CN116205277A - Event processing method and device, electronic device, computer readable medium - Google Patents
Event processing method and device, electronic device, computer readable medium Download PDFInfo
- Publication number
- CN116205277A CN116205277A CN202111451040.4A CN202111451040A CN116205277A CN 116205277 A CN116205277 A CN 116205277A CN 202111451040 A CN202111451040 A CN 202111451040A CN 116205277 A CN116205277 A CN 116205277A
- Authority
- CN
- China
- Prior art keywords
- event
- time step
- stream
- processing
- event stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
- G06F9/542—Event management; Broadcasting; Multicasting; Notifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Neurology (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本公开涉及计算机技术领域,特别涉及一种事件处理方法及装置、电子设备、计算机可读介质。The present disclosure relates to the field of computer technology, and in particular to an event processing method and device, electronic equipment, and a computer-readable medium.
背景技术Background technique
神经形态技术是指采用电子技术模拟生物中的神经系统结构,进行数据处理的一种技术。在相关技术中,可通过硬件电路(例如神经形态芯片)或软件系统实现神经形态模型(也可称为脉冲神经网络)。Neuromorphic technology refers to a technology that uses electronic technology to simulate the structure of the nervous system in organisms for data processing. In related technologies, a neuromorphic model (also known as a spiking neural network) can be implemented through a hardware circuit (such as a neuromorphic chip) or a software system.
在系统采用神经形态模型进行处理(例如进行脑仿真)时,通常要在运行前预先设置时间步长,以该时间步长为周期进行处理。该时间步长通常为定值,例如0.1ms,也即例如在脑仿真过程中每秒处理10000个生物时间拍。When the system uses a neuromorphic model for processing (such as brain simulation), it is usually necessary to pre-set the time step before running, and use this time step as the cycle for processing. The time step is usually a fixed value, such as 0.1 ms, that is, for example, 10,000 biological time beats are processed per second in the brain simulation process.
相关技术中,该时间步长需要设置得足够小,才能处理到所需的细节变化,会导致运算量过大;而如果设置较大的步长,则可能丢失细节,甚至无法保证处理的准确性和真实性。In the related technology, the time step needs to be set small enough to process the required detail changes, which will lead to an excessive amount of calculation; and if a larger step is set, the details may be lost, and even the accuracy of the processing cannot be guaranteed. sex and authenticity.
发明内容Contents of the invention
本公开提供一种基于众核系统的事件处理方法及装置、电子设备、计算机可读介质。The present disclosure provides a many-core system-based event processing method and device, electronic equipment, and a computer-readable medium.
第一方面,本公开提供了一种事件处理方法,该方法包括:In a first aspect, the present disclosure provides an event processing method, which includes:
获取待处理的事件流;对所述事件流进行事件检测,确定所述事件流当前的事件检测结果;根据所述事件检测结果,调整对所述事件流进行处理的时间步长;采用所述时间步长对所述事件流进行处理,得到所述事件流的处理结果。Obtain the event stream to be processed; perform event detection on the event stream, and determine the current event detection result of the event stream; adjust the time step for processing the event stream according to the event detection result; adopt the The time step processes the event flow to obtain a processing result of the event flow.
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,其中,所述根据所述事件检测结果,调整对所述事件流进行处理的时间步长,包括:在所述事件流中检测到事件信息的情况下,将所述时间步长调整为第二时间步长,所述第二时间步长小于初始的第一时间步长。In some possible implementation manners, the event detection result includes information about whether an event is detected in the event flow, wherein the adjusting the time step for processing the event flow according to the event detection result includes : When event information is detected in the event stream, adjust the time step to a second time step, where the second time step is smaller than the initial first time step.
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,其中,所述根据所述事件检测结果,调整对所述事件流进行处理的时间步长,包括:在所述事件流中未检测到事件信息,且当前的时间步长为第二时间步长情况下,将所述时间步长调整为初始的第一时间步长,所述第二时间步长小于所述第一时间步长。In some possible implementation manners, the event detection result includes information about whether an event is detected in the event flow, wherein the adjusting the time step for processing the event flow according to the event detection result includes : When no event information is detected in the event flow, and the current time step is the second time step, adjust the time step to the initial first time step, and the second time step is shorter than the first time step.
在一些可能的实现方式中,所述事件流包括多个区域,所述事件检测结果包括所述事件流的各个区域中是否检测到事件信息,其中,所述根据所述事件检测结果,调整对所述事件流进行处理的时间步长,包括:In some possible implementation manners, the event stream includes multiple areas, and the event detection result includes whether an event is detected in each area of the event stream, wherein, according to the event detection result, adjusting the The time step in which the event stream is processed, including:
在所述多个区域中存在目标区域的情况下,将所述目标区域的时间步长调整为第二时间步长,所述目标区域为检测到事件信息的区域,所述第二时间步长小于初始的第一时间步长。If there is a target area in the plurality of areas, adjust the time step of the target area to a second time step, the target area is an area where event information is detected, and the second time step smaller than the initial first time step.
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,以及所述事件流的事件密度,其中,所述根据所述事件检测结果,调整对所述事件流进行处理的时间步长,包括:在所述事件流中检测到事件信息的情况下,根据所述事件密度调整所述时间步长,In some possible implementation manners, the event detection result includes information about whether an event is detected in the event flow, and the event density of the event flow, wherein, according to the event detection result, the adjustment to the event A time step for stream processing, including: adjusting the time step according to the event density when event information is detected in the event stream,
其中,根据所述事件密度调整所述时间步长,包括:在所述事件密度大于或等于第一密度阈值,且小于或等于第二密度阈值的情况下,将所述时间步长调整为第二时间步长,所述第二密度阈值大于所述第一密度阈值,所述第二时间步长小于初始的第一时间步长;或在所述事件密度大于第二密度阈值的情况下,将所述时间步长调整为第三时间步长,所述第三时间步长小于所述第二时间步长。Wherein, adjusting the time step according to the event density includes: when the event density is greater than or equal to a first density threshold and less than or equal to a second density threshold, adjusting the time step to the second density threshold Two time steps, the second density threshold is greater than the first density threshold, the second time step is smaller than the initial first time step; or in the case where the event density is greater than the second density threshold, The time step is adjusted to a third time step, the third time step being smaller than the second time step.
在一些可能的实现方式中,所述对所述事件流进行事件检测,确定所述事件流当前的事件检测结果,包括:对所述事件流进行事件检测,确定所述事件流当前的事件密度;在所述事件密度大于或等于第三密度阈值的情况下,确定所述事件检测结果为:所述事件流中检测到事件信息。In some possible implementation manners, the performing event detection on the event flow and determining the current event detection result of the event flow includes: performing event detection on the event flow and determining the current event density of the event flow ; In a case where the event density is greater than or equal to a third density threshold, determining that the event detection result is: event information is detected in the event flow.
在一些可能的实现方式中,所述对所述事件流进行事件检测,确定所述事件流当前的事件检测结果,包括:根据预设的时长,将所述事件流划分为多个事件帧;通过事件检测网络对所述事件流的当前事件帧进行事件检测,得到所述事件检测结果。In some possible implementation manners, the performing event detection on the event flow and determining the current event detection result of the event flow includes: dividing the event flow into multiple event frames according to a preset duration; An event detection is performed on the current event frame of the event flow through an event detection network to obtain the event detection result.
在一些可能的实现方式中,所述采用所述时间步长对所述事件流进行处理,得到所述事件流的处理结果,包括:采用所述时间步长,通过脉冲神经网络对所述事件流进行脑仿真处理,得到所述脉冲神经网络针对所述事件流的响应信息,所述处理结果包括所述响应信息,其中,脑仿真中神经元参数的差分表达式根据所述时间步长进行调整。In some possible implementation manners, the processing the event flow by using the time step to obtain the processing result of the event flow includes: using the time step to process the event through a spiking neural network The flow is subjected to brain simulation processing to obtain the response information of the spiking neural network for the event flow, and the processing result includes the response information, wherein the differential expression of the neuron parameters in the brain simulation is performed according to the time step Adjustment.
在一些可能的实现方式中,所述事件流是事件采集设备采集的、目标场景的事件流,所述事件流用于表征所述目标场景的亮度变化信息。In some possible implementation manners, the event stream is an event stream of a target scene collected by an event collection device, and the event stream is used to represent brightness change information of the target scene.
第二方面,本公开提供了一种事件处理装置,该装置包括:In a second aspect, the present disclosure provides an event processing device, which includes:
事件流获取模块,用于获取待处理的事件流;事件检测模块,用于对所述事件流进行事件检测,确定所述事件流当前的事件检测结果;步长调整模块,用于根据所述事件检测结果,调整对所述事件流进行处理的时间步长;事件流处理模块,用于采用所述时间步长对所述事件流进行处理,得到所述事件流的处理结果。The event flow obtaining module is used to obtain the event flow to be processed; the event detection module is used to perform event detection on the event flow and determine the current event detection result of the event flow; the step adjustment module is used to The event detection result is used to adjust the time step for processing the event flow; the event flow processing module is used to process the event flow by using the time step to obtain the processing result of the event flow.
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,其中,所述步长调整模块,用于:在所述事件流中检测到事件信息的情况下,将所述时间步长调整为第二时间步长,所述第二时间步长小于初始的第一时间步长。In some possible implementation manners, the event detection result includes whether event information is detected in the event stream, wherein the step adjustment module is configured to: if event information is detected in the event stream , adjusting the time step to a second time step, the second time step being smaller than the initial first time step.
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,其中,所述步长调整模块,用于:在所述事件流中未检测到事件信息,且当前的时间步长为第二时间步长情况下,将所述时间步长调整为初始的第一时间步长,所述第二时间步长小于所述第一时间步长。In some possible implementation manners, the event detection result includes whether event information is detected in the event stream, wherein the step adjustment module is configured to: no event information is detected in the event stream, and When the current time step is the second time step, the time step is adjusted to the initial first time step, and the second time step is smaller than the first time step.
在一些可能的实现方式中,所述事件流包括多个区域,所述事件检测结果包括所述事件流的各个区域中是否检测到事件信息,其中,所述步长调整模块,用于:在所述多个区域中存在目标区域的情况下,将所述目标区域的时间步长调整为第二时间步长,所述目标区域为检测到事件信息的区域,所述第二时间步长小于初始的第一时间步长。In some possible implementation manners, the event stream includes multiple areas, and the event detection result includes whether an event is detected in each area of the event stream, wherein the step adjustment module is configured to: When there is a target area in the plurality of areas, adjust the time step of the target area to a second time step, the target area is an area where event information is detected, and the second time step is less than The initial first time step.
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,以及所述事件流的事件密度,其中,所述步长调整模块包括:调整子模块,用于在所述事件流中检测到事件信息的情况下,根据所述事件密度调整所述时间步长,In some possible implementation manners, the event detection result includes whether event information is detected in the event flow, and the event density of the event flow, wherein the step adjustment module includes: an adjustment submodule configured to in case event information is detected in the event stream, adjusting the time step according to the event density,
其中,所述调整子模块,用于:在所述事件密度大于或等于第一密度阈值,且小于或等于第二密度阈值的情况下,将所述时间步长调整为第二时间步长,所述第二密度阈值大于所述第一密度阈值,所述第二时间步长小于初始的第一时间步长;或在所述事件密度大于第二密度阈值的情况下,将所述时间步长调整为第三时间步长,所述第三时间步长小于所述第二时间步长。Wherein, the adjustment submodule is configured to: adjust the time step to a second time step when the event density is greater than or equal to a first density threshold and less than or equal to a second density threshold, The second density threshold is greater than the first density threshold, and the second time step is smaller than the initial first time step; or if the event density is greater than the second density threshold, the time step is The length is adjusted to a third time step, and the third time step is smaller than the second time step.
在一些可能的实现方式中,所述事件检测模块,用于:对所述事件流进行事件检测,确定所述事件流当前的事件密度;在所述事件密度大于或等于第三密度阈值的情况下,确定所述事件检测结果为:所述事件流中检测到事件信息。In some possible implementations, the event detection module is configured to: perform event detection on the event flow, and determine the current event density of the event flow; when the event density is greater than or equal to a third density threshold Next, it is determined that the event detection result is: event information is detected in the event flow.
在一些可能的实现方式中,所述事件检测模块,用于:根据预设的时长,将所述事件流划分为多个事件帧;通过事件检测网络对所述事件流的当前事件帧进行事件检测,得到所述事件检测结果。In some possible implementations, the event detection module is configured to: divide the event stream into multiple event frames according to a preset duration; Detect to obtain the event detection result.
在一些可能的实现方式中,所述事件流处理模块,用于:采用所述时间步长,通过脉冲神经网络对所述事件流进行脑仿真处理,得到所述脉冲神经网络针对所述事件流的响应信息,所述处理结果包括所述响应信息,其中,脑仿真中神经元参数的差分表达式根据时间步长进行调整。In some possible implementation manners, the event flow processing module is configured to: use the time step to perform brain simulation processing on the event flow through the spiking neural network, and obtain the The response information of the processing result includes the response information, wherein the differential expressions of the neuron parameters in the brain simulation are adjusted according to the time step.
在一些可能的实现方式中,所述事件流是事件采集设备采集的、目标场景的事件流,所述事件流用于表征所述目标场景的亮度变化信息。In some possible implementation manners, the event stream is an event stream of a target scene collected by an event collection device, and the event stream is used to represent brightness change information of the target scene.
第三方面,本公开提供了一种电子设备,该电子设备包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的一个或多个计算机程序,一个或多个所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的事件处理方法。In a third aspect, the present disclosure provides an electronic device, which includes: at least one processor; and a memory communicated with the at least one processor; wherein, the memory stores information that can be processed by the at least one processor. One or more computer programs executed by the processor, and one or more computer programs are executed by the at least one processor, so that the at least one processor can execute the above event processing method.
第四方面,本公开提供了一种计算机可读介质,其上存储有计算机程序,其中,所述计算机程序在被处理器执行时实现上述的事件处理方法。In a fourth aspect, the present disclosure provides a computer-readable medium on which a computer program is stored, wherein the computer program implements the above-mentioned event processing method when executed by a processor.
本公开所提供的实施例,能够对事件流进行事件检测,以确定事件检测结果;根据事件检测结果,调整对事件流处理的时间步长;采用该时间步长对事件流进行处理,得到处理结果,从而实现时间步长的动态调整,在保证处理的准确性及真实性的基础上,减少整个处理过程中的运算量。The embodiment provided by the present disclosure can perform event detection on the event flow to determine the event detection result; adjust the time step for processing the event flow according to the event detection result; use the time step to process the event flow to obtain the processed As a result, the dynamic adjustment of the time step is realized, and the calculation amount in the whole processing process is reduced on the basis of ensuring the accuracy and authenticity of the processing.
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that what is described in this section is not intended to identify key or important features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will be readily understood through the following description.
附图说明Description of drawings
附图用来提供对本公开的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其他特征和优点对本领域技术人员将变得更加显而易见,在附图中:The accompanying drawings are used to provide a further understanding of the present disclosure, and constitute a part of the specification, and are used together with the embodiments of the present disclosure to explain the present disclosure, and do not constitute a limitation to the present disclosure. The above and other features and advantages will become more apparent to those skilled in the art by describing detailed example embodiments with reference to the accompanying drawings, in which:
图1为本公开实施例提供的一种事件处理方法的流程图;FIG. 1 is a flowchart of an event processing method provided by an embodiment of the present disclosure;
图2为本公开实施例提供的一种事件处理方法的处理过程的示意图;FIG. 2 is a schematic diagram of a processing process of an event processing method provided by an embodiment of the present disclosure;
图3为本公开实施例提供的一种事件处理装置的框图;FIG. 3 is a block diagram of an event processing device provided by an embodiment of the present disclosure;
图4为本公开实施例提供的一种电子设备的框图。Fig. 4 is a block diagram of an electronic device provided by an embodiment of the present disclosure.
具体实施方式Detailed ways
为使本领域的技术人员更好地理解本公开的技术方案,以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。In order for those skilled in the art to better understand the technical solution of the present disclosure, the exemplary embodiments of the present disclosure are described below in conjunction with the accompanying drawings, which include various details of the embodiments of the present disclosure to facilitate understanding, and they should be considered exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the disclosure. Also, descriptions of well-known functions and constructions are omitted in the following description for clarity and conciseness.
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。In the case of no conflict, various embodiments of the present disclosure and various features in the embodiments can be combined with each other.
如本文所使用的,术语“和/或”包括一个或多个相关列举条目的任何和所有组合。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
本文所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。The terminology used herein is for describing particular embodiments only and is not intended to limit the present disclosure. As used herein, the singular forms "a" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that when the terms "comprising" and/or "consisting of" are used in this specification, the stated features, integers, steps, operations, elements and/or components are specified to be present but not excluded to be present or Add one or more other features, integers, steps, operations, elements, components and/or groups thereof. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art. It will also be understood that terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with their meanings in the context of the relevant art and the present disclosure, and will not be interpreted as having idealized or excessive formal meanings, Unless expressly so limited herein.
如前所述,在相关技术中,采用神经形态模型进行处理(例如进行脑仿真)时,会在运行前预先设置固定的时间步长,导致可能出现运算量过大,或细节丢失的情况。As mentioned above, in related technologies, when neuromorphic models are used for processing (such as brain simulation), a fixed time step is preset before running, which may lead to excessive calculation or loss of details.
然而,神经形态模型中的神经元是通过事件进行驱动的,也即神经元在有输入事件时才启动计算,系统通常更关注的是神经元接收到输入(刺激)后的响应。However, the neurons in the neuromorphic model are driven by events, that is, the neurons start computing when there is an input event, and the system usually pays more attention to the response of the neuron after receiving the input (stimulus).
根据本公开实施例的事件处理方法,能够在对输入信息(例如事件流)进行处理期间动态调整时间步长,在接收到刺激信号时,采用较细致的时间步长,以提高处理的精度;在无输入或无刺激信号(也可称为感兴趣的信号)时,采用较粗的时间步长,以减少系统的运算量,从而在保证处理的准确性及真实性的基础上,减少了整个处理过程中的运算量。According to the event processing method of the embodiment of the present disclosure, the time step can be dynamically adjusted during the processing of input information (such as event flow), and when a stimulus signal is received, a finer time step can be adopted to improve the processing accuracy; When there is no input or no stimulus signal (also known as the signal of interest), a coarser time step is used to reduce the amount of calculation of the system, thereby reducing the processing time while ensuring the accuracy and authenticity of the processing. The amount of calculations during the entire processing.
根据本公开实施例的事件处理方法可以由终端设备或服务器等电子设备执行,终端设备可以为车载设备、用户设备(User Equipment,UE)、移动设备、用户终端、终端、蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、手持设备、计算设备、车载设备、可穿戴设备等,所述方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。或者,可通过服务器执行所述方法。The event processing method according to the embodiments of the present disclosure may be executed by electronic devices such as terminal devices or servers, and the terminal devices may be vehicle-mounted devices, user equipment (User Equipment, UE), mobile devices, user terminals, terminals, cellular phones, cordless phones, For a personal digital assistant (Personal Digital Assistant, PDA), a handheld device, a computing device, a vehicle-mounted device, a wearable device, etc., the method can be realized by calling a computer-readable instruction stored in a memory by a processor. Alternatively, the method may be performed by a server.
图1为本公开实施例提供的一种事件处理方法的流程图。参照图1,该方法包括:FIG. 1 is a flowchart of an event processing method provided by an embodiment of the present disclosure. Referring to Figure 1, the method includes:
在步骤S11中,获取待处理的事件流;In step S11, obtain the event flow to be processed;
在步骤S12中,对所述事件流进行事件检测,确定所述事件流当前的事件检测结果;In step S12, event detection is performed on the event flow, and the current event detection result of the event flow is determined;
在步骤S13中,根据所述事件检测结果,调整对所述事件流进行处理的时间步长;In step S13, adjusting the time step for processing the event flow according to the event detection result;
在步骤S14中,采用所述时间步长对所述事件流进行处理,得到所述事件流的处理结果。In step S14, the event flow is processed by using the time step to obtain a processing result of the event flow.
举例来说,可在步骤S11中获取待处理的事件流,该事件流可以是具有空间信息和时间信息的脉冲信号(或称为脉冲串)。例如,该事件流对应于M*N个空间位置(M、N为大于1的整数),每个空间位置具有随时间t产生的脉冲信号。脉冲信号可以为二值的0,1序列,也可以为三值的-1,0,1序列,本公开对的脉冲信号的具体表示形式不作限制。For example, the event stream to be processed may be obtained in step S11, and the event stream may be a pulse signal (or called a pulse train) with spatial information and time information. For example, the event flow corresponds to M*N spatial positions (M, N are integers greater than 1), and each spatial position has a pulse signal generated with time t. The pulse signal can be a binary sequence of 0,1, or a three-valued sequence of -1,0,1, and the present disclosure does not limit the specific expression form of the pulse signal.
在一些可能的实现方式中,事件流可以是事件采集设备采集的、目标场景的事件流,该事件流用于表征所述目标场景的亮度变化信息。In some possible implementation manners, the event stream may be an event stream of a target scene collected by an event collection device, and the event stream is used to represent brightness change information of the target scene.
其中,目标场景可以是包括建筑、风景、人物、车辆等对应的地理区域的场景。事件采集设备可例如为事件相机(Event Camera),其能够采集到高时间频率的异步亮度变化(也即事件(Event)),输出流形式的事件数据(事件流)。Wherein, the target scene may be a scene including geographic areas corresponding to buildings, scenery, people, vehicles, and the like. The event collection device can be, for example, an event camera (Event Camera), which can collect asynchronous brightness changes (ie events (Event)) with a high temporal frequency, and output event data in stream form (event stream).
在一些可能的实现方式中,可对事件采集设备采集的初始事件流进行二值化或三值化处理,得到待处理的事件流,本公开对具体的处理方式不作限制。In some possible implementation manners, the initial event flow collected by the event collection device may be binarized or trivaluated to obtain the event flow to be processed, and the disclosure does not limit the specific processing manner.
本领域技术人员应当理解,待处理的事件流也可以为具有其他物理含义的、流形式的任意事件数据,例如语音、文本等等,本公开对事件流的具体内容不作限制。Those skilled in the art should understand that the event stream to be processed may also be any event data in stream form with other physical meanings, such as voice, text, etc., and the disclosure does not limit the specific content of the event stream.
在一些可能的实现方式中,在步骤S12中,可对事件流进行事件检测,确定事件流当前的事件检测结果。该事件检测结果包括事件流中是否检测到事件信息,即检测到事件信息或未检测到事件信息。本公开对事件检测的具体方式不作限制。In some possible implementation manners, in step S12, event detection may be performed on the event stream, and a current event detection result of the event stream may be determined. The event detection result includes whether event information is detected in the event flow, that is, event information is detected or no event information is detected. The present disclosure does not limit the specific manner of event detection.
在一些可能的实现方式中,可实时统计事件流中事件信息的密度,例如,计算当前的事件流的M*N个空间位置中,有事件信息(例如取值为1)的位置在所有空间位置中的比例,作为事件密度;在事件密度大于或等于预设的密度阈值时,确定为检测到事件信息;反之,在事件密度小于密度阈值时,确定为未检测到事件信息。In some possible implementations, the density of event information in the event stream can be counted in real time, for example, among the M*N spatial positions of the current event stream, the positions with event information (for example, a value of 1) are in all spaces The proportion in the position is used as the event density; when the event density is greater than or equal to the preset density threshold, it is determined that the event information is detected; otherwise, when the event density is less than the density threshold, it is determined that the event information is not detected.
在一些可能的实现方式中,也可预先训练相应的事件检测网络,将当前的事件流输入到事件检测网络进行分类,确定是否检测到事件信息。该事件检测网络例如为卷积神经网络或脉冲神经网络等,本公开对此不作限制。In some possible implementation manners, the corresponding event detection network may also be pre-trained, and the current event flow is input to the event detection network for classification to determine whether event information is detected. The event detection network is, for example, a convolutional neural network or a spiking neural network, which is not limited in the present disclosure.
在一些可能的实现方式中,在步骤S13中,可根据事件检测结果,调整系统对事件流进行处理的时间步长。例如,可在开始运行时,采用较大的时间步长;在检测到事件信息后,调整为较小的时间步长;在事件信息结束后,在调整回到较大的时间步长;还可根据事件信息的数量/密度等,设置多个档位的时间步长,本公开对具体的调整方式不作限制。In some possible implementation manners, in step S13, the time step for the system to process the event flow may be adjusted according to the event detection result. For example, you can use a larger time step at the beginning of the run; adjust to a smaller time step after the event information is detected; adjust back to a larger time step after the event information ends; The time steps of multiple gears can be set according to the quantity/density of event information, etc., and the present disclosure does not limit the specific adjustment method.
在一些可能的实现方式中,在步骤S14中,系统可采用上述的时间步长对事件流进行处理,例如进行脑仿真,得到事件流的处理结果,从而实现相应的处理任务。In some possible implementation manners, in step S14, the system may process the event flow by using the above-mentioned time step, for example, perform brain simulation to obtain a processing result of the event flow, so as to realize corresponding processing tasks.
图2为本公开实施例提供的一种事件处理方法的处理过程的示意图。参照图2,可设置有事件检测组件21和事件流处理组件22,分别用于进行事件检测和事件流处理。事件检测组件21和事件流处理组件22可以为硬件模块或软件模块,本公开对此不作限制。FIG. 2 is a schematic diagram of a processing process of an event processing method provided by an embodiment of the present disclosure. Referring to FIG. 2 , an
在示例中,输入的事件流23可分别输入到事件检测组件21和事件流处理组件22中。事件检测组件21对事件流23进行事件检测,确定事件检测结果;根据事件检测结果调整时间步长;并向事件流处理组件22发送该时间步长。事件流处理组件22采用该时间步长对事件流23进行处理,输出相应的处理结果24,从而实现整个调整及处理过程。In an example, the
根据本公开的实施例,能够对事件流进行事件检测,以确定事件检测结果;根据事件检测结果,调整对事件流处理的时间步长;采用该时间步长对事件流进行处理,得到处理结果,从而实现时间步长的动态调整,在保证处理的准确性及真实性的基础上,减少了整个处理过程中的运算量。According to the embodiments of the present disclosure, event detection can be performed on the event flow to determine the event detection result; according to the event detection result, the time step for processing the event flow can be adjusted; the event flow can be processed using the time step to obtain the processing result , so as to realize the dynamic adjustment of the time step, and reduce the calculation amount in the whole processing process on the basis of ensuring the accuracy and authenticity of the processing.
下面对根据本公开实施例的事件处理方法进行展开说明。The event processing method according to the embodiment of the present disclosure will be described below.
如前所述,可在步骤S11中获取待处理的事件流;并在步骤S12中对事件流进行事件检测。As mentioned above, the event flow to be processed can be obtained in step S11; and event detection is performed on the event flow in step S12.
在一些可能的实现方式中,步骤S12可包括:In some possible implementations, step S12 may include:
对所述事件流进行事件检测,确定所述事件流当前的事件密度;performing event detection on the event flow, and determining the current event density of the event flow;
在所述事件密度大于或等于第三密度阈值的情况下,确定所述事件检测结果为:所述事件流中检测到事件信息。In a case where the event density is greater than or equal to a third density threshold, it is determined that the event detection result is: event information is detected in the event flow.
举例来说,可通过统计的方式进行事件检测。例如,实时统计事件流中事件信息的密度,计算当前的事件流的M*N个空间位置中,有事件信息(例如取值为1和/或-1)的位置在所有空间位置中的比例,作为事件密度。For example, event detection can be done statistically. For example, calculate the density of event information in the event stream in real time, and calculate the ratio of the positions with event information (such as 1 and/or -1) in all spatial positions among the M*N spatial positions of the current event stream , as the event density.
在一些可能的实现方式中,也可选取一定长度的事件流,例如当前时间点前后一定时长内的事件数据,统计该事件数据中的事件信息的比例,作为事件密度。In some possible implementations, an event stream of a certain length may also be selected, such as event data within a certain period of time before and after the current time point, and the proportion of event information in the event data is counted as the event density.
在一些可能的实现方式中,还可为不同的空间位置设定不同的权重,例如M*N个空间位置中感兴趣区域的权重较大,其他区域的权重较小,对各个空间位置的事件信息进行加权求和后,确定出事件流的事件密度。In some possible implementations, different weights can also be set for different spatial positions. For example, the weight of the region of interest in the M*N spatial positions is larger, and the weight of other regions is smaller. Events at each spatial position After the information is weighted and summed, the event density of the event flow is determined.
在一些可能的实现方式中,还可将M*N个空间位置划分为多个区域,分别统计各个区域的事件密度。本公开对具体的统计方式不作限制。In some possible implementation manners, the M*N spatial locations may also be divided into multiple regions, and the event density of each region is counted separately. The present disclosure does not limit the specific statistical methods.
在一些可能的实现方式中,还可设定感兴趣的事件信息,例如将事件流中取值为1的脉冲信号作为感兴趣的事件信息,忽略取值为-1的脉冲信号,以使统计出的事件密度为感兴趣的事件信息的密度,使得事件检测更有针对性,从而进一步提高事件检测的效果。In some possible implementations, the event information of interest can also be set, for example, the pulse signal with a value of 1 in the event stream is used as the event information of interest, and the pulse signal with a value of -1 is ignored, so that the statistics The event density obtained is the density of event information of interest, which makes event detection more targeted, thereby further improving the effect of event detection.
在一些可能的实现方式中,如果事件密度大于或等于预设的密度阈值(称为第三密度阈值),则可确定事件检测结果为:事件流中检测到事件信息。反之,可确定事件检测结果为:事件流中未检测到事件信息。本公开对第三密度阈值的具体取值不作限制。In some possible implementation manners, if the event density is greater than or equal to a preset density threshold (called a third density threshold), it may be determined that the event detection result is: event information is detected in the event flow. On the contrary, it can be determined that the event detection result is: no event information is detected in the event flow. The present disclosure does not limit the specific value of the third density threshold.
在一些可能的实现方式中,在分区域统计事件密度的情况下,可分别确定出各个区域是否检测到事件信息,也即事件检测结果包括各个区域是否检测到事件信息。In some possible implementation manners, in the case of counting the event density by region, it may be determined whether event information is detected in each region, that is, the event detection result includes whether event information is detected in each region.
通过这种方式,能够以简单的方式检测出事件流中是否存在事件信息,提高了检测的灵活性,同时减少检测的计算量。In this way, whether there is event information in the event stream can be detected in a simple manner, which improves the flexibility of detection and reduces the calculation amount of detection.
在一些可能的实现方式中,在步骤S12中对事件流进行事件检测,还可包括:In some possible implementation manners, performing event detection on the event flow in step S12 may also include:
根据预设的时长,将所述事件流划分为多个事件帧;Dividing the event stream into multiple event frames according to a preset duration;
通过事件检测网络对所述事件流的当前事件帧进行事件检测,得到所述事件检测结果。An event detection is performed on the current event frame of the event flow through an event detection network to obtain the event detection result.
举例来说,可通过神经网络的方式进行事件检测。根据预设的时长,将事件流划分为多个事件帧。该时长可例如设定为事件流的采样时长,提高处理的实时性;也可设定为多个采样时长,以提高处理的鲁棒性。本公开对该时长的具体取值不作限制。For example, event detection can be performed by means of neural networks. Divide the event stream into multiple event frames according to preset duration. The duration can be set, for example, as the sampling duration of the event stream to improve the real-time performance of the processing; it can also be set as multiple sampling durations to improve the robustness of the processing. The present disclosure does not limit the specific value of the duration.
在一些可能的实现方式中,可将事件流的当前事件帧输入到预先训练的事件检测网络中处理,分类出事件流是否处于有输入的时期,输出事件检测结果,也即事件流中是否检测到事件信息。In some possible implementations, the current event frame of the event stream can be input into the pre-trained event detection network for processing, classify whether the event stream is in the input period, and output the event detection result, that is, whether the event stream detects to event information.
其中,该事件检测网络例如为卷积神经网络或脉冲神经网络等,本公开对事件检测网络的具体网络结构及训练方式均不作限制。Wherein, the event detection network is, for example, a convolutional neural network or a spiking neural network, and the present disclosure does not limit the specific network structure and training methods of the event detection network.
通过这种方式,能够提高事件检测的准确性。In this way, the accuracy of event detection can be improved.
在一些可能的实现方式中,在步骤S12中确定事件检测结果后,可在步骤S13中,根据事件检测结果,调整对事件流进行处理的时间步长。In some possible implementation manners, after the event detection result is determined in step S12, the time step for processing the event flow may be adjusted in step S13 according to the event detection result.
在一些可能的实现方式中,步骤S13可包括:In some possible implementations, step S13 may include:
在所述事件流中检测到事件信息的情况下,将所述时间步长调整为第二时间步长,所述第二时间步长小于初始的第一时间步长。In case event information is detected in the event stream, the time step is adjusted to a second time step, the second time step being smaller than the initial first time step.
也就是说,如果事件流中检测到事件信息,则可将对事件流进行处理的时间步长调整为较小的时间步长(称为第二时间步长)。该第二时间步长小于系统初始运行时的时间步长(称为第一时间步长),例如,第一时间步长为10ms,第二时间步长为0.1ms。That is, if event information is detected in the event stream, the time step for processing the event stream may be adjusted to a smaller time step (called the second time step). The second time step is smaller than the time step when the system is initially running (referred to as the first time step), for example, the first time step is 10 ms, and the second time step is 0.1 ms.
应当理解,本领域技术人员可根据实际情况设定第一时间步长和第二时间步长,本公开对第一时间步长和第二时间步长的具体取值,以及时间步长的具体调整方式均不作限制。It should be understood that those skilled in the art can set the first time step and the second time step according to the actual situation. The specific values of the first time step and the second time step in this disclosure, as well as the specific The adjustment methods are not limited.
通过这种方式,能够在有事件信息时采用较细致的时间步长,从而提高处理的精度。In this way, a finer time step can be used when there is event information, thereby improving the processing accuracy.
在一些可能的实现方式中,步骤S13可包括:In some possible implementations, step S13 may include:
在所述事件流中未检测到事件信息,且当前的时间步长为第二时间步长情况下,将所述时间步长调整为初始的第一时间步长,所述第二时间步长小于所述第一时间步长。When no event information is detected in the event flow, and the current time step is the second time step, adjust the time step to the initial first time step, and the second time step less than the first time step.
也就是说,如果事件流中未检测到事件信息,则可根据当前的时间步长进行调整。如果当前的时间步长已经为较大的第一时间步长,则不进行调整;如果当前的时间步长为较小的第二时间步长,则将时间步长调整回到较大的第一时间步长。That is, if no event information is detected in the event stream, it can be adjusted according to the current time step. If the current time step is already the larger first time step, no adjustment is made; if the current time step is the smaller second time step, the time step is adjusted back to the larger second time step A time step.
通过这种方式,能够减少无事件信息期间的计算量。In this way, it is possible to reduce the amount of calculation during the period of no event information.
在一些可能的实现方式中,步骤S13可包括:In some possible implementations, step S13 may include:
在所述多个区域中存在目标区域的情况下,将所述目标区域的时间步长调整为第二时间步长,所述目标区域为检测到事件信息的区域,所述第二时间步长小于初始的第一时间步长。If there is a target area in the plurality of areas, adjust the time step of the target area to a second time step, the target area is an area where event information is detected, and the second time step smaller than the initial first time step.
举例来说,事件流可包括多个区域,例如将事件流的M*N个空间位置划分为3*3的9个区域。在步骤S12中,分别确定各个区域是否检测到事件信息,也即事件流的事件检测结果包括事件流的各个区域中是否检测到事件信息。本公开对具体的检测方式不作限制。For example, the event stream may include multiple regions, for example, divide M*N spatial positions of the event stream into 9 regions of 3*3. In step S12, it is determined whether event information is detected in each area, that is, the event detection result of the event stream includes whether event information is detected in each area of the event stream. The present disclosure does not limit the specific detection method.
在一些可能的实现方式中,可将检测到事件信息的区域作为目标区域,可能的情况是该目标区域存在运动的物体,例如场地中滚动的足球、街道上行驶的车辆等;而其他区域的物体保持不动。In some possible implementations, the area where the event information is detected can be used as the target area. It is possible that there are moving objects in the target area, such as footballs rolling in the field, vehicles driving on the street, etc.; Objects remain motionless.
在一些可能的实现方式中,如果事件流的多个区域中存在目标区域,则将对事件流的目标区域进行处理的时间步长,调整为较小的第二时间步长,其他区域的时间步长则不进行调整,仍为较大的第一时间步长。反之,如果多个区域中不存在目标区域,则将对整个事件流处理的时间步长调整为较大的第一时间步长。In some possible implementations, if there are target regions in multiple regions of the event flow, the time step for processing the target region of the event flow is adjusted to a smaller second time step, and the time for other regions The step size is not adjusted and remains the larger first time step. Conversely, if the target region does not exist in multiple regions, the time step of the entire event stream processing is adjusted to the larger first time step.
通过这种方式,能够更细致地调整对事件流处理的时间步长,提高步长调整的精确性,进一步减少系统的计算量。In this way, the time step of event stream processing can be adjusted in more detail, the accuracy of step adjustment can be improved, and the calculation amount of the system can be further reduced.
在一些可能的实现方式中,事件检测结果包括所述事件流中是否检测到事件信息,以及所述事件流的事件密度,其中,步骤S13可包括:In some possible implementations, the event detection result includes whether event information is detected in the event flow, and the event density of the event flow, where step S13 may include:
在所述事件流中检测到事件信息的情况下,根据所述事件密度调整所述时间步长,in case event information is detected in the event stream, adjusting the time step according to the event density,
其中,根据所述事件密度调整所述时间步长的步骤,包括:Wherein, the step of adjusting the time step according to the event density includes:
在所述事件密度大于或等于第一密度阈值,且小于或等于第二密度阈值的情况下,将所述时间步长调整为第二时间步长,所述第二密度阈值大于所述第一密度阈值,所述第二时间步长小于初始的第一时间步长;或When the event density is greater than or equal to a first density threshold and less than or equal to a second density threshold, the time step is adjusted to a second time step, and the second density threshold is greater than the first a density threshold, the second time step being smaller than the initial first time step; or
在所述事件密度大于第二密度阈值的情况下,将所述时间步长调整为第三时间步长,所述第三时间步长小于所述第二时间步长。If the event density is greater than a second density threshold, the time step is adjusted to a third time step, and the third time step is smaller than the second time step.
举例来说,事件检测结果还可包括事件流的事件密度,以便设定时间步长调整的多个档位,从而进行更精细化的调整。For example, the event detection result can also include the event density of the event flow, so as to set multiple levels of time step adjustment, so as to perform finer adjustment.
在一些可能的实现方式中,如果事件流中检测到事件信息,则可根据事件密度调整时间步长。可预先设定有事件密度的多个密度阈值,例如第一密度阈值和第二密度阈值,第二密度阈值(例如取值为0.3)大于所述第一密度阈值(例如取值为0.1)。In some possible implementations, if event information is detected in the event stream, the time step can be adjusted according to the event density. Multiple density thresholds for event density may be preset, such as a first density threshold and a second density threshold, and the second density threshold (for example, 0.3) is greater than the first density threshold (for example, 0.1).
在一些可能的实现方式中,如果事件密度大于或等于第一密度阈值,且小于或等于第二密度阈值,则可认为存在低密度的事件信息(有事件信息但数量较少),可将时间步长调整为第二时间步长。第二时间步长(例如为1ms)小于初始的第一时间步长(例如为10ms),从而在保证处理精度的情况下,不过多地增大计算量。In some possible implementations, if the event density is greater than or equal to the first density threshold and less than or equal to the second density threshold, it can be considered that there is low-density event information (there is event information but a small amount), and the time The step size is adjusted to the second time step. The second time step (for example, 1 ms) is smaller than the initial first time step (for example, 10 ms), so that the calculation amount is not increased too much while ensuring the processing accuracy.
在一些可能的实现方式中,如果事件密度大于第二密度阈值,则可认为存在高密度的事件信息(有事件信息且数量较多),可将时间步长调整为第三时间步长。第三时间步长(例如为0.1ms)小于第二时间步长(例如为1ms),从而提高处理的准确性及真实性。In some possible implementation manners, if the event density is greater than the second density threshold, it can be considered that there is high-density event information (there is event information and a large number), and the time step can be adjusted to the third time step. The third time step (eg, 0.1 ms) is smaller than the second time step (eg, 1 ms), so as to improve processing accuracy and authenticity.
在一些可能的实现方式中,同样可将事件流划分为多个区域,对多个区域分别设定相同或不同的密度阈值,以及各个档位的时间步长。例如对事件流中的感兴趣区域设定更低的密度阈值、更细致的时间步长等。In some possible implementation manners, the event stream may also be divided into multiple regions, and the same or different density thresholds and time steps of each gear are set for the multiple regions respectively. For example, set a lower density threshold, a more detailed time step, etc. for the region of interest in the event stream.
应当理解,本领域技术人员可根据实际情况设定密度阈值的数量和取值,以及各个档位的时间步长的具体取值,本公开对此不作限制。It should be understood that those skilled in the art may set the number and value of the density thresholds and the specific value of the time step of each gear according to the actual situation, which is not limited in the present disclosure.
通过这种方式,能够进一步提高步长调整的精确性,在保证处理的准确性及真实性的基础上,进一步减少系统的计算量。In this way, the accuracy of the step size adjustment can be further improved, and the calculation amount of the system can be further reduced on the basis of ensuring the accuracy and authenticity of the processing.
在一些可能的实现方式中,在步骤S14中采用相应的时间步长对事件流进行处理。其中,步骤S14可包括:In some possible implementation manners, in step S14, a corresponding time step is used to process the event flow. Wherein, step S14 may include:
采用所述时间步长,通过脉冲神经网络对所述事件流进行脑仿真处理,得到所述脉冲神经网络针对所述事件流的响应信息,所述处理结果包括所述响应信息。By adopting the time step, brain simulation processing is performed on the event flow through a spiking neural network to obtain response information of the spiking neural network to the event flow, and the processing result includes the response information.
举例来说,对事件流的处理可为脑仿真处理,通过脉冲神经网络模仿大脑对事件流的处理过程。可预设有脉冲神经网络,该脉冲神经网络中包括多个神经元,每个神经元与其他神经元相连接,能够接收和/或发送脉冲。本公开对脉冲神经网络的网络结构及实现方式均不作限制。For example, the processing of the event flow can be brain simulation processing, and the processing process of the brain on the event flow is imitated through the spiking neural network. A spiking neural network can be preset, and the spiking neural network includes a plurality of neurons, each neuron is connected to other neurons, and can receive and/or send pulses. The disclosure does not limit the network structure and implementation of the spiking neural network.
在一些可能的实现方式中,该脉冲神经网络所执行的处理任务可例如包括图像处理任务、语音处理任务、文本处理任务、视频处理任务等任务中的任意一种。本公开对此不作限制。In some possible implementation manners, the processing tasks performed by the spiking neural network may include, for example, any one of image processing tasks, speech processing tasks, text processing tasks, video processing tasks, and other tasks. This disclosure does not limit this.
在一些可能的实现方式中,可采用步骤S13中调整后的时间步长,通过脉冲神经网络对事件流进行脑仿真处理,得到脉冲神经网络针对所述事件流的响应信息,作为事件流的处理结果,例如识别出场景中正在行驶的车辆。In some possible implementations, the adjusted time step in step S13 can be used to perform brain simulation processing on the event flow through the spiking neural network, and the response information of the spiking neural network to the event flow can be obtained as the processing of the event flow As a result, for example, a moving vehicle in the scene is identified.
在一些可能的实现方式中,脑仿真中神经元参数的差分表达式根据所述时间步长进行调整。神经元参数可例如包括膜电位、突触的延迟等,本公开对神经元参数的具体类别不作限制。In some possible implementations, the differential expressions of the neuron parameters in the brain simulation are adjusted according to the time step. Neuron parameters may, for example, include membrane potential, synaptic delay, etc., and the present disclosure does not limit specific types of neuron parameters.
举例来说,在可变时间步长的情况下,脑仿真中的各种计算公式可能会相应地发生变化,其中,脑仿真中的微分方程(如dv/dt)是不变的,而转化为差分表达后,需要根据时间步长Δt调整系统的差分方程中与Δt有关的变量,也即时间步长Δt不再为常量。For example, in the case of variable time steps, various calculation formulas in the brain simulation may change accordingly, where the differential equations (such as dv/dt) in the brain simulation are constant, and the transformation After being expressed as a difference, it is necessary to adjust the variables related to Δt in the differential equation of the system according to the time step Δt, that is, the time step Δt is no longer a constant.
例如,神经元的膜电位的计算公式可表示为:For example, the formula for calculating the membrane potential of a neuron can be expressed as:
Vupd(n)=Vupd(n-1)*φ(Δt)+f(Δt) (1)Vupd(n)=Vupd(n-1)*φ(Δt)+f(Δt) (1)
在公式(1)中,Vupd(n)表示神经元在当前的第n个处理周期的膜电位;Vupd(n-1)神经元在表示前一个(第n-1个)处理周期的膜电位;表示;φ(Δt)为膜电位的变化函数的乘积项,用于表示膜电位的状态衰减,f(Δt)为膜电位的变化函数的求和项,f(Δt)包括输入电流导致的膜电位变化,以及静息电位的相关项。In formula (1), Vupd(n) represents the membrane potential of the neuron in the current nth processing cycle; Vupd(n-1) neuron represents the membrane potential of the previous (n-1th) processing cycle means; Changes in membrane potential, and related terms for resting potential.
可见,膜电位的变化量为时间步长Δt的函数。It can be seen that the change in membrane potential is a function of the time step Δt.
此外,神经元中突触的延迟(delay)在转换为差分表达(表达为时间步个数)时,也需要根据时间步长Δt进行调整。例如,延迟为1ms时,如果时间步长Δt为0.1ms,则该延迟的数值表示为10;如果时间步长Δt为0.01ms,则该延迟的数值表示为100。In addition, when the synaptic delay (delay) in a neuron is converted into a differential expression (expressed as the number of time steps), it also needs to be adjusted according to the time step Δt. For example, when the delay is 1ms, if the time step Δt is 0.1ms, the value of the delay is represented as 10; if the time step Δt is 0.01ms, the value of the delay is represented as 100.
通过这种方式,能够实现动态时间步长下的事件流处理,提高处理过程的适应性,从而提高处理的准确性。In this way, the event stream processing under the dynamic time step can be realized, the adaptability of the processing process can be improved, and the processing accuracy can be improved.
根据本公开实施例的事件处理方法,能够在对输入的事件流进行处理期间,动态地调整时间步长,在检测到事件信息时,采用较细致的时间步长,以提高处理的精度;在无输入或无感兴趣的事件信息时,采用较粗的时间步长,以减少系统的运算量,从而在保证处理的准确性及真实性的基础上,减少整个处理过程中的运算量。According to the event processing method of the embodiment of the present disclosure, the time step can be dynamically adjusted during the processing of the input event stream, and when event information is detected, a finer time step can be adopted to improve the processing accuracy; When there is no input or event information of interest, a coarser time step is used to reduce the amount of calculation of the system, thereby reducing the amount of calculation in the entire processing process on the basis of ensuring the accuracy and authenticity of the processing.
根据本公开实施例的事件处理方法,能够应用于脑仿真、计算机视觉、目标检测、目标跟踪等各个应用领域的各种应用场景下,实现对事件流的相应处理,提高计算效率。The event processing method according to the embodiments of the present disclosure can be applied to various application scenarios in various application fields such as brain simulation, computer vision, target detection, and target tracking, so as to realize corresponding processing of event streams and improve computing efficiency.
图3为本公开实施例提供的一种事件处理装置的框图。Fig. 3 is a block diagram of an event processing device provided by an embodiment of the present disclosure.
参照图3,本公开实施例提供了一种事件处理装置,该装置包括:Referring to FIG. 3 , an embodiment of the present disclosure provides an event processing device, which includes:
事件流获取模块31,用于获取待处理的事件流;An event
事件检测模块32,用于对所述事件流进行事件检测,确定所述事件流当前的事件检测结果;An
步长调整模块33,用于根据所述事件检测结果,调整对所述事件流进行处理的时间步长;A
事件流处理模块34,用于采用所述时间步长对所述事件流进行处理,得到所述事件流的处理结果。The event
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,其中,所述步长调整模块,用于:在所述事件流中检测到事件信息的情况下,将所述时间步长调整为第二时间步长,所述第二时间步长小于初始的第一时间步长。In some possible implementation manners, the event detection result includes whether event information is detected in the event stream, wherein the step adjustment module is configured to: if event information is detected in the event stream , adjusting the time step to a second time step, the second time step being smaller than the initial first time step.
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,其中,所述步长调整模块,用于:在所述事件流中未检测到事件信息,且当前的时间步长为第二时间步长情况下,将所述时间步长调整为初始的第一时间步长,所述第二时间步长小于所述第一时间步长。In some possible implementation manners, the event detection result includes whether event information is detected in the event stream, wherein the step adjustment module is configured to: no event information is detected in the event stream, and When the current time step is the second time step, the time step is adjusted to the initial first time step, and the second time step is smaller than the first time step.
在一些可能的实现方式中,所述事件流包括多个区域,所述事件检测结果包括所述事件流的各个区域中是否检测到事件信息,其中,所述步长调整模块,用于:在所述多个区域中存在目标区域的情况下,将所述目标区域的时间步长调整为第二时间步长,所述目标区域为检测到事件信息的区域,所述第二时间步长小于初始的第一时间步长。In some possible implementation manners, the event stream includes multiple areas, and the event detection result includes whether an event is detected in each area of the event stream, wherein the step adjustment module is configured to: When there is a target area in the plurality of areas, adjust the time step of the target area to a second time step, the target area is an area where event information is detected, and the second time step is less than The initial first time step.
在一些可能的实现方式中,所述事件检测结果包括所述事件流中是否检测到事件信息,以及所述事件流的事件密度,其中,所述步长调整模块包括:调整子模块,用于在所述事件流中检测到事件信息的情况下,根据所述事件密度调整所述时间步长,In some possible implementation manners, the event detection result includes whether event information is detected in the event flow, and the event density of the event flow, wherein the step adjustment module includes: an adjustment submodule configured to in case event information is detected in the event stream, adjusting the time step according to the event density,
其中,所述调整子模块,用于:在所述事件密度大于或等于第一密度阈值,且小于或等于第二密度阈值的情况下,将所述时间步长调整为第二时间步长,所述第二密度阈值大于所述第一密度阈值,所述第二时间步长小于初始的第一时间步长;或在所述事件密度大于第二密度阈值的情况下,将所述时间步长调整为第三时间步长,所述第三时间步长小于所述第二时间步长。Wherein, the adjustment submodule is configured to: adjust the time step to a second time step when the event density is greater than or equal to a first density threshold and less than or equal to a second density threshold, The second density threshold is greater than the first density threshold, and the second time step is smaller than the initial first time step; or if the event density is greater than the second density threshold, the time step is The length is adjusted to a third time step, and the third time step is smaller than the second time step.
在一些可能的实现方式中,所述事件检测模块,用于:对所述事件流进行事件检测,确定所述事件流当前的事件密度;在所述事件密度大于或等于第三密度阈值的情况下,确定所述事件检测结果为:所述事件流中检测到事件信息。In some possible implementations, the event detection module is configured to: perform event detection on the event flow, and determine the current event density of the event flow; when the event density is greater than or equal to a third density threshold Next, it is determined that the event detection result is: event information is detected in the event flow.
在一些可能的实现方式中,所述事件检测模块,用于:根据预设的时长,将所述事件流划分为多个事件帧;通过事件检测网络对所述事件流的当前事件帧进行事件检测,得到所述事件检测结果。In some possible implementations, the event detection module is configured to: divide the event stream into multiple event frames according to a preset duration; Detect to obtain the event detection result.
在一些可能的实现方式中,所述事件流处理模块,用于:采用所述时间步长,通过脉冲神经网络对所述事件流进行脑仿真处理,得到所述脉冲神经网络针对所述事件流的响应信息,所述处理结果包括所述响应信息,其中,脑仿真中神经元参数的差分表达式根据时间步长进行调整。In some possible implementation manners, the event flow processing module is configured to: use the time step to perform brain simulation processing on the event flow through the spiking neural network, and obtain the The response information of the processing result includes the response information, wherein the differential expressions of the neuron parameters in the brain simulation are adjusted according to the time step.
在一些可能的实现方式中,所述事件流是事件采集设备采集的、目标场景的事件流,所述事件流用于表征所述目标场景的亮度变化信息。In some possible implementation manners, the event stream is an event stream of a target scene collected by an event collection device, and the event stream is used to represent brightness change information of the target scene.
图4为本公开实施例提供的一种电子设备的框图。Fig. 4 is a block diagram of an electronic device provided by an embodiment of the present disclosure.
参照图4,本公开实施例提供了一种电子设备,该电子设备包括:至少一个处理器501;以及与至少一个处理器501通信连接的存储器502;其中,存储器502存储有可被至少一个处理器501执行的一个或多个计算机程序,一个或多个计算机程序被至少一个处理器501执行,以使至少一个处理器501能够执行上述的事件处理方法。Referring to FIG. 4 , an embodiment of the present disclosure provides an electronic device, which includes: at least one
此外,本公开实施例还提供了一种计算机可读介质,其上存储有计算机程序,其中,所述计算机程序在被处理器执行时实现上述的事件处理方法。In addition, an embodiment of the present disclosure also provides a computer-readable medium on which a computer program is stored, wherein the computer program implements the above event processing method when executed by a processor.
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。Those of ordinary skill in the art can understand that all or some of the steps in the methods disclosed above, the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and an appropriate combination thereof. In a hardware implementation, the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit . Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media). As known to those of ordinary skill in the art, the term computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer. In addition, as is well known to those of ordinary skill in the art, communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其他实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。Example embodiments have been disclosed herein, and while specific terms have been employed, they are used and should be construed in a generic descriptive sense only and not for purposes of limitation. In some instances, it will be apparent to those skilled in the art that features, characteristics and/or elements described in connection with a particular embodiment may be used alone, or may be described in combination with other embodiments, unless explicitly stated otherwise. Combinations of features and/or elements. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the scope of the present disclosure as set forth in the appended claims.
Claims (12)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111451040.4A CN116205277A (en) | 2021-11-30 | 2021-11-30 | Event processing method and device, electronic device, computer readable medium |
| PCT/CN2022/132561 WO2023098482A1 (en) | 2021-11-30 | 2022-11-17 | Event processing method and apparatus, electronic device, and computer-readable medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111451040.4A CN116205277A (en) | 2021-11-30 | 2021-11-30 | Event processing method and device, electronic device, computer readable medium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116205277A true CN116205277A (en) | 2023-06-02 |
Family
ID=86508223
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111451040.4A Pending CN116205277A (en) | 2021-11-30 | 2021-11-30 | Event processing method and device, electronic device, computer readable medium |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN116205277A (en) |
| WO (1) | WO2023098482A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118093011A (en) * | 2024-04-28 | 2024-05-28 | 杭州数云信息技术有限公司 | Event processing method and device, readable storage medium, program product and terminal |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118609090B (en) * | 2024-06-18 | 2025-06-17 | 云南大学 | A method, device, medium and product for target detection in driving scenarios |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8704792B1 (en) * | 2012-10-19 | 2014-04-22 | Google Inc. | Density-based filtering of gesture events associated with a user interface of a computing device |
| WO2019035770A1 (en) * | 2017-08-18 | 2019-02-21 | Nanyang Technological University | Adaptive computer system, and methods and apparatus for training the adaptive computer system |
| CN110356412A (en) * | 2018-04-11 | 2019-10-22 | 通用汽车环球科技运作有限责任公司 | The method and apparatus that automatically rule for autonomous driving learns |
| CN110458013A (en) * | 2019-07-05 | 2019-11-15 | 中国地质大学(武汉) | A traffic anomaly event detection method based on instance-level attention mechanism |
| CN113221605A (en) * | 2020-02-06 | 2021-08-06 | 华为技术有限公司 | Object recognition method, device and computer readable storage medium |
| CN113676702A (en) * | 2021-08-21 | 2021-11-19 | 深圳市大工创新技术有限公司 | Target tracking monitoring method, system and device based on video stream and storage medium |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016115004A1 (en) * | 2015-01-12 | 2016-07-21 | Schlumberger Canada Limited | Automatic timestep adjustment for reservoir simulation |
| CN104731761B (en) * | 2015-03-02 | 2017-09-12 | 中国石油大学(北京) | Gas distributing system emulation mode and device |
| CN106250505B (en) * | 2016-08-01 | 2019-05-17 | 中国矿业大学 | A kind of Dynamic Compression of the Minepit environment Real-time Monitoring Data of variable step size |
| CN106447716B (en) * | 2016-09-08 | 2020-04-24 | 天津大学 | Directional partial differential equation filtering method for fringe projection image |
| CN111866504B (en) * | 2020-07-17 | 2022-06-21 | Oppo广东移动通信有限公司 | An encoding method, encoder and computer-readable storage medium |
-
2021
- 2021-11-30 CN CN202111451040.4A patent/CN116205277A/en active Pending
-
2022
- 2022-11-17 WO PCT/CN2022/132561 patent/WO2023098482A1/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8704792B1 (en) * | 2012-10-19 | 2014-04-22 | Google Inc. | Density-based filtering of gesture events associated with a user interface of a computing device |
| WO2019035770A1 (en) * | 2017-08-18 | 2019-02-21 | Nanyang Technological University | Adaptive computer system, and methods and apparatus for training the adaptive computer system |
| CN110356412A (en) * | 2018-04-11 | 2019-10-22 | 通用汽车环球科技运作有限责任公司 | The method and apparatus that automatically rule for autonomous driving learns |
| CN110458013A (en) * | 2019-07-05 | 2019-11-15 | 中国地质大学(武汉) | A traffic anomaly event detection method based on instance-level attention mechanism |
| CN113221605A (en) * | 2020-02-06 | 2021-08-06 | 华为技术有限公司 | Object recognition method, device and computer readable storage medium |
| CN113676702A (en) * | 2021-08-21 | 2021-11-19 | 深圳市大工创新技术有限公司 | Target tracking monitoring method, system and device based on video stream and storage medium |
Non-Patent Citations (1)
| Title |
|---|
| 许冬冬;袁凌云;李晶;: "基于乱序修正框架的物联网复杂事件检测模型", 计算机科学, no. 10, 15 October 2015 (2015-10-15) * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118093011A (en) * | 2024-04-28 | 2024-05-28 | 杭州数云信息技术有限公司 | Event processing method and device, readable storage medium, program product and terminal |
| CN118093011B (en) * | 2024-04-28 | 2024-08-06 | 杭州数云信息技术有限公司 | Event processing method and device, readable storage medium, program product and terminal |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2023098482A1 (en) | 2023-06-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2023098482A1 (en) | Event processing method and apparatus, electronic device, and computer-readable medium | |
| CN112950581A (en) | Quality evaluation method and device and electronic equipment | |
| CN112464822B (en) | Helmet wearing detection method and system based on feature enhancement | |
| CN108062562A (en) | A kind of object recognition methods and device again | |
| US20210118151A1 (en) | Methods and apparatus to generate temporal representations for action recognition systems | |
| CN108376387A (en) | Image deblurring method based on polymerization expansion convolutional network | |
| CN110084130B (en) | Face screening method, device, equipment and storage medium based on multi-target tracking | |
| CN110033756A (en) | Language Identification, device, electronic equipment and storage medium | |
| CN107977391B (en) | Method, device and system for identifying picture book and electronic equipment | |
| CN108985262A (en) | Limb motion guidance method, device, server and storage medium | |
| CN111047543A (en) | Image enhancement method, device and storage medium | |
| WO2022048582A1 (en) | Method and device for optical flow information prediction, electronic device, and storage medium | |
| CN110136055A (en) | Super-resolution method and device, storage medium, the electronic device of image | |
| CN108156385A (en) | Image acquiring method and image acquiring device | |
| CN113191318A (en) | Target detection method and device, electronic equipment and storage medium | |
| CN111046924A (en) | Data processing method, device and system and storage medium | |
| CN112200816A (en) | Method, device and equipment for segmenting region of video image and replacing hair | |
| CN109960969A (en) | The method, apparatus and system that mobile route generates | |
| CN109766476A (en) | Video content sentiment analysis method, device, computer equipment and storage medium | |
| CN110795998B (en) | People flow detection method and device, electronic equipment and readable storage medium | |
| CN114630238B (en) | Stage sound box volume control method and device, electronic equipment and medium | |
| CN112333511A (en) | Control method, device and equipment of smart television and computer readable storage medium | |
| JP2003158753A (en) | Real-time human vision system behavior modeling method | |
| CN108846420B (en) | Network structure and client | |
| CN112560541A (en) | Training device and method for target detection model and electronic equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |