CN116013967A - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN116013967A CN116013967A CN202111234967.2A CN202111234967A CN116013967A CN 116013967 A CN116013967 A CN 116013967A CN 202111234967 A CN202111234967 A CN 202111234967A CN 116013967 A CN116013967 A CN 116013967A
- Authority
- CN
- China
- Prior art keywords
- mos
- drain
- mos unit
- semiconductor substrate
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本申请公开了一种半导体器件及其制作方法,所述半导体器件包括:相对固定的第一MOS单元以及第二MOS单元;所述第一MOS单元朝向所述第二MOS单元的一侧具有第一漏极,背离所述第二MOS单元的一侧具有第一栅极和第一源极;所述第二MOS单元朝向所述第一MOS单元的一侧具有第二漏极,背离所述第一MOS单元的一侧具有第二栅极和第二源极;其中,所述第一漏极与所述第二漏极相对连接固定。本申请技术方案不仅可以大幅度减小占用面积,还可以解决传统平面双MOS管电流路径90°转角导致的电流密度不均匀等问题,并且制作成本低,可靠性高。
The present application discloses a semiconductor device and a manufacturing method thereof. The semiconductor device includes: a relatively fixed first MOS unit and a second MOS unit; the side of the first MOS unit facing the second MOS unit has a first A drain, the side away from the second MOS unit has a first gate and a first source; the side of the second MOS unit facing the first MOS unit has a second drain, away from the One side of the first MOS unit has a second gate and a second source; wherein, the first drain is connected and fixed to the second drain. The technical solution of the present application can not only greatly reduce the occupied area, but also solve the problem of uneven current density caused by the 90° corner of the current path of the traditional planar double MOS tube, and has low manufacturing cost and high reliability.
Description
技术领域technical field
本申请涉及半导体制作技术领域,尤其是涉及一种半导体器件及其制作方法。The present application relates to the technical field of semiconductor manufacturing, in particular to a semiconductor device and a manufacturing method thereof.
背景技术Background technique
随着集成电路的迅速发展,芯片的集成度越来越高,元器件的尺寸越来越小,因元器件的高密度、小尺寸引发的各种效应对半导体器件的制造工艺过程影响也日益突出,常需要针对小尺寸元器件进行新的工艺改进。With the rapid development of integrated circuits, the integration of chips is getting higher and higher, and the size of components is getting smaller and smaller. The various effects caused by the high density and small size of components have an increasing impact on the manufacturing process of semiconductor devices. Prominent, new process improvements are often required for small-size components.
金属氧化物半导体晶体管(即MOS晶体管)是集成电路中一种重要的基本元器件,其主要由半导体衬底、第一层多晶硅、第二层多晶硅、第一层多晶硅的侧壁间隔层、源/漏掺杂区和隔离区组成。现有技术中,MOS器件中的多个MOS单元均位于同一平面,可靠性差。A metal oxide semiconductor transistor (MOS transistor) is an important basic component in an integrated circuit, which is mainly composed of a semiconductor substrate, the first layer of polysilicon, the second layer of polysilicon, the sidewall spacer layer of the first layer of polysilicon, the source /Drain doped region and isolation region. In the prior art, multiple MOS units in a MOS device are all located on the same plane, and the reliability is poor.
发明内容Contents of the invention
有鉴于此,本发明提供了一种半导体器件及其制作方法,不仅可以大幅度减小占用面积,还可以解决传统平面双MOS管电流路径90°转角导致的电流密度不均匀等问题,并且制作成本低,可靠性高。In view of this, the present invention provides a semiconductor device and its manufacturing method, which can not only greatly reduce the occupied area, but also solve the problems of uneven current density caused by the 90° corner of the current path of the traditional planar double MOS tube, and make Low cost and high reliability.
为了实现上述目的,本申请提供如下技术方案:In order to achieve the above object, the application provides the following technical solutions:
一种半导体器件,所述半导体器件包括:A semiconductor device, the semiconductor device comprising:
相对固定的第一MOS单元以及第二MOS单元;Relatively fixed first MOS unit and second MOS unit;
所述第一MOS单元朝向所述第二MOS单元的一侧具有第一漏极,背离所述第二MOS单元的一侧具有第一栅极和第一源极;A side of the first MOS unit facing the second MOS unit has a first drain, and a side away from the second MOS unit has a first gate and a first source;
所述第二MOS单元朝向所述第一MOS单元的一侧具有第二漏极,背离所述第一MOS单元的一侧具有第二栅极和第二源极;The second MOS unit has a second drain on a side facing the first MOS unit, and has a second gate and a second source on a side away from the first MOS unit;
其中,所述第一漏极与所述第二漏极相对连接固定。Wherein, the first drain and the second drain are relatively connected and fixed.
优选的,在上述的半导体器件中,所述第一漏极与所述第二漏极均为金属;Preferably, in the above-mentioned semiconductor device, both the first drain and the second drain are metal;
所述第一漏极与所述第二漏极通过共晶键合固定或是回流焊键合固定。The first drain and the second drain are fixed by eutectic bonding or reflow soldering bonding.
优选的,在上述的半导体器件中,所述第一MOS单元包括:第一半导体衬底;位于所述第一半导体衬底一侧的所述第一漏极;位于所述第一半导体衬底另一侧的第一外延层;位于所述第一外延层背离所述第一半导体衬底一侧表面内的所述第一栅极以及所述第一源极;Preferably, in the above-mentioned semiconductor device, the first MOS unit includes: a first semiconductor substrate; the first drain located on one side of the first semiconductor substrate; the first epitaxial layer on the other side; the first gate and the first source located in the surface of the first epitaxial layer facing away from the first semiconductor substrate;
所述第二MOS单元包括:第二半导体衬底;位于所述第二半导体衬底一侧的所述第二漏极;位于所述第二半导体衬底另一侧的第二外延层;位于所述第二外延层背离所述第二半导体衬底一侧表面内的所述第二栅极以及所述第二源极。The second MOS unit includes: a second semiconductor substrate; the second drain on one side of the second semiconductor substrate; a second epitaxial layer on the other side of the second semiconductor substrate; The second epitaxial layer is away from the second gate and the second source in one side surface of the second semiconductor substrate.
优选的,在上述的半导体器件中,所述第一MOS单元为NMOS,所述第一半导体衬底与所述第一外延层均为N型掺杂;Preferably, in the above semiconductor device, the first MOS unit is NMOS, and both the first semiconductor substrate and the first epitaxial layer are N-type doped;
或,所述第一MOS单元为PMOS,所述第一半导体衬底与所述第一外延层均为P型掺杂。Or, the first MOS unit is PMOS, and both the first semiconductor substrate and the first epitaxial layer are P-type doped.
优选的,在上述的半导体器件中,所述第二MOS单元为NMOS,所述第二半导体衬底与所述第二外延层均为N型掺杂;Preferably, in the above semiconductor device, the second MOS unit is NMOS, and both the second semiconductor substrate and the second epitaxial layer are N-type doped;
或,所述第二MOS单元为PMOS,所述第二半导体衬底与所述第二外延层均为P型掺杂。Or, the second MOS unit is PMOS, and both the second semiconductor substrate and the second epitaxial layer are P-type doped.
优选的,在上述的半导体器件中,所述第一栅极具有两个第一子栅极;所述第一外延层背离所述第一半导体衬底的表面具有两个第一沟槽;所述第一沟槽内分别设置有一个所述第一子栅极,所述第一子栅极与所述第一沟槽之间具有第一栅介质层;两个所述第一沟槽之间具有第一盲孔,所述第一源极位于所述第一盲孔内;Preferably, in the above semiconductor device, the first gate has two first sub-gates; the surface of the first epitaxial layer away from the first semiconductor substrate has two first trenches; One of the first sub-gates is respectively arranged in the first trench, and there is a first gate dielectric layer between the first sub-gate and the first trench; between the two first trenches There is a first blind hole between them, and the first source is located in the first blind hole;
所述第二栅极具有两个第二子栅极;所述第二外延层背离所述第二半导体衬底的表面具有两个第二沟槽;所述第二沟槽内分别设置有一个所述第二子栅极,所述第二子栅极与所述第二沟槽之间具有第二栅介质层;两个所述第二沟槽之间具有第二盲孔,所述第二源极位于所述第二盲孔内。The second gate has two second sub-gates; the surface of the second epitaxial layer away from the second semiconductor substrate has two second trenches; one For the second sub-gate, there is a second gate dielectric layer between the second sub-gate and the second trench; there is a second blind hole between the two second trenches, and the first Two sources are located in the second blind hole.
优选的,在上述的半导体器件中,两个所述第一子栅极对称的设置在所述第一源极两侧;Preferably, in the above-mentioned semiconductor device, the two first sub-gates are arranged symmetrically on both sides of the first source;
两个所述第二子栅极对称的设置在所述第二源极两侧。The two second sub-gates are arranged symmetrically on both sides of the second source.
本申请还提供一种如上述任一项所述半导体器件的制作方法,所述制作方法包括:The present application also provides a method for manufacturing a semiconductor device as described above, the method comprising:
在第一晶圆上形成多个第一MOS单元,在第二晶圆上形成多个第二MOS单元;forming a plurality of first MOS units on a first wafer, and forming a plurality of second MOS units on a second wafer;
将所述第一晶圆与所述第二晶圆相对连接固定;所述第一MOS单元与所述第二MOS单元一一相对连接固定;connecting and fixing the first wafer to the second wafer; connecting and fixing the first MOS unit to the second MOS unit one by one;
对两晶圆进行划片分割,形成多个所述半导体器件,所述半导体器件包括相对连接固定的所述第一MOS单元和所述第二MOS单元;Carrying out dicing and dividing the two wafers to form a plurality of the semiconductor devices, the semiconductor devices including the first MOS unit and the second MOS unit which are relatively connected and fixed;
其中,所述第一MOS单元朝向所述第二MOS单元的一侧具有第一漏极,背离所述第二MOS单元的一侧具有第一栅极和第一源极;所述第二MOS单元朝向所述第一MOS单元的一侧具有第二漏极,背离所述第一MOS单元的一侧具有第二栅极和第二源极;所述第一漏极与所述第二漏极相对连接固定。Wherein, the side of the first MOS unit facing the second MOS unit has a first drain, and the side away from the second MOS unit has a first gate and a first source; the second MOS The side of the unit facing the first MOS unit has a second drain, and the side away from the first MOS unit has a second gate and a second source; the first drain and the second drain The poles are fixed relative to the connection.
优选的,在上述的制作方法中,所述第一晶圆包括:第一半导体衬底以及位于所述第一半导体衬底表面的第一外延层;所述第一外延层具有多个与所述第一MOS单元一一对应的第一器件区;Preferably, in the above manufacturing method, the first wafer includes: a first semiconductor substrate and a first epitaxial layer located on the surface of the first semiconductor substrate; the first epitaxial layer has a plurality of The first device region corresponding to the first MOS unit one-to-one;
在所述第一晶圆上形成所述第一MOS单元的方法包括:The method for forming the first MOS unit on the first wafer includes:
在所述第一器件区内形成所述第一源极和所述第一栅极;forming the first source and the first gate in the first device region;
对所述第一半导体衬底背离所述第一外延层的表面进行减薄后,在该表面形成第一金属层,所述第一金属层包括多个与所述第一MOS单元一一对应的所述第一漏极。After thinning the surface of the first semiconductor substrate away from the first epitaxial layer, a first metal layer is formed on the surface, and the first metal layer includes a plurality of of the first drain.
优选的,在上述的制作方法中,所述第二晶圆包括:第二半导体衬底以及位于所述第二半导体衬底表面的第二外延层;所述第二外延层具有多个与所述第二MOS单元一一对应的第二器件区;Preferably, in the above manufacturing method, the second wafer includes: a second semiconductor substrate and a second epitaxial layer located on the surface of the second semiconductor substrate; the second epitaxial layer has a plurality of The second device area corresponding to the second MOS unit one-to-one;
在所述第二晶圆上形成所述第二MOS单元的方法包括:The method for forming the second MOS unit on the second wafer includes:
在所述第二器件区内形成所述第二源极和所述第二栅极;forming the second source and the second gate in the second device region;
对所述第二半导体衬底背离所述第二外延层的表面进行减薄后,在该表面形成第二金属层,所述第二金属层包括多个与所述第二MOS单元一一对应的所述第二漏极。After thinning the surface of the second semiconductor substrate away from the second epitaxial layer, a second metal layer is formed on the surface, and the second metal layer includes a plurality of of the second drain.
通过上述描述可知,本发明技术方案提供的半导体器件及其制作方法中,通过设计3D双MOS堆叠结构,将第一MOS单元和第二MOS单元相对连接固定,并通过共晶键合或回流焊键合等方式将第一漏极和第二漏极相对连接固定,使得双MOS漏端电流路径相互垂直。相对于现有技术,本发明技术方案不仅可以大幅度减小占用面积,还可以解决传统平面双MOS管电流路径90°转角导致的电流密度不均匀等问题,并且制作成本低,可靠性高。It can be seen from the above description that in the semiconductor device and its manufacturing method provided by the technical solution of the present invention, by designing a 3D double MOS stack structure, the first MOS unit and the second MOS unit are relatively connected and fixed, and are connected by eutectic bonding or reflow soldering. The first drain and the second drain are relatively connected and fixed by means of bonding, so that the current paths of the dual MOS drain terminals are perpendicular to each other. Compared with the prior art, the technical solution of the present invention can not only greatly reduce the occupied area, but also solve the problem of uneven current density caused by the 90° corner of the current path of the traditional planar double MOS tube, and has low manufacturing cost and high reliability.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present application, and those skilled in the art can also obtain other drawings according to the provided drawings without creative work.
本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容得能涵盖的范围内。The structures, proportions, sizes, etc. shown in the drawings of this specification are only used to cooperate with the content disclosed in the specification, for those who are familiar with this technology to understand and read, and are not used to limit the conditions that can be implemented in this application, so Without technical substantive significance, any modification of the structure, change of the proportional relationship or adjustment of the size shall still fall within the technology disclosed in the application without affecting the effect and purpose of the application. within the scope of the content.
图1为一种平面双MOS管的切面图;Fig. 1 is a sectional view of a planar double MOS tube;
图2为图1所示双MOS管的等效电路图;Fig. 2 is the equivalent circuit diagram of the double MOS transistor shown in Fig. 1;
图3为本发明实施例提供的一种半导体器件的结构示意图;FIG. 3 is a schematic structural diagram of a semiconductor device provided by an embodiment of the present invention;
图4本发明实施例提供的一种半导体器件的制作方法流程图;FIG. 4 is a flow chart of a manufacturing method of a semiconductor device provided by an embodiment of the present invention;
图5-图8为本发明实施例提供的一种形成第一MOS单元的工艺流程图;5-8 are a flow chart of a process for forming a first MOS unit provided by an embodiment of the present invention;
图9-图12为本发明实施例提供的一种形成第二MOS单元的工艺流程图;9-12 are a flow chart of a process for forming a second MOS unit provided by an embodiment of the present invention;
图13为本发明实施例提供的第一晶圆和第二晶圆连接固定后的切面图。FIG. 13 is a cross-sectional view after the first wafer and the second wafer are connected and fixed according to the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请中的实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will clearly and completely describe the embodiments of the present application with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are only some of the embodiments of the present application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.
共晶技术是指一定成分的合金液体在共晶反应温度下,冷却、凝固、结晶为两种或更多致密晶体混合物。简单二元系合金可用通式La+β表示。偏离共晶成分的合金组织为亚共晶或过共晶。共晶采取互激生核,先从液体中析出树枝状的先共晶组织,然后在枝晶间的液体凝固成共晶组织,通过分枝搭桥交替生长,形成层片状;由短程分离扩散、长大,典型共晶组织为层片状或棒状;添生组织形态为条带状、点状或螺旋状;非典型共晶为两项独立生核界面结枃与生长方式有关,有初生相容易产生离异共晶,即共晶中一相弧立地长在初生相周围,共晶合金熔点低,易于流动、铸造;压力加工和焊接性能较差,切削性能好。Eutectic technology refers to the cooling, solidification, and crystallization of an alloy liquid of a certain composition at the eutectic reaction temperature into a mixture of two or more dense crystals. Simple binary alloys can be represented by the general formula La+β. Alloy structures that deviate from the eutectic composition are hypoeutectic or hypereutectic. The eutectic adopts mutual excitation nucleation, and the dendritic pro-eutectic structure is first precipitated from the liquid, and then the liquid between the dendrites solidifies into a eutectic structure, which grows alternately through branches and bridges, forming a layered shape; by short-range separation and diffusion , grow up, the typical eutectic structure is lamellar or rod-like; the epigenetic structure is striped, dotted or helical; the atypical eutectic is two independent nucleation interfaces. The phase is easy to produce divorced eutectic, that is, one phase in the eutectic grows vertically around the primary phase. The eutectic alloy has a low melting point and is easy to flow and cast; the pressure processing and welding performance is poor, and the cutting performance is good.
回流焊工艺流程是,当印刷好锡膏贴片好元件的线路板进入回流焊炉膛内,线路板由回流焊导轨运输链条带动依次经过回流焊的预热区、保温区、焊接区、冷却区,在经过回流焊这四个温区的温度变化后完成了线路板的回流焊焊接流程。The reflow soldering process is that when the circuit board with printed solder paste and good components enters the reflow furnace, the circuit board is driven by the reflow rail transport chain and passes through the preheating zone, heat preservation zone, welding zone, and cooling zone of reflow soldering in sequence. , After the temperature changes in the four temperature zones of reflow soldering, the reflow soldering process of the circuit board is completed.
目前市场上双MOS管设计尚未发现有“背靠背”3D结构做法,同一MOS器件中多个MOS单元均位于同一平面,可靠性较差。At present, no "back-to-back" 3D structure has been found in the design of dual MOS transistors in the market. Multiple MOS units in the same MOS device are located on the same plane, and the reliability is poor.
目前技术普遍使用图1所示平面双MOS管,图1为一种平面双MOS管的切面图。如图1所示,该平面双MOS管包括第一MOS单元M1以及第二MOS单元M2,所述第一MOS单元M1和所述第二MOS单元M2位于同一平面。The current technology generally uses a planar double MOS transistor as shown in FIG. 1 , and FIG. 1 is a cut-away view of a planar double MOS transistor. As shown in FIG. 1 , the planar dual MOS transistor includes a first MOS unit M1 and a second MOS unit M2 , and the first MOS unit M1 and the second MOS unit M2 are located on the same plane.
所述第一MOS单元M1包括第一半导体衬底01,位于第一半导体衬底01一侧的第一漏极02,位于第一半导体衬底01另一侧的第一外延层09,该第一外延层09背离第一半导体衬底01的一侧表面内具有第一栅极03以及第一源极04,其中所述第一栅极03具有两个第一子栅极,所述第一源极04位于两个第一子栅极之间。The first MOS unit M1 includes a
所述第二MOS单元M2包括第二半导体衬底05,位于第二半导体衬底05一侧的第二漏极06,位于第二半导体衬底05另一侧的第二外延层00,该第二外延层00背离第二半导体衬底05的一侧表面内具有第二栅极07以及第二源极08,其中所述第二栅极07具有两个第二子栅极,所述第二源极08位于两个第二子栅极之间。The second MOS unit M2 includes a
其中,所述第一漏极02与所述第二漏极06为一体结构,为同一金属层的不同部分;第一半导体衬底01和第二半导体衬底05为一体结构,为同一半导体衬底的不同部分;第一外延层09和第二外延层00为一体结构,为同一外延层的不同部分,基于两个MOS单元的类型,进行对应的离子掺杂。图1中所示箭头为电流走向。Wherein, the
图1所示方式中,第二MOS单元M2漏端电流往第一MOS单元M1漏端流动过程中经由外延层的等效电阻、衬底的等效电阻和背面漏极金属的等效电阻三者并联抵达第一MOS单元M1漏极完成前半程路径,此时由于三个电阻率分布的差异性造成阻值差异引发电流分布的不均匀。当电流抵达第一MOS单元M1区域后与前半程电流效果相逆,总漏端电流按路径最短原则在第一MOS单元M1的各元胞沟道和源极进行再分布。整个过程电流将经历前后两个半程90°的转折和因为并联电阻差异造成的电流密度不均匀,积累效果体现在导通电阻Rdson变大,偏离理论值,同时也会伴随局部电流集中,引发局部热量集中导致的一系列可靠性问题,使可靠性能下降。In the method shown in Figure 1, the current flowing from the drain terminal of the second MOS unit M2 to the drain terminal of the first MOS unit M1 passes through the equivalent resistance of the epitaxial layer, the equivalent resistance of the substrate and the equivalent resistance of the back drain metal. The latter are connected in parallel to the drain of the first MOS unit M1 to complete the first half of the path. At this time, due to the difference in the distribution of the three resistivities, the difference in resistance value causes uneven current distribution. When the current reaches the area of the first MOS unit M1, the effect of the current in the first half is reversed, and the total drain current is redistributed in the channels and sources of the cells of the first MOS unit M1 according to the principle of the shortest path. The current in the whole process will experience two half-way 90° turnings and uneven current density due to the difference in parallel resistance. The cumulative effect is reflected in the increase of the on-resistance Rdson, which deviates from the theoretical value. A series of reliability problems caused by local heat concentration degrade reliability performance.
如图2所示,图2为图1所示双MOS管的等效电路图,图2中S1是第一源极,S2是第二源极,G1是第一栅极,G2是第二栅极,Rg是栅极驱动电阻,表示集成连接在MOS管栅极的电阻,多个二极管是MOS管中的等效二极管,第一MOS单元M1和第二MOS单元M2的漏极连接区域即图2中虚线圆所示区域,该区域电流路径效率较低,存在上述电流转折、等效电阻的电阻率分布差异以及电流局部集中这些问题。As shown in Figure 2, Figure 2 is the equivalent circuit diagram of the double MOS transistor shown in Figure 1. In Figure 2, S1 is the first source, S2 is the second source, G1 is the first gate, and G2 is the second gate. pole, Rg is the gate drive resistor, which means the resistor integrated and connected to the gate of the MOS transistor, multiple diodes are equivalent diodes in the MOS transistor, the drain connection area of the first MOS unit M1 and the second MOS unit M2 is shown in Fig. In the area indicated by the dotted circle in 2, the efficiency of the current path in this area is low, and there are problems such as the above-mentioned current turning point, the difference in the resistivity distribution of the equivalent resistance, and the local concentration of the current.
因此,为了解决上述问题,本发明提供了一种半导体器件及其制作方法,所述半导体器件包括:Therefore, in order to solve the above problems, the present invention provides a semiconductor device and a manufacturing method thereof, the semiconductor device comprising:
相对固定的第一MOS单元以及第二MOS单元;Relatively fixed first MOS unit and second MOS unit;
所述第一MOS单元朝向所述第二MOS单元的一侧具有第一漏极,背离所述第二MOS单元的一侧具有第一栅极和第一源极;A side of the first MOS unit facing the second MOS unit has a first drain, and a side away from the second MOS unit has a first gate and a first source;
所述第二MOS单元朝向所述第一MOS单元的一侧具有第二漏极,背离所述第一MOS单元的一侧具有第二栅极和第二源极;The second MOS unit has a second drain on a side facing the first MOS unit, and has a second gate and a second source on a side away from the first MOS unit;
其中,所述第一漏极与所述第二漏极相对连接固定。Wherein, the first drain and the second drain are relatively connected and fixed.
通过上述描述可知,本发明技术方案提供的半导体器件及其制作方法中,通过设计3D双MOS堆叠结构,将第一MOS单元和第二MOS单元相对连接固定,并通过共晶键合或回流焊键合等方式将第一漏极和第二漏极相对连接固定,使得双MOS漏端电流路径相互垂直。相对于现有技术,本发明技术方案不仅可以大幅度减小占用面积,还可以解决传统平面双MOS管电流路径90°转角导致的电流密度不均匀等问题,并且制作成本低,可靠性高。It can be seen from the above description that in the semiconductor device and its manufacturing method provided by the technical solution of the present invention, by designing a 3D double MOS stack structure, the first MOS unit and the second MOS unit are relatively connected and fixed, and are connected by eutectic bonding or reflow soldering. The first drain and the second drain are relatively connected and fixed by means of bonding, so that the current paths of the dual MOS drain terminals are perpendicular to each other. Compared with the prior art, the technical solution of the present invention can not only greatly reduce the occupied area, but also solve the problem of uneven current density caused by the 90° corner of the current path of the traditional planar double MOS tube, and has low manufacturing cost and high reliability.
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。In order to make the above objects, features and advantages of the present application more obvious and comprehensible, the present application will be further described in detail below in conjunction with the accompanying drawings and specific implementation methods.
参考图3,图3为本发明实施例提供的一种半导体器件的结构示意图,如图3所示,所述半导体器件包括:Referring to FIG. 3, FIG. 3 is a schematic structural diagram of a semiconductor device provided by an embodiment of the present invention. As shown in FIG. 3, the semiconductor device includes:
相对固定的第一MOS单元10以及第二MOS单元20;Relatively fixed
所述第一MOS单元10朝向所述第二MOS单元20的一侧具有第一漏极11,背离所述第二MOS单元20的一侧具有第一栅极12和第一源极13;A side of the
所述第二MOS单元20朝向所述第一MOS单元10的一侧具有第二漏极21,背离所述第一MOS单元10的一侧具有第二栅极22和第二源极23;The
其中,所述第一漏极11与所述第二漏极21相对连接固定。Wherein, the
本发明实施例中,所述第一漏极11与所述第二漏极21均为金属;所述第一漏极11与所述第二漏极21可以通过共晶键合固定、或是回流焊键合固定、或是导电胶连接固定。In the embodiment of the present invention, both the
如图3所示,所述第一MOS单元10包括:第一半导体衬底14;位于所述第一半导体衬底14一侧的所述第一漏极11;位于所述第一半导体衬底14另一侧的第一外延层15;位于所述第一外延层15背离所述第一半导体衬底14一侧表面内的所述第一栅极12以及所述第一源极13。As shown in FIG. 3, the
其中,所述第一栅极12具有两个第一子栅极;所述第一外延层15背离所述第一半导体衬底14的表面具有两个第一沟槽;所述第一沟槽内分别设置有一个所述第一子栅极,所述第一子栅极与所述第一沟槽之间具有第一栅介质层16,所述第一子栅极填充表面覆盖有第一栅介质层16的第一沟槽内;两个所述第一沟槽之间具有第一盲孔,所述第一源极13位于所述第一盲孔内。Wherein, the
其中,两个所述第一子栅极对称的设置在所述第一源极13两侧。可以通过离子注入工艺形成所述第一源极13。通过刻蚀工艺形成第一沟槽,在第一沟槽表面形成栅氧化层后,通过外延工艺在所述第一凹槽内形成所述第一栅极12。Wherein, the two first sub-gates are arranged symmetrically on both sides of the
第一子栅极与第一源极13和第一漏极11可以形成MOS元胞,如是可以在第一MOS单元10和第二MOS单元20中均形成两个相同的MOS元胞,便于工艺制备以及电路互联以及驱动。The first sub-gate, the
需要说明的是,所述第一盲孔的深度小于所述第一沟槽的深度。所述第一盲孔可以为任意形状,不限于图示中矩形,可以基于需求设定。It should be noted that the depth of the first blind hole is smaller than the depth of the first groove. The first blind hole can be in any shape, not limited to the rectangle shown in the figure, and can be set based on requirements.
本发明实施例中,所述第一MOS单元10可以为NMOS,所述第一半导体衬底14与所述第一外延层15均为N型掺杂;或,所述第一MOS单元10可以为PMOS,所述第一半导体衬底14与所述第一外延层15均为P型掺杂。In the embodiment of the present invention, the
如图3所示,所述第二MOS单元20包括:第二半导体衬底24;位于所述第二半导体衬底24一侧的所述第二漏极21;位于所述第二半导体衬底24另一侧的第二外延层25;位于所述第二外延层25背离所述第二半导体衬底24一侧表面内的所述第二栅极22以及所述第二源极23。As shown in FIG. 3, the
其中,所述第二栅极22具有两个第二子栅极;所述第二外延层25背离所述第二半导体衬底24的表面具有两个第二沟槽;所述第二沟槽内分别设置有一个所述第二子栅极,所述第二子栅极与所述第二沟槽之间具有第二栅介质层26,所述第二子栅极填充表面覆盖有第二栅介质层26的第二沟槽内;两个所述第二沟槽之间具有第二盲孔,所述第二源极23位于所述第二盲孔内。Wherein, the
其中,两个所述第二子栅极对称的设置在所述第二源极23两侧。可以通过离子注入工艺形成所述第二源极23。通过刻蚀工艺形成第二沟槽,在第二沟槽表面形成栅氧化层后,通过外延工艺在所述第二凹槽内形成所述第二栅极22。Wherein, the two second sub-gates are arranged symmetrically on both sides of the
需要说明的是,所述第二盲孔的深度小于所述第二沟槽的深度。所述第二盲孔可以为任意形状,不限于图示中矩形,可以基于需求设定。It should be noted that the depth of the second blind hole is smaller than the depth of the second groove. The second blind hole can be in any shape, not limited to the rectangle shown in the figure, and can be set based on requirements.
本发明实施例中,所述第二MOS单元20可以为NMOS,所述第二半导体衬底24与所述第二外延层25均为N型掺杂;或,所述第二MOS单元20可以为PMOS,所述第二半导体衬底24与所述第二外延层25均为P型掺杂。In the embodiment of the present invention, the
本申请具有3D双MOS管的半导体器件的等效电路图同样如图2所示,本方案半导体器件的等效电路图相对于现有结构不变,虚线圆位置的电流路径变短,阻抗减小,可以提高电流均匀性以及增大电流。The equivalent circuit diagram of the semiconductor device with 3D double MOS transistors in this application is also shown in Figure 2. The equivalent circuit diagram of the semiconductor device in this scheme remains unchanged relative to the existing structure, the current path at the position of the dotted circle becomes shorter, and the impedance decreases. It can improve the current uniformity and increase the current.
本发明实施例中,半导体器件具有两个三维堆叠的MOS单元,将第一MOS单元10和第二MOS单元20相对连接固定,并通过共晶键合或回流焊键合等方式将第一MOS单元10的漏极和第二MOS单元20的漏极相对连接固定,使得双MOS漏端电流路径相互垂直。相对于现有技术,不仅可以大幅度减小占用面积,还可以解决传统平面双MOS管电流路径90°转角导致的电流密度不均匀等问题,并且制作成本低,可靠性高。In the embodiment of the present invention, the semiconductor device has two three-dimensionally stacked MOS units, the
经过本发明,可以实现三维堆叠的双MOS单元体内电流不再经过两个90°的变相,电流直接竖直向下传输,传统平面双MOS单元中电流转折、等效电阻的电阻率分布差异以及电流局部集中这些问题得到解决,同时占用面积可以大幅度下降,在应用时占用的面积也可以受益。Through the present invention, the current in the three-dimensionally stacked dual MOS unit body can no longer pass through two 90° phase changes, and the current is directly transmitted vertically downward. In the traditional planar dual MOS unit, the current turning point, the resistivity distribution difference of equivalent resistance and These problems of local concentration of current are solved, and at the same time, the occupied area can be greatly reduced, and the occupied area can also be benefited during application.
基于上述实施例,本发明另一实施例还提供了一种如上述实施例所述半导体器件的制作方法,如图3和图4所示,图4为本发明实施例提供的一种半导体器件的制作方法流程图,所述制作方法包括:Based on the above embodiment, another embodiment of the present invention also provides a method for manufacturing a semiconductor device as described in the above embodiment, as shown in Figure 3 and Figure 4, Figure 4 is a semiconductor device provided by an embodiment of the present invention A flow chart of a production method, the production method comprising:
步骤S11:在第一晶圆上形成多个第一MOS单元10,在第二晶圆上形成多个第二MOS单元20;Step S11: forming a plurality of
步骤S12:将所述第一晶圆与所述第二晶圆相对连接固定;所述第一MOS单元10与所述第二MOS单元20一一相对连接固定;Step S12: relatively connecting and fixing the first wafer and the second wafer; connecting and fixing the
步骤S13:对两晶圆进行划片分割,形成多个所述半导体器件,如图3所示,所述半导体器件包括相对连接固定的所述第一MOS单元10和所述第二MOS单元20;Step S13: Carry out dicing and division on the two wafers to form a plurality of semiconductor devices, as shown in FIG. 3 , the semiconductor device includes the
其中,所述第一MOS单元10朝向所述第二MOS单元20的一侧具有第一漏极11,背离所述第二MOS单元20的一侧具有第一栅极12和第一源极13;所述第二MOS单元20朝向所述第一MOS单元10的一侧具有第二漏极21,背离所述第一MOS单元10的一侧具有第二栅极22和第二源极23;所述第一漏极11与所述第二漏极21相对连接固定。Wherein, the side of the
其中,所述第一漏极11与所述第二漏极21均为金属;所述第一漏极11与所述第二漏极21可以通过共晶键合固定、或是回流焊键合固定、或是导电胶连接固定。Wherein, the
在步骤S11中,在第一晶圆上形成多个第一MOS单元10的方法如图5-8所示,图5-图8为本发明实施例提供的一种形成第一MOS单元的工艺流程图,包括:In step S11, the method for forming multiple
首先,如图5和图6所示,图5为本发明实施例提供的第一晶圆的俯视图,图6为图5所示第一晶圆在PP’方向上的切面图,提供第一晶圆30,所述第一晶圆30包括:第一半导体衬底14以及位于所述第一半导体衬底14表面的第一外延层15;所述第一外延层15具有多个与所述第一MOS单元10一一对应的第一器件区10’。First, as shown in FIG. 5 and FIG. 6, FIG. 5 is a top view of the first wafer provided by the embodiment of the present invention, and FIG. 6 is a sectional view of the first wafer shown in FIG.
然后,如图7所示,在所述第一器件区10’内形成所述第一源极13和所述第一栅极12;Then, as shown in Figure 7, the
最后,如图8所示,对所述第一半导体衬底14背离所述第一外延层15的表面进行减薄后,在该表面形成第一金属层,所述第一金属层包括多个与所述第一MOS单元10一一对应的所述第一漏极11。Finally, as shown in FIG. 8, after thinning the surface of the
在步骤S11中,在第二晶圆上形成多个第二MOS单元20的方法如图9-12所示,图9-图12为本发明实施例提供的一种形成第二MOS单元的工艺流程图,包括:In step S11, the method for forming multiple
首先,如图9和图10所示,图9为本发明实施例提供的第二晶圆的俯视图,图10为图9所示第二晶圆在NN’方向上的切面图,提供第二晶圆40,所述第二晶圆40包括:第二半导体衬底24以及位于所述第二半导体衬底24表面的第二外延层25;所述第二外延层25具有多个与所述第二MOS单元20一一对应的第二器件区20’。First, as shown in FIG. 9 and FIG. 10, FIG. 9 is a top view of the second wafer provided by the embodiment of the present invention, and FIG. 10 is a sectional view of the second wafer in the NN' direction shown in FIG.
然后,如图11所示,在所述第二器件区20’内形成所述第二源极23和所述第二栅极22;Then, as shown in Figure 11, the
最后,如图12所示,对所述第二半导体衬底24背离所述第二外延层25的表面进行减薄后,在该表面形成第二金属层,所述第二金属层包括多个与所述第二MOS单元20一一对应的所述第二漏极21。Finally, as shown in FIG. 12, after thinning the surface of the
如图13所示,图13为本发明实施例提供的第一晶圆和第二晶圆连接固定后的切面图,将第一MOS单元10和第二MOS单元20背对背相对连接固定,通过共晶键合或回流焊键合等方式将第一漏极11和第二漏极21相对连接固定,并通过切割沟道A分割形成如图3所示3D双MOS器件结构。该方式中,将第一晶圆和第二晶圆固定连接后,再进行分割,两个晶圆同时进行分割,仅需要一次切割工艺,即可同时分割两个晶圆,形成多个半导体器件,制作工艺简单,制作成本低。As shown in FIG. 13 , FIG. 13 is a cross-sectional view of the connection and fixation of the first wafer and the second wafer provided by the embodiment of the present invention. The
本发明实施例中,所述第一金属层和所述第二金属层可以为整层结构,可以通过共晶键合固定或是回流焊键合固定。其他方式中,在两晶圆连接固定前,可以通过刻蚀方式将第一金属层分割为多个分离的第一漏极,将第二金属层分割为多个分离的第二漏极,然后将第一漏极和第二漏极一一对应连接固定,该方式中,分割两晶圆时,由于第一金属层和第二金属层预先分割,仅分割晶圆,无需分割金属,避免了同时分割半导体材料与金属材料时,避免了金属材料的翘曲分离问题。In the embodiment of the present invention, the first metal layer and the second metal layer may have a whole-layer structure, and may be fixed by eutectic bonding or reflow soldering bonding. In other ways, before the two wafers are connected and fixed, the first metal layer can be divided into multiple separated first drains by etching, and the second metal layer can be divided into multiple separated second drains, and then The first drain and the second drain are connected and fixed in one-to-one correspondence. In this method, when the two wafers are divided, because the first metal layer and the second metal layer are divided in advance, only the wafer is divided, and there is no need to divide the metal, which avoids When the semiconductor material and the metal material are divided at the same time, the problem of warping and separation of the metal material is avoided.
通过上述描述可知,本发明技术方案提供的半导体器件的制作方法中,通过设计3D双MOS堆叠结构,将第一MOS单元和第二MOS单元相对连接固定,并通过共晶键合或回流焊键合等方式将第一漏极和第二漏极相对连接固定,使得双MOS漏端电流路径相互垂直。相对于现有技术,本发明技术方案不仅可以大幅度减小占用面积,还可以解决传统平面双MOS管电流路径90°转角导致的电流密度不均匀等问题,并且制作成本低,可靠性高。It can be seen from the above description that in the manufacturing method of the semiconductor device provided by the technical solution of the present invention, by designing a 3D double MOS stack structure, the first MOS unit and the second MOS unit are relatively connected and fixed, and are connected by eutectic bonding or reflow soldering. The first drain and the second drain are relatively connected and fixed in an equivalent manner, so that the current paths of the dual MOS drain terminals are perpendicular to each other. Compared with the prior art, the technical solution of the present invention can not only greatly reduce the occupied area, but also solve the problem of uneven current density caused by the 90° corner of the current path of the traditional planar double MOS tube, and has low manufacturing cost and high reliability.
本说明书中各个实施例采用递进、或并列、或递进和并列结合的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的制作方法而言,由于其与实施例公开的半导体器件相对应,所以描述的比较简单,相关之处参见半导体器件部分说明即可。Each embodiment in this specification is described in a progressive, parallel, or progressive and parallel manner. Each embodiment focuses on the differences from other embodiments. The same and similar parts between the various embodiments Just see it. As for the manufacturing method disclosed in the embodiment, since it corresponds to the semiconductor device disclosed in the embodiment, the description is relatively simple, and for related parts, please refer to the description of the semiconductor device.
需要说明的是,在本申请的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中设置的组件。It should be noted that, in the description of the present application, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", "top", "bottom", "inner" and "outer" are based on The orientation or positional relationship shown in the drawings is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as Limitations on this Application. When a component is said to be "connected" to another component, it may be directly connected to the other component or there may be a centered component at the same time.
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的物品或者设备中还存在另外的相同要素。It should also be noted that in this article, relational terms such as first and second etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations Any such actual relationship or order exists between. Moreover, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that an article or device comprising a set of elements includes not only those elements but also other elements not expressly listed, Or also include elements inherent in the article or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in an article or device comprising the aforementioned element.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the application. Therefore, the present application will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111234967.2A CN116013967A (en) | 2021-10-22 | 2021-10-22 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111234967.2A CN116013967A (en) | 2021-10-22 | 2021-10-22 | Semiconductor device and manufacturing method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116013967A true CN116013967A (en) | 2023-04-25 |
Family
ID=86021716
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111234967.2A Pending CN116013967A (en) | 2021-10-22 | 2021-10-22 | Semiconductor device and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116013967A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030001215A1 (en) * | 2001-10-02 | 2003-01-02 | Fraunhofer-Gesellschaft Zur Foerderung Derangewandten Forschung E.V. | Power MOS element and method for producing the same |
| JP2007258501A (en) * | 2006-03-24 | 2007-10-04 | Hitachi Ltd | Dielectric isolation type semiconductor device and manufacturing method thereof |
| US20080296675A1 (en) * | 2007-05-29 | 2008-12-04 | Sanyo Electric Co., Ltd. | Semiconductor device |
| US20090256196A1 (en) * | 2008-04-15 | 2009-10-15 | Qi Wang | Three-dimensional semiconductor device structures and methods |
| CN108447911A (en) * | 2018-03-09 | 2018-08-24 | 香港商莫斯飞特半导体股份有限公司 | Deep and shallow groove semiconductor power device and preparation method thereof |
| CN215911429U (en) * | 2021-10-22 | 2022-02-25 | 上海艾为电子技术股份有限公司 | Semiconductor device with a plurality of transistors |
-
2021
- 2021-10-22 CN CN202111234967.2A patent/CN116013967A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030001215A1 (en) * | 2001-10-02 | 2003-01-02 | Fraunhofer-Gesellschaft Zur Foerderung Derangewandten Forschung E.V. | Power MOS element and method for producing the same |
| JP2007258501A (en) * | 2006-03-24 | 2007-10-04 | Hitachi Ltd | Dielectric isolation type semiconductor device and manufacturing method thereof |
| US20080296675A1 (en) * | 2007-05-29 | 2008-12-04 | Sanyo Electric Co., Ltd. | Semiconductor device |
| US20090256196A1 (en) * | 2008-04-15 | 2009-10-15 | Qi Wang | Three-dimensional semiconductor device structures and methods |
| CN108447911A (en) * | 2018-03-09 | 2018-08-24 | 香港商莫斯飞特半导体股份有限公司 | Deep and shallow groove semiconductor power device and preparation method thereof |
| CN215911429U (en) * | 2021-10-22 | 2022-02-25 | 上海艾为电子技术股份有限公司 | Semiconductor device with a plurality of transistors |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12080652B2 (en) | Microelectronic assemblies with communication networks | |
| US12327827B2 (en) | Microelectronic assemblies | |
| US20250070083A1 (en) | Microelectronic assemblies | |
| US20240136323A1 (en) | Microelectronic assemblies | |
| US11335665B2 (en) | Microelectronic assemblies | |
| JP5217348B2 (en) | Semiconductor device | |
| TWI785809B (en) | Semiconductor devices and methods of manufacture | |
| TW201140800A (en) | Stackable power MOSFET, power MOSFET stack, and process of manufacture | |
| US11682605B2 (en) | Integrated circuit packages with asymmetric adhesion material regions | |
| EP3611762B1 (en) | Structures and methods for large integrated circuit dies | |
| US20200235061A1 (en) | Microelectronic assemblies | |
| TW202224119A (en) | Integrated circuit assemblies with direct chip attach to circuit boards | |
| JP5956736B2 (en) | Multilayer semiconductor device and manufacturing method thereof | |
| TW201234601A (en) | Vertical semiconductor device and manufacturing method therefor | |
| JP2005310921A (en) | MOS type semiconductor device and manufacturing method thereof | |
| CN215911429U (en) | Semiconductor device with a plurality of transistors | |
| CN116013967A (en) | Semiconductor device and manufacturing method thereof | |
| TW202412180A (en) | Sequential complimentary fet incorporating backside power distribution network through wafer bonding prior to formation of active devices | |
| CN116544227A (en) | Semiconductor devices and circuit devices | |
| CN116013855A (en) | Method for manufacturing semiconductor device | |
| CN210325796U (en) | Novel common-drain double MOSFET structure | |
| CN114975582A (en) | Semiconductor device with a plurality of semiconductor chips | |
| Rouger et al. | True 3D packaging solution for stacked vertical power devices | |
| US20240243198A1 (en) | Semiconductor device, methods of manufacturing semiconductor device, and semiconductor module |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |