[go: up one dir, main page]

CN116314396B - Back contact solar cell and preparation method thereof - Google Patents

Back contact solar cell and preparation method thereof Download PDF

Info

Publication number
CN116314396B
CN116314396B CN202310293470.0A CN202310293470A CN116314396B CN 116314396 B CN116314396 B CN 116314396B CN 202310293470 A CN202310293470 A CN 202310293470A CN 116314396 B CN116314396 B CN 116314396B
Authority
CN
China
Prior art keywords
emitter
layer
passivation layer
silicon substrate
doping type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310293470.0A
Other languages
Chinese (zh)
Other versions
CN116314396A (en
Inventor
张倬涵
季雯娴
方理程
胡匀匀
柳伟
徐冠超
陈达明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trina Solar Co Ltd
Original Assignee
Trina Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trina Solar Co Ltd filed Critical Trina Solar Co Ltd
Priority to CN202310293470.0A priority Critical patent/CN116314396B/en
Publication of CN116314396A publication Critical patent/CN116314396A/en
Application granted granted Critical
Publication of CN116314396B publication Critical patent/CN116314396B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/14Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • H10F10/146Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/129Passivating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/122Active materials comprising only Group IV materials
    • H10F77/1223Active materials comprising only Group IV materials characterised by the dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种背接触太阳能电池和制备方法。该背接触太阳能电池包括:硅衬底,具有相对的正面和背面,且为第一掺杂类型;以及第一发射极和第二发射极,第一发射极与第二发射极沿第一方向相邻设置于硅衬底的背面,所述第一发射极为第二掺杂类型,第二发射极为第一掺杂类型,第一发射极的掺杂浓度为1×1013‑1×1018cm‑3,其中,第一方向与硅衬底的厚度方向相交。本申请的背接触太阳能电池通过控制第一发射极的掺杂浓度以及通过第二钝化层和/或隧穿氧化层调节与第二发射极相邻部分的第一发射极的掺杂浓度实现了隔离第一发射极和第二发射极的技术效果;同时具有较佳的机械载荷能力以及工艺步骤少的技术效果。

The present application provides a back-contact solar cell and a preparation method. The back-contact solar cell includes: a silicon substrate having a relative front and back side and being of a first doping type; and a first emitter and a second emitter, wherein the first emitter and the second emitter are adjacently arranged on the back side of the silicon substrate along a first direction, the first emitter is of the second doping type, the second emitter is of the first doping type, and the doping concentration of the first emitter is 1×10 13 ‑1×10 18 cm ‑3 , wherein the first direction intersects with the thickness direction of the silicon substrate. The back-contact solar cell of the present application achieves the technical effect of isolating the first emitter and the second emitter by controlling the doping concentration of the first emitter and adjusting the doping concentration of the first emitter adjacent to the second emitter through a second passivation layer and/or a tunneling oxide layer; and at the same time, it has the technical effect of having better mechanical load capacity and fewer process steps.

Description

背接触太阳能电池及其制备方法Back contact solar cell and method for preparing the same

技术领域Technical Field

本申请主要光伏技术领域,具体地涉及一种背接触太阳能电池和背接触太阳能电池的制备方法。The present application mainly relates to the field of photovoltaic technology, and specifically to a back-contact solar cell and a method for preparing a back-contact solar cell.

背景技术Background Art

背接触电池(IBC)的正极电极和负极电极位于电池的背面,电池的正面没有电极的遮挡,提高了电池的受光面积,同时提高了电池的美观性。The positive electrode and negative electrode of the back contact battery (IBC) are located on the back of the battery, and there is no electrode blocking the front of the battery, which increases the light-receiving area of the battery and improves the aesthetics of the battery.

常规技术中,在制备背接触电池时多采用碱性溶液在电池的正面和背面制备金字塔绒面形貌,位于电池背面的P区不可避免地被碱性溶液刻蚀。这一方面会导致在P区形成具有一定深度的凹槽,这个凹槽会降低电池的机械载荷能力;另一方面,位于电池背面的金字塔绒面形貌会降低电池背面对光线的反射率。对于该问题,虽然可借助位于电池背面的隧穿氧化层作为碱性溶液刻蚀金字塔绒面形貌的阻挡层,但这会导致扩散结不能被有效地去除,从而导致电池短路和漏电。In conventional technology, when preparing back-contact batteries, alkaline solutions are often used to prepare pyramid velvet morphology on the front and back of the battery. The P region on the back of the battery is inevitably etched by the alkaline solution. On the one hand, this will lead to the formation of grooves with a certain depth in the P region, which will reduce the mechanical load capacity of the battery; on the other hand, the pyramid velvet morphology on the back of the battery will reduce the reflectivity of the back of the battery to light. For this problem, although the tunneling oxide layer on the back of the battery can be used as a barrier layer for etching the pyramid velvet morphology with an alkaline solution, this will result in the diffusion junction not being effectively removed, resulting in battery short circuit and leakage.

所以,如何同时兼顾背接触电池的机械载荷能力和降低电池漏电是亟待解决的问题。Therefore, how to simultaneously take into account the mechanical load capacity of the back contact battery and reduce battery leakage is an urgent problem to be solved.

发明内容Summary of the invention

本申请要解决的技术问题是提供一种背接触太阳能电池和背接触太阳能电池的制备方法,该背接触电池能够在保证机械载荷能力满足要求的同时降低电池的漏电。The technical problem to be solved by the present application is to provide a back-contact solar cell and a method for preparing a back-contact solar cell, wherein the back-contact solar cell can reduce the leakage of the battery while ensuring that the mechanical load capacity meets the requirements.

本申请为解决上述技术问题而采用的技术方案是一种背接触太阳能电池,包括:硅衬底,具有相对的正面和背面,且为第一掺杂类型;以及第一发射极和第二发射极,所述第一发射极与所述第二发射极沿第一方向相邻设置于所述硅衬底的背面,所述第一发射极为第二掺杂类型,所述第二发射极为第一掺杂类型,所述第一发射极的掺杂浓度为1×1013-1×1018cm-3,其中,所述第一方向与所述硅衬底的厚度方向相交。The technical solution adopted by the present application to solve the above technical problems is a back-contact solar cell, comprising: a silicon substrate having a front side and a back side opposite to each other and being of a first doping type; and a first emitter and a second emitter, wherein the first emitter and the second emitter are adjacently arranged on the back side of the silicon substrate along a first direction, the first emitter is of the second doping type, the second emitter is of the first doping type, and the doping concentration of the first emitter is 1×10 13 -1×10 18 cm -3 , wherein the first direction intersects with the thickness direction of the silicon substrate.

在本申请一实施例中,所述第一发射极包括扩散层,所述扩散层设置于所述硅衬底的背面,所述扩散层为所述第二掺杂类型,其中,所述扩散层与所述第二发射极相接。In an embodiment of the present application, the first emitter includes a diffusion layer, the diffusion layer is disposed on the back side of the silicon substrate, the diffusion layer is of the second doping type, and the diffusion layer is connected to the second emitter.

在本申请一实施例中,所述第一发射极还包括隧穿氧化层和多晶硅层,所述隧穿氧化层和所述多晶硅层依次设置于所述扩散层远离所述硅衬底的一面。In an embodiment of the present application, the first emitter further includes a tunneling oxide layer and a polysilicon layer, and the tunneling oxide layer and the polysilicon layer are sequentially arranged on a side of the diffusion layer away from the silicon substrate.

在本申请一实施例中还包括:第二钝化层,第一部分第二钝化层设置于所述多晶硅层远离硅衬底的一面,第二部分第二钝化层设置于所述隧穿氧化层远离所述硅衬底的一面,其中,所述第二钝化层为所述第一掺杂类型。In one embodiment of the present application, it also includes: a second passivation layer, a first portion of the second passivation layer is arranged on a side of the polysilicon layer away from the silicon substrate, and a second portion of the second passivation layer is arranged on a side of the tunneling oxide layer away from the silicon substrate, wherein the second passivation layer is of the first doping type.

在本申请一实施例中还包括:第三钝化层,设置于所述第二钝化层远离所述硅衬底的一面。In one embodiment of the present application, it also includes: a third passivation layer, which is arranged on a side of the second passivation layer away from the silicon substrate.

在本申请一实施例中还包括:第一电极和第二电极,所述第一电极的一端穿过所述第二钝化层与所述第一发射极接触,所述第二电极的一端穿过所述第二钝化层与所述第二发射极接触。In one embodiment of the present application, it also includes: a first electrode and a second electrode, one end of the first electrode passes through the second passivation layer to contact the first emitter, and one end of the second electrode passes through the second passivation layer to contact the second emitter.

在本申请一实施例中还包括:第一钝化层和减反射层,所述第一钝化层和所述减反射层依次设置于所述硅衬底的正面。In one embodiment of the present application, it also includes: a first passivation layer and an anti-reflection layer, wherein the first passivation layer and the anti-reflection layer are sequentially arranged on the front side of the silicon substrate.

在本申请一实施例中,所述第一钝化层包括化学钝化层和场钝化层,其中,所述化学钝化层设置于所述硅衬底的正面,所述场钝化层设置于所述化学钝化层远离所述硅衬底的一面。In one embodiment of the present application, the first passivation layer includes a chemical passivation layer and a field passivation layer, wherein the chemical passivation layer is disposed on the front side of the silicon substrate, and the field passivation layer is disposed on a side of the chemical passivation layer away from the silicon substrate.

本申请另一方面还提出一种背接触太阳能电池的制备方法,包括以下步骤:提供硅衬底,具有相对的正面和背面,且为第一掺杂类型;以及在所述硅衬底的背面形成沿第一方向相邻的第一发射极和第二发射极,所述第一发射极为第二掺杂类型,所述第二发射极为第一掺杂类型,所述第一发射极的掺杂浓度为1×1013-1×1018cm-3,其中,所述第一方向与所述硅衬底的厚度方向相交。On the other hand, the present application also proposes a method for preparing a back-contact solar cell, comprising the following steps: providing a silicon substrate having a front side and a back side opposite to each other and being of a first doping type; and forming a first emitter and a second emitter adjacent to each other along a first direction on the back side of the silicon substrate, wherein the first emitter is of the second doping type and the second emitter is of the first doping type, and the doping concentration of the first emitter is 1×10 13 -1×10 18 cm -3 , wherein the first direction intersects with a thickness direction of the silicon substrate.

在本申请一实施例中,所述第一发射极包括扩散层,所述扩散层设置于所述硅衬底的背面,所述扩散层为所述第二掺杂类型,其中,所述扩散层与所述第二发射极相接。In an embodiment of the present application, the first emitter includes a diffusion layer, the diffusion layer is disposed on the back side of the silicon substrate, the diffusion layer is of the second doping type, and the diffusion layer is connected to the second emitter.

在本申请一实施例中,所述第一发射极还包括隧穿氧化层和多晶硅层,所述隧穿氧化层和所述多晶硅层依次设置于所述扩散层远离所述硅衬底的一面。In an embodiment of the present application, the first emitter further includes a tunneling oxide layer and a polysilicon layer, and the tunneling oxide layer and the polysilicon layer are sequentially arranged on a side of the diffusion layer away from the silicon substrate.

在本申请一实施例中,形成所述扩散层的方法包括:在所述硅衬底的背面形成过渡扩散层,所述过渡扩散层为所述第一掺杂类型;以及对所述过渡扩散层进行掺杂处理,所述掺杂处理的掺杂剂为形成所述第二掺杂类型的掺杂剂,经所述掺杂处理后,所述过渡扩散层被反型为所述扩散层。In one embodiment of the present application, the method for forming the diffusion layer includes: forming a transition diffusion layer on the back side of the silicon substrate, the transition diffusion layer being of the first doping type; and performing a doping treatment on the transition diffusion layer, the dopant of the doping treatment being a dopant for forming the second doping type, and after the doping treatment, the transition diffusion layer is inverted into the diffusion layer.

在本申请一实施例中,通过控制所述过渡扩散层的掺杂浓度来控制所述第一发射极的掺杂浓度。In an embodiment of the present application, the doping concentration of the first emitter is controlled by controlling the doping concentration of the transition diffusion layer.

在本申请一实施例中,在所述多晶硅层沿所述厚度方向远离所述硅衬底的一面形成第二钝化层,其中,所述第二钝化层为所述第一掺杂类型。In one embodiment of the present application, a second passivation layer is formed on a side of the polysilicon layer away from the silicon substrate along the thickness direction, wherein the second passivation layer is of the first doping type.

在本申请一实施例中,在所述第二钝化层沿所述厚度方向远离所述硅衬底的一面形成第三钝化层。In one embodiment of the present application, a third passivation layer is formed on a side of the second passivation layer away from the silicon substrate along the thickness direction.

在本申请一实施例中,在所述硅衬底的正面依次形成第一钝化层和减反射层。In one embodiment of the present application, a first passivation layer and an anti-reflection layer are sequentially formed on the front surface of the silicon substrate.

在本申请一实施例中,所述第一钝化层包括化学钝化层和场钝化层,其中,所述化学钝化层设置于所述硅衬底的正面,所述场钝化层设置于所述化学钝化层远离所述硅衬底的一面。In one embodiment of the present application, the first passivation layer includes a chemical passivation layer and a field passivation layer, wherein the chemical passivation layer is disposed on the front side of the silicon substrate, and the field passivation layer is disposed on a side of the chemical passivation layer away from the silicon substrate.

本申请的背接触太阳能电池通过控制第一发射极的掺杂浓度以及通过第二钝化层和/或隧穿氧化层调节与第二发射极相邻部分的第一发射极的掺杂浓度实现了隔离第一发射极和第二发射极的技术效果;同时具有较佳的机械载荷能力以及工艺步骤少的技术效果。The back-contact solar cell of the present application achieves the technical effect of isolating the first emitter and the second emitter by controlling the doping concentration of the first emitter and adjusting the doping concentration of the first emitter adjacent to the second emitter through the second passivation layer and/or the tunneling oxide layer; at the same time, it has the technical effect of better mechanical load capacity and fewer process steps.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为让本申请的上述目的、特征和优点能更明显易懂,以下结合附图对本申请的具体实施方式作详细说明,其中:In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, the specific implementation methods of the present application are described in detail below with reference to the accompanying drawings, wherein:

图1是一种背接触太阳能电池的截面示意图;FIG1 is a schematic cross-sectional view of a back-contact solar cell;

图2是另一种背接触太阳能电池的截面示意图;FIG2 is a schematic cross-sectional view of another back-contact solar cell;

图3是本申请一实施例的一种背接触太阳能电池的截面示意图;FIG3 is a cross-sectional schematic diagram of a back-contact solar cell according to an embodiment of the present application;

图4是本申请一实施例的一种背接触太阳能电池的制备方法的示例性流程图;FIG4 is an exemplary flow chart of a method for preparing a back-contact solar cell according to an embodiment of the present application;

图5至图7是本申请一实施例的制备方法中太阳能电池在各个中间步骤处的截面示意图。5 to 7 are schematic cross-sectional views of a solar cell at various intermediate steps in a preparation method according to an embodiment of the present application.

附图标记Reference numerals

背接触太阳能电池100 第二发射极130 第一电极191Back contact solar cell 100 Second emitter 130 First electrode 191

硅衬底110、310 凹槽140 第二电极192Silicon substrate 110, 310 Groove 140 Second electrode 192

正面111、311 第一钝化层150 过渡扩散层320Front surface 111, 311 First passivation layer 150 Transition diffusion layer 320

背面112、312 减反射层160 反型后的过渡掺杂层330Back surface 112, 312 Anti-reflection layer 160 Transition doping layer 330 after inversion

第一发射极120 第二钝化层170、380 扩散区340First emitter 120 Second passivation layer 170, 380 Diffusion region 340

扩散层121 第一部分171 扩散层350Diffusion layer 121 First portion 171 Diffusion layer 350

隧穿氧化层122、360 第二部分172 隧穿氧化层360Tunneling oxide layer 122, 360 Second portion 172 Tunneling oxide layer 360

多晶硅层123、370 第三钝化层180、390Polysilicon layer 123, 370 Third passivation layer 180, 390

具体实施方式DETAILED DESCRIPTION

为让本申请的上述目的、特征和优点能更明显易懂,以下结合附图对本申请的具体实施方式作详细说明。In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, the specific implementation methods of the present application are described in detail below with reference to the accompanying drawings.

在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其它不同于在此描述的其它方式来实施,因此本申请不受下面公开的具体实施例的限制。In the following description, many specific details are set forth to facilitate a full understanding of the present application, but the present application may also be implemented in other ways different from those described herein, and therefore the present application is not limited to the specific embodiments disclosed below.

如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。As shown in this application and claims, unless the context clearly indicates an exception, the words "a", "an", "an" and/or "the" do not refer to the singular and may also include the plural. Generally speaking, the terms "comprises" and "includes" only indicate the inclusion of the steps and elements that have been clearly identified, and these steps and elements do not constitute an exclusive list. The method or device may also include other steps or elements.

此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。此外,尽管本申请中所使用的术语是从公知公用的术语中选择的,但是本申请说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本申请。In addition, it should be noted that the use of words such as "first" and "second" to define components is only for the convenience of distinguishing the corresponding components. If not otherwise stated, the above words have no special meaning and cannot be understood as limiting the scope of protection of this application. In addition, although the terms used in this application are selected from well-known and commonly used terms, some terms mentioned in the specification of this application may be selected by the applicant at his or her discretion, and their detailed meanings are explained in the relevant parts of the description of this article. In addition, it is required to understand this application not only by the actual terms used, but also by the meaning implied by each term.

本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,或将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。Flowcharts are used in the present application to illustrate the operations performed by the system according to the embodiments of the present application. It should be understood that the preceding or following operations are not necessarily performed accurately in order. On the contrary, various steps may be processed in reverse order or simultaneously. At the same time, other operations may be added to these processes, or one or more operations may be removed from these processes.

图1是一种背接触太阳能电池的截面示意图。图1中的背接触太阳能电池10存在以下问题:由于生产工艺步骤等原因,在使用碱性溶液在硅衬底11正面构造金字塔绒面形貌时,位于硅衬底11背面的P区也会同时被刻蚀,这导致在P区形成一个具有一定深度的凹槽12,以及在P区形成金字塔绒面形貌13。P区处的凹槽12会导致太阳能电池10的机械载荷能力下降;同时,P区处的金字塔绒面形貌13会降低太阳能电池10对光线的反射率,从而导致电流降低。FIG1 is a cross-sectional schematic diagram of a back-contact solar cell. The back-contact solar cell 10 in FIG1 has the following problems: due to the production process steps and other reasons, when an alkaline solution is used to construct a pyramid velvet morphology on the front of the silicon substrate 11, the P region on the back of the silicon substrate 11 is also etched at the same time, which results in the formation of a groove 12 with a certain depth in the P region, and the formation of a pyramid velvet morphology 13 in the P region. The groove 12 in the P region will cause the mechanical load capacity of the solar cell 10 to decrease; at the same time, the pyramid velvet morphology 13 in the P region will reduce the reflectivity of the solar cell 10 to light, thereby causing a decrease in current.

图2是另一种背接触太阳能电池的截面示意图。与图1中的背接触太阳能电池10相比,图2中的背接触太阳能电池20的P区处的凹槽22的深度较浅;且P区没有金字塔绒面形貌;此外,图2中通过刻蚀等方法在发射极23和发射极24之间设置有隔离区25,如此有利于减少电池的漏电。虽然图2中的背接触太阳能电池20能够解决图1中的背接触太阳能电池10所面临的问题,并降低电池的漏电。但实现图2中的结构需要增加工艺步骤,这导致生产成本上升。此外,增加工艺步骤会增加对硅衬底21的热处理次数,这会缩短硅衬底21的使用寿命。FIG2 is a cross-sectional schematic diagram of another back-contact solar cell. Compared with the back-contact solar cell 10 in FIG1 , the depth of the groove 22 at the P region of the back-contact solar cell 20 in FIG2 is shallower; and the P region does not have a pyramid velvet morphology; in addition, an isolation region 25 is provided between the emitter 23 and the emitter 24 in FIG2 by etching or the like, which is beneficial to reduce the leakage of the battery. Although the back-contact solar cell 20 in FIG2 can solve the problems faced by the back-contact solar cell 10 in FIG1 and reduce the leakage of the battery. However, the realization of the structure in FIG2 requires additional process steps, which leads to an increase in production costs. In addition, the increase in process steps will increase the number of heat treatments on the silicon substrate 21, which will shorten the service life of the silicon substrate 21.

针对图1和图2中背接触太阳能电池所存在的不足,本申请的背接触太阳能电池能够兼顾电池的机械载荷能力和工艺步骤数量,同时还能够降低背接触电池的漏电。In view of the shortcomings of the back-contact solar cells in Figures 1 and 2, the back-contact solar cell of the present application can take into account both the mechanical load capacity of the cell and the number of process steps, while also being able to reduce the leakage of the back-contact cell.

接下来通过具体的实施例对本申请的背接触太阳能电池进行说明。Next, the back contact solar cell of the present application is described through specific embodiments.

图3是本申请一实施例的背接触太阳能电池的截面示意图。参考图3所示,背接触太阳能电池100包括硅衬底110、第一发射极120和第二发射极130。FIG3 is a schematic cross-sectional view of a back-contact solar cell according to an embodiment of the present application. Referring to FIG3 , the back-contact solar cell 100 includes a silicon substrate 110 , a first emitter 120 , and a second emitter 130 .

具体的,硅衬底110沿厚度方向D2具有相对的正面111和背面112。其中,“正面”指的是太阳能电池工作时硅衬底110用于接受光照的一面。本申请的硅衬底110为第一掺杂类型,第一掺杂类型可以是P型,即硅衬底110为P型硅衬底;也可以是N型,即硅衬底110为N型硅衬底。本申请不对形成P型硅衬底和N型硅衬底的具体掺杂元素做限制。Specifically, the silicon substrate 110 has a front side 111 and a back side 112 relative to each other along the thickness direction D2. The "front side" refers to the side of the silicon substrate 110 that receives light when the solar cell is working. The silicon substrate 110 of the present application is of a first doping type, and the first doping type can be P-type, that is, the silicon substrate 110 is a P-type silicon substrate; or it can be N-type, that is, the silicon substrate 110 is an N-type silicon substrate. The present application does not limit the specific doping elements that form the P-type silicon substrate and the N-type silicon substrate.

如图3所示,第一发射极120和第二发射极130沿第一方向D1相邻设置于硅衬底110的背面112。第一发射极120为第二掺杂类型,第二发射极130为第一掺杂类型。第一发射极120的掺杂浓度为1×1013-1×1018cm-3。第二掺杂类型与第一掺杂类型的极性相反,即当第一掺杂类型为P型时,第二掺杂类型为N型;当第一掺杂类型为N型时,第二掺杂类型为P型。As shown in FIG3 , the first emitter 120 and the second emitter 130 are adjacently disposed on the back side 112 of the silicon substrate 110 along the first direction D1. The first emitter 120 is of the second doping type, and the second emitter 130 is of the first doping type. The doping concentration of the first emitter 120 is 1×10 13 -1×10 18 cm -3 . The second doping type has an opposite polarity to the first doping type, that is, when the first doping type is P-type, the second doping type is N-type; when the first doping type is N-type, the second doping type is P-type.

在图3中,第一发射极120包括扩散层121、隧穿氧化层122和多晶硅层123。扩散层121设置于硅衬底110的背面,且扩散层121的一端121a与第二发射极130相接。隧穿氧化层122和多晶硅层123依次设置于扩散层121远离硅衬底110的一面,隧穿氧化层122的一端122a与第二发射极130相接。其中,扩散层121和多晶硅层123为第二掺杂类型,隧穿氧化层122为第一掺杂类型。In FIG3 , the first emitter 120 includes a diffusion layer 121, a tunneling oxide layer 122, and a polysilicon layer 123. The diffusion layer 121 is disposed on the back side of the silicon substrate 110, and one end 121a of the diffusion layer 121 is connected to the second emitter 130. The tunneling oxide layer 122 and the polysilicon layer 123 are sequentially disposed on a side of the diffusion layer 121 away from the silicon substrate 110, and one end 122a of the tunneling oxide layer 122 is connected to the second emitter 130. Among them, the diffusion layer 121 and the polysilicon layer 123 are of the second doping type, and the tunneling oxide layer 122 is of the first doping type.

在一实施例中,隧穿氧化层122的厚度为1-20nm,多晶硅层123的厚度为20-1000nm。隧穿氧化层122可以实施为二氧化硅。隧穿氧化层122和多晶硅层123可实现对载流子的选择性收集,即多子可以较容易地穿过隧穿氧化层122,而少子则很难通过隧穿氧化层122。在一些实施例中,第一发射极120可只具有扩散层121。应当理解,如图3所示,多晶硅层123沿第一方向D1并未延伸到P区内。In one embodiment, the thickness of the tunnel oxide layer 122 is 1-20 nm, and the thickness of the polysilicon layer 123 is 20-1000 nm. The tunnel oxide layer 122 can be implemented as silicon dioxide. The tunnel oxide layer 122 and the polysilicon layer 123 can realize the selective collection of carriers, that is, the majority carriers can easily pass through the tunnel oxide layer 122, while the minority carriers are difficult to pass through the tunnel oxide layer 122. In some embodiments, the first emitter 120 may only have a diffusion layer 121. It should be understood that, as shown in FIG. 3, the polysilicon layer 123 does not extend into the P region along the first direction D1.

为使说明书更清楚,这里对“第一发射极120为第二掺杂类型”和“第一发射极120的掺杂浓度为1×1013-1×1018cm-3”进行说明。在图3中第一发射极120包括扩散层121、隧穿氧化层122和多晶硅层123,扩散层121和多晶硅层123为第二掺杂类型,隧穿氧化层122的掺杂类型与扩散层121和多晶硅层123相反,即隧穿氧化层122为第一掺杂类型。“第一发射极120为第二掺杂类型”指的是扩散层121为第二掺杂类型,不包括隧穿氧化层122和多晶硅层123。“第一发射极120的掺杂浓度为1×1013-1×1018cm-3”指的是扩散层121中形成第二掺杂类型的掺杂剂的掺杂浓度为1×1013-1×1018cm-3In order to make the description clearer, "the first emitter 120 is of the second doping type" and "the doping concentration of the first emitter 120 is 1×10 13 -1×10 18 cm -3 " are explained here. In FIG3 , the first emitter 120 includes a diffusion layer 121, a tunneling oxide layer 122 and a polysilicon layer 123. The diffusion layer 121 and the polysilicon layer 123 are of the second doping type, and the doping type of the tunneling oxide layer 122 is opposite to that of the diffusion layer 121 and the polysilicon layer 123, that is, the tunneling oxide layer 122 is of the first doping type. "The first emitter 120 is of the second doping type" means that the diffusion layer 121 is of the second doping type, and does not include the tunneling oxide layer 122 and the polysilicon layer 123. “The doping concentration of the first emitter 120 is 1×10 13 -1×10 18 cm −3 ” means that the doping concentration of the dopant forming the second doping type in the diffusion layer 121 is 1×10 13 -1×10 18 cm −3 .

参考图3所示,虽然第一发射极120中扩散层121的一端121a与第二发射极130相接,但由于本申请将第一发射极120的掺杂浓度设置为1×1013-1×1018cm-3。如此,与图2中的背接触太阳能电池20相比,本申请不需要通过刻蚀等方法在第一发射极120和第二发射极130之间设置隔离区,即如图3所示,第一发射极120中的扩散层121的一端121a与第二发射极130相接,从而减少了工艺步骤,降低了生产成本。同时,由于本申请将第一发射极120的掺杂浓度设置为1×1013-1×1018cm-3,因此即使扩散层121的一端121a与第二发射极130相接,仍能保证太阳能电池100的漏电较小。As shown in FIG3 , although one end 121a of the diffusion layer 121 in the first emitter 120 is connected to the second emitter 130, the doping concentration of the first emitter 120 is set to 1×10 13 -1×10 18 cm -3 in the present application. Thus, compared with the back contact solar cell 20 in FIG2 , the present application does not need to set an isolation region between the first emitter 120 and the second emitter 130 by etching or the like, that is, as shown in FIG3 , one end 121a of the diffusion layer 121 in the first emitter 120 is connected to the second emitter 130, thereby reducing the process steps and the production cost. At the same time, since the doping concentration of the first emitter 120 is set to 1×10 13 -1×10 18 cm -3 in the present application, even if one end 121a of the diffusion layer 121 is connected to the second emitter 130, the leakage of the solar cell 100 can still be ensured to be small.

在图3中,扩散层121与硅衬底110相邻的一面121b为平坦形貌,该平坦形貌可通过化学机械抛光(CMP)获得。如此,与图1中的背接触太阳能电池10相比,背接触太阳能电池100的P区处的凹槽140的深度较小,从而保证了背接触太阳能电池100的机械载荷能力。In Fig. 3, one side 121b of the diffusion layer 121 adjacent to the silicon substrate 110 is flat, which can be obtained by chemical mechanical polishing (CMP). Thus, compared with the back contact solar cell 10 in Fig. 1, the depth of the groove 140 at the P region of the back contact solar cell 100 is smaller, thereby ensuring the mechanical load capacity of the back contact solar cell 100.

在一实施例中,参考图3所示,背接触太阳能电池100还包括第一钝化层150和减反射层160。其中,第一钝化层150沿厚度方向D1设置于硅衬底110的正面上,减反射层160沿厚度方向D1设置于第一钝化层150远离硅衬底110的一面上。第一钝化层150能够减少硅衬底110正面载流子复合,从而提高电池的效率。减反射层160能够减少入射光线的反射,从而提高太阳能电池对入射光的吸收。在一些实施例中,第一钝化层150包括氧化铝、氧化硅、氮氧化硅中的一种或多种,减反射层160包括氮化硅。In one embodiment, as shown in FIG3 , the back contact solar cell 100 further includes a first passivation layer 150 and an anti-reflection layer 160. The first passivation layer 150 is disposed on the front side of the silicon substrate 110 along the thickness direction D1, and the anti-reflection layer 160 is disposed on the side of the first passivation layer 150 away from the silicon substrate 110 along the thickness direction D1. The first passivation layer 150 can reduce the recombination of carriers on the front side of the silicon substrate 110, thereby improving the efficiency of the cell. The anti-reflection layer 160 can reduce the reflection of incident light, thereby improving the absorption of incident light by the solar cell. In some embodiments, the first passivation layer 150 includes one or more of aluminum oxide, silicon oxide, and silicon oxynitride, and the anti-reflection layer 160 includes silicon nitride.

在一实施例中,第一钝化层150包括化学钝化层(图未示)和场钝化层(图未示)。化学钝化层设置于硅衬底110的正面,场钝化层设置于化学钝化层远离硅衬底110的一面,对应的,减反射层160设置于场钝化层远离硅衬底110的一面。化学钝化层能够使硅衬底110正面处的缺陷饱和,并降低缺陷浓度,从而减少禁带内的复合中心,进而提高太阳能电池的效率。场钝化层能够通过电荷积累在界面处形成静电场,从而降低少数载流子浓度,进而提高太阳能电池的效率。In one embodiment, the first passivation layer 150 includes a chemical passivation layer (not shown) and a field passivation layer (not shown). The chemical passivation layer is disposed on the front side of the silicon substrate 110, and the field passivation layer is disposed on the side of the chemical passivation layer away from the silicon substrate 110. Correspondingly, the anti-reflection layer 160 is disposed on the side of the field passivation layer away from the silicon substrate 110. The chemical passivation layer can saturate the defects at the front side of the silicon substrate 110 and reduce the defect concentration, thereby reducing the recombination centers in the bandgap, thereby improving the efficiency of the solar cell. The field passivation layer can form an electrostatic field at the interface through charge accumulation, thereby reducing the minority carrier concentration, thereby improving the efficiency of the solar cell.

如图3所示,在一些实施例中,硅衬底110的正面111以及位于正面111上的第一钝化层150和减反射层160具有金字塔绒面形貌。在太阳能电池工作时,太阳光从硅衬底110的正面111入射到硅衬底110,金字塔绒面形貌能够起到陷光和减少表面反射的作用,有利于提高太阳能电池对光线的利用率。As shown in Fig. 3, in some embodiments, the front side 111 of the silicon substrate 110 and the first passivation layer 150 and the anti-reflection layer 160 located on the front side 111 have a pyramid suede morphology. When the solar cell is working, sunlight is incident on the silicon substrate 110 from the front side 111 of the silicon substrate 110, and the pyramid suede morphology can trap light and reduce surface reflection, which is beneficial to improve the utilization rate of light by the solar cell.

为降低因第一发射极120中扩散层121与第二发射极130相接触而引起的电池漏电,本申请还做出如下设计。In order to reduce the battery leakage caused by the contact between the diffusion layer 121 in the first emitter 120 and the second emitter 130 , the present application also makes the following design.

参考图3所示,在一实施例中,背接触太阳能电池100还包括第二钝化层170和第三钝化层180。如图3所示,第二钝化层170的第一部分设置于多晶硅层123远离硅衬底110的一面,该第一部分在图3中被标记为171;第二钝化层170的第二部分设置于隧穿氧化层122远离硅衬底110的一面,该第二部分在图3中被标记为172,其中,第二钝化层170为第一掺杂类型。在图3中,为清楚地表示第一部分171和第二部分172,图3中使用虚线A表示第一部分171和第二部分172的分界线。上述设计有如下的技术效果:在图3中,扩散层121为第二掺杂类型,第二钝化层170为第一掺杂类型,其中,第二钝化层170的第二部分172位于P区内且与P区内的扩散层121相邻,如此,可通过第二部分172反型P区内的扩散层121,位于P区内的扩散层121经反型后,其掺杂浓度将降低;换句话说,经反型后,位于P区内的扩散层121的掺杂浓度低于位于P区外的扩散层121的掺杂浓度。如此,实现在电学上隔离第一发射极120和第二发射极130的效果。Referring to FIG3 , in one embodiment, the back contact solar cell 100 further includes a second passivation layer 170 and a third passivation layer 180. As shown in FIG3 , a first portion of the second passivation layer 170 is disposed on a side of the polysilicon layer 123 away from the silicon substrate 110, and the first portion is marked as 171 in FIG3 ; a second portion of the second passivation layer 170 is disposed on a side of the tunneling oxide layer 122 away from the silicon substrate 110, and the second portion is marked as 172 in FIG3 , wherein the second passivation layer 170 is of the first doping type. In FIG3 , in order to clearly indicate the first portion 171 and the second portion 172, a dotted line A is used in FIG3 to indicate the boundary between the first portion 171 and the second portion 172. The above design has the following technical effects: in FIG3 , the diffusion layer 121 is of the second doping type, and the second passivation layer 170 is of the first doping type, wherein the second portion 172 of the second passivation layer 170 is located in the P region and adjacent to the diffusion layer 121 in the P region, so that the diffusion layer 121 in the P region can be inverted by the second portion 172, and the doping concentration of the diffusion layer 121 in the P region will be reduced after the inversion; in other words, after the inversion, the doping concentration of the diffusion layer 121 in the P region is lower than the doping concentration of the diffusion layer 121 outside the P region. In this way, the effect of electrically isolating the first emitter 120 and the second emitter 130 is achieved.

此外,参考图3所示,前文中描述道“隧穿氧化层122为第一掺杂类型”,位于P区内的隧穿氧化层122具有与位于P区内的第二钝化层170相同的反型作用。具体的,位于P区内的隧穿氧化层122与位于P区内的扩散层121相接触,且隧穿氧化层122的掺杂类型与扩散层121的掺杂类型相反。如此,位于P区内的隧穿氧化层122能够反型位于P区内的扩散层121,从而进一步降低P区内的扩散层121的掺杂浓度,进而进一步实现在电学上隔离第一发射极120和第二发射极130的效果。In addition, referring to FIG. 3 , it is described in the foregoing that “the tunneling oxide layer 122 is of the first doping type”, and the tunneling oxide layer 122 located in the P region has the same inversion effect as the second passivation layer 170 located in the P region. Specifically, the tunneling oxide layer 122 located in the P region is in contact with the diffusion layer 121 located in the P region, and the doping type of the tunneling oxide layer 122 is opposite to the doping type of the diffusion layer 121. In this way, the tunneling oxide layer 122 located in the P region can invert the diffusion layer 121 located in the P region, thereby further reducing the doping concentration of the diffusion layer 121 in the P region, and further achieving the effect of electrically isolating the first emitter 120 and the second emitter 130.

这里对图3中的隧穿氧化层122和第二钝化层170的反型作用进行简述。隧穿氧化层122和第二钝化层170的掺杂类型与扩散层121相反,如此,P区内与扩散层121相邻的隧穿氧化层122和第二钝化层170能够反型P区内的扩散层121。换句话说,P区内与扩散层121相邻的隧穿氧化层122和第二钝化层170能够降低与第二发射极130相邻部分的扩散层121(即第二部分172)的掺杂浓度,从而实现隔离第一发射极120和第二发射极130的技术效果。Here, the inversion effect of the tunneling oxide layer 122 and the second passivation layer 170 in FIG. 3 is briefly described. The doping type of the tunneling oxide layer 122 and the second passivation layer 170 is opposite to that of the diffusion layer 121, so that the tunneling oxide layer 122 and the second passivation layer 170 adjacent to the diffusion layer 121 in the P region can invert the diffusion layer 121 in the P region. In other words, the tunneling oxide layer 122 and the second passivation layer 170 adjacent to the diffusion layer 121 in the P region can reduce the doping concentration of the portion of the diffusion layer 121 (i.e., the second portion 172) adjacent to the second emitter 130, thereby achieving the technical effect of isolating the first emitter 120 and the second emitter 130.

继续参考图3所示,在一些实施例中,第三钝化层180设置于第二钝化层170远离硅衬底110的一面。第三钝化层180能够起到钝化作用,从而提高太阳能电池的效率。在一些实施例中,背接触太阳能电池100还包括第一电极191和第二电极192。第一电极191的一端穿过第二钝化层170和第三钝化层180与第一发射极120接触,第二电极192的一端穿过第二钝化层170和第三钝化层180与第二发射极130接触。Continuing to refer to FIG. 3 , in some embodiments, the third passivation layer 180 is disposed on a side of the second passivation layer 170 away from the silicon substrate 110. The third passivation layer 180 can play a passivation role, thereby improving the efficiency of the solar cell. In some embodiments, the back contact solar cell 100 further includes a first electrode 191 and a second electrode 192. One end of the first electrode 191 passes through the second passivation layer 170 and the third passivation layer 180 to contact the first emitter 120, and one end of the second electrode 192 passes through the second passivation layer 170 and the third passivation layer 180 to contact the second emitter 130.

本申请上述实施例中的背接触太阳能电池通过控制第一发射极的掺杂浓度以及通过第二钝化层和/或隧穿氧化层调节与第二发射极相邻部分的第一发射极的掺杂浓度实现了隔离第一发射极和第二发射极的技术效果;同时具有较佳的机械载荷能力以及工艺步骤少的技术效果。The back-contact solar cell in the above-mentioned embodiments of the present application achieves the technical effect of isolating the first emitter and the second emitter by controlling the doping concentration of the first emitter and adjusting the doping concentration of the first emitter adjacent to the second emitter through the second passivation layer and/or the tunneling oxide layer; at the same time, it has the technical effect of better mechanical load capacity and fewer process steps.

本申请另一方面还提出一种背接触太阳能电池的制备方法,接下来通过具体的实施例对该制备方法进行说明。On the other hand, the present application also proposes a method for preparing a back-contact solar cell, which is described below through specific examples.

图4是本申请一实施例的背接触太阳能电池的制备方法的示例性流程图。参考图4所示,该实施例的制备方法包括以下步骤:FIG4 is an exemplary flow chart of a method for preparing a back-contact solar cell according to an embodiment of the present application. Referring to FIG4 , the preparation method of this embodiment includes the following steps:

步骤S210:提供硅衬底,具有相对的正面和背面,且为第一掺杂类型;Step S210: providing a silicon substrate having a front side and a back side opposite to each other and being of a first doping type;

步骤S220:在硅衬底的背面形成沿第一方向相邻的第一发射极和第二发射极,第一发射极为第二掺杂类型,第二发射极为第一掺杂类型,第一发射极的掺杂浓度为1×1013-1×1018cm-3,其中,第一方向与硅衬底的厚度方向相交。Step S220: forming a first emitter and a second emitter adjacent to each other along a first direction on the back side of the silicon substrate, the first emitter being of the second doping type, the second emitter being of the first doping type, and the doping concentration of the first emitter being 1×10 13 -1×10 18 cm -3 , wherein the first direction intersects with the thickness direction of the silicon substrate.

以下结合图5至图7所示的一实施例的制备方法中太阳能电池在各个中间步骤处的截面示意图来具体说明上述的步骤S210和S220。The above steps S210 and S220 are described in detail below with reference to the cross-sectional schematic diagrams of the solar cell at various intermediate steps in the preparation method of one embodiment shown in FIG. 5 to FIG. 7 .

参考图5所示,在步骤S210中,提供硅衬底310,硅衬底310沿厚度方向D2具有相对的正面311和背面312,硅衬底310为第一掺杂类型。5 , in step S210 , a silicon substrate 310 is provided. The silicon substrate 310 has a front side 311 and a back side 312 opposite to each other along a thickness direction D2 . The silicon substrate 310 is of a first doping type.

在步骤S220中,在硅衬底310的背面形成沿第一方向D1相邻的第一发射极和第二发射极。其中,第一发射极为第二掺杂类型,第二发射极为第一掺杂类型,第一发射极的掺杂浓度为1×1013-1×1018cm-3In step S220, a first emitter and a second emitter adjacent to each other along the first direction D1 are formed on the back side of the silicon substrate 310. The first emitter is of the second doping type, the second emitter is of the first doping type, and the doping concentration of the first emitter is 1×10 13 -1×10 18 cm -3 .

参考图3所示,在一实施例中,第一发射极120包括扩散层121,扩散层121设置于硅衬底110的背面112,且扩散层121的一端121a与第二发射极130相接,扩散层121为第二掺杂类型。在一些实施例中,第一发射极120还包括隧穿氧化层122和多晶硅层123,隧穿氧化层122和多晶硅层123依次设置于扩散层121远离硅衬底110的一面。当第一发射极120包括扩散层121时,第一发射极120的掺杂浓度指的是扩散层121的掺杂浓度,例如,第一发射极的掺杂浓度为1×1013-1×1018cm-3指的是扩散层121的掺杂浓度为1×1013-1×1018cm-3Referring to FIG. 3 , in one embodiment, the first emitter 120 includes a diffusion layer 121, the diffusion layer 121 is disposed on the back side 112 of the silicon substrate 110, and one end 121a of the diffusion layer 121 is connected to the second emitter 130, and the diffusion layer 121 is of the second doping type. In some embodiments, the first emitter 120 further includes a tunneling oxide layer 122 and a polysilicon layer 123, and the tunneling oxide layer 122 and the polysilicon layer 123 are sequentially disposed on a side of the diffusion layer 121 away from the silicon substrate 110. When the first emitter 120 includes the diffusion layer 121, the doping concentration of the first emitter 120 refers to the doping concentration of the diffusion layer 121, for example, the doping concentration of the first emitter is 1×10 13 -1×10 18 cm -3, which means that the doping concentration of the diffusion layer 121 is 1×10 13 -1×10 18 cm -3 .

在一实施例中,形成第一发射极的方法如下。In one embodiment, a method of forming the first emitter is as follows.

参考图5所示,在硅衬底310的背面312形成过渡扩散层320,该过渡扩散层320为第一掺杂类型。对过渡扩散层320进行掺杂处理,该掺杂处理使用的掺杂剂为形成第二掺杂类型的掺杂剂,掺杂处理的方法包括高温扩散。结合图6所示,对过渡扩散层320进行掺杂处理后,该过渡扩散层320被反型为第二掺杂类型,该部分在图6中被标记为330,为方便叙述330被称为反型后的过渡掺杂层。在进行掺杂处理时,掺杂剂会扩散到与过渡扩散层320相邻的硅衬底310中,从而在硅衬底310的背面312形成沿厚度方向D2具有一定尺寸的扩散区340,该扩散区340和反型后的过渡掺杂层330共同组成扩散层350,即如图6所示。Referring to FIG5 , a transition diffusion layer 320 is formed on the back side 312 of the silicon substrate 310, and the transition diffusion layer 320 is of the first doping type. The transition diffusion layer 320 is doped, and the dopant used in the doping is a dopant that forms the second doping type, and the doping method includes high-temperature diffusion. In conjunction with FIG6 , after the transition diffusion layer 320 is doped, the transition diffusion layer 320 is inverted to the second doping type, and the portion is marked as 330 in FIG6 . For the convenience of description, 330 is referred to as the inverted transition doping layer. When the doping treatment is performed, the dopant diffuses into the silicon substrate 310 adjacent to the transition diffusion layer 320, thereby forming a diffusion region 340 having a certain size along the thickness direction D2 on the back side 312 of the silicon substrate 310, and the diffusion region 340 and the inverted transition doping layer 330 together constitute a diffusion layer 350, as shown in FIG6 .

在上述实施例中,扩散层350的掺杂浓度与过渡扩散层320有关。具体的,由于过渡扩散层320的掺杂类型与扩散层350的掺杂类型相反,因此,可通过改变过渡扩散层320的掺杂浓度来调整扩散层350中的掺杂浓度。如此,通过先在硅衬底背面形成过渡掺杂层,然后对该过渡掺杂层进行掺杂处理可实现通过过渡掺杂层调节扩散层掺杂浓度的效果。In the above embodiment, the doping concentration of the diffusion layer 350 is related to the transition diffusion layer 320. Specifically, since the doping type of the transition diffusion layer 320 is opposite to the doping type of the diffusion layer 350, the doping concentration in the diffusion layer 350 can be adjusted by changing the doping concentration of the transition diffusion layer 320. In this way, by first forming a transition doping layer on the back side of the silicon substrate and then performing a doping treatment on the transition doping layer, the effect of adjusting the doping concentration of the diffusion layer through the transition doping layer can be achieved.

进一步,参考图5所示,在一实施例中,在过渡扩散层320沿厚度方向D2远离硅衬底310的一面形成隧穿氧化层360,在隧穿氧化层360沿厚度方向D2远离硅衬底310的一面形成多晶硅层370。其中,该隧穿氧化层360为第一掺杂类型,多晶硅层370为本征多晶硅或第二掺杂类型。隧穿氧化层360具有与过渡扩散层320相同的技术效果,即调节扩散层掺杂浓度的效果。参考图6所示,若在图5中的多晶硅层370为本征多晶硅,则在后续工艺步骤中该多晶硅层370将经掺杂处理转变为第二掺杂类型的多晶硅层。Further, referring to FIG5 , in one embodiment, a tunneling oxide layer 360 is formed on one side of the transition diffusion layer 320 away from the silicon substrate 310 along the thickness direction D2, and a polysilicon layer 370 is formed on one side of the tunneling oxide layer 360 away from the silicon substrate 310 along the thickness direction D2. The tunneling oxide layer 360 is of the first doping type, and the polysilicon layer 370 is of intrinsic polysilicon or the second doping type. The tunneling oxide layer 360 has the same technical effect as the transition diffusion layer 320, that is, the effect of adjusting the doping concentration of the diffusion layer. Referring to FIG6 , if the polysilicon layer 370 in FIG5 is of intrinsic polysilicon, the polysilicon layer 370 will be transformed into a polysilicon layer of the second doping type through doping treatment in the subsequent process steps.

上述实施例提供了一种用于形成第一发射极的方法。应当理解,形成第一发射极的方法不限于上述实施例。The above embodiment provides a method for forming a first emitter. It should be understood that the method for forming a first emitter is not limited to the above embodiment.

参考图7所示,在一实施例中,在多晶硅层370沿厚度方向D2远离硅衬底310的一面形成第二钝化层380,在第二钝化层380沿厚度方向D2远离硅衬底310的一面形成第三钝化层390,其中,第二钝化层380为第一掺杂类型。如前文所述,第二钝化层380能够实现隔离第一发射极和第二发射极的技术效果。第三钝化层390能够起到钝化作用,从而提高太阳能电池的效率。Referring to FIG. 7 , in one embodiment, a second passivation layer 380 is formed on a side of the polysilicon layer 370 away from the silicon substrate 310 along the thickness direction D2, and a third passivation layer 390 is formed on a side of the second passivation layer 380 away from the silicon substrate 310 along the thickness direction D2, wherein the second passivation layer 380 is of the first doping type. As described above, the second passivation layer 380 can achieve the technical effect of isolating the first emitter and the second emitter. The third passivation layer 390 can play a passivation role, thereby improving the efficiency of the solar cell.

在一实施例中,在硅衬底的正面依次形成第一钝化层和减反射层。第一钝化层包括化学钝化层和场钝化层,其中,化学钝化层设置于硅衬底的正面,场钝化层设置于化学钝化层远离硅衬底的一面。In one embodiment, a first passivation layer and an anti-reflection layer are sequentially formed on the front surface of the silicon substrate. The first passivation layer includes a chemical passivation layer and a field passivation layer, wherein the chemical passivation layer is disposed on the front surface of the silicon substrate, and the field passivation layer is disposed on a side of the chemical passivation layer away from the silicon substrate.

有关本申请的背接触太阳能电池的制备方法的其他细节请参考前文相关的描述,在此不在赘述。上述实施例中的制备方法通过控制第一发射极的掺杂浓度调节与第二发射极相邻部分的第一发射极的掺杂浓度实现了隔离第一发射极和第二发射极的技术效果;同时具有较佳的机械载荷能力以及工艺步骤少的技术效果。For other details about the preparation method of the back-contact solar cell of the present application, please refer to the relevant description above, which will not be repeated here. The preparation method in the above embodiment achieves the technical effect of isolating the first emitter and the second emitter by controlling the doping concentration of the first emitter to adjust the doping concentration of the first emitter adjacent to the second emitter; at the same time, it has the technical effect of better mechanical load capacity and fewer process steps.

上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述申请披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。The basic concepts have been described above. Obviously, for those skilled in the art, the above application disclosure is only an example and does not constitute a limitation of the present application. Although not explicitly stated herein, those skilled in the art may make various modifications, improvements and amendments to the present application. Such modifications, improvements and amendments are suggested in the present application, so such modifications, improvements and amendments still belong to the spirit and scope of the exemplary embodiments of the present application.

同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。At the same time, the present application uses specific words to describe the embodiments of the present application. For example, "one embodiment", "an embodiment", and/or "some embodiments" refer to a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that "one embodiment" or "an embodiment" or "an alternative embodiment" mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. In addition, some features, structures or characteristics in one or more embodiments of the present application can be appropriately combined.

一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。In some embodiments, numbers describing the number of components and attributes are used. It should be understood that such numbers used in the description of the embodiments are modified by the modifiers "about", "approximately" or "substantially" in some examples. Unless otherwise specified, "about", "approximately" or "substantially" indicate that the numbers are allowed to vary by ±20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximate values, which may change according to the required features of individual embodiments. In some embodiments, the numerical parameters should take into account the specified significant digits and adopt the general method of retaining digits. Although the numerical domains and parameters used to confirm the breadth of their range in some embodiments of the present application are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range.

Claims (11)

1.一种背接触太阳能电池,其特征在于,包括:1. A back contact solar cell, comprising: 硅衬底,具有相对的正面和背面,且为第一掺杂类型;A silicon substrate having opposite front and back surfaces and being of a first doping type; 第一发射极和第二发射极,所述第一发射极与所述第二发射极沿第一方向相邻设置于所述硅衬底的背面,所述第一发射极为第二掺杂类型,所述第二发射极为第一掺杂类型,所述第一发射极的掺杂浓度为1×1013-1×1018cm-3,所述第一发射极包括扩散层、隧穿氧化层和多晶硅层,所述扩散层、所述隧穿氧化层和所述多晶硅层设置于所述硅衬底的背面,所述扩散层为所述第二掺杂类型,所述扩散层与所述第二发射极相接,其中,所述第一方向与所述硅衬底的厚度方向相交;以及a first emitter and a second emitter, wherein the first emitter and the second emitter are adjacently arranged on the back side of the silicon substrate along a first direction, the first emitter is of a second doping type, the second emitter is of a first doping type, the doping concentration of the first emitter is 1×10 13 -1×10 18 cm -3 , the first emitter comprises a diffusion layer, a tunneling oxide layer and a polysilicon layer, the diffusion layer, the tunneling oxide layer and the polysilicon layer are arranged on the back side of the silicon substrate, the diffusion layer is of the second doping type, and the diffusion layer is connected to the second emitter, wherein the first direction intersects with a thickness direction of the silicon substrate; and 第二钝化层,包括在所述第一方向上相邻的第一部分第二钝化层和第二部分第二钝化层,所述第一部分第二钝化层设置于所述多晶硅层远离硅衬底的一面,第二部分第二钝化层设置于所述隧穿氧化层远离所述硅衬底的一面,所述第二钝化层为所述第一掺杂类型,所述第一掺杂类型与所述第二掺杂类型相反。The second passivation layer includes a first portion of the second passivation layer and a second portion of the second passivation layer adjacent to each other in the first direction, the first portion of the second passivation layer is arranged on a side of the polysilicon layer away from the silicon substrate, the second portion of the second passivation layer is arranged on a side of the tunneling oxide layer away from the silicon substrate, the second passivation layer is of the first doping type, and the first doping type is opposite to the second doping type. 2.如权利要求1所述的太阳能电池,其特征在于还包括:第三钝化层,设置于所述第二钝化层远离所述硅衬底的一面。2 . The solar cell according to claim 1 , further comprising: a third passivation layer, disposed on a side of the second passivation layer away from the silicon substrate. 3.如权利要求2所述的太阳能电池,其特征在于还包括:第一电极和第二电极,所述第一电极的一端穿过所述第二钝化层与所述第一发射极接触,所述第二电极的一端穿过所述第二钝化层与所述第二发射极接触。3. The solar cell according to claim 2, further comprising: a first electrode and a second electrode, wherein one end of the first electrode passes through the second passivation layer to contact the first emitter, and one end of the second electrode passes through the second passivation layer to contact the second emitter. 4.如权利要求1所述的太阳能电池,其特征在于还包括:第一钝化层和减反射层,所述第一钝化层和所述减反射层依次设置于所述硅衬底的正面。4 . The solar cell according to claim 1 , further comprising: a first passivation layer and an anti-reflection layer, wherein the first passivation layer and the anti-reflection layer are sequentially arranged on the front side of the silicon substrate. 5.如权利要求4所述的太阳能电池,其特征在于,所述第一钝化层包括化学钝化层和场钝化层,其中,所述化学钝化层设置于所述硅衬底的正面,所述场钝化层设置于所述化学钝化层远离所述硅衬底的一面。5. The solar cell according to claim 4, characterized in that the first passivation layer comprises a chemical passivation layer and a field passivation layer, wherein the chemical passivation layer is arranged on the front side of the silicon substrate, and the field passivation layer is arranged on a side of the chemical passivation layer away from the silicon substrate. 6.一种背接触太阳能电池的制备方法,其特征在于,包括以下步骤:6. A method for preparing a back contact solar cell, characterized in that it comprises the following steps: 提供硅衬底,具有相对的正面和背面,且为第一掺杂类型;Providing a silicon substrate having opposite front and back surfaces and being of a first doping type; 在所述硅衬底的背面形成沿第一方向相邻的第一发射极和第二发射极,所述第一发射极为第二掺杂类型,所述第二发射极为第一掺杂类型,所述第一发射极的掺杂浓度为1×1013-1×1018 cm-3,所述第一发射极包括扩散层、隧穿氧化层和多晶硅层,所述扩散层、所述隧穿氧化层和所述多晶硅层设置于所述硅衬底的背面,所述扩散层为所述第二掺杂类型,所述扩散层与所述第二发射极相接,其中,所述第一方向与所述硅衬底的厚度方向相交;以及forming a first emitter and a second emitter adjacent to each other along a first direction on the back side of the silicon substrate, wherein the first emitter is of the second doping type, the second emitter is of the first doping type, the doping concentration of the first emitter is 1×10 13 -1×10 18 cm -3 , the first emitter comprises a diffusion layer, a tunneling oxide layer and a polysilicon layer, the diffusion layer, the tunneling oxide layer and the polysilicon layer are arranged on the back side of the silicon substrate, the diffusion layer is of the second doping type, and the diffusion layer is connected to the second emitter, wherein the first direction intersects with a thickness direction of the silicon substrate; and 形成第二钝化层,所述第二钝化层包括在所述第一方向上相邻的第一部分第二钝化层和第二部分第二钝化层,所述第一部分第二钝化层设置于所述多晶硅层远离硅衬底的一面,第二部分第二钝化层设置于所述隧穿氧化层远离所述硅衬底的一面,所述第二钝化层为所述第一掺杂类型,所述第一掺杂类型与所述第二掺杂类型相反。A second passivation layer is formed, wherein the second passivation layer includes a first portion of the second passivation layer and a second portion of the second passivation layer adjacent to each other in the first direction, wherein the first portion of the second passivation layer is disposed on a side of the polysilicon layer away from the silicon substrate, and the second portion of the second passivation layer is disposed on a side of the tunneling oxide layer away from the silicon substrate, and the second passivation layer is of the first doping type, which is opposite to the second doping type. 7. 如权利要求6所述的制备方法,其特征在于,形成所述扩散层的方法包括:7. The preparation method according to claim 6, characterized in that the method of forming the diffusion layer comprises: 在所述硅衬底的背面形成过渡扩散层,所述过渡扩散层为所述第一掺杂类型;以及forming a transition diffusion layer on the back side of the silicon substrate, wherein the transition diffusion layer is of the first doping type; and 对所述过渡扩散层进行掺杂处理,所述掺杂处理的掺杂剂为形成所述第二掺杂类型的掺杂剂,经所述掺杂处理后,所述过渡扩散层被反型为所述扩散层。The transition diffusion layer is subjected to a doping treatment, wherein the dopant used in the doping treatment is a dopant that forms the second doping type. After the doping treatment, the transition diffusion layer is inverted into the diffusion layer. 8.如权利要求7所述的制备方法,其特征在于,通过控制所述过渡扩散层的掺杂浓度来控制所述第一发射极的掺杂浓度。8 . The preparation method according to claim 7 , wherein the doping concentration of the first emitter is controlled by controlling the doping concentration of the transition diffusion layer. 9.如权利要求6所述的制备方法,其特征在于,在所述第二钝化层沿所述厚度方向远离所述硅衬底的一面形成第三钝化层。9 . The preparation method according to claim 6 , wherein a third passivation layer is formed on a side of the second passivation layer away from the silicon substrate along the thickness direction. 10.如权利要求6所述的制备方法,其特征在于,在所述硅衬底的正面依次形成第一钝化层和减反射层。10. The preparation method according to claim 6, characterized in that a first passivation layer and an anti-reflection layer are sequentially formed on the front surface of the silicon substrate. 11.如权利要求10所述的制备方法,其特征在于,所述第一钝化层包括化学钝化层和场钝化层,其中,所述化学钝化层设置于所述硅衬底的正面,所述场钝化层设置于所述化学钝化层远离所述硅衬底的一面。11. The preparation method according to claim 10, characterized in that the first passivation layer comprises a chemical passivation layer and a field passivation layer, wherein the chemical passivation layer is arranged on the front side of the silicon substrate, and the field passivation layer is arranged on a side of the chemical passivation layer away from the silicon substrate.
CN202310293470.0A 2023-03-23 2023-03-23 Back contact solar cell and preparation method thereof Active CN116314396B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310293470.0A CN116314396B (en) 2023-03-23 2023-03-23 Back contact solar cell and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310293470.0A CN116314396B (en) 2023-03-23 2023-03-23 Back contact solar cell and preparation method thereof

Publications (2)

Publication Number Publication Date
CN116314396A CN116314396A (en) 2023-06-23
CN116314396B true CN116314396B (en) 2024-09-27

Family

ID=86825530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310293470.0A Active CN116314396B (en) 2023-03-23 2023-03-23 Back contact solar cell and preparation method thereof

Country Status (1)

Country Link
CN (1) CN116314396B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117219693B (en) * 2023-11-09 2024-04-05 天合光能股份有限公司 Back contact solar cells and solar modules

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460715A (en) * 2009-04-21 2012-05-16 泰特拉桑有限公司 High-efficiency solar cell structure and manufacturing method
CN106653887A (en) * 2016-12-30 2017-05-10 中国科学院微电子研究所 Back-junction back-contact solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2015844B1 (en) * 2015-11-23 2017-06-07 Stichting Energieonderzoek Centrum Nederland Enhanced metallization of silicon solar cells.
US20200279968A1 (en) * 2017-09-22 2020-09-03 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Interdigitated back-contacted solar cell with p-type conductivity
CN108767022A (en) * 2018-06-22 2018-11-06 晶澳(扬州)太阳能科技有限公司 P-type crystal silicon solar cell and preparation method, photovoltaic module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460715A (en) * 2009-04-21 2012-05-16 泰特拉桑有限公司 High-efficiency solar cell structure and manufacturing method
CN106653887A (en) * 2016-12-30 2017-05-10 中国科学院微电子研究所 Back-junction back-contact solar cell

Also Published As

Publication number Publication date
CN116314396A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
CN111540794B (en) P-type passivation contact solar cell and manufacturing method thereof
CN113284982B (en) Processing technology of IBC battery with passivation contact structure
CN114613865A (en) Solar cell and preparation method thereof
CN114497241A (en) A solar cell with passivated contacts
CN104993019A (en) Preparation method of localized back contact solar cell
CN110610998A (en) A kind of crystalline silicon solar cell with front local passivation contact and preparation method thereof
CN218975458U (en) A back contact battery
CN114613866A (en) Solar cell and preparation method thereof
CN115020507B (en) A selectively passivated contact battery and preparation method thereof
CN116314415B (en) Back contact solar cell and method of making same
CN111599895A (en) Preparation method of crystalline silicon solar passivated contact cell
CN119300515A (en) A method for preparing a solar cell, a solar cell and a photovoltaic module
CN116613226A (en) Solar cell and preparation method thereof
CN110634973A (en) A new type of crystalline silicon solar cell and its preparation method
CN112466960A (en) Solar cell structure and preparation method thereof
CN115148856A (en) Selective doping method and manufacturing method of solar cell
CN116469952A (en) A kind of solar cell and its manufacturing method
CN117153948A (en) Passivation contact solar cell preparation method
CN116314396B (en) Back contact solar cell and preparation method thereof
CN117712212A (en) Solar cells and methods of manufacturing solar cells
CN116093190B (en) Back contact solar cell and preparation method thereof
CN117317070A (en) Solar cell and preparation method thereof
CN117976736A (en) Solar cell and method for manufacturing solar cell
CN110021673A (en) A kind of double-sided solar battery and preparation method thereof
CN116565034A (en) Back contact battery and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant