CN116264407A - Protection circuit of silicon-oxygen negative electrode battery and silicon-oxygen negative electrode battery - Google Patents
Protection circuit of silicon-oxygen negative electrode battery and silicon-oxygen negative electrode battery Download PDFInfo
- Publication number
- CN116264407A CN116264407A CN202111530391.4A CN202111530391A CN116264407A CN 116264407 A CN116264407 A CN 116264407A CN 202111530391 A CN202111530391 A CN 202111530391A CN 116264407 A CN116264407 A CN 116264407A
- Authority
- CN
- China
- Prior art keywords
- electrically connected
- circuit
- battery
- voltage
- protection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4257—Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/18—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00304—Overcurrent protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00306—Overdischarge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0034—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0036—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4278—Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
本申请提供一种硅氧负极电池的保护电路及硅氧负极电池。保护电路包括升压电路及控制端。升压电路电连接电芯。控制器包括检测端和控制端。检测端电连接电芯,用于检测电芯的输出电压。控制端电连接升压电路。控制端在电芯的输出电压在高压放电电压范围时,控制升压电路不工作,在电芯的输出电压在低于高压放电电压范围的低压放电电压范围时,控制升压电路将电芯的输出电压升高。硅氧负极电池包括电芯及保护电路。如此设置,通过控制器检测出电芯的输出电压处于低压放电电压范围时,控制升压电路将电芯的输出电压升高,从而使升高后的输出电压能够继续给负载供电,降低了电池的容量损失。
The present application provides a protection circuit for a silicon-oxygen negative electrode battery and a silicon-oxygen negative electrode battery. The protection circuit includes a boost circuit and a control terminal. The boost circuit is electrically connected to the battery core. The controller includes a detection terminal and a control terminal. The detection end is electrically connected to the battery cell, and is used for detecting the output voltage of the battery cell. The control terminal is electrically connected to the boost circuit. When the output voltage of the battery cell at the control terminal is in the high-voltage discharge voltage range, the control boost circuit does not work; when the output voltage of the battery cell is in the low-voltage discharge voltage range lower than the high-voltage discharge voltage range, the control boost circuit turns the The output voltage rises. The silicon-oxygen negative electrode battery includes a cell and a protection circuit. In this way, when the controller detects that the output voltage of the battery cell is in the low-voltage discharge voltage range, the booster circuit is controlled to increase the output voltage of the battery cell, so that the increased output voltage can continue to supply power to the load, reducing the battery life. capacity loss.
Description
技术领域technical field
本申请涉及电池领域,尤其涉及一种硅氧负极电池的保护电路及硅氧负极电池。The present application relates to the field of batteries, in particular to a protection circuit for a silicon-oxygen negative electrode battery and a silicon-oxygen negative electrode battery.
背景技术Background technique
目前,使用的电子设备的锂电池包括石墨负极电池和硅氧负极电池。相同的电池体积下,硅氧负极电池可放电的容量相较石墨负极电池可放电的容量更大,因此,硅氧负极电池的应用逐渐广泛。然而,在低压区间,硅氧负极电池可放电的容量比石墨负极电池的放电容量大,硅氧负极电池放电截止电压可以达到2.75V,但是负载的关机电压可能高于硅氧负极电池放电截止电压,例如为3.3V。这样,在硅氧负极电池的电压低于负载的关机电压时,负载就无法正常工作,然而此时硅氧负极电池的电压还未降低到硅氧负极电池放电截止电压,如此造成硅氧负极电池的容量损失较大的问题。Currently, lithium batteries used in electronic devices include graphite negative electrodes and silicon-oxygen negative electrodes. Under the same battery volume, the discharge capacity of the silicon-oxygen negative electrode battery is larger than that of the graphite negative electrode battery. Therefore, the application of the silicon-oxygen negative electrode battery is gradually widespread. However, in the low-voltage range, the discharge capacity of the silicon-oxygen negative electrode battery is larger than that of the graphite negative electrode battery, and the discharge cut-off voltage of the silicon-oxygen negative electrode battery can reach 2.75V, but the shutdown voltage of the load may be higher than the discharge cut-off voltage of the silicon-oxygen negative electrode battery. , for example 3.3V. In this way, when the voltage of the silicon-oxygen negative electrode battery is lower than the shutdown voltage of the load, the load cannot work normally. The problem of large capacity loss.
发明内容Contents of the invention
本申请提供一种旨在降低硅氧负极电池的容量损失的保护电路及硅氧负极电池。The present application provides a protection circuit and a silicon-oxygen negative battery aiming at reducing the capacity loss of the silicon-oxygen negative battery.
本申请提供一种硅氧负极电池的保护电路,所述硅氧负极电池包括电芯,其中所述保护电路包括:The present application provides a protection circuit for a silicon-oxygen negative electrode battery, the silicon-oxygen negative electrode battery includes a battery cell, wherein the protection circuit includes:
升压电路,电连接所述电芯;及a boost circuit electrically connected to the battery cell; and
控制器,包括检测端和控制端;所述检测端电连接所述电芯,用于检测所述电芯的输出电压;且所述控制端电连接所述升压电路;所述控制端在所述电芯的输出电压在高压放电电压范围时,控制所述升压电路不工作,在所述电芯的输出电压在低于所述高压放电电压范围的低压放电电压范围时,控制所述升压电路将所述电芯的输出电压升高。The controller includes a detection terminal and a control terminal; the detection terminal is electrically connected to the battery cell for detecting the output voltage of the battery core; and the control terminal is electrically connected to the boost circuit; the control terminal is connected to the When the output voltage of the cell is in the high-voltage discharge voltage range, the booster circuit is controlled not to work; when the output voltage of the cell is in the low-voltage discharge voltage range lower than the high-voltage discharge voltage range, the The boost circuit boosts the output voltage of the cell.
可选的,所述保护电路还包括:Optionally, the protection circuit also includes:
过电流保护电路;Overcurrent protection circuit;
开关电路,电连接于所述过电流保护电路和所述电芯之间;a switch circuit electrically connected between the overcurrent protection circuit and the battery core;
所述过电流保护电路用于在所述电芯过充电或过放电时,控制所述开关电路关断。The overcurrent protection circuit is used to control the switching circuit to turn off when the battery cell is overcharged or overdischarged.
可选的,所述过电流保护电路包括电池检测引脚和电源引脚;所述电池检测引脚电连接所述检测端;所述电源引脚电连接于所述电芯和所述开关电路之间;所述控制器经过所述电池检测引脚及所述电源引脚检测所述电芯的输出电压。Optionally, the overcurrent protection circuit includes a battery detection pin and a power supply pin; the battery detection pin is electrically connected to the detection terminal; the power supply pin is electrically connected to the battery cell and the switch circuit Between; the controller detects the output voltage of the battery cell through the battery detection pin and the power supply pin.
可选的,所述过电流保护电路包括第一保护芯片和第一放电电容;所述电池检测引脚和所述电源引脚设于所述第一保护芯片;所述第一放电电容电连接于所述电芯和所述电源引脚之间,用于对所述第一保护芯片供电;和Optionally, the overcurrent protection circuit includes a first protection chip and a first discharge capacitor; the battery detection pin and the power supply pin are set on the first protection chip; the first discharge capacitor is electrically connected to between the battery cell and the power supply pin, for supplying power to the first protection chip; and
所述过流保护电路包括第二保护芯片和第二放电电容;所述第二保护芯片包括第一电源引脚,电连接所述电芯;所述第二放电电容电连接于所述电芯和所述第一电源引脚之间,用于对所述第二保护芯片供电。The overcurrent protection circuit includes a second protection chip and a second discharge capacitor; the second protection chip includes a first power supply pin electrically connected to the electric core; the second discharge capacitor is electrically connected to the electric core between the first power supply pin and the second protection chip.
可选的,所述保护电路包括输出端和防电流倒灌电路;所述防电流倒灌电路电连接于所述电芯和所述输出端之间,且与所述升压电路电连接,用于在所述升压电路对所述电芯的输出电压升高时,阻止电流从所述输出端向所述电芯流动,在所述电芯的输出电压在高压放电电压范围时,连通所述电芯和所述输出端。Optionally, the protection circuit includes an output terminal and an anti-current backflow circuit; the anti-current backflow circuit is electrically connected between the battery cell and the output terminal, and is electrically connected to the boost circuit for When the boost circuit boosts the output voltage of the battery cell, it prevents the current from flowing from the output terminal to the battery cell, and when the output voltage of the battery cell is in the high-voltage discharge voltage range, it connects the cell and the output.
可选的,所述防电流倒灌电路包括背靠背串联连接的第一开关管和第二开关管,所述第二开关管电连接于所述第一开关管和所述输出端之间;Optionally, the anti-current backflow circuit includes a first switch tube and a second switch tube connected back to back in series, and the second switch tube is electrically connected between the first switch tube and the output terminal;
所述升压电路包括升压输入端和升压输出端,所述升压输入端电连接于所述电芯和所述第一开关管之间,所述升压输出端电连接所述输出端,所述升压电路包括使能引脚,与所述控制器的所述控制端电连接。The boost circuit includes a boost input terminal and a boost output terminal, the boost input terminal is electrically connected between the battery cell and the first switch tube, and the boost output terminal is electrically connected to the output terminal, the boost circuit includes an enable pin electrically connected to the control terminal of the controller.
可选的,所述第一开关管包括第一PMOS管,所述第二开关管包括第二PMOS管,所述第一PMOS管的漏极电连接于所述电芯,所述第一PMOS管的源极电连接所述第二PMOS管的源极;所述第二PMOS管的漏极电连接所述输出端;所述第一PMOS管的栅极和所述第二PMOS管的栅极均电连接所述控制器的所述控制端。Optionally, the first switch transistor includes a first PMOS transistor, the second switch transistor includes a second PMOS transistor, the drain of the first PMOS transistor is electrically connected to the cell, and the first PMOS transistor The source of the tube is electrically connected to the source of the second PMOS tube; the drain of the second PMOS tube is electrically connected to the output terminal; the gate of the first PMOS tube and the gate of the second PMOS tube The poles are electrically connected to the control terminal of the controller.
可选的,所述防电流倒灌电路包括第一二极管和第二二极管;所述第一二极管的正极与所述第一PMOS管的源极,所述第一二极管的负极电连接所述第一PMOS管的漏极;所述第二二极管的正极电连接所述第二PMOS管的源极,所述第二二极管的负极电连接所述第二PMOS管的漏极。Optionally, the anti-current backflow circuit includes a first diode and a second diode; the anode of the first diode is connected to the source of the first PMOS transistor, and the first diode The cathode of the second diode is electrically connected to the drain of the first PMOS transistor; the anode of the second diode is electrically connected to the source of the second PMOS transistor, and the cathode of the second diode is electrically connected to the second The drain of the PMOS transistor.
可选的,所述过电流保护电路包括第一保护芯片和第二保护芯片;所述第一保护芯片包括第一充电输出引脚,所述第二保护芯片包括第二充电输出引脚;Optionally, the overcurrent protection circuit includes a first protection chip and a second protection chip; the first protection chip includes a first charging output pin, and the second protection chip includes a second charging output pin;
所述开关电路包括第三开关管和第四开关管;所述第一充电输出引脚电连接所述第三开关管的控制端,所述第二充电输出引脚电连接所述第四开关管的控制端;The switching circuit includes a third switching tube and a fourth switching tube; the first charging output pin is electrically connected to the control terminal of the third switching tube, and the second charging output pin is electrically connected to the fourth switching tube the control end of the tube;
在所述电芯过充电时,所述第一保护芯片和所述第二保护芯片控制所述第三开关管和所述第四开关管关断。When the cell is overcharged, the first protection chip and the second protection chip control the third switch tube and the fourth switch tube to be turned off.
可选的,所述第一保护芯片包括第一放电输出引脚,所述第二保护芯片包括第二放电输出引脚;Optionally, the first protection chip includes a first discharge output pin, and the second protection chip includes a second discharge output pin;
所述开关电路包括第五开关管和第六开关管;所述第一放电输出引脚电连接所述第五开关管的控制端,所述第二放电输出引脚电连接所述第六开关管的控制端;The switching circuit includes a fifth switching tube and a sixth switching tube; the first discharge output pin is electrically connected to the control terminal of the fifth switching tube, and the second discharging output pin is electrically connected to the sixth switch the control end of the tube;
在所述电芯过放电时,所述第一保护芯片和所述第二保护芯片控制所述第五开关管和所述第六开关管关断。When the cell is over-discharged, the first protection chip and the second protection chip control the fifth switch tube and the sixth switch tube to be turned off.
本申请还提供一种硅氧负极电池,其中包括电芯;及The present application also provides a silicon-oxygen negative electrode battery, which includes a cell; and
如上述所述的保护电路,所述保护电路电连接于所述电芯的正极和负极之间。As in the protection circuit described above, the protection circuit is electrically connected between the positive pole and the negative pole of the battery cell.
本申请提供的硅氧负极电池的保护电路。保护电路包括升压电路及控制端。升压电路电连接电芯。控制器包括检测端和控制端。检测端电连接电芯,用于检测电芯的输出电压。控制端电连接升压电路。控制端在电芯的输出电压在高压放电电压范围时,控制升压电路不工作,在电芯的输出电压在低于高压放电电压范围的低压放电电压范围时,控制升压电路将电芯的输出电压升高。如此设置,通过控制器检测出电芯的输出电压处于低压放电电压范围时,控制升压电路将电芯的输出电压升高,从而使升高后的输出电压能够继续给负载供电,降低了电池的容量损失。The protection circuit of the silicon-oxygen negative electrode battery provided by the application. The protection circuit includes a boost circuit and a control terminal. The boost circuit is electrically connected to the battery cell. The controller includes a detection terminal and a control terminal. The detection terminal is electrically connected to the battery cell, and is used for detecting the output voltage of the battery cell. The control terminal is electrically connected to the boost circuit. When the output voltage of the battery cell at the control terminal is in the high-voltage discharge voltage range, the control booster circuit does not work; when the output voltage of the battery cell is in the low-voltage discharge voltage range lower than the high-voltage discharge voltage range, the control booster circuit will The output voltage rises. In this way, when the controller detects that the output voltage of the battery cell is in the low-voltage discharge voltage range, the booster circuit is controlled to increase the output voltage of the battery cell, so that the increased output voltage can continue to supply power to the load, reducing the battery life. capacity loss.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the application.
附图说明Description of drawings
图1所示为本申请的硅氧负极电池的电路框图;Fig. 1 shows the circuit block diagram of the silicon-oxygen negative electrode battery of the present application;
图2所示为本申请的硅氧负极电池的放电情况与石墨负极电池的放电情况的比较示意图;Fig. 2 shows the comparison schematic diagram of the discharge situation of the silicon-oxygen negative electrode battery of the present application and the discharge situation of the graphite negative electrode battery;
图3为图1所示的硅氧负极电池的保护电路的一个实施例的原理框图;Fig. 3 is a functional block diagram of an embodiment of the protection circuit of the silicon-oxygen negative electrode battery shown in Fig. 1;
图4为图3所示的硅氧负极电池的保护电路的电路图。FIG. 4 is a circuit diagram of the protection circuit of the silicon-oxygen negative electrode battery shown in FIG. 3 .
具体实施方式Detailed ways
这里将详细地对示例性实施方式进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施方式中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置的例子。Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. When the following description refers to the accompanying drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. Embodiments described in the following exemplary embodiments do not represent all embodiments consistent with the present application. Rather, they are merely examples of means consistent with aspects of the present application as recited in the appended claims.
在本申请使用的术语是仅仅出于描述特定实施方式的目的,而非旨在限制本申请。除非另作定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“多个”或者“若干”表示两个及两个以上。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。在本申请说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in this application is for the purpose of describing particular embodiments only, and is not intended to limit the application. Unless otherwise defined, the technical terms or scientific terms used in the application shall have the ordinary meanings understood by those skilled in the art to which the application belongs. "First", "second" and similar words used in the specification and claims of this application do not indicate any order, quantity or importance, but are only used to distinguish different components. Likewise, words like "a" or "one" do not denote a limitation in quantity, but indicate that there is at least one. "Multiple" or "several" means two or more. Unless otherwise indicated, terms such as "front", "rear", "lower" and/or "upper" are used for convenience of description only and are not intended to be limiting to a position or orientation in space. "Includes" or "comprises" and similar terms mean that the elements or items listed before "comprises" or "comprises" include the elements or items listed after "comprises" or "comprises" and their equivalents, and do not exclude other elements or objects. Words such as "connected" or "connected" are not limited to physical or mechanical connections, and may include electrical connections, whether direct or indirect. As used in this specification and the appended claims, the singular forms "a", "the" and "the" are also intended to include the plural forms unless the context clearly dictates otherwise. It should also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
本申请提供的硅氧负极电池的保护电路。硅氧负极电池包括电芯。保护电路包括升压电路及控制器。升压电路电连接电芯。控制器包括检测端和控制端。检测端电连接电芯,用于检测电芯的输出电压。控制端电连接升压电路。控制器通过控制端在电芯的输出电压在高压放电电压范围时,控制升压电路不工作,在电芯的输出电压在低于高压放电电压范围的低压放电电压范围时,控制升压电路将电芯的输出电压升高。如此设置,通过控制器检测出电芯的输出电压处于低压放电电压范围时,控制升压电路将电芯的输出电压升高,从而使升高后的输出电压能够继续给负载供电,降低了电池的容量损失。The protection circuit of the silicon-oxygen negative electrode battery provided by the application. The silicon-oxygen negative electrode battery includes a cell. The protection circuit includes a boost circuit and a controller. The boost circuit is electrically connected to the battery cell. The controller includes a detection terminal and a control terminal. The detection terminal is electrically connected to the battery cell, and is used for detecting the output voltage of the battery cell. The control terminal is electrically connected to the boost circuit. When the output voltage of the battery cell is in the high-voltage discharge voltage range through the control terminal, the controller controls the boost circuit to not work; when the output voltage of the cell is in the low-voltage discharge voltage range lower than the high-voltage discharge voltage range, the control boost circuit will The output voltage of the cell increases. In this way, when the controller detects that the output voltage of the battery cell is in the low-voltage discharge voltage range, the booster circuit is controlled to increase the output voltage of the battery cell, so that the increased output voltage can continue to supply power to the load, reducing the battery life. capacity loss.
本申请还提供一种硅氧负极电池,包括电芯和保护电路。保护电路电连接于电芯的正极和负极之间。The present application also provides a silicon-oxygen negative electrode battery, including a battery cell and a protection circuit. The protection circuit is electrically connected between the positive pole and the negative pole of the electric core.
图1所示为本申请提供的硅氧负极电池1的电路框图。如图1所示,硅氧负极电池1包括电芯2及保护电路3。保护电路3电连接于电芯2的正极和负极之间。保护电路3用于防止电芯2过充、过放、过流及短路,以延长电芯2的使用寿命。FIG. 1 is a circuit block diagram of a silicon-oxygen
图2所示为本申请提供的硅氧负极电池1的放电情况与石墨负极电池的放电情况的比较示意图。如图2所示,横坐标为电池容量Q,单位为:mAH(毫安小时)。纵坐标为电池放电截止电压U,单位为:V(伏特)。石墨负极电池放电截止电压为3.0V,其对应的电池容量为Q1。硅氧负极电池放电截止电压为2.75V,其对应的电池容量为Q2。由图示可知,Q2>Q1,也就是说,硅氧负极电池在其对应的放电截止电压处可以消耗的电池容量比石墨负极电池在其对应的放电截止电压处可以消耗的电池容量多。如此,相较于石墨负极电池的方案,本申请的硅氧负极电池的容量使用率更高。FIG. 2 is a schematic diagram showing the comparison between the discharge conditions of the silicon-oxygen
图3为图1所示的硅氧负极电池1的保护电路3的一个实施例的原理框图。如图3所示,保护电路3包括升压电路4及控制器5。升压电路4电连接电芯2。控制器5包括检测端6和控制端7。检测端6电连接电芯2,用于检测电芯2的输出电压;且控制端7电连接升压电路4;控制端7在电芯2的输出电压在高压放电电压范围时,控制升压电路4不工作,在电芯2的输出电压在低于高压放电电压范围的低压放电电压范围时,控制升压电路4将电芯2的输出电压升高。此实施例中,控制器5通过检测端6实时检测电芯2的输出电压。当检测出电芯2的输出电压处于高压放电电压范围(例如,4.45V~3.3V)时,与硅氧负极电池1连接的负载可以正常工作。此时,在一些实施例中,控制器5将电连接到升压电路4的控制端7的电压拉低,使升压电路4不工作。当检测到电芯2的输出电压处于低电压放电电压范围(例如,3.3V~2.75V)时,控制器5将控制端7的电压拉高,使升压电路4工作。升压电路4可以将电芯2的输出电压提高,以继续给负载供电。如此,使得电芯2的输出电压处于低电压放电电压范围时,还能继续保证负载的正常供电需求,从而降低了电芯2的容量损失。另外,需要说明的是,本实施例中的高压放电电压范围和低电压放电电压范围两者是相对而言的,并没有特定的定义。其中,高压放电电压范围是指正常情况下允许电芯2放电的电压范围,满足负载的正常工作。低压放电电压范围是指大于硅氧负极电池1的电芯2的放电截止电压,小于负载关机电压的电压范围。FIG. 3 is a functional block diagram of an embodiment of the
在一些实施例中,保护电路3还包括过电流保护电路8和开关电路9。开关电路9电连接于过电流保护电路8和电芯2之间。过电流保护电路8用于在电芯2过充电或过放电时,控制开关电路9关断。此实施例中,过电流保护电路8用于在电芯2过充或过放时,控制开关电路9关断,从而使电芯2停止充电或放电。过电流保护电路8具有保护电芯2的功能,延长电芯2的使用寿命。In some embodiments, the
图4为图3所示的硅氧负极电池1的保护电路3的电路图。结合图3、图4所示,在一些实施例中,过电流保护电路8包括电池检测引脚BS和电源引脚VSS;电池检测引脚BS电连接检测端6;电源引脚VSS电连接于电芯2和开关电路9之间;控制器5经过电池检测引脚BS及电源引脚VSS检测电芯2的输出电压。此实施例中,控制器5的检测端6通过过电流保护电路8电连接到电芯2,以实现对电芯2的输出电压的检测。如此,相对于相关技术中检测端6电连接保护电路3的输出端,经过开关电路9检测电芯2的输出电压的技术方案,本申请实施例的控制器5能够避开开关电路9的线路阻抗,从而提高对电芯2的输出电压的检测精度。FIG. 4 is a circuit diagram of the
在一些实施例中,过电流保护电路8包括第一保护芯片IC1和第一放电电容C1。电池检测引脚BS和电源引脚VSS设于第一保护芯片IC1。过流保护电路8可以通过第一保护芯片IC1实现对电芯2的过流保护。第一保护芯片IC1为一级保护芯片,也为主动组件保护芯片。相较于相关技术中,本申请的第一保护芯片IC1设有电池检测引脚BS。该电池检测引脚BS可以通过电源引脚VSS电连接到电芯2的负极,这样,避免了控制器5的检测端6需经过开关电路9才能检测到电芯2的输出电压,使得控制器5检测电芯2的输出电压的准确度更高。第一放电电容C1电连接于电芯2和电源引脚VSS之间,用于对第一保护芯片IC1供电,以保证第一保护芯片IC1的正常工作。In some embodiments, the overcurrent protection circuit 8 includes a first protection chip IC1 and a first discharge capacitor C1. The battery detection pin BS and the power supply pin VSS are set on the first protection chip IC1. The overcurrent protection circuit 8 can realize the overcurrent protection for the
在一些实施例中,过流保护电路8包括第二保护芯片IC2和第二放电电容C2;第二保护芯片IC2包括第一电源引脚VSS1,电连接电芯2。此实施例中,过流保护电路8还通过第二保护芯片IC2实现对电芯2的过流保护,以使对电芯2的过流保护效果更好。该第二保护芯片IC2为二级保护芯片,也为被动组件保护芯片。第二放电电容C2电连接于电芯2和第一电源引脚VSS1之间,用于对第二保护芯片IC2供电,以保证第二保护芯片IC2的正常工作。In some embodiments, the overcurrent protection circuit 8 includes a second protection chip IC2 and a second discharge capacitor C2 ; the second protection chip IC2 includes a first power supply pin VSS1 electrically connected to the
在一些实施例中,第一保护芯片IC1包括第一充电输出引脚COUT1,第二保护芯片IC2包括第二充电输出引脚COUT2。开关电路9包括第三开关管G3和第四开关管G4;第一充电输出引脚COUT1电连接第三开关管D3的控制端,第二充电输出引脚COUT2电连接第四开关管的控制端。在电芯过充电时,第一保护芯片IC1和第二保护芯片IC2控制第三开关管G3和第四开关管G4关断。过流保护电路8通过保护芯片实现对电芯2的过流保护。第一保护芯片IC1较第二保护芯片IC2先执行动作。具体的,当电芯2处于过充电状态时,第一保护芯片IC1通过第一充电输出引脚COUT1先控制第三开关管G3关断,之后,第二保护芯片IC2通过第二充电输出引脚COUT2控制第四开关管G3关断。如此,可以阻止电芯2继续处于充电状态,以防止电芯2由于过充电而损坏。在一些实施例中,第三开关管G3和第四开关管G4均为N型MOS管。In some embodiments, the first protection chip IC1 includes a first charging output pin COUT1, and the second protection chip IC2 includes a second charging output pin COUT2. The switching circuit 9 includes a third switching tube G3 and a fourth switching tube G4; the first charging output pin COUT1 is electrically connected to the control terminal of the third switching tube D3, and the second charging output pin COUT2 is electrically connected to the control terminal of the fourth switching tube . When the cell is overcharged, the first protection chip IC1 and the second protection chip IC2 control the third switching tube G3 and the fourth switching tube G4 to be turned off. The overcurrent protection circuit 8 implements overcurrent protection for the
在一些实施例中,第一保护芯片IC1包括第一放电输出引脚DOUT1,第二保护芯片IC2包括第二放电输出引脚DOUT2。开关电路9包括第五开关管G5和第六开关管G6;第一放电输出引脚DOUT1电连接第五开关管G5的控制端,第二放电输出引脚DOUT2电连接第六开关管G6的控制端。在电芯2过放电时,第一保护芯片IC1和第二保护芯片IC2控制第五开关管G5和第六开关管G6关断。此实施例中,当电芯2处于过放电状态时,第一保护芯片IC1通过第一放电输出引脚DOUT1先控制第五开关管G5关断,之后,第二保护芯片IC2通过第二放电输出引脚DOUT2控制第六开关管G6关断。如此,可以阻止电芯2继续处于放电状态,以防止电芯2由于过放电而损坏。在一些实施例中,第五开关管G5和第六开关管G6均为N型MOS管。In some embodiments, the first protection chip IC1 includes a first discharge output pin DOUT1, and the second protection chip IC2 includes a second discharge output pin DOUT2. The switch circuit 9 includes a fifth switch tube G5 and a sixth switch tube G6; the first discharge output pin DOUT1 is electrically connected to the control terminal of the fifth switch tube G5, and the second discharge output pin DOUT2 is electrically connected to the control terminal of the sixth switch tube G6. end. When the
在一些实施例中,过电流保护电路包括第一限流电阻R1和第二限流电阻R4。第一保护芯片IC1包括芯片工作电压引脚VDD。第二保护芯片IC2包括第一芯片工作电压VDD1。第一限流电阻R1电连接于电芯2和芯片工作电压引脚VDD之间,用于限制电芯2输入至第一保护芯片IC1的电流大小。第二限流电阻R4电连接于电芯2和第一芯片工作电压VDD1,用于限制电芯2输入至第二保护芯片IC2的电流大小。In some embodiments, the overcurrent protection circuit includes a first current limiting resistor R1 and a second current limiting resistor R4. The first protection chip IC1 includes a chip working voltage pin VDD. The second protection chip IC2 includes the first chip working voltage VDD1. The first current limiting resistor R1 is electrically connected between the
在一些实施例中,过电流保护电路还包括第一检测电阻R2和第二检测电阻R3。第一保护芯片IC1包括电压引脚V-。第二保护芯片IC2包括第一电压引脚V1-。第一检测电阻R2串联于电压引脚V-和输出端12之间。第二检测电阻R3串联于第一电压引脚V1-和开关电路9之间。通过第一检测电阻R2和第二检测电阻R3均可以检测输出端12是否连接充电器。In some embodiments, the overcurrent protection circuit further includes a first detection resistor R2 and a second detection resistor R3. The first protection chip IC1 includes a voltage pin V-. The second protection chip IC2 includes a first voltage pin V1-. The first detection resistor R2 is connected in series between the voltage pin V− and the
在一些实施例中,保护电路3包括输出端12和防电流倒灌电路10;防电流倒灌电路10电连接于电芯2和输出端12之间,且与升压电路4电连接,用于在升压电路4对电芯2的输出电压升高时,阻止电流从输出端12向电芯2流动,在电芯2的输出电压在高压放电电压范围时,连通电芯2和输出端12。输出端12可以包括正极输出端P+和负极输出端P-。当升压电路4将电芯2的输出电压升高且输出到正极输出端P+时,此时,正极输出端P+的电压大于电芯2的电压,会造成正极输出端P+的电压倒灌至电芯2的问题。因此,在电芯2和正极输出端P+之间设置防电流倒灌电路10,可以防止正极输出端P+的电压大于电芯2的电压时出现电流从正极输出端P+向电芯2倒灌的问题,从而保护电芯2不易损坏。In some embodiments, the
在一些实施例中,防电流倒灌电路10包括背靠背串联连接的第一开关管G1和第二开关管G2,第二开关管G2电连接于第一开关管G1和输出端12之间。当升压电路4将电芯2的输出电压升高且输出到输出端12的正极输出端P+时,第一开关管G1和第二开关管G2均处于关断状态,由于第一开关管G1和第二开关管G2背靠背串联连接,从而使得从电芯2流向第一开关管G1的电流和从正极输出端P+流向第二开关管G2的电流均被切断。如此,实现在正极输出端P+的电压大于电芯2的电压时,防止电流从正极输出端P+向电芯2倒灌的目的。In some embodiments, the current
升压电路4包括升压输入端Vin和升压输出端Vout,升压输入端Vin电连接于电芯2和第一开关管G1之间,升压输出端Vout电连接输出端12,升压电路4包括使能引脚EN,与控制器5的控制端7电连接。升压输入端Vin较第一开关管G1之前电连接电芯2,以使升压电路4直接对电芯2的输出电压升高,从而提高电芯2的输出电压的电效率更好。升压电路4将电芯2的输出电压升高后通过升压输出端Vout输出至输出端12的正极输出端P+,进一步给整机供电。此外,通过使能引脚EN与控制端7电连接,从而实现控制器5与升压电路4的电连接,进而便于控制器5经过使能引脚EN对升压电路4的控制。The boost circuit 4 includes a boost input terminal Vin and a boost output terminal Vout, the boost input terminal Vin is electrically connected between the
在一些实施例中,升压电路4包括但不限于包括电荷泵。升压电路4通过电荷泵将电芯2的输出电压升高再输出至正极输出端P+,相较于采用boost升压电路的方案,具有更高的升压效率。在一些实施例中,电荷泵的电效率可以达到95%以上。在一些实施例中,电荷泵将电芯2的输出电压可以升高至原来的1.5倍。在一些实施例中,电荷泵包括两个并联的开关SC,两个电容C以及N型MOS管Q1。两个电容C分别与两个开关SC并联。N型MOS管Q1的源极电连接其中一个开关SC,漏极电连接电芯2。In some embodiments, the boost circuit 4 includes, but is not limited to, a charge pump. The boost circuit 4 boosts the output voltage of the
在一些实施例中,第一开关管G1包括第一PMOS管,第二开关管G2包括第二PMOS管,第一PMOS管的漏极电连接于电芯2,第一PMOS管的源极电连接第二PMOS管的源极;第二PMOS管的漏极电连接输出端12;第一PMOS管的栅极和第二PMOS管的栅极均电连接控制器5的控制端7。第一开关管G1和第二开关管G2均为P型MOS管。根据P型MOS管低压导通,高压截止的特性,使得在升压电路4输出高电压时,第一开关管G1和第二开关管G2均断开,从而可以实现阻止电流从输出端12的正极输出端P+向电芯2倒灌的目的。此外,控制器5通过控制端7电连接第一开关管G1和第二开关管G2的共栅极,以控制第一开关管G1和第二开关管G2的导通或截止。In some embodiments, the first switching transistor G1 includes a first PMOS transistor, the second switching transistor G2 includes a second PMOS transistor, the drain of the first PMOS transistor is electrically connected to the
在一些实施例中,防电流倒灌电路10包括第一二极管D1和第二二极管D2;第一二极管D1的正极与第一PMOS管的源极,第一二极管D1的负极电连接第一PMOS管的漏极;第二二极管D2的正极电连接第二PMOS管的源极,第二二极管D2的负极电连接第二PMOS管的漏极。第一二极管D1和第二二极管D2为寄生二极管,用于防止当电路中产生瞬间反向大电流时,击穿第一PMOS管和第二PMOS管,起保护第一PMOS管和第二PMOS管的作用。根据二极管具有单向导电性,将第一二极管D1的负极电连接电芯2,以及第二二极管D2的负极电连接正极输出端P+。如此,防止正极输出端P+的电压大于电芯2的电压时,正极输出端P+处的电压倒灌至电芯2。In some embodiments, the current
在一些实施例中,保护电路3包括温度检测电路11,电连接于电芯2和控制器5之间,用于检测电芯2的温度。在电芯2处于放电状态或充电状态时,温度检测电路11可以实时检测电芯2的温度并反馈至控制器5。若电芯2的温度过高,控制器5阻断电芯2继续放电或充电。在一些实施例中,温度检测电路11包括热敏电阻NTC。In some embodiments, the
在一些实施例中,保护电路3包括精密电阻RS,串联于电源引脚VSS和开关电路9之间,用于检测电芯2的电流。In some embodiments, the
以上所述仅是本申请的较佳实施方式而已,并非对本申请做任何形式上的限制,虽然本申请已以较佳实施方式揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施方式,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施方式所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。The above description is only the preferred implementation mode of the application, and does not limit the application in any form. Although the application has disclosed the above with the preferred implementation mode, it is not used to limit the application. Anyone who is familiar with this professional technology Personnel, without departing from the scope of the technical solution of the present application, when using the technical content disclosed above to make some changes or modifications to equivalent implementations with equivalent changes, but any content that does not depart from the technical solution of the present application, according to the technical content of the present application Any simple modifications, equivalent changes and modifications made by the technical essence of the application to the above implementation methods still fall within the scope of the technical solution of the application.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111530391.4A CN116264407A (en) | 2021-12-14 | 2021-12-14 | Protection circuit of silicon-oxygen negative electrode battery and silicon-oxygen negative electrode battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111530391.4A CN116264407A (en) | 2021-12-14 | 2021-12-14 | Protection circuit of silicon-oxygen negative electrode battery and silicon-oxygen negative electrode battery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116264407A true CN116264407A (en) | 2023-06-16 |
Family
ID=86722371
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111530391.4A Pending CN116264407A (en) | 2021-12-14 | 2021-12-14 | Protection circuit of silicon-oxygen negative electrode battery and silicon-oxygen negative electrode battery |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116264407A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119181877A (en) * | 2024-10-24 | 2024-12-24 | 荣耀终端有限公司 | Method and circuit for improving output voltage of battery and electronic equipment |
-
2021
- 2021-12-14 CN CN202111530391.4A patent/CN116264407A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119181877A (en) * | 2024-10-24 | 2024-12-24 | 荣耀终端有限公司 | Method and circuit for improving output voltage of battery and electronic equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100474734C (en) | Power supply apparatus | |
| CN102684250B (en) | Charge-discharge control circuit and cell apparatus | |
| CN201210622Y (en) | Electric core charging and discharging control management circuit for lithium ion or polymer battery | |
| CN104617626B (en) | Charging protection circuit used for capacitor voltage reduction | |
| CN107834519A (en) | Lithium battery protection control ASIC chip system | |
| CN105553052A (en) | Lithium battery protection chip of integrated power metal oxide semiconductor field effect transistor (MOSFET) and charging circuit applying chip | |
| CN201113407Y (en) | A lithium ion battery protection device | |
| CN206547012U (en) | Charging circuit and electronic equipment | |
| CN114914995A (en) | A charging overvoltage protection circuit for mobile service robots | |
| CN219960153U (en) | A battery core protection circuit and battery core management system | |
| CN203205896U (en) | Charging circuit of battery pack | |
| CN101877478B (en) | Cell discharge protective device | |
| CN116264407A (en) | Protection circuit of silicon-oxygen negative electrode battery and silicon-oxygen negative electrode battery | |
| CN202127240U (en) | A lithium battery charge and discharge overcharge and overdischarge protection circuit | |
| CN209313501U (en) | A kind of double cell group parallel connection isolation circuit based on ideal diode | |
| CN111864867A (en) | Battery protection control circuit, chip and electronic device | |
| CN201222649Y (en) | Overdischarging protection circuit capable of charging battery | |
| CN204464971U (en) | Battery protection circuit, power supply device and electronic device | |
| CN114268078B (en) | Battery protection circuit and battery protection system | |
| CN201113506Y (en) | Circuit to charge low voltage battery pack | |
| CN217010378U (en) | Multi-functional lithium electricity protection circuit with multistage protection | |
| CN204481525U (en) | Based on many batteries power circuit and there is the electronic product of described power circuit | |
| CN101588065B (en) | Wireless commerical power management circuit | |
| CN209184290U (en) | A kind of power supply management circuit | |
| CN100547877C (en) | Automatic charging stop control circuit of positive and negative combined pulse charger |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |