * 2012-01-09 2012-06-27 桂林优西科学仪器有限责任公司 Distributed Bragg reflector (DBR) tunable laser source system and control method thereof
CN109802298A (en) * 2016-10-21 2019-05-24 北京信息科技大学 Butterfly encapsulates SG-DBR semiconductor laser with tunable module control system
CN112835319A (en) * 2021-02-24 2021-05-25 苏州清尘检测科技有限公司 Semiconductor laser light source control circuit, control method and dust particle counter
CN219016828U (en) * 2022-12-30 2023-05-12 吉光半导体科技有限公司 Semiconductor laser control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105569A1 (en) * 2003-11-14 2005-05-19 Hisashi Senga Laser control unit, laser control circuit, and laser-power adjustment method
CN102522697A (en) * 2012-01-09 2012-06-27 桂林优西科学仪器有限责任公司 Distributed Bragg reflector (DBR) tunable laser source system and control method thereof
CN109802298A (en) * 2016-10-21 2019-05-24 北京信息科技大学 Butterfly encapsulates SG-DBR semiconductor laser with tunable module control system
CN112835319A (en) * 2021-02-24 2021-05-25 苏州清尘检测科技有限公司 Semiconductor laser light source control circuit, control method and dust particle counter
CN219016828U (en) * 2022-12-30 2023-05-12 吉光半导体科技有限公司 Semiconductor laser control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柯文雄;江毅;: "半导体激光器温度调谐波长扫描技术", 半导体光电, no. 04, 10 August 2020 (2020-08-10) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554787A (en) * 2024-01-09 2024-02-13 深圳市柠檬光子科技有限公司 Test circuit and test method

Similar Documents

Publication Publication Date Title
CN111884030B (en) Fast Tuning Control System Based on Series-Parallel Array Laser
CN104078841B (en) A kind of optical module laser digital Open loop temperature compensation system
WO2018119637A1 (en) Method and device for controlling wavelength of light emitting assembly
CN115939931A (en) A semiconductor laser control system
CN108471045B (en) Laser constant power digital control method and system
JP5360612B2 (en) Driving method of semiconductor laser
JPWO2002069464A1 (en) Optical transmitter
CN219016828U (en) Semiconductor laser control system
CN101494504A (en) Automatic control optical module with constant average light power and extinction ratio based on singlechip
CN100472900C (en) Wavelength control circuit for tunable laser
CN103606811B (en) Based on the pulse optical fiber driving power control system of CPLD
CN103944061A (en) Driving and control circuit of semiconductor laser unit
CN1933375A (en) Tunable regulating light transmitting module and scaling and regulating method thereof
WO2003065620A1 (en) Optical transmission module with digital adjustment and the adjusting method
CN117767110A (en) Control system of Littman structure external cavity laser
CN113381300A (en) Linear frequency-sweeping laser based on four-channel parallel DFB laser array
CN203826767U (en) Drive and control circuit of semiconductor laser
CN115268258B (en) Semiconductor laser temperature control method, system, equipment and medium
CN117895325B (en) A constant power driving circuit for semiconductor laser
JP7050024B2 (en) Laser device
JP2008091436A (en) Light source device
CN111521263A (en) Thermal resistance measuring device and method
CN117220125A (en) Tunable half-laser device based on MCU and working method
JP2011227722A (en) Constant-power control circuit
CN110061800B (en) Wavelength stabilizing system of tunable DWDM wavelength optical node

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination