CN116404505A - optical fiber amplifier - Google Patents
optical fiber amplifier Download PDFInfo
- Publication number
- CN116404505A CN116404505A CN202211676030.5A CN202211676030A CN116404505A CN 116404505 A CN116404505 A CN 116404505A CN 202211676030 A CN202211676030 A CN 202211676030A CN 116404505 A CN116404505 A CN 116404505A
- Authority
- CN
- China
- Prior art keywords
- fiber
- polarization
- module
- polarization maintaining
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10007—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
- H01S3/10023—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10061—Polarization control
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本申请涉及激光领域,具体而言,涉及一种光纤放大器。This application relates to the field of lasers, in particular, to an optical fiber amplifier.
背景技术Background technique
基于多路高功率窄线宽光纤激光器进行光谱合成是实现万瓦级光纤激光的重要途径,但是窄线宽光纤激光器激光在光纤中放大及传输时,容易产生非线性效应,进而导致激光性能参数下降,同时限制激光功率提升。Spectrum synthesis based on multiple high-power narrow-linewidth fiber lasers is an important way to realize 10,000-watt-class fiber lasers. However, when the narrow-linewidth fiber laser is amplified and transmitted in the fiber, it is easy to produce nonlinear effects, which leads to laser performance parameters. decrease while limiting the laser power boost.
现有技术中,基于单频激光加相位调制技术的种子源线偏振激光在经过放大后,由于其时域稳定性而能使光谱线宽保持不变,并且具有较高的受激布里渊散射和受激拉曼散射阈值,因而被广泛应用于高功率窄线宽光纤激光器。这样的方式,由于种子激光是线偏振激光,即使采用非保偏放大器也会产生一定的退偏振效应,但由于存在偏振增益相关效应,输出的激光偏振度仍然很高,会降低受激布里渊的阈值,从而限制窄线宽光纤激光器的功率提升。In the prior art, the linearly polarized laser of the seed source based on single-frequency laser plus phase modulation technology can keep the spectral linewidth unchanged due to its time-domain stability after amplification, and has a high stimulated Brillouin Scattering and stimulated Raman scattering thresholds are therefore widely used in high-power narrow-linewidth fiber lasers. In this way, since the seed laser is a linearly polarized laser, even if a non-polarization-maintaining amplifier is used, there will be a certain depolarization effect, but due to the polarization gain correlation effect, the output laser polarization degree is still high, which will reduce the excited Bri Deep threshold, thereby limiting the power boost of narrow linewidth fiber lasers.
针对相关技术中,激光器的输出功率的提升效率较低等问题,尚未提出有效的解决方案。Aiming at the problems in the related art, such as the low efficiency of increasing the output power of the laser, no effective solution has been proposed yet.
发明内容Contents of the invention
本申请实施例提供了一种光纤放大器,以至少解决相关技术中,激光器的输出功率的提升效率较低等问题。An embodiment of the present application provides an optical fiber amplifier, so as to at least solve the problems in the related art, such as low efficiency of boosting the output power of a laser.
根据本申请实施例的一个实施例,提供了一种光纤放大器,包括:隔离模块,放大模块和输出模块,其中,According to an embodiment of the embodiment of the present application, a fiber amplifier is provided, including: an isolation module, an amplification module and an output module, wherein,
所述隔离模块,具有输入端和第一保偏光纤,所述隔离模块的输入端用于与种子源连接,所述隔离模块用于传输所述种子源产生的光束;The isolation module has an input end and a first polarization-maintaining optical fiber, the input end of the isolation module is used to connect to the seed source, and the isolation module is used to transmit the light beam generated by the seed source;
所述放大模块,具有第二保偏光纤和第三保偏光纤,所述第一保偏光纤与所述第二保偏光纤之间采用第一连接方式连接,所述放大模块用于放大所述隔离模块输出的光束,所述第一连接方式用于减小所述隔离模块输出的光束的偏振度;The amplifying module has a second polarization-maintaining optical fiber and a third polarization-maintaining optical fiber, the first polarization-maintaining optical fiber is connected to the second polarization-maintaining optical fiber in a first connection manner, and the amplifying module is used to amplify the polarization-maintaining optical fiber The light beam output by the isolation module, the first connection mode is used to reduce the degree of polarization of the light beam output by the isolation module;
所述输出模块,具有第四保偏光纤,所述第三保偏光纤与所述第四保偏光纤之间采用第二连接方式连接,所述输出模块用于输出所述放大模块放大的光束,所述第二连接方式用于保持所述放大模块放大的光束的偏振度。The output module has a fourth polarization-maintaining optical fiber, the third polarization-maintaining optical fiber is connected to the fourth polarization-maintaining optical fiber by a second connection mode, and the output module is used to output the beam amplified by the amplification module , the second connection mode is used to maintain the degree of polarization of the light beam amplified by the amplification module.
可选的,所述第一连接方式包括所述第一保偏光纤的偏振主轴与所述第二保偏光纤的偏振主轴之间形成目标角度,其中,光纤的偏振主轴用于指示保偏光纤的偏振方向。Optionally, the first connection method includes forming a target angle between the polarization axis of the first polarization-maintaining fiber and the polarization axis of the second polarization-maintaining fiber, wherein the polarization axis of the fiber is used to indicate the polarization axis of the polarization-maintaining fiber direction of polarization.
可选的,所述目标角度是根据对所述隔离模块输出的光束的偏振度的减小量确定的。Optionally, the target angle is determined according to the reduction amount of the polarization degree of the light beam output by the isolation module.
可选的,所述目标角度为落入目标角度范围内的角度,所述目标角度范围为[45°±n°],其中,n为预设的角度误差。Optionally, the target angle is an angle falling within a target angle range, and the target angle range is [45°±n°], where n is a preset angle error.
可选的,所述目标角度为45°。Optionally, the target angle is 45°.
可选的,所述第二连接方式包括所述第三保偏光纤的偏振主轴与所述第四保偏光纤的偏振主轴位于同一直线上,其中,光纤的偏振主轴用于指示保偏光纤的偏振方向。Optionally, the second connection method includes that the polarization axis of the third polarization-maintaining fiber and the polarization axis of the fourth polarization-maintaining fiber are on the same straight line, wherein the polarization axis of the fiber is used to indicate the polarization axis of the polarization-maintaining fiber polarization direction.
可选的,所述第一保偏光纤,所述第二保偏光纤,所述第三保偏光纤和所述第四保偏光纤均为高双折射保偏光纤。Optionally, the first polarization-maintaining fiber, the second polarization-maintaining fiber, the third polarization-maintaining fiber and the fourth polarization-maintaining fiber are all highly birefringent polarization-maintaining fibers.
可选的,所述隔离模块还包括:导光端,其中,Optionally, the isolation module further includes: a light guide end, wherein,
所述导光端与检测装置连接;The light guide end is connected to the detection device;
所述导光端用于向所述检测装置输出隔离掉的反向回光;The light guide end is used to output the isolated reverse return light to the detection device;
所述检测装置用于检测所述反向回光的回光光谱中受激布里渊散射光强度。The detection device is used to detect the intensity of stimulated Brillouin scattered light in the return light spectrum of the reverse return light.
可选的,所述放大模块包括:第一包层光滤除器、增益光纤、泵浦/信号耦合器、泵浦源组和第二包层光滤除器,其中,Optionally, the amplifying module includes: a first cladding optical filter, a gain fiber, a pump/signal coupler, a pump source group, and a second cladding optical filter, wherein,
所述第一保偏光纤与所述第一包层光滤除器的输入端的所述第二保偏光纤连接,所述第一包层光滤除器的输出端与所述增益光纤的一端连接,所述增益光纤的另一端与所述泵浦/信号耦合器的第一输入端连接,所述泵浦源组与所述泵浦/信号耦合器的第二输入端连接,所述泵浦/信号耦合器的输出端与所述第二包层光滤除器的输入端连接,所述第二包层光滤除器的输出端与所述输出模块的输入端连接;The first polarization-maintaining fiber is connected to the second polarization-maintaining fiber at the input end of the first cladding optical filter, and the output end of the first cladding optical filter is connected to one end of the gain fiber connected, the other end of the gain fiber is connected to the first input end of the pump/signal coupler, the pumping source group is connected to the second input end of the pump/signal coupler, and the pump The output end of the pump/signal coupler is connected to the input end of the second cladding optical filter, and the output end of the second cladding optical filter is connected to the input end of the output module;
所述第二包层光滤除器是在所述泵浦/信号耦合器的输出光纤上直接加工的。The second cladding optical filter is directly processed on the output fiber of the pump/signal coupler.
可选的,所述泵浦/信号耦合器的输出光纤的长度小于20cm。Optionally, the length of the output optical fiber of the pump/signal coupler is less than 20 cm.
在本申请实施例中,光纤放大器中包括:隔离模块,放大模块和输出模块,其中,隔离模块,具有输入端和第一保偏光纤,隔离模块的输入端用于与种子源连接,隔离模块用于传输种子源产生的光束;放大模块,具有第二保偏光纤和第三保偏光纤,第一保偏光纤与第二保偏光纤之间采用第一连接方式连接,放大模块用于放大隔离模块输出的光束,第一连接方式用于减小隔离模块输出的光束的偏振度;输出模块,具有第四保偏光纤,第三保偏光纤与第四保偏光纤之间采用第二连接方式连接,输出模块用于输出放大模块放大的光束,第二连接方式用于保持放大模块放大的光束的偏振度,即采用保偏光纤连接隔离模块,放大模块和输出模块,并且隔离模块和放大模块之间的保偏光纤采用第一连接方式进行连接,第一连接方式可以减小隔离模块输出的光束的偏振度,从而产生退偏振效应,使激光偏振度降低,并且在后续传播及放大过程中,采用第二连接方式连接保偏光纤,从而保持偏振度,通过调整功能模块之间保偏光纤的连接方式对光束的偏振度进行控制,能有效提高激光器受激布里渊阈值,进而提高激光器的输出功率。采用上述技术方案,解决了相关技术中,激光器的输出功率的提升效率较低等问题,实现了提升激光器的输出功率的提升效率的技术效果。In the embodiment of the present application, the optical fiber amplifier includes: an isolation module, an amplification module and an output module, wherein the isolation module has an input end and a first polarization-maintaining optical fiber, the input end of the isolation module is used to connect with the seed source, and the isolation module It is used to transmit the light beam generated by the seed source; the amplification module has a second polarization-maintaining fiber and a third polarization-maintaining fiber, the first connection between the first polarization-maintaining fiber and the second polarization-maintaining fiber is used, and the amplification module is used to amplify For the light beam output by the isolation module, the first connection mode is used to reduce the degree of polarization of the light beam output by the isolation module; the output module has a fourth polarization-maintaining optical fiber, and a second connection is adopted between the third polarization-maintaining optical fiber and the fourth polarization-maintaining optical fiber The output module is used to output the beam amplified by the amplifier module, and the second connection mode is used to maintain the degree of polarization of the beam amplified by the amplifier module, that is, the polarization maintaining fiber is used to connect the isolation module, the amplifier module and the output module, and the isolation module and the amplifier The polarization-maintaining optical fiber between the modules is connected by the first connection method, which can reduce the polarization degree of the beam output by the isolation module, thereby producing a depolarization effect, reducing the polarization degree of the laser, and in the subsequent propagation and amplification process In the second connection mode, the polarization maintaining fiber is connected to maintain the degree of polarization. By adjusting the connection mode of the polarization maintaining fiber between the functional modules to control the degree of polarization of the beam, the stimulated Brillouin threshold of the laser can be effectively improved, thereby improving The output power of the laser. By adopting the above-mentioned technical solution, the problems in related technologies such as the low efficiency of increasing the output power of the laser are solved, and the technical effect of increasing the efficiency of increasing the output power of the laser is realized.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请实施例的原理。The accompanying drawings, which are incorporated in the specification and constitute a part of the specification, show embodiments consistent with the application, and are used together with the description to explain the principle of the embodiment of the application.
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, for those of ordinary skill in the art, In other words, other drawings can also be obtained from these drawings without paying creative labor.
图1是根据本申请实施例的一种光纤放大器的结构框图一;Fig. 1 is a structural block diagram one of an optical fiber amplifier according to an embodiment of the present application;
图2是根据本申请实施例的一种保偏光纤熔接角度的示意图;2 is a schematic diagram of a polarization-maintaining optical fiber fusion splicing angle according to an embodiment of the present application;
图3是根据本申请实施例的一种光纤放大器的结构框图二;Fig. 3 is a structural block diagram 2 of an optical fiber amplifier according to an embodiment of the present application;
图4是根据本申请实施例的一种光纤放大器的结构框图三;FIG. 4 is a structural block diagram three of an optical fiber amplifier according to an embodiment of the present application;
图5是根据本申请实施例的一种光纤放大器的结构框图四;FIG. 5 is a structural block diagram four of an optical fiber amplifier according to an embodiment of the present application;
图6是根据本申请实施例的一种光纤放大器的示意图。Fig. 6 is a schematic diagram of an optical fiber amplifier according to an embodiment of the present application.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请实施例方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请实施例保护的范围。In order to enable those skilled in the art to better understand the embodiments of the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described implementation Examples are only some of the embodiments of the present application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the embodiments of this application.
需要说明的是,本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first" and "second" in the description and claims of the embodiments of the present application and the above drawings are used to distinguish similar objects, and not necessarily used to describe a specific order or sequence order. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
在本申请实施例中提供了一种光纤放大器,图1是根据本申请实施例的一种光纤放大器的结构框图一,如图1所示,上述光纤放大器包括:隔离模块102,放大模块104和输出模块106,其中,In the embodiment of the present application, a fiber amplifier is provided. FIG. 1 is a block diagram of a fiber amplifier according to the embodiment of the present application. As shown in FIG. 1, the fiber amplifier includes: an isolation module 102, an amplification module 104 and
所述隔离模块102,具有输入端102-1和第一保偏光纤102-2,所述隔离模块102的输入端102-1用于与种子源连接,所述隔离模块102用于传输所述种子源产生的光束;The isolation module 102 has an input end 102-1 and a first polarization maintaining optical fiber 102-2, the input end 102-1 of the isolation module 102 is used for connecting with a seed source, and the isolation module 102 is used for transmitting the The light beam generated by the seed source;
所述放大模块104,具有第二保偏光纤104-1和第三保偏光纤104-2,所述第一保偏光纤102-2与所述第二保偏光纤104-1之间采用第一连接方式连接,所述放大模块104用于放大所述隔离模块102输出的光束,所述第一连接方式用于减小所述隔离模块输出的光束的偏振度;The amplification module 104 has a second polarization-maintaining fiber 104-1 and a third polarization-maintaining fiber 104-2, and the first polarization-maintaining fiber 102-2 and the second polarization-maintaining fiber 104-1 are connected by a second A connection mode connection, the amplification module 104 is used to amplify the light beam output by the isolation module 102, and the first connection mode is used to reduce the polarization degree of the light beam output by the isolation module;
所述输出模块106,具有第四保偏光纤106-1,所述第三保偏光纤104-2与所述第四保偏光纤106-1之间采用第二连接方式连接,所述输出模块106用于输出所述放大模块104放大的光束,所述第二连接方式用于保持所述放大模块104放大的光束的偏振度。The
通过上述设备,采用保偏光纤连接隔离模块,放大模块和输出模块,并且隔离模块和放大模块之间的保偏光纤采用第一连接方式进行连接,第一连接方式可以减小隔离模块输出的光束的偏振度,从而产生退偏振效应,使激光偏振度降低,并且在后续传播及放大过程中,采用第二连接方式连接保偏光纤,从而保持偏振度,通过调整功能模块之间保偏光纤的连接方式对光束的偏振度进行控制,能有效提高激光器受激布里渊阈值,进而提高激光器的输出功率。采用上述技术方案,解决了相关技术中,激光器的输出功率的提升效率较低等问题,实现了提升激光器的输出功率的提升效率的技术效果。Through the above equipment, the isolation module, the amplification module and the output module are connected by a polarization-maintaining optical fiber, and the polarization-maintaining optical fiber between the isolation module and the amplification module is connected by the first connection method, which can reduce the output beam of the isolation module degree of polarization, thereby producing a depolarization effect that reduces the degree of polarization of the laser, and in the subsequent propagation and amplification process, the second connection method is used to connect the polarization-maintaining fiber to maintain the degree of polarization. By adjusting the polarization-maintaining fiber between the functional modules The connection method controls the polarization degree of the beam, which can effectively increase the stimulated Brillouin threshold of the laser, thereby increasing the output power of the laser. By adopting the above-mentioned technical solution, the problems in related technologies such as the low efficiency of increasing the output power of the laser are solved, and the technical effect of increasing the efficiency of increasing the output power of the laser is realized.
可选地,在本实施例中,光纤放大器可以但不限于应用于激光器设备中,比如:窄线宽光纤激光器。Optionally, in this embodiment, the fiber amplifier can be applied to laser devices, such as narrow-linewidth fiber lasers, but is not limited to.
可选地,在本实施例中,第一保偏光纤与第二保偏光纤之间所采用的第一连接方式用于减小隔离模块输出的光束的偏振度,第一连接方式可以但不限于是通过对于连接方式和连接参数的控制来减小隔离模块输出的光束的偏振度的,比如:可以控制选择熔接或者连接器等方式,并控制所选择的连接方式中采用的连接参数,比如:熔接角度,熔接长度,熔接宽度,连接器角度,连接器长度等等。Optionally, in this embodiment, the first connection between the first polarization-maintaining fiber and the second polarization-maintaining fiber is used to reduce the degree of polarization of the beam output by the isolation module. The first connection can be, but not It is limited to reduce the degree of polarization of the beam output by the isolation module through the control of the connection method and connection parameters. For example, it can control the selection of welding or connectors, and control the connection parameters used in the selected connection method, such as : Splice Angle, Splice Length, Splice Width, Connector Angle, Connector Length, etc.
在一个示例性实施例中,所述第一连接方式包括所述第一保偏光纤的偏振主轴与所述第二保偏光纤的偏振主轴之间形成目标角度,其中,光纤的偏振主轴用于指示保偏光纤的偏振方向。In an exemplary embodiment, the first connection method includes forming a target angle between the main axis of polarization of the first polarization-maintaining fiber and the main axis of polarization of the second polarization-maintaining fiber, wherein the main axis of polarization of the fiber is used for Indicates the polarization direction of the polarization maintaining fiber.
可选地,在本实施例中,第一保偏光纤和第二保偏光纤采用偏振主轴之间形成目标角度的方式连接,从而使得在单偏振轴(快轴/慢轴)工作的线偏振光分布于快轴和慢轴,产生退偏振效应,降低激光偏振度。Optionally, in this embodiment, the first polarization-maintaining fiber and the second polarization-maintaining fiber are connected in such a way that a target angle is formed between the polarization axes, so that the linear polarization working on a single polarization axis (fast axis/slow axis) The light is distributed on the fast axis and the slow axis, which produces a depolarization effect and reduces the polarization degree of the laser.
在一个示例性实施例中,所述目标角度是根据对所述隔离模块输出的光束的偏振度的减小量确定的。In an exemplary embodiment, the target angle is determined according to the reduction amount of the polarization degree of the light beam output by the isolation module.
可选地,在本实施例中,可以通过目标角度调整隔离模块输出的光束的偏振度的减小量,从而根据需求调整偏振效果。Optionally, in this embodiment, the reduction amount of the polarization degree of the light beam output by the isolation module can be adjusted through the target angle, so as to adjust the polarization effect according to requirements.
在一个示例性实施例中,所述目标角度为落入目标角度范围内的角度,所述目标角度范围为[45°±n°],其中,n为预设的角度误差。In an exemplary embodiment, the target angle is an angle falling within a target angle range, and the target angle range is [45°±n°], where n is a preset angle error.
可选地,在本实施例中,预设的角度误差可以但不限于用于表示目标角度的精度,可以但不限于通过控制角度误差,控制目标角度所在的角度范围,实现了灵活的根据实际需求,在目标角度范围内控制目标角度。Optionally, in this embodiment, the preset angle error can be used but not limited to represent the accuracy of the target angle, and can be controlled but not limited to by controlling the angle error and controlling the angle range of the target angle to achieve flexible and practical Requirements, control the target angle within the target angle range.
在一个示例性实施例中,所述目标角度为45°。In an exemplary embodiment, the target angle is 45°.
可选地,在本实施例中,隔离模块和放大模块之间的保偏光纤可以但不限于采用偏振主轴夹角45°熔接,使得在单偏振轴(快轴/慢轴)工作的线偏振光平均分布于快轴和慢轴,产生退偏振效应,激光偏振度降低至零,并且在后续传播及放大过程中,保持偏振度不变,降低激光偏振度能有效提高激光器受激布里渊阈值,进而提高激光的器可输出功率,同时保证激光器的稳定运行。Optionally, in this embodiment, the polarization-maintaining fiber between the isolation module and the amplification module can be, but not limited to, welded at an angle of 45° between the main axis of polarization, so that the linearly polarized optical fiber working on a single polarization axis (fast axis/slow axis) The light is evenly distributed on the fast axis and the slow axis, resulting in a depolarization effect, the laser polarization degree is reduced to zero, and in the subsequent propagation and amplification process, the polarization degree remains unchanged, and the reduction of the laser polarization degree can effectively improve the excited Brillouin of the laser. Threshold, thereby increasing the output power of the laser, while ensuring the stable operation of the laser.
在一个示例性实施例中,所述第二连接方式包括所述第三保偏光纤的偏振主轴与所述第四保偏光纤的偏振主轴位于同一直线上,其中,光纤的偏振主轴用于指示保偏光纤的偏振方向。In an exemplary embodiment, the second connection method includes that the polarization principal axis of the third polarization-maintaining fiber and the polarization principal axis of the fourth polarization-maintaining fiber are located on the same straight line, wherein the polarization principal axis of the fiber is used to indicate The polarization direction of the polarization maintaining fiber.
可选地,在本实施例中,所述光纤放大器中除所述隔离模块的输出端与所述放大模块的输入端之间的保偏光纤之外的其他保偏光纤采用偏振主轴夹角0°熔接。Optionally, in this embodiment, other polarization-maintaining fibers in the optical fiber amplifier except the polarization-maintaining fiber between the output end of the isolation module and the input end of the amplification module adopt a polarization main axis angle of 0 ° welding.
图2是根据本申请实施例的一种保偏光纤熔接角度的示意图,如图2所示,以各个保偏光纤的偏振主轴为快轴为例,第一保偏光纤的快轴与第二保偏光纤的快轴之间采用45°熔接,第三保偏光纤的快轴和第四保偏光纤的快轴之间采用0°熔接。Fig. 2 is a schematic diagram of a polarization-maintaining optical fiber fusion splicing angle according to an embodiment of the present application. The fast axes of the polarization-maintaining fibers are spliced at 45°, and the fast axes of the third and fourth polarization-maintaining fibers are spliced at 0°.
在一个示例性实施例中,所述光纤放大器中的保偏光纤(即第一保偏光纤,第二保偏光纤,第三保偏光纤和第四保偏光纤)均为高双折射保偏光纤。In an exemplary embodiment, the polarization-maintaining fibers (i.e., the first polarization-maintaining fiber, the second polarization-maintaining fiber, the third polarization-maintaining fiber and the fourth polarization-maintaining fiber) in the optical fiber amplifier are high birefringence polarization-maintaining fibers optical fiber.
可选地,在本实施例中,高双折射保偏光纤可以但不限于包括熊猫保偏型25μm纤芯、400μm包层保偏光纤、熊猫保偏型20μm纤芯、400μm包层光纤以及双折射系数满足折射系数阈值的保偏光纤等等。Optionally, in this embodiment, the high-birefringence polarization-maintaining fiber may include, but is not limited to, Panda polarization-maintaining 25 μm core, 400 μm cladding polarization-maintaining fiber, Panda polarization-maintaining 20 μm core, 400 μm cladding fiber, and double Polarization maintaining fiber whose refractive index meets the refractive index threshold, etc.
可选地,在本实施例中,所述光纤放大器中的保偏光纤均通过光纤熔接机进行熔接。Optionally, in this embodiment, the polarization-maintaining optical fibers in the optical fiber amplifier are all fused by a fiber fusion splicer.
在一个示例性实施例中,所述隔离模块还包括:导光端,其中,In an exemplary embodiment, the isolation module further includes: a light guide end, wherein,
所述导光端与检测装置连接;The light guide end is connected to the detection device;
所述导光端用于向所述检测装置输出隔离掉的反向回光;The light guide end is used to output the isolated reverse return light to the detection device;
所述检测装置用于检测所述反向回光的回光光谱中受激布里渊散射光强度。The detection device is used to detect the intensity of stimulated Brillouin scattered light in the return light spectrum of the reverse return light.
可选地,在本实施例中,隔离模块可以用于连接检测装置,通过检测装置检测反向回光的回光光谱中受激布里渊散射光强度。从而也可以根据检测到的受激布里渊散射光强度调整目标角度。Optionally, in this embodiment, the isolation module may be used to connect to a detection device, and the detection device detects the intensity of stimulated Brillouin scattered light in the return light spectrum of the back return light. Therefore, the target angle can also be adjusted according to the detected stimulated Brillouin scattered light intensity.
可选地,在本实施例中,隔离模块包括:光纤隔离器,其中,所述光纤隔离器的输出端与所述放大模块的输入端连接;所述光纤隔离器的输入端用于连接线偏振种子源,所述光纤隔离器的导光端用于输出隔离掉的反向回光,上述种子源包括所述线偏振种子源。Optionally, in this embodiment, the isolation module includes: an optical fiber isolator, wherein the output end of the optical fiber isolator is connected to the input end of the amplification module; the input end of the optical fiber isolator is used for connecting wires A polarized seed source, the light guide end of the optical fiber isolator is used to output the isolated reverse return light, and the seed source includes the linearly polarized seed source.
可选地,在本实施例中,图3是根据本申请实施例的一种光纤放大器的结构框图二,如图3所示,光纤隔离器202的第一保偏光纤102-2与放大模块104的第二保偏光纤104-1连接;光纤隔离器202的输入端102-1用于连接线偏振种子源204,光纤隔离器202的导光端206用于输出隔离掉的反向回光,导光端206与检测装置208连接,上述种子源包括线偏振种子源204。Optionally, in this embodiment, FIG. 3 is a structural block diagram 2 of an optical fiber amplifier according to an embodiment of the present application. As shown in FIG. The second polarization-maintaining fiber 104-1 of 104 is connected; the input end 102-1 of the fiber isolator 202 is used for connecting the linearly polarized seed source 204, and the
可选地,在本实施例中,上述光纤隔离器包括:线偏振三端口环形器。Optionally, in this embodiment, the optical fiber isolator includes: a linearly polarized three-port circulator.
在一个示例性实施例中,所述放大模块包括:第一包层光滤除器、增益光纤、泵浦/信号耦合器、泵浦源组和第二包层光滤除器,其中,所述第一保偏光纤与所述第一包层光滤除器的输入端的所述第二保偏光纤连接,所述第一包层光滤除器的输出端与所述增益光纤的一端连接,所述增益光纤的另一端与所述泵浦/信号耦合器的第一输入端连接,所述泵浦源组与所述泵浦/信号耦合器的第二输入端连接,所述泵浦/信号耦合器的输出端与所述第二包层光滤除器的输入端连接,所述第二包层光滤除器的输出端与所述输出模块的输入端连接;所述第二包层光滤除器是在所述泵浦/信号耦合器的输出光纤上直接加工的。In an exemplary embodiment, the amplifying module includes: a first cladding optical filter, a gain fiber, a pump/signal coupler, a pump source group, and a second cladding optical filter, wherein the The first polarization-maintaining fiber is connected to the second polarization-maintaining fiber at the input end of the first cladding optical filter, and the output end of the first cladding optical filter is connected to one end of the gain fiber , the other end of the gain fiber is connected to the first input end of the pump/signal coupler, the pump source group is connected to the second input end of the pump/signal coupler, and the pump The output end of the signal coupler is connected to the input end of the second cladding optical filter, and the output end of the second cladding optical filter is connected to the input end of the output module; the second cladding optical filter is connected to the input end of the output module; A cladding optical filter is machined directly on the output fiber of the pump/signal coupler.
可选地,在本实施例中,泵浦/信号耦合器与第二包层光滤除器为连体器件,第二包层光滤除器是在泵浦/信号耦合器的输出光纤上直接加工使得泵浦/信号耦合器与第二包层光滤除器之间的连接光纤无熔接点。Optionally, in this embodiment, the pump/signal coupler and the second cladding optical filter are conjoined devices, and the second cladding optical filter is on the output fiber of the pumping/signal coupler The direct processing makes the connecting fiber between the pump/signal coupler and the second cladding optical filter have no fusion joint.
在一个示例性实施例中,所述泵浦/信号耦合器的输出光纤的长度小于20cm。In an exemplary embodiment, the length of the output fiber of the pump/signal coupler is less than 20 cm.
可选地,在本实施例中,泵浦/信号耦合器的输出光纤作为泵浦/信号耦合器与第二包层光滤除器之间的连接光纤的长度小于一定的目标阈值(比如20cm),并且泵浦/信号耦合器的输出光纤尽量短。Optionally, in this embodiment, the output fiber of the pump/signal coupler is used as the connecting fiber between the pump/signal coupler and the second cladding optical filter, and the length of the optical fiber is less than a certain target threshold (such as 20cm ), and the output fiber of the pump/signal coupler should be as short as possible.
可选地,在本实施例中,光纤隔离器的导光端可以但不限于用于输出隔离掉的反向回光,并监测回光光谱中受激布里渊散射光强度;第一包层光滤除器可以但不限于用于滤除光纤包层里的信号光和多余的泵浦光,增益光纤可以但不限于用于将泵浦光转换为信号光,进而实现激光放大;泵浦/信号耦合器可以但不限于用于将泵浦光耦合进增益光纤的包层中;泵浦源组可以但不限于为放大器提供泵浦光;包层光滤除器可以但不限于用于滤除包层光,光纤端帽可以但不限于用于激光空间输出。泵浦/信号耦合器和第二包层光滤除器为连体器件,中间光纤无熔接点并且长度尽量短。Optionally, in this embodiment, the light guide end of the fiber isolator can be used, but not limited to, to output the isolated reverse return light, and monitor the intensity of stimulated Brillouin scattered light in the return light spectrum; the first package The layer optical filter can be but not limited to be used to filter the signal light and redundant pump light in the fiber cladding, the gain fiber can be but not limited to be used to convert the pump light into signal light, and then realize laser amplification; the pump The pump/signal coupler can be but not limited to be used to couple the pump light into the cladding of the gain fiber; the pump source group can be but not limited to provide pump light for the amplifier; the cladding optical filter can be but not limited to use To filter out cladding light, fiber end caps can be used but not limited to laser spatial output. The pump/signal coupler and the second cladding optical filter are conjoined components, and the intermediate optical fiber has no fusion point and the length is as short as possible.
可选地,在本实施例中,图4是根据本申请实施例的一种光纤放大器的结构框图三,如图4所示,放大模块可以但不限于包括:包层光滤除器302(即上述的第一包层光滤除器)、增益光纤304、泵浦/信号耦合器306、泵浦源组308和包层光滤除器310(即上述的第二包层光滤除器)。光纤隔离器202的输入端102-1与线偏振种子源204连接,光纤隔离器202的第一保偏光纤102-2与包层光滤除器302的输入端302-1连接,包层光滤除器302的输出端302-2与增益光纤304的一端304-1连接,增益光纤304的另一端304-2与泵浦/信号耦合器306的第一输入端306-1连接,泵浦源组308与泵浦/信号耦合器306的第二输入端306-2连接,泵浦/信号耦合器306的输出端306-3与包层光滤除器310的输入端310-1连接,包层光滤除器310的输出端310-2与输出模块106的第四保偏光纤106-1连接;泵浦/信号耦合器306与包层光滤除器310为连体器件,泵浦/信号耦合器306与包层光滤除器310之间的连接光纤无熔接点并且连接光纤的长度小于目标阈值。Optionally, in this embodiment, FIG. 4 is a structural block diagram three of an optical fiber amplifier according to an embodiment of the present application. As shown in FIG. 4, the amplification module may include, but is not limited to: a cladding optical filter 302 ( That is, the above-mentioned first cladding optical filter),
在一个示例性实施例中,所述输出模块包括光纤端帽。In an exemplary embodiment, the output module includes a fiber optic end cap.
可选地,在本实施例中,光纤端帽可以但不限于用于激光空间输出,图5是根据本申请实施例的一种光纤放大器的结构框图四,如图5所示,光纤隔离器202的输入端102-1与线偏振种子源204连接,光纤隔离器202的第一保偏光纤102-2与包层光滤除器302的输入端302-1连接,包层光滤除器302的输出端302-2与增益光纤304的一端304-1连接,增益光纤304的另一端304-2与泵浦/信号耦合器306的第一输入端306-1连接,泵浦源组308与泵浦/信号耦合器306的第二输入端306-2连接,泵浦/信号耦合器306的输出端306-3与包层光滤除器310的输入端310-1连接,包层光滤除器310的输出端310-2与光纤端帽402的输入端402-1连接;泵浦/信号耦合器306与包层光滤除器310为连体器件,泵浦/信号耦合器306与包层光滤除器310之间的连接光纤无熔接点并且连接光纤的长度小于目标阈值。Optionally, in this embodiment, the fiber end cap can be, but not limited to, used for laser spatial output. FIG. 5 is a block diagram four of a fiber amplifier according to an embodiment of the present application. As shown in FIG. 5, the fiber isolator The input end 102-1 of 202 is connected with the linearly polarized seed source 204, and the first polarization-maintaining fiber 102-2 of the fiber isolator 202 is connected with the input end 302-1 of the cladding optical filter 302, and the cladding optical filter The output end 302-2 of 302 is connected with one end 304-1 of the
为了更好的理解上述光纤放大器,以下再结合可选实施例对上述光纤放大器的结构进行说明,但不用于限定本申请实施例的技术方案。In order to better understand the above-mentioned fiber amplifier, the structure of the above-mentioned fiber amplifier will be described below in combination with optional embodiments, but it is not used to limit the technical solutions of the embodiments of the present application.
在本实施例中提供了一种光纤放大器,图6是根据本申请实施例的一种光纤放大器的示意图,如图6所示,上述光纤放大器可以但不限于包括:光纤隔离器1、包层光滤除器2(即上述的第一包层光滤除器)、增益光纤3、泵浦/信号耦合器4、泵浦源组5、包层光滤除器6(即上述的第二包层光滤除器)以及光纤端帽7。光纤隔离器1、包层光滤除器2、增益光纤3、泵浦/信号耦合器4、包层光滤除器6的输入光纤、输出光纤和光纤端帽7的输入光纤均为高双折射保偏光纤。光纤隔离器1可以但不限于包括A1端(即上述的光纤隔离器的输入端)、A2端(即上述的光纤隔离器的导光端)和A3端(即上述的光纤隔离器的输出端),泵浦/信号耦合器4可以但不限于包括B1端(即上述的泵浦/信号耦合器的第一输入)、B2端(即上述的泵浦/信号耦合器的输出端)、B3端(即上述的泵浦/信号耦合器的第二输入端)。可以但不限于通过以下方式制作光路:A fiber amplifier is provided in this embodiment. FIG. 6 is a schematic diagram of a fiber amplifier according to an embodiment of the present application. As shown in FIG. Optical filter 2 (i.e. the above-mentioned first cladding optical filter), gain fiber 3, pump/signal coupler 4, pumping
光纤隔离器1的输出端A3与包层光滤除器2的输入端之间采用偏振主轴夹角45°熔接,除了光纤隔离器1的输出端A3(即上述的光纤隔离器的输出端)与包层光滤除器2的输入端之外的其它保偏光纤均采用偏振主轴夹角0°熔接,泵浦/信号耦合器4的泵浦端B3(即上述的所述泵浦/信号耦合器的第二输入端)泵浦纤与泵浦源组5的输出端泵浦纤为同种多模光纤直接熔接。线偏振种子源8所发出的线偏振种子激光经过光纤隔离器1后输出相同的线偏振激光,再经光纤隔离器1和包层光滤除器2熔接点后产生退偏振,并在后续保偏光纤放大和传输过程中保持偏振态不变。The output end A3 of the optical fiber isolator 1 and the input end of the cladding optical filter 2 are welded at a polarization axis angle of 45°, except for the output end A3 of the optical fiber isolator 1 (that is, the output end of the above-mentioned optical fiber isolator) All other polarization-maintaining optical fibers other than the input end of the cladding optical filter 2 are welded at a polarization axis angle of 0°, and the pump end B3 of the pump/signal coupler 4 (i.e. the above-mentioned pump/signal The pump fiber at the second input end of the coupler and the pump fiber at the output end of the
可选的,在本实施例中,光纤隔离器1、包层光滤除器2、泵浦/信号耦合器4、包层光滤除器6、光纤端帽7的输入光纤、输出光纤及增益光纤3可以但不限于采用熊猫保偏型20μm纤芯、400μm包层光纤。光纤隔离器1采用快轴工作模式,沿快轴输入功率50W、波长1064nm窄线宽种子激光,信号光经光纤隔离器1和包层光滤除器2的45°熔接点后偏振态接近零,再经增益光纤3放大至1500W后,测得的激光偏振度保持不变,并且光纤隔离器1的回光监测中没有明显的受激布里渊散射光产生。Optionally, in this embodiment, the input optical fiber, output optical fiber and The gain fiber 3 may be, but not limited to, adopt a Panda polarization-maintaining fiber with a core of 20 μm and a cladding fiber of 400 μm. The optical fiber isolator 1 adopts the fast axis working mode, and the input power along the fast axis is 50W, the wavelength is 1064nm narrow line width seed laser, and the polarization state of the signal light is close to zero after passing through the 45° fusion point of the optical fiber isolator 1 and the cladding optical filter 2 , and then amplified to 1500W by the gain fiber 3, the measured laser polarization degree remains unchanged, and there is no obvious stimulated Brillouin scattered light in the return light monitoring of the fiber isolator 1.
可选的,在本实施例中,光纤隔离器1的输出光纤、输入光纤还可以但不限于采用熊猫保偏型20μm纤芯、400μm包层保偏光纤,包层光滤除器2、泵浦/信号耦合器4、包层光滤除器6、光纤端帽7的输入光纤、输出光纤及增益光纤3可以但不限于采用熊猫保偏型25μm纤芯、400μm包层保偏光纤。光纤隔离器1采用快轴工作模式,沿快轴输入功率100W、波长1050nm窄线宽种子激光,信号光经光纤隔离器1和包层光滤除器2的45°熔接点后偏振态接近零,再经增益光纤3放大至1500W后,测得的激光偏振度保持不变,并且光纤隔离器1的回光监测中没有明显的受激布里渊散射光产生。Optionally, in this embodiment, the output fiber and input fiber of the optical fiber isolator 1 can also be, but not limited to, adopt Panda polarization-maintaining 20 μm core, 400 μm cladding polarization-maintaining fiber, cladding optical filter 2, pump The input fiber, output fiber and gain fiber 3 of the pump/signal coupler 4, the cladding optical filter 6, and the fiber end cap 7 can, but are not limited to, adopt Panda polarization-maintaining 25 μm core and 400 μm cladding polarization-maintaining fiber. The optical fiber isolator 1 adopts the fast axis working mode, and the input power along the fast axis is 100W, the wavelength is 1050nm narrow line width seed laser, and the polarization state of the signal light is close to zero after passing through the 45° fusion point of the optical fiber isolator 1 and the cladding optical filter 2 , and then amplified to 1500W by the gain fiber 3, the measured laser polarization degree remains unchanged, and there is no obvious stimulated Brillouin scattered light in the return light monitoring of the fiber isolator 1.
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。Optionally, for specific examples in this embodiment, reference may be made to the examples described in the foregoing embodiments and optional implementation manners, and details are not repeated in this embodiment.
显然,本领域的技术人员应该明白,上述的本申请实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请实施例不限制于任何特定的硬件和软件结合。Obviously, those skilled in the art should understand that the modules or steps of the above-mentioned embodiments of the present application can be implemented by general-purpose computing devices, and they can be concentrated on a single computing device, or distributed among multiple computing devices. Optionally, they may be implemented in program code executable by a computing device, thereby, they may be stored in a storage device to be executed by a computing device, and in some cases, may be implemented in a code different from that described herein The steps shown or described are executed in sequence, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. Thus, embodiments of the present application are not limited to any specific combination of hardware and software.
以上所述仅是本申请实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请实施例的保护范围。The above descriptions are only preferred implementations of the embodiments of the present application. It should be pointed out that for those skilled in the art, some improvements and modifications can be made without departing from the principle of the embodiments of the present application. Improvements and modifications should also be regarded as the scope of protection of the embodiments of the present application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211676030.5A CN116404505A (en) | 2022-12-26 | 2022-12-26 | optical fiber amplifier |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211676030.5A CN116404505A (en) | 2022-12-26 | 2022-12-26 | optical fiber amplifier |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116404505A true CN116404505A (en) | 2023-07-07 |
Family
ID=87012913
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211676030.5A Pending CN116404505A (en) | 2022-12-26 | 2022-12-26 | optical fiber amplifier |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116404505A (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020141698A1 (en) * | 2001-01-31 | 2002-10-03 | Shunichi Matsushita | Pump light source device for optical Raman amplification and optical Raman amplification system using the same |
| CN2518247Y (en) * | 2001-12-26 | 2002-10-23 | 武汉邮电科学研究院 | Low polarization degree Raman amplifier pumping source structure |
| CN102221729A (en) * | 2011-07-05 | 2011-10-19 | 珠海保税区光联通讯技术有限公司 | Optics depolarizer |
| US20190288481A1 (en) * | 2016-11-30 | 2019-09-19 | Elbit Systems Electro-Optics Elop Ltd. | Narrowband depolarized fiber lasers |
-
2022
- 2022-12-26 CN CN202211676030.5A patent/CN116404505A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020141698A1 (en) * | 2001-01-31 | 2002-10-03 | Shunichi Matsushita | Pump light source device for optical Raman amplification and optical Raman amplification system using the same |
| CN2518247Y (en) * | 2001-12-26 | 2002-10-23 | 武汉邮电科学研究院 | Low polarization degree Raman amplifier pumping source structure |
| CN102221729A (en) * | 2011-07-05 | 2011-10-19 | 珠海保税区光联通讯技术有限公司 | Optics depolarizer |
| US20190288481A1 (en) * | 2016-11-30 | 2019-09-19 | Elbit Systems Electro-Optics Elop Ltd. | Narrowband depolarized fiber lasers |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2933998B2 (en) | Erbium-doped fiber amplifier coupling device | |
| CN102668272B (en) | Light combiner and fiber laser device using same | |
| WO2016002947A1 (en) | Optical fiber laser device | |
| CN1204776A (en) | Optical fiber amplifier for achieving high gain of small signal | |
| CN110265858A (en) | High-power Raman fiber laser system for selectively exciting high-order mode | |
| CN109713562A (en) | Random fiber laser based on random Brillouin's dynamic raster | |
| CN103490272A (en) | 2um single frequency pulse fiber laser adjustable in amplitude modulation frequency | |
| CN114614326A (en) | High Power High Beam Quality Tunable Narrow Linewidth Fiber Laser | |
| JP2000091677A (en) | Optical amplifier and optical amplification fiber module | |
| CN103296567B (en) | Ultra-narrow-linewidth nonlinear gain amplification multi-wavelength fiber laser | |
| US6330117B1 (en) | Optical isolator module and optical amplifier using the same | |
| US20030021012A1 (en) | Polarization maintaining optical fiber amplifier and optical amplifier | |
| CN116404505A (en) | optical fiber amplifier | |
| CN108267231A (en) | High-capacity optical fiber laser power and SBS threshold on-Line Monitor Device | |
| CN102280803A (en) | Pulse fiber amplifier | |
| CN207964098U (en) | A kind of high-capacity optical fiber laser power and SBS threshold on-Line Monitor Device | |
| WO2018171206A1 (en) | Doped fiber amplifier and work method thereof | |
| US20030063848A1 (en) | High power, low noise, superflourescent device and methods related thereto | |
| JP2006292674A (en) | Optical power monitoring method, optical power monitoring apparatus, and optical device | |
| CN100571080C (en) | Signal source device with a wavelength of 1053nm, high power, and narrow linewidth | |
| CN106099635A (en) | The 2 mu m waveband linear polarization single frequency optical fiber lasers with power feedback mechanism | |
| JP2821559B2 (en) | Optical amplifier | |
| CN116706655A (en) | Optical fiber amplifier | |
| JPH1174596A (en) | Rigid multi-wavelength optical fiber communication system | |
| JP3495578B2 (en) | Optical fiber amplifier |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |