[go: up one dir, main page]

CN116285264A - 一种可生物降解爆米花鞋底材料及其制备方法 - Google Patents

一种可生物降解爆米花鞋底材料及其制备方法 Download PDF

Info

Publication number
CN116285264A
CN116285264A CN202310259313.8A CN202310259313A CN116285264A CN 116285264 A CN116285264 A CN 116285264A CN 202310259313 A CN202310259313 A CN 202310259313A CN 116285264 A CN116285264 A CN 116285264A
Authority
CN
China
Prior art keywords
biodegradable
popcorn
sole material
antioxidant
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310259313.8A
Other languages
English (en)
Inventor
王宁
苗洁
刘强
唐玉红
朱莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Institute Of Quality Technology Testing
Original Assignee
Wenzhou Institute Of Quality Technology Testing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Institute Of Quality Technology Testing filed Critical Wenzhou Institute Of Quality Technology Testing
Priority to CN202310259313.8A priority Critical patent/CN116285264A/zh
Publication of CN116285264A publication Critical patent/CN116285264A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

一种可生物降解爆米花鞋底材料及其制备方法,以可生物降解树脂、增韧剂、架桥剂、补强剂、抗氧剂、光稳定剂、润滑剂为原料,通过绿色环保的辐射交联方式,即采用电子束或X射线或伽马射线等高能射线辐射处理,在架桥剂协同作用下,更加顺利进行在可生物降解树脂大分子形成交联结构,不仅提高了树脂的熔体强度,后续进行物理发泡时泡孔均匀致密不易塌陷,所制备爆米花鞋底材料兼具低密度和高回弹性特点,而且提高材料尺寸稳定性和耐磨性能。

Description

一种可生物降解爆米花鞋底材料及其制备方法
技术领域
本发明属于高分子材料加工领域,具体涉及一种可生物降解爆米花鞋底材料及其制备方法。
背景技术
目前全球鞋类年产量超200亿双,这些鞋类产品中用到大量的高分子材料,如鞋底和鞋面材料。传统的高分子材料大多是以石油资源为原料合成得到的,鞋类产品达到寿命或被废弃后,这些高分子材料回用的比例不到30%,大量石油基高分子材料废弃物将给环境带来严重影响,导致白色污染日益严重;同时作为不可再生资源,高分子材料大量的消耗对国民经济可持续发展产生巨大挑战。因此,近年来寻找环境友好的新材料成为制鞋行业研究的重要方向之一,可生物降解高分子使用时可发挥高分子材料自身轻质、柔韧的优良特性,到达使用寿命后可通过堆肥等方式进行生物降解、回归自然,减少白色污染和对石油等不可再生资源的依赖。
聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)和聚对苯二甲酸-己二酸丁二醇酯(PBAT)是目前应用广泛的三类可生物降解高分子材料,被大规模用于环保一次性薄膜等包装材料,但是其熔体强度低、耐温性差,限制了其进一步应用,若将其应用于生产爆米花等发泡鞋底则泡孔易塌陷或合并,无法获得兼具低密度和高回弹性,另外高温时易发生收缩,尺寸稳定性差。通过交联方式可显著提高可生物降解树脂的熔体强度,便于成型,同时改善发泡鞋底的回弹性、提高尺寸稳定性和耐磨性能。公布号CN 113912999A的中国发明专利将可生物降解的PBAT和PBS共混并添加有机过氧化物作为交联剂,高温交联后通过超临界气体釜压发泡,在较低密度下就能得到较大的压缩强度和降解性能,10天内重量损失97%。此专利通过添加有机过氧化物高温反应的方式进行交联,交联程度可控性差,同时有机过氧化物易爆,属于危险化学品,不符合日益严格的制鞋工业绿色生产需求。
发明内容
针对本领域现有技术的不足之处,本发明提供了一种可生物降解爆米花鞋底材料及其制备方法,其主要是通过绿色环保的辐射交联方式,即采用电子束或X射线或伽马射线等高能射线辐射处理,在可生物降解树脂大分子形成交联结构,不仅提高了树脂的熔体强度,后续进行物理发泡时泡孔均匀致密不易塌陷,所制备爆米花鞋底材料兼具低密度和高回弹性特点,而且提高材料尺寸稳定性和耐磨性能。辐射交联结合超临界流体物理发泡的方式生产可生物降解爆米花鞋底,从材料到生产工艺全过程均绿色环保,满足制鞋工业绿色生产要求。
一种可生物降解爆米花鞋底材料,以质量份计,原料组成包括:
可生物降解树脂:60~95份
增韧剂:1~30份
架桥剂:0.1~3份
补强剂:1~15份
抗氧剂:0.1~1份
光稳定剂:0.1~1份
润滑剂:0.1~2份
所述可生物降树脂解选自聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)、聚对苯二甲酸-己二酸丁二醇酯(PBAT)中一种或两种以上组合,
所述增韧剂选自甘油、聚乙二醇(PEG)、聚酯弹性体(TPEE)、聚酰胺弹性体(TPAE)中一种或两种以上组合。
进一步地,所述聚乙二醇选自PEG-2000、PEG-3000、PEG-4000、PEG-6000、PEG-8000中一种或两种以上组合。
所述聚酯弹性体为生物基聚酯弹性体,即以生物基化合物呋喃二甲酸、丁二酸、癸二酸、丙二醇、丁二醇为主要原料制备的聚酯弹性体。
所述聚酰胺弹性体为生物基聚酰胺弹性体,即以生物基化合物丁二酸、富马酸、癸二酸、衣康酸、丁二胺、癸二胺为主要原料制备的聚酰胺弹性体。
所述架桥剂选自三烯丙基氰脲酸酯(TAC)、三烯丙基异氰脲酸酯(TAIC)、三甲代烯丙基异氰酸酯(TMAIC)、三羟甲基丙烷三丙烯酸酯(TMPTA)、三羟甲基丙烷三甲基丙烯酸酯(TMPTM)中一种或两种以上组合。
所述补强剂选自碳酸钙、滑石粉、二氧化硅、炭黑、钛白粉、硫酸钡、黏土中一种或两种以上组合。
所述的抗氧剂为主抗氧剂和辅抗氧剂的组合。
进一步地,所述主抗氧剂选自受阻酚类抗氧剂1010、1076、1024中的一种或两种以上组合;所述辅抗氧剂选自亚磷酸酯类抗氧剂168、626或/和硫酯类抗氧剂DSLP、DSTP中的一种或两种以上组合;
所述的光稳定剂剂为受阻胺类光稳定剂770、944、622中的一种或两种以上组合。
所述的润滑剂为硬脂酸钙、聚乙烯蜡、乙撑双硬脂酸酰胺(EBS)、硬脂酸季戊四醇酯(PETS)、硅酮粉中的一种或两种以上组合。
本发明提供了所述的可生物降解爆米花鞋底材料制备方法,包括以下步骤:
1)将可生物降解树脂60℃真空干燥4~6h,根据质量配比,添加增韧剂、补强剂、抗氧剂、光稳定剂、润滑剂后加入到高混机中高速混和3-6min,然后加入架桥剂继续混合5-10min。
2)将混合均匀后物料喂入到双螺杆挤出机中挤出造粒,挤出机螺筒温度为110~180℃,螺杆转速200~400r/min,喂料频率4~8Hz,得到组合物颗粒;
3)将上述组合物颗粒通过高能射线辐射一定剂量,使树脂大分子链间通过架桥剂互相键合交联;
4)将交联后组合物颗粒加入到高压反应釜中,设置釜温100~160℃,向高压反应釜中注入超临界流体,使压力达到10~30MPa,保压1~2h,快速泄压至常压,得到一次发泡颗粒。
5)将一次发泡颗粒加入鞋底模具腔中,在120~200℃温度下进行二次发泡10~30min,颗粒间互相熔结并在模具中挤压成型,脱模得到爆米花鞋底材料。
上述技术方案中,所述高能射线是电子束或X射线或伽马射线,辐射剂量为10~200kGy;
上述技术方案中,所述超临界流体为超临界氮气、二氧化碳、空气中一种或两种以上组合。
与现有技术相比,本发明有益效果包括:
1)采用辐射交联结合超临界流体物理发泡的方式生产可生物降解爆米花鞋底,辐射交联和物理发泡的工艺方式均不使用有害化学试剂或危险化学品,生产过程绿色环保。
2)配方中加入含双键的架桥剂,促进辐射交联反应更加顺利进行,交联提高了树脂的熔体强度,发泡时泡孔均匀致密不易塌陷,所制备爆米花鞋底材料兼具低密度和高回弹性特点,同时提高鞋底材料的尺寸稳定性和耐磨性能。
3)因不同的树脂对辐射的敏感性和可交联程度不一致,本发明可以通过架桥剂含量和辐射剂量对交联程度进行调控,对不同树脂可以方便地采用不同的配方含量和辐射工艺,达到提高熔体强度和各项性能的目的。
具体实施方式
下面结合具体实施例对本发明技术方案进行清楚、完整地描述,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例原料组成以质量份数计,如表1所示,制备方法如下:
将可生物降解树脂在60℃真空干燥4h,按照表1的配方,添加增韧剂、补强剂、抗氧剂、光稳定剂、润滑剂后加入到高混机中混和3min,然后加入架桥剂继续混合5min。混匀后物料喂入到双螺杆挤出机中挤出造粒,挤出机螺筒温度为120~150℃,螺杆转速400r/min,喂料频率5Hz,得到组合物颗粒。将组合物颗粒通过电子束辐射进行交联反应,设定辐射剂量如表1所示。交联后颗粒加入到高压反应釜中,设置釜温120℃,向高压反应釜中注入超临界二氧化碳流体,达到压力20MPa后保压1h,然后快速泄压至常压,得到一次发泡颗粒。将一次发泡颗粒加入鞋底模具腔中,在150℃温度下进行二次发泡20min,颗粒间互相熔结并在模具中挤压成型,脱模得到爆米花鞋底材料。
表1
Figure BDA0004130627400000051
对比例1的原料组成与实施例1完全相同,对比例1的制备方法同实施例,不同之处为组合物颗粒未进行辐射交联处理。
对比例2的原料组成同实施例1,不同之处为未加入架桥剂,对比例2的制备方法与实施例完全相同。
对比例3的原料组成与实施例3完全相同,对比例3的制备方法同实施例,不同之处为组合物颗粒辐射剂量为20kGy。
将上述实施例和对比例所制得的爆米花鞋底材料进行测试,测试结果列于表2中。密度依据GB/T 6343进行测试,回弹性参照GB/T 1681测试回弹值进行表征,热收缩率参照GB/T 13519进行测试,压缩永久变形依据GB/T 7759.1进行测试,耐磨性能参考GB/T5478测试Taber磨耗量进行表征。
表2
Figure BDA0004130627400000052
Figure BDA0004130627400000061
根据表2的结果,由实施例可知,配方中加入架桥剂,并通过辐射交联后,在可生物降解树脂大分子中产生交联结构,提高熔体强度,便于后续进行物理发泡工艺,所形成的泡孔均匀致密,各项性能优良,回弹性高,热收缩率和压缩永久变形低,磨耗量也较低。另外,对于不同类型的树脂,辐射交联所需要剂量不尽相同,对于不同的树脂需要对架桥剂含量和辐射工艺对应进行调节。
对照对比例1和实施例1可知,未进行辐射交联工艺,由于熔体强度低,发泡成型后泡孔极不均匀,发生较多塌陷和并孔现象,所制备的爆米花鞋底各项性能均显著低于实施例。
对照对比例2和实施例1可知,未加入架桥剂的配方,即使进行辐射交联工艺,但交联程度低,所制备爆米花鞋底材料泡孔不均匀,回弹性较差,而且热收缩率和压缩永久变形高,尺寸稳定性较差,磨耗量高耐磨性也较差。
作为有选的,实施例七中通过若干次的实验确定了配方中各个物质的配比,选择聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)、聚对苯二甲酸-己二酸丁二醇酯(PBAT)的质量比为20:50:15的合理配合,配方体系兼顾了材料成型后的强度和柔韧性;主要体现在具有较大的回弹性和较低的压缩永久变形量和磨耗量,同时选择在适宜的辐照剂量下交联,由于交联度低熔体强度不够,发泡不均匀后性能差;而交联度太高,熔体强度太高,很难达到高发泡倍数,具体的在实施例7中选择辐照剂量为40kGy,交联程度适中,来达到合适的熔体强度,以及发泡后泡孔均匀一致,使得各个参数性能均衡性好,获得最优性能。
不同的可降解聚酯成分或结构,在采用辐射交联时到达的效果不同。对照对比例3和实施例3可知,在选择PBAT树脂作为可生物降解树脂原料时,通过大量实验确定了较优的配方含量和辐射剂量,其发生交联反应所需的辐照剂量较高,才能来保证PBAT树脂为主要原料的鞋材的材料性能。
本发明可生物降解爆米花鞋底材料及其制备方法,所提供配方及其加工技术具有良好的效果,含双键架桥剂的加入,促进辐射交联反应更加顺利进行,交联提高了树脂的熔体强度,泡孔均匀致密不易塌陷,所制备爆米花鞋底材料兼具低密度和高回弹性特点,同时提高鞋底材料的尺寸稳定性和耐磨性。辐射交联结合超临界流体物理发泡的工艺方式均不使用有害化学试剂或危险化学品,生产过程绿色环保,满足制鞋工业绿色生产需求。

Claims (10)

1.一种可生物降解爆米花鞋底材料,其特征在于,以质量份计,原料组成包括:
可生物降解树脂:60~95份
增韧剂:1~30份
架桥剂:0.1~3份
补强剂:1~15份
抗氧剂:0.1~1份
光稳定剂:0.1~1份
润滑剂:0.1~2份。
2.根据权利要求1所述的可生物降解爆米花鞋底材料,其特征在于,所述可生物降解树脂选自聚乳酸、聚丁二酸丁二醇酯、聚对苯二甲酸-己二酸丁二醇酯中一种或两种以上组合。
3.根据权利要求1所述的可生物降解爆米花鞋底材料,其特征在于,所述增韧剂选自甘油、聚乙二醇、聚酯弹性体、聚酰胺弹性体中一种或两种以上组合,
所述聚乙二醇选自PEG-2000、PEG-3000、PEG-4000、PEG-6000、PEG-8000中一种或两种以上组合;
所述聚酯弹性体为生物基聚酯弹性体,即以呋喃二甲酸、丁二酸、癸二酸、丙二醇、丁二醇为主要原料制备的聚酯弹性体;
所述聚酰胺弹性体为生物基聚酰胺弹性体,即以丁二酸、富马酸、癸二酸、衣康酸、丁二胺、癸二胺为主要原料制备的聚酰胺弹性体。
4.根据权利要求1所述的可生物降解爆米花鞋底材料,其特征在于,所述架桥剂选自三烯丙基氰脲酸酯、三烯丙基异氰脲酸酯、三甲代烯丙基异氰酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯中一种或两种以上组合。
5.根据权利要求1所述的可生物降解爆米花鞋底材料,其特征在于,所述补强剂选自碳酸钙、滑石粉、二氧化硅、炭黑、钛白粉、硫酸钡、黏土中一种或两种以上组合。
6.根据权利要求1所述的可生物降解爆米花鞋底材料,其特征在于,所述的抗氧剂为主抗氧剂和辅抗氧剂的组合,
所述主抗氧剂选自受阻酚类抗氧剂1010、1076、1024中的一种或两种以上组合;
所述辅抗氧剂选自亚磷酸酯类抗氧剂168、626,或硫酯类抗氧剂DSLP、DSTP中的一种或两种以上组合。
7.根据权利要求1所述的可生物降解爆米花鞋底材料,其特征在于,所述的光稳定剂为受阻胺类光稳定剂770、944、622中的一种或两种以上组合。
8.根据权利要求1所述的可生物降解爆米花鞋底材料,其特征在于,所述的润滑剂为硬脂酸钙、聚乙烯蜡、乙撑双硬脂酸酰胺、硬脂酸季戊四醇酯、硅酮粉中的一种或两种以上组合。
9.一种如权利要求1~8任一项所述的可生物降解爆米花鞋底材料的制备方法,其特征在于,包括以下步骤:
1)将可生物降解树脂60℃真空干燥4~6h,根据质量配比,添加增韧剂、补强剂、抗氧剂、光稳定剂、润滑剂后加入到高混机中混和3-6min,然后加入架桥剂继续混合5-10min;
2)将混合均匀后物料喂入到双螺杆挤出机中挤出造粒,挤出机螺筒温度为110~180℃,螺杆转速200~400r/min,喂料频率4~8Hz,得到组合物颗粒;
3)将上述组合物颗粒通过高能射线辐射交联;
4)将交联后组合物颗粒加入到高压反应釜中,设置釜温100~160℃,向高压反应釜中注入超临界流体,使压力达到10~30MPa,保压1~2h,快速泄压至常压,得到一次发泡颗粒;
5)将一次发泡颗粒加入鞋底模具腔中,在120~200℃温度下进行二次发泡10~30min,颗粒间互相熔结并在模具中挤压成型,脱模得到爆米花鞋底材料。
10.根据权利要求9所述的制备方法,其特征在于,所述高能射线是电子束或X射线或伽马射线,辐射剂量为10~200kGy。
CN202310259313.8A 2023-03-13 2023-03-13 一种可生物降解爆米花鞋底材料及其制备方法 Pending CN116285264A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310259313.8A CN116285264A (zh) 2023-03-13 2023-03-13 一种可生物降解爆米花鞋底材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310259313.8A CN116285264A (zh) 2023-03-13 2023-03-13 一种可生物降解爆米花鞋底材料及其制备方法

Publications (1)

Publication Number Publication Date
CN116285264A true CN116285264A (zh) 2023-06-23

Family

ID=86812799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310259313.8A Pending CN116285264A (zh) 2023-03-13 2023-03-13 一种可生物降解爆米花鞋底材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116285264A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596279A (zh) * 2001-11-29 2005-03-16 东丽株式会社 交联的生物降解性树脂连续发泡片及其制造方法
CN101402783A (zh) * 2008-11-12 2009-04-08 中国科学院长春应用化学研究所 可生物降解的聚丁二酸丁二醇酯泡沫塑料及其制备方法
CN102911392A (zh) * 2012-10-22 2013-02-06 郑州大学 利用超临界流体co2制备辐射改性聚乳酸发泡材料的方法
CN107955343A (zh) * 2017-11-25 2018-04-24 长春中科应化生态材料有限公司 辐射交联可生物降解泡沫材料及其制备方法
CN111440423A (zh) * 2020-05-20 2020-07-24 安踏(中国)有限公司 一种生物可降解发泡鞋中底材料及其制备方法
CN113912999A (zh) * 2021-11-17 2022-01-11 江苏集萃先进高分子材料研究所有限公司 一种可生物降解的pbat/pbs共混超临界固态发泡材料及制备方法和应用
CN115012058A (zh) * 2022-07-14 2022-09-06 中广核俊尔(浙江)新材料有限公司 一种耐热高流动性聚乳酸的制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596279A (zh) * 2001-11-29 2005-03-16 东丽株式会社 交联的生物降解性树脂连续发泡片及其制造方法
CN101402783A (zh) * 2008-11-12 2009-04-08 中国科学院长春应用化学研究所 可生物降解的聚丁二酸丁二醇酯泡沫塑料及其制备方法
CN102911392A (zh) * 2012-10-22 2013-02-06 郑州大学 利用超临界流体co2制备辐射改性聚乳酸发泡材料的方法
CN107955343A (zh) * 2017-11-25 2018-04-24 长春中科应化生态材料有限公司 辐射交联可生物降解泡沫材料及其制备方法
CN111440423A (zh) * 2020-05-20 2020-07-24 安踏(中国)有限公司 一种生物可降解发泡鞋中底材料及其制备方法
CN113912999A (zh) * 2021-11-17 2022-01-11 江苏集萃先进高分子材料研究所有限公司 一种可生物降解的pbat/pbs共混超临界固态发泡材料及制备方法和应用
CN115012058A (zh) * 2022-07-14 2022-09-06 中广核俊尔(浙江)新材料有限公司 一种耐热高流动性聚乳酸的制备方法及应用

Similar Documents

Publication Publication Date Title
US20200002499A1 (en) Method for physically foaming a polymer material and foamed article
CN102911392B (zh) 利用超临界流体co2制备辐射改性聚乳酸发泡材料的方法
WO2020125577A1 (zh) 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN103242632A (zh) 一种聚乳酸可降解发泡材料及其制备方法
WO2022134296A1 (zh) 一种高回弹生物可降解聚酯微发泡异型材的制备方法
CN107200872A (zh) 一种耐磨微孔发泡材料
CN105713409B (zh) 一种全降解纤维素泡沫材料及其制备方法
CN113910485B (zh) 一种生物可降解聚合物珠粒、制备方法及设备
CN105038164A (zh) 聚乳酸基共混材料及其制备方法和由其制备发泡材料的方法
CN112961394B (zh) 一种可降解竹纤维吸管的制备方法
CN106147036A (zh) 一种可回收循环使用的发泡材料及其制造方法
CN116875023A (zh) 一种水果网套及其制备方法
CN114230990A (zh) 一种轻质木质纤维/聚乳酸复合材料及其制备方法
CN109021379B (zh) 辐射交联聚丙烯发泡材料、制备方法及其应用
CN107200946B (zh) 一种氯磺化聚乙烯微孔发泡材料及其制备方法
CN107541031B (zh) 一种改性pga或plga的全生物降解发泡材料及其制备方法
CN104385479A (zh) 一种连续挤出发泡制备tpu发泡珠粒的方法
CN116285264A (zh) 一种可生物降解爆米花鞋底材料及其制备方法
CN102558795A (zh) 一种聚乳酸淀粉共混材料及其制备方法
CN113308053A (zh) 一种自发泡植物纤维改性聚丙烯材料及其制备方法
CN116285261B (zh) 生物降解聚乳酸基聚酯可发泡颗粒及注塑型低密度发泡制品及制备方法
CN114835973B (zh) 基于eva废料制备的eva复合发泡材料及其制备工艺
CN108003426B (zh) 发泡聚乙烯用组合物和聚乙烯发泡制品及其制备方法
CN107200877A (zh) 一种顺丁橡胶微孔发泡材料及其制备方法
CN116655992A (zh) 一种tpee超临界微孔注塑发泡材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination