CN116435850A - Photo-generated microwave device - Google Patents
Photo-generated microwave device Download PDFInfo
- Publication number
- CN116435850A CN116435850A CN202310371860.5A CN202310371860A CN116435850A CN 116435850 A CN116435850 A CN 116435850A CN 202310371860 A CN202310371860 A CN 202310371860A CN 116435850 A CN116435850 A CN 116435850A
- Authority
- CN
- China
- Prior art keywords
- unit
- output end
- optical
- optical fiber
- input end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S1/00—Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本文件涉及微波技术领域,尤其涉及一种光生微波装置。This document relates to the field of microwave technology, in particular to an optically generated microwave device.
背景技术Background technique
低相噪、高稳定度的微波频率源被广泛的应用于雷达、通信、航空航天、计量及基础物理研究等领域。目前,获得微波源的方式主要有:一、传统通过标准晶振(5MHz或10MHz)倍频的方式获得。二、通过设计介质振荡器(DRO)的谐振频率,配合外围电路获得。和上述两种传统方式相比,基于光电转换的微波信号产生技术具有低相位噪声、高短期频率稳定度的优势,且结构紧凑、连续工作时间长,应用范围较广。Microwave frequency sources with low phase noise and high stability are widely used in radar, communication, aerospace, metrology and basic physics research and other fields. At present, the main ways to obtain the microwave source are: 1. Traditionally, it is obtained by multiplying the frequency of a standard crystal oscillator (5MHz or 10MHz). 2. Obtained by designing the resonant frequency of the dielectric oscillator (DRO) and cooperating with the peripheral circuit. Compared with the above two traditional methods, microwave signal generation technology based on photoelectric conversion has the advantages of low phase noise, high short-term frequency stability, compact structure, long continuous working time, and wide application range.
光生微波装置主要包括激光组件、光储能组件、调制解调组件。其中,光储能组件通常使用光纤或微纳结构,采用光纤具有结构简单、但易受环境温度、应力等影响的特点,而采用微纳结构加工及耦合调节较为复杂。Optically generated microwave devices mainly include laser components, optical energy storage components, and modulation and demodulation components. Among them, optical energy storage components usually use optical fibers or micro-nano structures. The use of optical fibers has the characteristics of simple structure, but is easily affected by ambient temperature and stress, while the processing and coupling adjustment of micro-nano structures are more complicated.
针对光生微波装置的应用需求,提高其相位噪声、短期频率稳定度指标,简化结构是目前亟需解决的问题。In view of the application requirements of optically generated microwave devices, improving their phase noise, short-term frequency stability indicators, and simplifying the structure are problems that need to be solved urgently.
发明内容Contents of the invention
本说明书提供了一种光生微波装置,用以解决现有技术产生的微波信号相位噪声高、短期频率稳定度低的问题,该装置包括激光器锁定环路和光振荡环路;This specification provides an optically generated microwave device to solve the problems of high phase noise and low short-term frequency stability of microwave signals generated in the prior art. The device includes a laser locked loop and an optical oscillation loop;
所述激光器锁定环路包括:双波长激光器、光耦合器、第一光电探测器、分路单元和回控装置;The laser locked loop includes: a dual-wavelength laser, an optical coupler, a first photodetector, a branching unit, and a return control device;
所述双波长激光器的输出端与所述光耦合器的输入端连接;所述光耦合器的第一输出端与所述第一光电探测器的输入端连接;所述第一光电探测器的输出端与所述分路单元的输入端连接;所述分路单元的第一输出端与所述回控装置的第一输入端连接;所述分路单元的第三输出端用于输出所述光生微波装置的最终生成的微波信号;所述回控装置的输出端与所述双波长激光器的输入端连接;所述回控装置用于对所述波长激光器反馈控制;The output end of the dual-wavelength laser is connected to the input end of the optical coupler; the first output end of the optical coupler is connected to the input end of the first photodetector; The output terminal is connected to the input terminal of the branching unit; the first output terminal of the branching unit is connected to the first input terminal of the control device; the third output terminal of the branching unit is used to output the The final generated microwave signal of the optical microwave device; the output end of the control device is connected to the input end of the dual-wavelength laser; the control device is used for feedback control of the wavelength laser;
所述光振荡环路的输入端与所述光耦合器的第二输出端、与所述分路单元的第二输出端、与所述混频器的第二输入端连接;所述光振荡环路,用于结合激光信号对微波信号进行调制、解调。The input end of the optical oscillation loop is connected with the second output end of the optical coupler, the second output end of the branching unit, and the second input end of the mixer; the optical oscillation The loop is used to modulate and demodulate the microwave signal in combination with the laser signal.
在一些优选的实施方式中,所述回控装置包括混频器和控制单元;所述混频器的输出端与所述控制单元的输入端连接;所述控制单元的输出端与所述双波长激光器的输入端连接。In some preferred embodiments, the control device includes a mixer and a control unit; the output terminal of the mixer is connected to the input terminal of the control unit; the output terminal of the control unit is connected to the dual The input port of the wavelength laser is connected.
在一些优选的实施方式中,所述分路单元的第一输出端用于输出第一微波信号;所述分路单元的第二输出端用于输出第二微波信号。In some preferred implementation manners, the first output terminal of the branching unit is used to output the first microwave signal; the second output terminal of the branching unit is used to output the second microwave signal.
在一些优选的实施方式中,所述光振荡环路包括:滤光单元、调制单元、光纤处理装置和第二光电探测器;所述光耦合器的第二输出端与所述滤光单元的输入端连接;所述滤光单元的输出端与所述调制单元的第一输入端连接;所述第二光电探测器的输出端与所述混频器的第二输入端连接;所述分路单元的第二输出端与所述调制单元连接;In some preferred embodiments, the optical oscillation loop includes: a filter unit, a modulation unit, an optical fiber processing device, and a second photodetector; the second output end of the optical coupler is connected to the filter unit The input end is connected; the output end of the filter unit is connected with the first input end of the modulation unit; the output end of the second photodetector is connected with the second input end of the mixer; the splitter The second output end of the road unit is connected to the modulation unit;
所述滤光单元,用于提取设定波长的激光信号;The filter unit is used to extract a laser signal with a set wavelength;
所述调制单元,用于将所述第二微波信号调制在所述设定波长的激光信号上,产生调制激光信号;The modulation unit is configured to modulate the second microwave signal on the laser signal of the set wavelength to generate a modulated laser signal;
所述光纤处理装置,用于传输所述调制激光信号及调整光纤长度;The optical fiber processing device is used to transmit the modulated laser signal and adjust the length of the optical fiber;
所述第二光电探测器,用于解调所述调制激光信号。The second photodetector is used to demodulate the modulated laser signal.
在一些优选的实施方式中,所述光纤处理装置包括光纤和光纤长度控制器;In some preferred embodiments, the optical fiber processing device includes an optical fiber and an optical fiber length controller;
所述调制单元的输出端与所述光纤的输入端连接;所述光纤的输出端与所述光纤长度控制单元的输入端连接;所述光纤长度控制单元的输出端与所述第二光电探测器的输入端连接。The output end of the modulation unit is connected to the input end of the optical fiber; the output end of the optical fiber is connected to the input end of the optical fiber length control unit; the output end of the optical fiber length control unit is connected to the second photodetector connected to the input of the device.
在一些优选的实施方式中,所述光纤包括单模光纤。In some preferred embodiments, the optical fiber comprises a single mode optical fiber.
在一些优选的实施方式中,所述第一光电探测器的输出频率、所述第二光电探测器的输出频率、所述分路单元的工作频率、所述混频器的工作频率覆盖所述双波长激光器发射的两束激光的频差所在的波段。In some preferred embodiments, the output frequency of the first photodetector, the output frequency of the second photodetector, the operating frequency of the branching unit, and the operating frequency of the mixer cover the The frequency band of the frequency difference between the two laser beams emitted by the dual-wavelength laser.
在一些优选的实施方式中,所述分路单元为微波定向耦合器、微波功分器或微波分路器。In some preferred embodiments, the branching unit is a microwave directional coupler, a microwave power splitter or a microwave splitter.
在一些优选的实施方式中,所述控制单元为锁相放大器或PID。In some preferred embodiments, the control unit is a lock-in amplifier or a PID.
在一些优选的实施方式中,所述滤光单元为波分复用器或滤光片。In some preferred embodiments, the filter unit is a wavelength division multiplexer or a filter.
本说明书实施例采用的上述至少一个技术方案能够达到以下有益效果:The above at least one technical solution adopted in the embodiments of this specification can achieve the following beneficial effects:
本发明可以有效降低产生的微波信号的相位噪声、提高短期频率稳定度以及简化装置结构。The invention can effectively reduce the phase noise of the generated microwave signal, improve the short-term frequency stability and simplify the device structure.
本发明通过将双波长激光器输出的两束光进行光电转换,得到的微波信号作为调制信号调制到双波长激光器输出的一束激光上,并耦合进光纤,光纤作为储能组件,解调微波信号,并对双波长激光器进行反馈控制,从而获得高指标微波信号。本发明与传统的光生微波技术相比,利用双波长激光器,无需额外微波调制信号,结构简单,且具有相位噪声优异的特点。In the present invention, the two beams of light output by the dual-wavelength laser are photoelectrically converted, and the obtained microwave signal is modulated onto a beam of laser output by the dual-wavelength laser as a modulation signal, and then coupled into an optical fiber, and the optical fiber is used as an energy storage component to demodulate the microwave signal , and perform feedback control on the dual-wavelength laser to obtain high-index microwave signals. Compared with the traditional light-generated microwave technology, the invention uses a dual-wavelength laser without additional microwave modulation signals, has a simple structure, and has the characteristics of excellent phase noise.
附图说明Description of drawings
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described here are used to provide a further understanding of the application and constitute a part of the application. The schematic embodiments and descriptions of the application are used to explain the application and do not constitute an improper limitation to the application. In the attached picture:
图1为本说明书一实施例提供的一种光生微波装置的结构示意图;Fig. 1 is a schematic structural diagram of an optical microwave device provided by an embodiment of this specification;
附图标记:Reference signs:
1:双波长激光器;1: Dual wavelength laser;
2:光耦合器;2: Optical coupler;
3:第一光电探测器;3: the first photodetector;
4:分路单元;4: branching unit;
5:混频器;5: Mixer;
6:控制单元;6: Control unit;
7:滤光单元;7: filter unit;
8:调制单元;8: modulation unit;
9:光纤;9: optical fiber;
10:光纤长度控制单元;10: Optical fiber length control unit;
11:第二光电探测器。11: Second photodetector.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solution and advantages of the present application clearer, the technical solution of the present application will be clearly and completely described below in conjunction with specific embodiments of the present application and corresponding drawings. Apparently, the described embodiments are only some of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.
如图1所示,为本发明实施例提供的一种光生微波装置的结构示意图,具体地,该装置包括激光器锁定环路和光振荡环路;As shown in Figure 1, it is a schematic structural diagram of an optically generated microwave device provided by an embodiment of the present invention, specifically, the device includes a laser locked loop and an optical oscillation loop;
所述激光器锁定环路包括:双波长激光器、光耦合器、第一光电探测器、分路单元和回控装置;The laser locked loop includes: a dual-wavelength laser, an optical coupler, a first photodetector, a branching unit, and a return control device;
所述双波长激光器的输出端与所述光耦合器的输入端连接;所述光耦合器的第一输出端与所述第一光电探测器的输入端连接;所述第一光电探测器的输出端与所述分路单元的输入端连接;所述分路单元的第一输出端与所述回控装置的第一输入端连接;所述分路单元的第三输出端用于输出所述光生微波装置的最终生成的微波信号;所述回控装置的输出端与所述双波长激光器的输入端连接;所述回控装置用于对所述波长激光器反馈控制;The output end of the dual-wavelength laser is connected to the input end of the optical coupler; the first output end of the optical coupler is connected to the input end of the first photodetector; The output terminal is connected to the input terminal of the branching unit; the first output terminal of the branching unit is connected to the first input terminal of the control device; the third output terminal of the branching unit is used to output the The final generated microwave signal of the optical microwave device; the output end of the control device is connected to the input end of the dual-wavelength laser; the control device is used for feedback control of the wavelength laser;
所述光振荡环路的输入端与所述光耦合器的第二输出端、与所述分路单元的第二输出端、与所述混频器的第二输入端连接;所述光振荡环路,用于结合激光信号对微波信号进行调制、解调。The input end of the optical oscillation loop is connected with the second output end of the optical coupler, the second output end of the branching unit, and the second input end of the mixer; the optical oscillation The loop is used to modulate and demodulate the microwave signal in combination with the laser signal.
所述回控装置包括混频器和控制单元;所述混频器的输出端与所述控制单元的输入端连接;所述控制单元的输出端与所述双波长激光器的输入端连接。The control back device includes a mixer and a control unit; the output terminal of the mixer is connected to the input terminal of the control unit; the output terminal of the control unit is connected to the input terminal of the dual-wavelength laser.
在本实施例中,所述双波长激光器的输出光信号波长优选为1550nm或1300nm,两束激光频差优选在X波段,所述双波长激光器腔长可调,由所述控制单元的输出信号进行控制。In this embodiment, the wavelength of the output optical signal of the dual-wavelength laser is preferably 1550nm or 1300nm, the frequency difference between the two laser beams is preferably in the X-band, the cavity length of the dual-wavelength laser is adjustable, and the output signal of the control unit Take control.
所述光耦合器的工作波长优选为1550nm或1300nm,分光比优选为50:50或40:60,用于将光信号分为功率相同或不同的两束。The working wavelength of the optical coupler is preferably 1550nm or 1300nm, and the splitting ratio is preferably 50:50 or 40:60, which is used to split the optical signal into two beams with the same or different power.
所述第一光电探测器的输出频率覆盖X波段,用于得到两束激光的拍频信号,即X波段微波信号。The output frequency of the first photodetector covers the X-band, and is used to obtain the beat frequency signals of the two laser beams, that is, the X-band microwave signal.
所述混频器用于实现两个X波段微波信号混频,工作频率覆盖X波段。The mixer is used to realize the frequency mixing of two X-band microwave signals, and the working frequency covers the X-band.
所述控制单元用于对所述混频器输出的回控信号进行放大等处理。The control unit is used to amplify the control signal output by the mixer.
所述分路单元的第一输出端用于输出第一微波信号;所述分路单元的第二输出端用于输出第二微波信号。The first output terminal of the branching unit is used to output the first microwave signal; the second output terminal of the branching unit is used to output the second microwave signal.
所述光振荡环路包括:滤光单元、调制单元、光纤处理装置和第二光电探测器;所述光耦合器的第二输出端与所述滤光单元的输入端连接;所述滤光单元的输出端与所述调制单元的第一输入端连接;所述第二光电探测器的输出端与所述混频器的第二输入端连接;所述分路单元的第二输出端与所述调制单元连接;The optical oscillation loop includes: a filter unit, a modulation unit, an optical fiber processing device and a second photodetector; the second output end of the optical coupler is connected to the input end of the filter unit; the filter unit The output end of the unit is connected to the first input end of the modulation unit; the output end of the second photodetector is connected to the second input end of the mixer; the second output end of the branching unit is connected to the The modulation unit is connected;
所述滤光单元,用于提取设定波长的激光信号;The filter unit is used to extract a laser signal with a set wavelength;
所述调制单元,用于将所述第二微波信号调制在所述设定波长的激光信号上,产生调制激光信号;The modulation unit is configured to modulate the second microwave signal on the laser signal of the set wavelength to generate a modulated laser signal;
所述光纤处理装置,用于传输所述调制激光信号及调整光纤长度;The optical fiber processing device is used to transmit the modulated laser signal and adjust the length of the optical fiber;
所述第二光电探测器,用于解调所述调制激光信号。The second photodetector is used to demodulate the modulated laser signal.
所述光纤处理装置包括光纤和光纤长度控制器;所述调制单元的输出端与所述光纤的输入端连接;所述光纤的输出端与所述光纤长度控制单元的输入端连接;所述光纤长度控制单元的输出端与所述第二光电探测器的输入端连接。The optical fiber processing device includes an optical fiber and an optical fiber length controller; the output end of the modulation unit is connected to the input end of the optical fiber; the output end of the optical fiber is connected to the input end of the optical fiber length control unit; the optical fiber The output terminal of the length control unit is connected with the input terminal of the second photodetector.
在本实施例中,所述光纤优选使用单模光纤;所述光纤长度控制器优选使用PZT压电陶瓷管,用于调整光纤长度,减小环境温度、应力等的影响。In this embodiment, the optical fiber is preferably a single-mode optical fiber; the optical fiber length controller is preferably a PZT piezoelectric ceramic tube, which is used to adjust the length of the optical fiber and reduce the influence of ambient temperature and stress.
所述第一光电探测器的输出频率、所述第二光电探测器的输出频率、所述分路单元的工作频率、所述混频器的工作频率覆盖所述双波长激光器发射的两束激光的频差所在的波段。The output frequency of the first photodetector, the output frequency of the second photodetector, the operating frequency of the branching unit, and the operating frequency of the mixer cover the two laser beams emitted by the dual-wavelength laser The frequency band of the frequency difference.
所述分路单元为微波定向耦合器、微波功分器或微波分路器。The branching unit is a microwave directional coupler, a microwave power splitter or a microwave splitter.
在本实施例中,所述分路单元优选使用一分三分路器,工作频率覆盖X波段,用于实现X波段微波信号一分三;所述分路单元还用于输出最终微波信号,即相位噪声及短期频率稳定度指标优异的X波段微波信号。In this embodiment, the branching unit preferably uses a one-to-three splitter, whose working frequency covers the X-band, and is used to realize the splitting of the X-band microwave signal into three; the branching unit is also used to output the final microwave signal, That is, X-band microwave signals with excellent phase noise and short-term frequency stability indicators.
所述控制单元为锁相放大器或PID。The control unit is a lock-in amplifier or a PID.
所述滤光单元为波分复用器或滤光片。The filter unit is a wavelength division multiplexer or a filter.
在本实施例中,所述滤光单元优选使用波分复用器,用于提取某一波长的激光。In this embodiment, the optical filter unit preferably uses a wavelength division multiplexer for extracting laser light of a certain wavelength.
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above descriptions are only examples of the present application, and are not intended to limit the present application. For those skilled in the art, various modifications and changes may occur in this application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application shall be included within the scope of the claims of the present application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310371860.5A CN116435850A (en) | 2023-04-07 | 2023-04-07 | Photo-generated microwave device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310371860.5A CN116435850A (en) | 2023-04-07 | 2023-04-07 | Photo-generated microwave device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116435850A true CN116435850A (en) | 2023-07-14 |
Family
ID=87088605
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310371860.5A Pending CN116435850A (en) | 2023-04-07 | 2023-04-07 | Photo-generated microwave device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116435850A (en) |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110192978A1 (en) * | 2010-02-11 | 2011-08-11 | Electronics And Telecommunications Research Institute | Terahertz wave apparatus |
| CN102832529A (en) * | 2012-08-29 | 2012-12-19 | 武汉光迅科技股份有限公司 | Dual-frequency-laser-based photoproduction tunable microwave source and frequency stabilization control method |
| EP2642659A1 (en) * | 2012-03-22 | 2013-09-25 | Thales | Tunable optoelectronic oscillator with low phase noise |
| CN104934853A (en) * | 2015-07-06 | 2015-09-23 | 中国科学院半导体研究所 | A photoelectric oscillator based on a direct-modulation semiconductor dual-mode laser |
| CN105141258A (en) * | 2015-09-29 | 2015-12-09 | 成都华光瑞芯微电子股份有限公司 | Microwave frequency conversion method and apparatus |
| US20180329235A1 (en) * | 2017-05-12 | 2018-11-15 | Alexander Vikulin | Dual-loop self-injection locked optoelectronic oscillator |
| CN111913052A (en) * | 2020-06-03 | 2020-11-10 | 北京无线电计量测试研究所 | Radio-over-fiber control module and radio-over-fiber cross-correlation detection system |
| CN112018591A (en) * | 2020-08-24 | 2020-12-01 | 中国科学院上海光学精密机械研究所 | Ultra-stable microwave generation device based on dual-frequency fiber interferometer-stabilized frequency laser |
| CN112886367A (en) * | 2021-01-19 | 2021-06-01 | 之江实验室 | Terahertz optoelectronic oscillator and oscillation method |
| US20220158400A1 (en) * | 2020-11-19 | 2022-05-19 | Institute Of Semiconductors, Chinese Academy Of Sciences | Mixer-based microwave signal generation device |
-
2023
- 2023-04-07 CN CN202310371860.5A patent/CN116435850A/en active Pending
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110192978A1 (en) * | 2010-02-11 | 2011-08-11 | Electronics And Telecommunications Research Institute | Terahertz wave apparatus |
| EP2642659A1 (en) * | 2012-03-22 | 2013-09-25 | Thales | Tunable optoelectronic oscillator with low phase noise |
| CN102832529A (en) * | 2012-08-29 | 2012-12-19 | 武汉光迅科技股份有限公司 | Dual-frequency-laser-based photoproduction tunable microwave source and frequency stabilization control method |
| CN104934853A (en) * | 2015-07-06 | 2015-09-23 | 中国科学院半导体研究所 | A photoelectric oscillator based on a direct-modulation semiconductor dual-mode laser |
| CN105141258A (en) * | 2015-09-29 | 2015-12-09 | 成都华光瑞芯微电子股份有限公司 | Microwave frequency conversion method and apparatus |
| US20180329235A1 (en) * | 2017-05-12 | 2018-11-15 | Alexander Vikulin | Dual-loop self-injection locked optoelectronic oscillator |
| CN111913052A (en) * | 2020-06-03 | 2020-11-10 | 北京无线电计量测试研究所 | Radio-over-fiber control module and radio-over-fiber cross-correlation detection system |
| CN112018591A (en) * | 2020-08-24 | 2020-12-01 | 中国科学院上海光学精密机械研究所 | Ultra-stable microwave generation device based on dual-frequency fiber interferometer-stabilized frequency laser |
| US20220158400A1 (en) * | 2020-11-19 | 2022-05-19 | Institute Of Semiconductors, Chinese Academy Of Sciences | Mixer-based microwave signal generation device |
| CN112886367A (en) * | 2021-01-19 | 2021-06-01 | 之江实验室 | Terahertz optoelectronic oscillator and oscillation method |
Non-Patent Citations (1)
| Title |
|---|
| 曹雷;鲁思滨;王锴;姚战伟;李润兵;王谨;詹明生;: "基于锁相环路的拉曼激光制备及其相位噪声研究", 量子电子学报, no. 04, 15 July 2018 (2018-07-15) * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102148475B (en) | Photonic-filtering-based optoelectronic oscillator | |
| CN107395284A (en) | Without local oscillator Low phase noise microwave signal optical frequency-doubling generation device and method | |
| CN111048969B (en) | A Frequency Doubled Photoelectric Oscillator Based on Stimulated Brillouin Scattering Effect | |
| CN104659637A (en) | Photoelectric oscillator based on optical resonant cavity | |
| CN112332198B (en) | Photoelectric oscillator | |
| CN108879294B (en) | Photoelectric Oscillator Based on Self-Feedback Single-cycle Oscillation of Directly Modulated Semiconductor Laser | |
| CN108183380A (en) | Integrated electro oscillator | |
| CN110535005A (en) | Light and small photoelectric oscillator and low phase noise microwave signal generation method based on the principle of electromagnetically induced transparency | |
| CN115967442A (en) | Brillouin optical fiber laser narrow-band adjustable dual-passband microwave photon filter | |
| CN106785812A (en) | Optical-electronic oscillator and adjusting method based on stimulated Brillouin scattering enlarge-effect | |
| CN107069389A (en) | A kind of wideband adjustable optical-electronic oscillator based on microlock | |
| CN113851919B (en) | Sweep frequency electric signal generation system | |
| CN117039611B (en) | Frequency multiplication terahertz photoelectric oscillator device and oscillation method thereof | |
| CN113794087A (en) | PT (potential Transformer) symmetry-based tunable photoelectric oscillator realized by combining high-Q resonator | |
| CN113839297A (en) | Photoelectric oscillator based on injection locking effect | |
| CN119051756A (en) | Microwave photon frequency conversion device and method based on self-oscillating optical frequency shift ring | |
| CN116667111B (en) | Frequency division oscillator based on light injection and oscillation method | |
| CN116435850A (en) | Photo-generated microwave device | |
| CN114976824B (en) | A broadband frequency-stabilized optoelectronic oscillator | |
| CN118156949A (en) | Phase domain mode-locked photogenerated microwave device and method | |
| CN106785811A (en) | A kind of mutual coupling optical-electronic oscillator | |
| CN115037379B (en) | Photon RF frequency doubling chip based on silicon-based micro-ring modulator and control method thereof | |
| CN117039587A (en) | Photo-generated microwave device and method | |
| CN107706707B (en) | Low Noise Optical Multi-Frequency Tunable Oscillator | |
| CN114499670B (en) | Microwave signal processing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |