[go: up one dir, main page]

CN116598892A - Semiconductor element with thyristor inhibition layer - Google Patents

Semiconductor element with thyristor inhibition layer Download PDF

Info

Publication number
CN116598892A
CN116598892A CN202310702523.XA CN202310702523A CN116598892A CN 116598892 A CN116598892 A CN 116598892A CN 202310702523 A CN202310702523 A CN 202310702523A CN 116598892 A CN116598892 A CN 116598892A
Authority
CN
China
Prior art keywords
thyristor
content
layer
suppression layer
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310702523.XA
Other languages
Chinese (zh)
Inventor
张江勇
王星河
李水清
蔡鑫
陈婉君
刘紫涵
胡志勇
张会康
请求不公布姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Geen Semiconductor Co ltd
Original Assignee
Anhui Geen Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Geen Semiconductor Co ltd filed Critical Anhui Geen Semiconductor Co ltd
Priority to CN202310702523.XA priority Critical patent/CN116598892A/en
Publication of CN116598892A publication Critical patent/CN116598892A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Thyristors (AREA)

Abstract

本发明提供了一种具有闸流体抑制层的半导体元件,涉及半导体光电器件技术领域,包括从下至上依次设置的衬底、第一n型半导体层、第二n型半导体层、闸流体抑制层、量子阱层和p型半导体层;所述闸流体抑制层由第一闸流体抑制层、第二闸流体抑制层和第三闸流体抑制层自下而上组成;通过插入闸流体抑制层,在闸流体抑制层中设计三层不同C含量浓度、C含量呈双台阶下降趋势以及Si掺杂浓度、H含量浓度和O含量浓度的半导体结构结合,抑制深能级缺陷中心,抑制PN相互交错产生结间电容,使闸流体的产生概率从1~5%比例下降至0,解决半导体发光元件使用过程中产生点亮不一致问题。

The invention provides a semiconductor element with a thyristor suppression layer, which relates to the technical field of semiconductor optoelectronic devices, including a substrate, a first n-type semiconductor layer, a second n-type semiconductor layer, and a thyristor suppression layer arranged in sequence from bottom to top , a quantum well layer and a p-type semiconductor layer; the thyristor suppression layer is composed of a first thyristor suppression layer, a second thyristor suppression layer and a third thyristor suppression layer from bottom to top; by inserting a thyristor suppression layer, In the thyristor suppression layer, three layers with different C content concentrations, C content showing a double-step downward trend, and a semiconductor structure combination of Si doping concentration, H content concentration and O content concentration are designed to suppress deep energy level defect centers and PN interlacing Interjunction capacitance is generated to reduce the generation probability of the thyristor from 1 to 5% to 0, and solve the problem of inconsistency in lighting during the use of the semiconductor light-emitting element.

Description

一种具有闸流体抑制层的半导体元件A kind of semiconductor element with thyristor suppression layer

技术领域technical field

本发明涉及半导体光电器件技术领域,具体而言,涉及一种具有闸流体抑制层的半导体元件。The invention relates to the technical field of semiconductor optoelectronic devices, in particular to a semiconductor element with a thyristor suppression layer.

背景技术Background technique

半导体元件特别是半导体发光元件具有可调范围广泛的波长范围,发光效率高,节能环保,可使用超过10万小时的长寿命、尺寸小、应用场景多、可设计性强等因素,已逐渐取代白炽灯和荧光灯,成长普通家庭照明的光源,并广泛应用新的场景,如户内高分辨率显示屏、户外显屏、Mini-LED、Micro-LED、手机电视背光、背光照明、路灯、汽车大灯、车日行灯、车内氛围灯、手电筒等应用领域。Semiconductor elements, especially semiconductor light-emitting elements, have a wide range of adjustable wavelengths, high luminous efficiency, energy saving and environmental protection, and can be used for more than 100,000 hours. Long life, small size, multiple application scenarios, and strong designability have gradually replaced Incandescent lamps and fluorescent lamps have grown into light sources for ordinary household lighting and are widely used in new scenarios, such as indoor high-resolution displays, outdoor displays, Mini-LEDs, Micro-LEDs, mobile phone TV backlights, backlighting, street lights, automobiles Headlights, daytime running lights, interior ambient lights, flashlights and other application fields.

传统氮化物半导体使用蓝宝石衬底生长,晶格失配和热失配大,导致较高的缺陷密度和极化效应,产生非辐射复合中心,降低半导体发光元件的发光效率;同时,传统氮化物半导体的空穴离化效率远低于电子离化效率,导致空穴浓度低于电子浓度2个数量级以上,过量的电子会从多量子阱溢出至第二导电型半导体产生非辐射复合,空穴离化效率低会导致第二导电型半导体的空穴难以有效注入多量子阱中,空穴注入多量子阱的效率低,导致多量子阱的发光效率低;氮化物半导体结构具有非中心对称性,沿c轴方向会产生较强的自发极化,叠加晶格失配的压电极化效应,形成本征极化场;该本征极化场沿(001)方向,使多量子阱层产生较强的量子限制Stark效应,引起能带倾斜和电子空穴波函数空间分离,降低电子空穴的辐射复合效率,进而影响半导体发光元件的发光效率。传统氮化物半导体发光元件的缺陷延伸至量子阱,产生深能级缺陷中心,出现PN相互交错产生结间电容形成闸流体,导致发光二极管在使用过程中,导通电压上升,而在二极管点亮之后,电压又出现下降的问题,导致正常与异常芯片的导通电压不一致,在使用过程中产生点亮不致的问题。Traditional nitride semiconductors are grown on sapphire substrates, and the lattice mismatch and thermal mismatch are large, resulting in high defect density and polarization effects, resulting in non-radiative recombination centers, and reducing the luminous efficiency of semiconductor light-emitting elements; at the same time, traditional nitride The hole ionization efficiency of the semiconductor is much lower than the electron ionization efficiency, resulting in the hole concentration being more than 2 orders of magnitude lower than the electron concentration. The low ionization efficiency will make it difficult for the holes of the second conductivity type semiconductor to be effectively injected into the multiple quantum wells, and the efficiency of hole injection into the multiple quantum wells is low, resulting in low luminous efficiency of the multiple quantum wells; the nitride semiconductor structure has non-centrosymmetry , strong spontaneous polarization will be generated along the c-axis direction, and the piezoelectric polarization effect of lattice mismatch will be superimposed to form an intrinsic polarization field; the intrinsic polarization field is along the (001) direction, making the multi-quantum well layer It produces a strong quantum confinement Stark effect, which causes the energy band tilt and the space separation of the electron-hole wave function, reduces the radiative recombination efficiency of the electron-hole, and then affects the luminous efficiency of the semiconductor light-emitting element. The defect of the traditional nitride semiconductor light-emitting element extends to the quantum well, resulting in a deep-level defect center, and the PN interlaces to generate interjunction capacitance to form a thyristor, which causes the conduction voltage of the light-emitting diode to rise during use, and the diode is lit. Afterwards, the voltage dropped again, resulting in inconsistencies in the conduction voltages of normal and abnormal chips, and the problem of inconsistency in lighting during use.

发明内容Contents of the invention

本发明的目的在于提供一种具有闸流体抑制层的半导体元件,解决了现有技术中存在的的问题。The object of the present invention is to provide a semiconductor element with a thyristor suppression layer, which solves the problems in the prior art.

一种具有闸流体抑制层的半导体元件,包括从下至上依次设置的衬底、第一n型半导体层、第二n型半导体层、闸流体抑制层、量子阱层和p型半导体层。A semiconductor element with a thyristor suppression layer comprises a substrate, a first n-type semiconductor layer, a second n-type semiconductor layer, a thyristor suppression layer, a quantum well layer and a p-type semiconductor layer arranged sequentially from bottom to top.

作为本发明优选的技术方案,所述闸流体抑制层由第一闸流体抑制层、第二闸流体抑制层和第三闸流体抑制层自下而上组成。As a preferred technical solution of the present invention, the thyristor suppression layer is composed of a first thyristor suppression layer, a second thyristor suppression layer and a third thyristor suppression layer from bottom to top.

作为本发明优选的技术方案,所述第二闸流体抑制层往第一闸流体抑制层的C含量呈双台阶下降趋势,包含第一C含量下降台阶和第二C含量下降台阶;所述第一C含量下降台阶角度为α:60°≥α≥15°,第二C含量下降台阶角度为β:90°≥β≥30°。As a preferred technical solution of the present invention, the C content from the second thyristor suppression layer to the first thyristor suppression layer has a double-step downward trend, including a first C content drop step and a second C content drop step; the first step The angle of the first C content descending step is α: 60°≥α≥15°, and the second C content descending step angle is β: 90°≥β≥30°.

作为本发明优选的技术方案,所述第二闸流体抑制层往第三闸流体抑制层的C含量呈双台阶下降趋势,包含第三C含量下降台阶和第四C含量下降台阶;所述第三C含量下降台阶角度为γ:80°≥γ≥20°,第四C含量下降台阶角度为θ:90°≥θ≥30°。As a preferred technical solution of the present invention, the C content from the second thyristor suppression layer to the third thyristor suppression layer presents a double-step downward trend, including a third C content descending step and a fourth C content descending step; the first The third C content descending step angle is γ: 80°≥γ≥20°, and the fourth C content descending step angle is θ: 90°≥θ≥30°.

作为本发明优选的技术方案,所述第二C含量下降台阶角度β≥第四C含量下降台阶角度θ≥第三C含量下降台阶角度γ≥第一C含量下降台阶角度α。As a preferred technical solution of the present invention, the second C content decreasing step angle β≥the fourth C content decreasing step angle θ≥the third C content decreasing step angle γ≥the first C content decreasing step angle α.

作为本发明优选的技术方案,所述第二闸流体抑制层的C含量浓度保持恒定,C含量浓度为1E17~5E18cm-3;所述第二闸流体抑制层的Si掺杂浓度保持恒定为5E17~5E18cm-3,所述第一闸流体抑制层的Si掺杂浓度呈山峰状,峰值Si掺浓度为1E18~2E19cm-3,所述第三闸流体抑制层的Si掺杂浓度呈山峰状,峰值Si掺浓度为8E17~5E18cm-3;所述第一闸流体抑制层、第二闸流体抑制层和第三闸流体抑制层的Si掺杂浓度大于C含量浓度。As a preferred technical solution of the present invention, the C content concentration of the second thyristor suppression layer is kept constant, and the C content concentration is 1E17-5E18 cm -3 ; the Si doping concentration of the second thyristor suppression layer is kept constant at 5E17 ~5E18cm -3 , the Si doping concentration of the first thyristor suppression layer is peak-shaped, the peak Si doping concentration is 1E18-2E19cm -3 , the Si doping concentration of the third thyristor suppression layer is peak-shaped, The peak Si doping concentration is 8E17˜5E18 cm −3 ; the Si doping concentration of the first thyristor suppression layer, the second thyristor suppression layer and the third thyristor suppression layer is greater than the C content concentration.

进一步地,所述第二闸流体抑制层往第一闸流体抑制层的C含量呈双台阶下降趋势,包含第一C含量下降台阶和第二C含量下降台阶,第一C含量下降台阶的C含量浓度从5E17~5E18cm-3下降1E17~5E17cm-3,第二C含量下降台阶的C含量浓度从1E17~5E17cm-3下降至1E16~1E17cm-3;所述第二闸流体抑制层往第三闸流体抑制层的C含量呈双台阶下降趋势,包含第三C含量下降台阶和第四C含量下降台阶,第三C含量下降台阶的C含量浓度从5E17~5E18cm-3下降1E17~5E17cm-3,第四C含量下降台阶的C含量浓度从1E17~5E17cm-3下降至1E16~1E17cm-3Further, the C content from the second thyristor suppression layer to the first thyristor suppression layer shows a double-step downward trend, including the first C content drop step and the second C content drop step, and the C content of the first C content drop step The content concentration drops from 5E17 to 5E18cm -3 by 1E17 to 5E17cm -3 , and the C content concentration of the second C content descending step decreases from 1E17 to 5E17cm -3 to 1E16 to 1E17cm -3 ; the second thyristor suppression layer goes to the third The C content of the thyristor suppression layer shows a double-step downward trend, including the third C content descending step and the fourth C content descending step, and the C content concentration of the third C content descending step decreases from 5E17~5E18cm -3 by 1E17~5E17cm -3 , the C content concentration of the fourth C content descending step decreases from 1E17 to 5E17 cm -3 to 1E16 to 1E17 cm -3 .

作为本发明优选的技术方案,所述第一闸流体抑制层、第二闸流体抑制层和第三闸流体抑制层的H含量保持恒定,H含量浓度为1E17~1E18cm-3,所述第一闸流体抑制层103a、第二闸流体抑制层和第三闸流体抑制层103c的O含量保持恒定,O含量浓度为1E16~17E17cm-3As a preferred technical solution of the present invention, the H content of the first thyristor suppression layer, the second thyristor suppression layer and the third thyristor suppression layer is kept constant, and the H content concentration is 1E17-1E18 cm -3 , and the first The O content of the thyristor suppression layer 103 a , the second thyristor suppression layer and the third thyristor suppression layer 103 c is kept constant, and the O content concentration is 1E16˜17E17 cm −3 .

作为本发明优选的技术方案,第一n型半导体层、第二n型半导体层、闸流体抑制层、量子阱层、和p型半导体层为GaN、AlGaN、InGaN、AlInGaN、AlN、InN、AlInN的任意一种或任意组合。As a preferred technical solution of the present invention, the first n-type semiconductor layer, the second n-type semiconductor layer, the thyristor suppression layer, the quantum well layer, and the p-type semiconductor layer are GaN, AlGaN, InGaN, AlInGaN, AlN, InN, AlInN any one or any combination of .

作为本发明优选的技术方案,所述量子阱层为由阱层和垒层组成的周期结构,所述量子阱层的周期数为x:5≤x≤20,所述量子阱层的阱层厚度为a:20埃米≤a≤60埃米,所述量子阱层104的垒层厚度b:20埃米≤b≤150埃米。As a preferred technical solution of the present invention, the quantum well layer is a periodic structure composed of well layers and barrier layers, the period number of the quantum well layer is x: 5≤x≤20, and the well layer of the quantum well layer Thickness a: 20 Å≤a≤60 Å, and thickness b of the barrier layer of the quantum well layer 104: 20 Å≤b≤150 Å.

与现有技术相比,本发明的有益效果:Compared with prior art, the beneficial effect of the present invention:

在本发明的方案中:In the scheme of the present invention:

相比于现有技术,本发明通过设计闸流体抑制层,在闸流体抑制层中设计三层不同C含量浓度、C含量呈双台阶下降趋势以及Si掺杂浓度、H含量浓度和O含量浓度的半导体结构结合,抑制深能级缺陷中心,抑制PN相互交错产生结间电容,使闸流体的产生概率从1~5%比例下降至0,解决半导体发光元件使用过程中产生点亮不一致问题。Compared with the prior art, the present invention designs three layers of different C content concentrations in the thyristor suppression layer, the C content shows a double-step downward trend, and the Si doping concentration, H content concentration, and O content concentration are designed in the thyristor suppression layer. Combining with advanced semiconductor structure, suppressing deep level defect centers, suppressing PN interlacing to generate interjunction capacitance, reducing the generation probability of thyristor from 1 to 5% to 0, and solving the problem of inconsistency in lighting during the use of semiconductor light-emitting elements.

附图说明Description of drawings

图1为本发明中具有闸流体抑制层的半导体元件的结构示意图;Fig. 1 is a schematic structural view of a semiconductor element with a thyristor suppression layer in the present invention;

图2为本发明中具有闸流体抑制层的半导体元件的SIMS二次离子质谱图;Fig. 2 is the SIMS secondary ion mass spectrogram of the semiconductor element with thyristor suppression layer in the present invention;

图3为图2的局部放大图。FIG. 3 is a partially enlarged view of FIG. 2 .

附图标记:Reference signs:

100、衬底,101、第一n型半导体层,102、第二n型半导体层,103、闸流体抑制层,103a:第一闸流体抑制层,103b:第二闸流体抑制层,103c:第三闸流体抑制层,104、量子阱层,105、p型半导体层。100. Substrate, 101, first n-type semiconductor layer, 102, second n-type semiconductor layer, 103, thyristor suppression layer, 103a: first thyristor suppression layer, 103b: second thyristor suppression layer, 103c: The third thyristor suppression layer, 104, the quantum well layer, 105, the p-type semiconductor layer.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some, not all, embodiments of the present invention.

因此,以下对本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的部分实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Therefore, the following detailed description of the embodiments of the present invention is not intended to limit the scope of the claimed invention, but merely represents some embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征和技术方案可以相互组合。It should be noted that, in the case of no conflict, the embodiments of the present invention and the features and technical solutions in the embodiments can be combined with each other.

请参阅图1,本实施例提供一种技术方案:一种具有闸流体抑制层的半导体元件,包括从下至上依次设置的衬底100、第一n型半导体层101、第二n型半导体层102、闸流体抑制层103、量子阱层104和p型半导体层105。Please refer to FIG. 1, this embodiment provides a technical solution: a semiconductor element with a thyristor suppression layer, including a substrate 100, a first n-type semiconductor layer 101, a second n-type semiconductor layer arranged in sequence from bottom to top 102 , a thyristor suppression layer 103 , a quantum well layer 104 and a p-type semiconductor layer 105 .

进一步地,所述闸流体抑制层103由第一闸流体抑制层103a、第二闸流体抑制层103b和第三闸流体抑制层103c自下而上组成。Further, the thyristor suppression layer 103 is composed of a first thyristor suppression layer 103a, a second thyristor suppression layer 103b and a third thyristor suppression layer 103c from bottom to top.

进一步地,所述第二闸流体抑制层103b往第一闸流体抑制层103a的C含量呈双台阶下降趋势,包含第一C含量下降台阶和第二C含量下降台阶;所述第一C含量下降台阶角度为α:60°≥α≥15°,第二C含量下降台阶角度为β:90°≥β≥30°。Further, the C content from the second thyristor suppression layer 103b to the first thyristor suppression layer 103a presents a double-step downward trend, including a first C content drop step and a second C content drop step; the first C content The descending step angle is α: 60°≥α≥15°, and the descending step angle of the second C content is β: 90°≥β≥30°.

进一步地,所述第二闸流体抑制层103b往第三闸流体抑制层103c的C含量呈双台阶下降趋势,包含第三C含量下降台阶和第四C含量下降台阶;所述第三C含量下降台阶角度为γ:80°≥γ≥20°,第四C含量下降台阶角度为θ:90°≥θ≥30°。Further, the C content from the second thyristor suppression layer 103b to the third thyristor suppression layer 103c presents a double-step downward trend, including a third C content descending step and a fourth C content descending step; the third C content The descending step angle is γ: 80°≥γ≥20°, and the fourth C content descending step angle is θ: 90°≥θ≥30°.

进一步地,所述第二C含量下降台阶角度β≥第四C含量下降台阶角度θ≥第三C含量下降台阶角度γ≥第一C含量下降台阶角度α。Further, the second C content decreasing step angle β≥the fourth C content decreasing step angle θ≥the third C content decreasing step angle γ≥the first C content decreasing step angle α.

进一步地,如图2-图3所示,所述第二闸流体抑制层103b的C含量浓度保持恒定,C含量浓度为1E17~5E18cm-3;所述第二闸流体抑制层103b的Si掺杂浓度保持恒定为5E17~5E18cm-3,所述第一闸流体抑制层103a的Si掺杂浓度呈山峰状,峰值Si掺浓度为1E18~2E19cm-3,所述第三闸流体抑制层103c的Si掺杂浓度呈山峰状,峰值Si掺浓度为8E17~5E18cm-3;所述第一闸流体抑制层103a、第二闸流体抑制层103b和第三闸流体抑制层103c的Si掺杂浓度大于C含量浓度。Further, as shown in FIGS. 2-3 , the C content concentration of the second thyristor suppression layer 103b is kept constant, and the C content concentration is 1E17-5E18cm -3 ; the Si-doped The dopant concentration is kept constant at 5E17~5E18cm -3 , the Si doping concentration of the first thyristor suppression layer 103a is peak-shaped, and the peak Si doping concentration is 1E18~2E19cm -3 , the Si doping concentration of the third thyristor suppression layer 103c The Si doping concentration is peak-shaped, and the peak Si doping concentration is 8E17-5E18cm -3 ; the Si doping concentration of the first thyristor suppression layer 103a, the second thyristor suppression layer 103b and the third thyristor suppression layer 103c is greater than C content concentration.

进一步地,所述第二闸流体抑制层103b往第一闸流体抑制层103a的C含量呈双台阶下降趋势,包含第一C含量下降台阶和第二C含量下降台阶,第一C含量下降台阶的C含量浓度从5E17~5E18cm-3下降1E17~5E17cm-3,第二C含量下降台阶的C含量浓度从1E17~5E17cm-3下降至1E16~1E17cm-3;所述第二闸流体抑制层103b往第三闸流体抑制层103c的C含量呈双台阶下降趋势,包含第三C含量下降台阶和第四C含量下降台阶,第三C含量下降台阶的C含量浓度从5E17~5E18cm-3下降1E17~5E17cm-3,第四C含量下降台阶的C含量浓度从1E17~5E17cm-3下降至1E16~1E17cm-3Further, the C content from the second thyristor suppression layer 103b to the first thyristor suppression layer 103a shows a double-step downward trend, including a first C content drop step and a second C content drop step, and the first C content drop step The C content concentration of the C content drops from 5E17 to 5E18 cm -3 by 1E17 to 5E17 cm -3 , and the C content concentration of the second C content descending step drops from 1E17 to 5E17 cm -3 to 1E16 to 1E17 cm -3 ; the second thyristor suppression layer 103b The C content to the third thyristor suppression layer 103c shows a double-step downward trend, including the third C content descending step and the fourth C content descending step, and the C content concentration of the third C content descending step drops from 5E17 to 5E18cm -3 by 1E17 ~5E17cm -3 , the C content concentration of the fourth C content descending step decreases from 1E17~5E17cm -3 to 1E16~1E17cm -3 .

进一步地,所述第一闸流体抑制层103a、第二闸流体抑制层103b和第三闸流体抑制层103c的H含量保持恒定,H含量浓度为1E17~1E18cm-3,所述第一闸流体抑制层103a、第二闸流体抑制层103b和第三闸流体抑制层103c的O含量保持恒定,O含量浓度为1E16~17E17cm-3Further, the H content of the first thyristor suppression layer 103a, the second thyristor suppression layer 103b and the third thyristor suppression layer 103c is kept constant, and the concentration of H content is 1E17-1E18cm -3 , the first thyristor The O content of the suppression layer 103a, the second thyristor suppression layer 103b and the third thyristor suppression layer 103c is kept constant, and the O content concentration is 1E16˜17E17 cm −3 .

在闸流体抑制层中设计三层不同C含量浓度、C含量呈双台阶下降趋势以及Si掺杂浓度、H含量浓度和O含量浓度的半导体结构结合,抑制深能级缺陷中心,抑制PN相互交错产生结间电容,使闸流体的产生概率从1~5%比例下降至0,解决半导体发光元件使用过程中产生点亮不一致问题。In the thyristor suppression layer, three layers with different C content concentrations, C content showing a double-step downward trend, and a semiconductor structure combination of Si doping concentration, H content concentration and O content concentration are designed to suppress deep energy level defect centers and PN interlacing Interjunction capacitance is generated to reduce the generation probability of the thyristor from 1 to 5% to 0, and solve the problem of inconsistency in lighting during the use of the semiconductor light-emitting element.

进一步地,第一n型半导体层101、第二n型半导体层102、闸流体抑制层103、量子阱层104、和p型半导体层105为GaN、AlGaN、InGaN、AlInGaN、AlN、InN、AlInN的任意一种或任意组合。Further, the first n-type semiconductor layer 101, the second n-type semiconductor layer 102, the thyristor suppression layer 103, the quantum well layer 104, and the p-type semiconductor layer 105 are GaN, AlGaN, InGaN, AlInGaN, AlN, InN, AlInN any one or any combination of .

进一步地,所述量子阱层104为由阱层和垒层组成的周期结构,所述量子阱层104的周期数为x:5≤x≤20,所述量子阱层104的阱层厚度为a:20埃米≤a≤60埃米,所述量子阱层104的垒层厚度b:20埃米≤b≤150埃米。Further, the quantum well layer 104 is a periodic structure composed of well layers and barrier layers, the number of periods of the quantum well layer 104 is x: 5≤x≤20, and the well layer thickness of the quantum well layer 104 is a: 20 angstroms≤a≤60 angstroms, and the barrier layer thickness b of the quantum well layer 104: 20 angstroms≤b≤150 angstroms.

采用实施例中的技术方案进行绿光激光器实验,实验结果相对于传统半导体元件的数据对比如下The technical scheme in the embodiment is adopted to carry out the green laser experiment, and the experimental results are compared as follows with respect to the data of traditional semiconductor components : ;

半导体元件semiconductor element 传统半导体元件Traditional Semiconductor Components 本发明半导体元件Semiconductor element of the present invention 变化幅度Range of change 闸流体产生率Thyramid production rate 4.84.8 0%0% -100%-100% 白光光电转换效率(lm/W)White light photoelectric conversion efficiency (lm/W) 180180 260260 44%44%

相比于现有技术,本发明通过设计闸流体抑制层,在闸流体抑制层中设计三层不同C含量浓度、C含量呈双台阶下降趋势以及Si掺杂浓度、H含量浓度和O含量浓度的半导体结构结合,抑制深能级缺陷中心,抑制PN相互交错产生结间电容,使闸流体的产生概率从1~5%比例下降至0,解决半导体发光元件使用过程中产生点亮不一致问题。Compared with the prior art, the present invention designs three layers of different C content concentrations in the thyristor suppression layer, the C content shows a double-step downward trend, and the Si doping concentration, H content concentration, and O content concentration are designed in the thyristor suppression layer. Combining with advanced semiconductor structure, suppressing deep level defect centers, suppressing PN interlacing to generate interjunction capacitance, reducing the generation probability of thyristor from 1 to 5% to 0, and solving the problem of inconsistency in lighting during the use of semiconductor light-emitting elements.

以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但本发明不局限于上述具体实施方式,因此任何对本发明进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均涵盖在本发明的权利要求范围当中。The above embodiments are only used to illustrate the present invention and are not intended to limit the technical solutions described in the present invention. Although the specification has described the present invention in detail with reference to the above-mentioned embodiments, the present invention is not limited to the above-mentioned specific implementation methods, so Any modifications or equivalent replacements to the present invention; and all technical solutions and improvements that do not depart from the spirit and scope of the invention are covered by the scope of the claims of the present invention.

Claims (10)

1. A semiconductor device having a thyristor suppression layer is characterized by comprising a substrate (100), a first n-type semiconductor layer (101), a second n-type semiconductor layer (102), a thyristor suppression layer (103), a quantum well layer (104) and a p-type semiconductor layer (105) which are arranged in this order from bottom to top.
2. The semiconductor element with a thyristor inhibiting layer according to claim 1, wherein the thyristor inhibiting layer (103) is composed of a first thyristor inhibiting layer (103 a), a second thyristor inhibiting layer (103 b) and a third thyristor inhibiting layer (103 c) from bottom to top.
3. The semiconductor element with a thyristor inhibiting layer according to claim 2, wherein the second thyristor inhibiting layer (103 b) has a double-step decreasing trend of C content toward the first thyristor inhibiting layer (103 a), comprising a first C content decreasing step and a second C content decreasing step; the first C content decreasing step angle is alpha: the angle of the second C content decreasing step is more than or equal to 60 degrees and more than or equal to 15 degrees, and the angle of the second C content decreasing step is beta: the angle beta is more than or equal to 90 degrees and more than or equal to 30 degrees.
4. The semiconductor element with a thyristor inhibiting layer according to claim 2, wherein the second thyristor inhibiting layer (103 b) has a double-step downward trend of C content toward the third thyristor inhibiting layer (103C), including a third C content downward step and a fourth C content downward step; the third C content decreasing step angle is gamma: the angle of the fourth C content descending step is more than or equal to 80 degrees, the gamma is more than or equal to 20 degrees, and the angle of the fourth C content descending step is theta: the angle theta is more than or equal to 90 degrees and more than or equal to 30 degrees.
5. The semiconductor element with a thyristor inhibiting layer according to claim 4, wherein the second C-content step angle β is greater than or equal to the fourth C-content step angle θ is greater than or equal to the third C-content step angle γ is greater than or equal to the first C-content step angle α.
6. The semiconductor device with a thyristor inhibiting layer according to claim 5, wherein the second thyristor inhibiting layer (103 b) has a constant C content concentration of 1E 17-5E 18cm -3 The method comprises the steps of carrying out a first treatment on the surface of the The Si doping concentration of the second thyristor suppression layer (103 b) is kept constant at 5E 17-5E 18cm -3 The Si doping concentration of the first thyristor suppression layer (103 a) is in a mountain shape, and the peak Si doping concentration is 1E 18-2E 19cm -3 The third thyristor inhibiting layer (103 c) has a peak Si doping concentration of 8E 17-5E 18cm -3 The method comprises the steps of carrying out a first treatment on the surface of the The first thyristor suppression layer (103 a), the second thyristor suppression layer (103 b), and the third thyristor suppression layer (103C) have Si doping concentrations greater than the C content concentration.
7. The semiconductor device with a thyristor inhibiting layer according to claim 6, wherein the second thyristor inhibiting layer (103 b) has a two-step decreasing trend of the C content toward the first thyristor inhibiting layer (103 a), comprising a first C contentA step of decreasing the C content and a step of decreasing the second C content, wherein the C content concentration of the step of decreasing the first C content is from 5E17 to 5E18cm -3 Drop by 1E 17-5E 17cm -3 The concentration of C content of the second C content reduction step is from 1E17cm to 5E17cm -3 Lowering to 1E 16-1E 17cm -3 The method comprises the steps of carrying out a first treatment on the surface of the The C content of the second thyristor inhibiting layer (103 b) towards the third thyristor inhibiting layer (103C) is in a double-step descending trend, and comprises a third C content descending step and a fourth C content descending step, wherein the C content concentration of the third C content descending step is from 5E17cm to 5E18cm -3 Drop by 1E 17-5E 17cm -3 C content concentration of the fourth C content reduction step is from 1E17cm to 5E17cm -3 Lowering to 1E 16-1E 17cm -3
8. The semiconductor element with a thyristor inhibiting layer according to claim 2, wherein the first thyristor inhibiting layer (103 a), the second thyristor inhibiting layer (103 b) and the third thyristor inhibiting layer (103 c) have a constant H content and a H content concentration of 1E17 to 1E18cm -3 The first thyristor suppression layer (103 a), the second thyristor suppression layer (103 b) and the third thyristor suppression layer (103 c) have a constant O content of 1E 16-17E 17cm -3
9. The semiconductor element with a thyristor inhibiting layer according to claim 1, wherein the first n-type semiconductor layer (101), the second n-type semiconductor layer (102), the thyristor inhibiting layer (103), the quantum well layer (104), and the p-type semiconductor layer (105) are any one or any combination of GaN, alGaN, inGaN, alInGaN, alN, inN, alInN.
10. The semiconductor element with a thyristor inhibiting layer according to claim 1, wherein the quantum well layer (104) is a periodic structure composed of a well layer and a barrier layer, and the number of cycles of the quantum well layer (104) is x: x is more than or equal to 5 and less than or equal to 20, and the thickness of the well layer of the quantum well layer (104) is a:20 a.ltoreq.60 a.ltoreq.m, the barrier layer thickness b of the quantum well layer (104): b is more than or equal to 20 and less than or equal to 150.
CN202310702523.XA 2023-06-14 2023-06-14 Semiconductor element with thyristor inhibition layer Pending CN116598892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310702523.XA CN116598892A (en) 2023-06-14 2023-06-14 Semiconductor element with thyristor inhibition layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310702523.XA CN116598892A (en) 2023-06-14 2023-06-14 Semiconductor element with thyristor inhibition layer

Publications (1)

Publication Number Publication Date
CN116598892A true CN116598892A (en) 2023-08-15

Family

ID=87606362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310702523.XA Pending CN116598892A (en) 2023-06-14 2023-06-14 Semiconductor element with thyristor inhibition layer

Country Status (1)

Country Link
CN (1) CN116598892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025010614A1 (en) * 2023-07-11 2025-01-16 泉州三安半导体科技有限公司 Semiconductor laser element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129964A (en) * 1995-10-30 1997-05-16 Fujitsu Ltd Optical semiconductor device
US5636237A (en) * 1995-01-31 1997-06-03 Nec Corporation Semiconductor laser device which makes it possible to realize high-speed modulation
JP2002026449A (en) * 2000-07-06 2002-01-25 Oki Electric Ind Co Ltd Semiconductor laser with spot size converter and semiconductor laser array device
US20070257275A1 (en) * 2000-04-24 2007-11-08 Taylor Geoff W Imaging Method Utilizing Thyristor-Based Pixel Elements
CN101114688A (en) * 2003-02-07 2008-01-30 三洋电机株式会社 Semiconductor device and method of fabricating the same
CN101855798A (en) * 2007-11-08 2010-10-06 日亚化学工业株式会社 Semiconductor laser element
TW201603239A (en) * 2014-05-27 2016-01-16 歐普光電有限責任公司 Power semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636237A (en) * 1995-01-31 1997-06-03 Nec Corporation Semiconductor laser device which makes it possible to realize high-speed modulation
JPH09129964A (en) * 1995-10-30 1997-05-16 Fujitsu Ltd Optical semiconductor device
US20070257275A1 (en) * 2000-04-24 2007-11-08 Taylor Geoff W Imaging Method Utilizing Thyristor-Based Pixel Elements
JP2002026449A (en) * 2000-07-06 2002-01-25 Oki Electric Ind Co Ltd Semiconductor laser with spot size converter and semiconductor laser array device
CN101114688A (en) * 2003-02-07 2008-01-30 三洋电机株式会社 Semiconductor device and method of fabricating the same
CN101855798A (en) * 2007-11-08 2010-10-06 日亚化学工业株式会社 Semiconductor laser element
TW201603239A (en) * 2014-05-27 2016-01-16 歐普光電有限責任公司 Power semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025010614A1 (en) * 2023-07-11 2025-01-16 泉州三安半导体科技有限公司 Semiconductor laser element

Similar Documents

Publication Publication Date Title
CN103996769B (en) LED epitaxial layer structures, growing method and the LED chip with the structure
CN106571416B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN114843384B (en) An epitaxial structure of a light emitting diode and a method for preparing the same
CN104465898B (en) Growing method of light-emitting diode epitaxial wafer and light emitting diode epitaxial wafer
CN108091740A (en) Light emitting diode epitaxial wafer and manufacturing method thereof
CN114497304B (en) A semiconductor component
CN116190510A (en) Semiconductor light-emitting diode
CN116230819A (en) Semiconductor light-emitting diode
CN108470805B (en) A kind of LED epitaxial slice and its manufacturing method
CN116598892A (en) Semiconductor element with thyristor inhibition layer
CN105161591B (en) A kind of GaN base epitaxial structure for reducing voltage and its growing method
CN108281519B (en) A light-emitting diode epitaxial wafer and its manufacturing method
CN104900778A (en) Growing method of epitaxial wafer of light emitting diode and epitaxial wafer
CN219371055U (en) Semiconductor light-emitting diode
CN103985799B (en) Light-emitting diode and manufacturing method thereof
CN218647963U (en) Epitaxial structure of light emitting diode and light emitting diode
CN114420811B (en) A semiconductor light emitting element
CN117637939A (en) A kind of semiconductor light-emitting element of Mini-Micro LED
CN114141918B (en) Epitaxial structure and preparation method of light-emitting diode suitable for working under high current conditions
CN115692565A (en) Light emitting diode and method for manufacturing the same
CN105118904B (en) LED epitaxial layer structures growing method and gained epitaxial layer structure and LED chip
CN221282142U (en) Semiconductor ultraviolet light-emitting diode
US9741898B2 (en) Semiconductor light emitting device
CN218182240U (en) A high power LED
CN219917198U (en) Semiconductor light-emitting diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination