CN116660302B - Detection method and related device for gamma' -phase of nickel-based single crystal superalloy - Google Patents
Detection method and related device for gamma' -phase of nickel-based single crystal superalloy Download PDFInfo
- Publication number
- CN116660302B CN116660302B CN202310931566.5A CN202310931566A CN116660302B CN 116660302 B CN116660302 B CN 116660302B CN 202310931566 A CN202310931566 A CN 202310931566A CN 116660302 B CN116660302 B CN 116660302B
- Authority
- CN
- China
- Prior art keywords
- nickel
- single crystal
- percentage
- crystal superalloy
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2202—Preparing specimens therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/227—Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/698—Matching; Classification
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/20—Identification of molecular entities, parts thereof or of chemical compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- Multimedia (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明公开了一种镍基单晶高温合金γ′相的检测方法及相关装置,包括:设置镍基单晶高温合金样品中待检测区域的放大倍数;获取镍基单晶高温合金样品中铬元素和铝元素的原始数据;基于原始数据确定铬元素的峰值位置百分比和铝元素的峰值位置百分比;若镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,预设识别条件包括:当前像素点的百分比小于铬元素的峰值位置百分比大于铝元素的峰值位置百分比;基于该数量,确定镍基单晶高温合金样品中γ′相的含量。上述过程,可以同时对待检测区域的γ′相进行组成元素成分分析,并统计该区域γ′相的含量分数。
The invention discloses a method for detecting the γ' phase of nickel-based single crystal high-temperature alloy and related devices, which include: setting the magnification of the area to be detected in the nickel-based single crystal high-temperature alloy sample; obtaining the chromium in the nickel-based single crystal high-temperature alloy sample Original data of elements and aluminum elements; determine the peak position percentage of chromium element and the peak position percentage of aluminum element based on the original data; if the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions, it will be identified as γ′ phase , count the number of γ' phases in the nickel-based single crystal superalloy sample that meet the preset identification conditions, where the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element; based on This quantity determines the content of γ′ phase in the nickel-based single crystal superalloy sample. In the above process, the component elements of the γ' phase in the area to be detected can be analyzed at the same time, and the content fraction of the γ' phase in the area can be calculated.
Description
技术领域Technical field
本发明涉及数据处理技术领域,尤其涉及一种镍基单晶高温合金γ′相的检测方法及相关装置。The invention relates to the field of data processing technology, and in particular to a detection method and related devices for the γ′ phase of nickel-based single crystal high-temperature alloy.
背景技术Background technique
镍基单晶高温合金具有优异的高温强度、抗疲劳性能和断裂韧性以及良好的抗氧化和抗热腐蚀性能,单晶的组织结构弥补了传统的铸锻高温合金偏析严重、热加工性能差等不足,是航空发动机涡轮叶片的首选材料。单晶高温合金优异的力学性能主要来自基体中γ′强化相的析出,该相的体积分数、分布、尺寸、形貌是影响镍基单晶高温合金力学性能的重要因素。对镍基单晶高温合金显微组织中γ′相进行表征与评估是该合金微观检测的必要环节。Nickel-based single crystal superalloys have excellent high-temperature strength, fatigue resistance, fracture toughness, and good resistance to oxidation and hot corrosion. The single-crystal structure makes up for the serious segregation and poor hot processing performance of traditional cast and forged superalloys. It is the preferred material for aircraft engine turbine blades. The excellent mechanical properties of single crystal superalloys mainly come from the precipitation of the γ′ strengthening phase in the matrix. The volume fraction, distribution, size, and morphology of this phase are important factors affecting the mechanical properties of nickel-based single crystal superalloys. The characterization and evaluation of the γ′ phase in the microstructure of nickel-based single crystal superalloys is a necessary step in the microscopic examination of this alloy.
现存的镍基单晶高温合金γ′相检测方法,多采用光学显微镜或者电子显微镜通过金相分析进行γ′相检测,或者将γ′相通过化学萃取将其与基体分离进行检测,上述过程中,基于光学显微镜或者电子显微镜通过金相分析进行γ′相检测或者将γ′相通过化学萃取将其与基体分离进行检测,只能区分出镍基单晶高温合金中的γ′相,进一步,将γ′相通过化学萃取将其与基体分离进行检测会对镍基单晶高温合金造成破坏,因此,需要提供一种方法,在扫描电镜微区观察的同时对分析区域的γ′相进行组成元素成分分析,又可以统计该区域γ′相的含量分数,同时不对镍基单晶高温合金造成破坏。The existing γ′ phase detection methods of nickel-based single crystal superalloys mostly use optical microscopes or electron microscopes to detect the γ′ phase through metallographic analysis, or the γ′ phase is separated from the matrix through chemical extraction for detection. In the above process , based on optical microscopy or electron microscopy through metallographic analysis to detect the γ′ phase or to separate the γ′ phase from the matrix for detection through chemical extraction, only the γ′ phase in the nickel-based single crystal superalloy can be distinguished. Further, Separating the γ' phase from the matrix through chemical extraction for detection will cause damage to the nickel-based single crystal superalloy. Therefore, it is necessary to provide a method to determine the composition of the γ' phase in the analysis area while observing the micro-area with a scanning electron microscope. Elemental composition analysis can also count the content fraction of γ' phase in this area without causing damage to the nickel-based single crystal superalloy.
发明内容Contents of the invention
有鉴于此,本发明提供了一种镍基单晶高温合金γ′相的检测方法及相关装置,用以实现在扫描电镜微区观察的同时对分析区域的γ′相进行组成元素成分分析,又可以统计该区域γ′相的含量分数,同时不对镍基单晶高温合金造成破坏。具体方案如下:In view of this, the present invention provides a method for detecting the γ' phase of nickel-based single crystal superalloy and related devices, which are used to analyze the constituent elements of the γ' phase in the analysis area while observing the micro-area with a scanning electron microscope. It can also count the content fraction of γ' phase in this area without causing damage to the nickel-based single crystal superalloy. The specific plans are as follows:
一种镍基单晶高温合金γ′相的检测方法,包括:A method for detecting the γ' phase of nickel-based single crystal superalloy, including:
设置镍基单晶高温合金样品中待检测区域的放大倍数;Set the magnification of the area to be detected in the nickel-based single crystal superalloy sample;
设置完成后,在所述放大倍数下获取所述镍基单晶高温合金样品中预设元素的原始数据,并将所述原始数据保存为预设格式,其中,所述预设元素包括:铬元素和铝元素;After the setting is completed, obtain the original data of the preset elements in the nickel-based single crystal superalloy sample under the magnification, and save the original data in a preset format, where the preset elements include: chromium. elements and aluminum elements;
基于所述原始数据确定所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比;Determine the peak position percentage of the chromium element and the peak position percentage of the aluminum element based on the raw data;
若所述镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计所述镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,所述预设识别条件包括:所述当前像素点的百分比小于所述铬元素的峰值位置百分比大于所述铝元素的峰值位置百分比;If the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions, it is identified as a γ′ phase, and the number of γ′ phases in the nickel-based single crystal superalloy sample that meets the preset identification conditions is counted, where , the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element;
基于所述数量,确定所述镍基单晶高温合金样品中γ′相的含量。Based on the quantity, the content of the γ' phase in the nickel-based single crystal superalloy sample was determined.
上述的方法,可选的,在所述放大倍数下获取所述镍基单晶高温合金样品中预设元素的原始数据,并将所述原始数据保存为预设格式,包括:The above method, optionally, obtains the raw data of the preset elements in the nickel-based single crystal superalloy sample under the magnification, and saves the raw data in a preset format, including:
获取所述待检测区域在扫描电镜与X射线能谱仪条件下包含所述预设元素的百分比面分布图;Obtain the percentage surface distribution map of the preset element contained in the area to be detected under scanning electron microscope and X-ray energy spectrometer conditions;
获取所述百分比面分布图中的原始数据;Obtain the original data in the percentage surface distribution chart;
将所述原始数据存储为csv或者tsv文件格式。Store the raw data in csv or tsv file format.
上述的方法,可选的,基于所述原始数据确定所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比,包括:The above method, optionally, determines the peak position percentage of the chromium element and the peak position percentage of the aluminum element based on the original data, including:
读取所述原始数据,基于所述原始数据绘制所述预设元素的面分布频数直方图;Read the original data, and draw a surface distribution frequency histogram of the preset element based on the original data;
读取所述面分布频数直方图中所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比。Read the peak position percentage of the chromium element and the peak position percentage of the aluminum element in the surface distribution frequency histogram.
上述的方法,可选的,基于所述原始数据绘制所述预设元素的面分布频数直方图,包括:For the above method, optionally, drawing a surface distribution frequency histogram of the preset element based on the original data includes:
将所述原始数据转换为数组;Convert the raw data into an array;
基于所述数组绘制所述预设元素的面分布频数直方图。Draw a surface distribution frequency histogram of the preset element based on the array.
上述的方法,可选的,基于所述数量,确定所述镍基单晶高温合金样品中γ′相的含量,包括:The above method, optionally, based on the quantity, determines the content of the γ' phase in the nickel-based single crystal superalloy sample, including:
获取所述百分比面分布图中横坐标数量和纵坐标数量;Obtain the number of abscissas and ordinates in the percentage surface distribution chart;
基于所述横坐标数量和所述纵坐标数量,计算总像素量;Based on the number of abscissas and the number of ordinates, calculate the total pixel amount;
基于所述数量与所述总像素量的比值确定所述镍基单晶高温合金样品中γ′相的含量。The content of the γ' phase in the nickel-based single crystal superalloy sample is determined based on the ratio of the number to the total pixel amount.
一种镍基单晶高温合金γ′相的检测装置,包括:A detection device for the γ′ phase of nickel-based single crystal superalloy, including:
设置模块,用于设置镍基单晶高温合金样品中待检测区域的放大倍数;Setting module, used to set the magnification of the area to be detected in the nickel-based single crystal superalloy sample;
获取模块,用于设置完成后,在所述放大倍数下获取所述镍基单晶高温合金样品中预设元素的原始数据,并将所述原始数据保存为预设格式,其中,所述预设元素包括:铬元素和铝元素;The acquisition module is used to obtain the original data of the preset elements in the nickel-based single crystal superalloy sample under the magnification after the setting is completed, and save the original data in a preset format, wherein the preset The elements include: chromium and aluminum;
第一确定模块,用于基于所述原始数据确定所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比;A first determination module, configured to determine the peak position percentage of the chromium element and the peak position percentage of the aluminum element based on the original data;
统计模块,用于若所述镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计所述镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,所述预设识别条件包括:所述当前像素点的百分比小于所述铬元素的峰值位置百分比大于所述铝元素的峰值位置百分比;A statistical module for identifying the γ′ phase if the current pixel in the nickel-based single crystal superalloy sample meets the preset identification conditions, and counting the γ′ phases of the nickel-based single crystal superalloy sample that meet the preset identification conditions. The number of phases, wherein the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element;
第二确定模块,用于基于所述数量,确定所述镍基单晶高温合金样品中γ′相的含量。The second determination module is used to determine the content of the γ' phase in the nickel-based single crystal superalloy sample based on the quantity.
上述的装置,可选的,所述获取模块包括:For the above device, optionally, the acquisition module includes:
第一获取单元,用于获取所述待检测区域在扫描电镜与X射线能谱仪条件下包含所述预设元素的百分比面分布图;The first acquisition unit is used to acquire the percentage area distribution map of the area to be detected that contains the preset elements under the conditions of a scanning electron microscope and an X-ray energy spectrometer;
第二获取单元,用于获取所述百分比面分布图中的原始数据;a second acquisition unit, used to acquire the original data in the percentage area distribution map;
存储单元,用于将所述原始数据存储为csv或者tsv文件格式。A storage unit used to store the original data in csv or tsv file format.
上述的装置,可选的,所述第一确定模块包括:For the above device, optionally, the first determination module includes:
绘制单元,用于读取所述原始数据,基于所述原始数据绘制所述预设元素的面分布频数直方图;A drawing unit, configured to read the original data and draw a surface distribution frequency histogram of the preset element based on the original data;
读取单元,用于读取所述面分布频数直方图中所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比。A reading unit, configured to read the peak position percentage of the chromium element and the peak position percentage of the aluminum element in the surface distribution frequency histogram.
上述的装置,可选的,所述绘制单元包括:For the above device, optionally, the rendering unit includes:
转换子单元,用于将所述原始数据转换为数组;A conversion subunit used to convert the original data into an array;
绘制子单元,用于基于所述数组绘制所述预设元素的面分布频数直方图。A drawing subunit is used to draw an area distribution frequency histogram of the preset element based on the array.
上述的装置,可选的,所述第二确定模块包括:For the above device, optionally, the second determination module includes:
第三获取单元,用于获取所述百分比面分布图中横坐标数量和纵坐标数量;The third acquisition unit is used to acquire the number of abscissas and the number of ordinates in the percentage surface distribution chart;
计算单元,用于基于所述横坐标数量和所述纵坐标数量,计算总像素量;A calculation unit configured to calculate the total pixel amount based on the number of abscissas and the number of ordinates;
确定单元,用于基于所述数量与所述总像素量的比值确定所述镍基单晶高温合金样品中γ′相的含量。A determining unit configured to determine the content of the γ′ phase in the nickel-based single crystal superalloy sample based on the ratio of the number to the total pixel amount.
一种存储介质,所述存储介质包括存储的程序,其中,所述程序执行上述的镍基单晶高温合金γ′相的检测方法。A storage medium, the storage medium includes a stored program, wherein the program executes the above-mentioned detection method of γ′ phase of nickel-based single crystal superalloy.
一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述的镍基单晶高温合金γ′相的检测方法。A processor, the processor is used to run a program, wherein when the program is running, the above-mentioned method for detecting the γ′ phase of nickel-based single crystal superalloy is executed.
与现有技术相比,本发明包括以下优点:Compared with the prior art, the present invention includes the following advantages:
本发明公开了一种镍基单晶高温合金γ′相的检测方法及相关装置,包括:设置镍基单晶高温合金样品中待检测区域的放大倍数;获取镍基单晶高温合金样品中铬元素和铝元素的原始数据;基于原始数据确定铬元素的峰值位置百分比和铝元素的峰值位置百分比;若镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,预设识别条件包括:当前像素点的百分比小于铬元素的峰值位置百分比大于铝元素的峰值位置百分比;基于该数量,确定镍基单晶高温合金样品中γ′相的含量。上述过程,可以同时对待检测区域的γ′相进行组成元素成分分析,并统计该区域γ′相的含量分数。The invention discloses a method for detecting the γ' phase of nickel-based single crystal high-temperature alloy and related devices, which include: setting the magnification of the area to be detected in the nickel-based single crystal high-temperature alloy sample; obtaining the chromium in the nickel-based single crystal high-temperature alloy sample Original data of elements and aluminum elements; determine the peak position percentage of chromium element and the peak position percentage of aluminum element based on the original data; if the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions, it will be identified as γ′ phase , count the number of γ' phases in the nickel-based single crystal superalloy sample that meet the preset identification conditions, where the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element; based on This quantity determines the content of γ′ phase in the nickel-based single crystal superalloy sample. In the above process, the component elements of the γ' phase in the area to be detected can be analyzed at the same time, and the content fraction of the γ' phase in the area can be calculated.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为本发明实施例公开的一种镍基单晶高温合金γ′相的检测方法流程图;Figure 1 is a flow chart of a method for detecting the γ' phase of a nickel-based single crystal superalloy disclosed in an embodiment of the present invention;
图2为本发明实施例公开的一种铝Al元素的质量百分比面分布图(左)和面分布频数直方图(右);Figure 2 is a mass percentage surface distribution diagram (left) and a surface distribution frequency histogram (right) of an aluminum element disclosed in an embodiment of the present invention;
图3为本发明实施例公开的一种待检DD6镍基单晶高温合金样品分析区域内基于元素质量百分比绘制的γ′相分布图;Figure 3 is a γ' phase distribution diagram drawn based on element mass percentage in the analysis area of a DD6 nickel-based single crystal superalloy sample to be inspected disclosed in the embodiment of the present invention;
图4为本发明实施例公开的一种镍基单晶高温合金γ′相的检测装置结构框图;Figure 4 is a structural block diagram of a detection device for the γ' phase of a nickel-based single crystal superalloy disclosed in an embodiment of the present invention;
图5为本发明实施例公开的一种设备的结构示意图。Figure 5 is a schematic structural diagram of a device disclosed in an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
本发明公开了一种镍基单晶高温合金γ′相的检测方法及相关装置,现存的镍基单晶高温合金γ′相检测方法,多采用光学显微镜或者电子显微镜通过金相分析进行γ′相检测,或者将γ′相通过化学萃取将其与基体分离进行检测,但不涉及可视化非破坏性的元素成分检测,为了解决上述问题,本发明提供了一种方法,应用于对镍基单晶高温合金γ′相的检测、统计γ′相的含量分数以及对γ′相进行组成成分分析,所述方法的执行流程如图1所示,包括步骤:The invention discloses a method for detecting the γ' phase of nickel-based single crystal superalloy and related devices. The existing detection methods for the γ' phase of nickel-based single crystal superalloy mostly use optical microscopes or electron microscopes to detect γ' through metallographic analysis. Phase detection, or the γ' phase is separated from the matrix through chemical extraction for detection, but does not involve visual non-destructive elemental component detection. In order to solve the above problems, the present invention provides a method that is applied to nickel-based monomers. Detection of the γ′ phase of crystalline superalloy, statistics of the content fraction of the γ′ phase, and composition analysis of the γ′ phase. The execution flow of the method is shown in Figure 1, including the steps:
S101、设置镍基单晶高温合金样品中待检测区域的放大倍数;S101. Set the magnification of the area to be detected in the nickel-based single crystal superalloy sample;
本发明实施例中,首先确定待检测镍基单晶高温合金样品,其中,所述待检测镍基单晶高温合金样品需为磨抛后表面平整无划痕的样品,进一步的,确定待检测镍基单晶高温合金样品待测区域,其中,该待测区域的选取可以基于经验或者具体的情况进行选取,本发明实施例中不进行具体限定,选定待测区域后,选择检测所述待测区域的放大倍数,其中,所述放大倍数的一般在一万倍以上,可以根据具体的情况或者经验确定所述放大倍数。In the embodiment of the present invention, the nickel-based single crystal superalloy sample to be detected is first determined. The nickel-based single crystal superalloy sample to be detected needs to be a sample with a smooth surface without scratches after grinding and polishing. Further, it is determined that the nickel-based single crystal superalloy sample to be detected is The area to be tested of the nickel-based single crystal high-temperature alloy sample, where the selection of the area to be tested can be based on experience or specific circumstances. There is no specific limit in the embodiment of the present invention. After the area to be tested is selected, the selection of the detection area is The magnification factor of the area to be measured, where the magnification factor is generally more than 10,000 times, can be determined based on specific circumstances or experience.
S102、设置完成后,在所述放大倍数下获取所述镍基单晶高温合金样品中预设元素的原始数据,并将所述原始数据保存为预设格式,其中,所述预设元素包括:铬元素和铝元素;S102. After the setting is completed, obtain the original data of the preset elements in the nickel-based single crystal superalloy sample under the magnification, and save the original data in a preset format, where the preset elements include : Chromium and aluminum elements;
本发明实施例中,所述放大倍数设置完成后,在所述放大倍数下获取所述待测区域,在扫描电镜与X射线能谱仪条件下包含所述预设元素的百分比面分布图,其中,所述百分比面分布图可以为元素质量百分比或者原子百分比面分布图,所述预设元素包括:铬Cr和铝Al,还包括:镍Ni,钴Co,钼Mo,铼Re,钨W,钽Ta,本发明实施例中,对所述镍基单晶高温合金中γ′相检有影响的只有铬元素和铝元素,因此只要获取铬元素和铝元素的百分比面分布图,获取所述百分比面分布图中的原始数据,将所述原始数据存储为预设格式,优选的,所述预设格式为csv或者tsv文件格式。In the embodiment of the present invention, after the magnification setting is completed, the area to be measured is obtained under the magnification, and the percentage surface distribution map containing the preset elements is obtained under the conditions of a scanning electron microscope and an X-ray energy spectrometer. Wherein, the percentage area distribution map may be an element mass percentage or an atomic percentage area distribution map, and the preset elements include: chromium Cr and aluminum Al, and also include: nickel Ni, cobalt Co, molybdenum Mo, rhenium Re, and tungsten W , Tantalum Ta. In the embodiment of the present invention, only chromium elements and aluminum elements have an impact on the γ′ phase detection in the nickel-based single crystal superalloy. Therefore, as long as the percentage area distribution diagram of chromium elements and aluminum elements is obtained, all the The original data in the percentage area distribution chart is stored in a preset format. Preferably, the preset format is a csv or tsv file format.
S103、基于所述原始数据确定所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比;S103. Determine the peak position percentage of the chromium element and the peak position percentage of the aluminum element based on the original data;
本发明实施例中,读取所述原始数据,将所述原始数据转换为数组,基于所述数组绘制所述预设元素的面分布频数直方图,使用Python语言实现,具体的处理过程如下:In the embodiment of the present invention, the original data is read, the original data is converted into an array, and the surface distribution frequency histogram of the preset element is drawn based on the array, which is implemented using the Python language. The specific processing process is as follows:
用glob模块读取所述预设元素质量百分比或者原子百分比面分布图原始数据csv或tsv格式文件,具体处理过程如下:Use the glob module to read the original data csv or tsv format file of the preset element mass percentage or atomic percentage surface distribution map. The specific processing process is as follows:
import globimport glob
mapfiles = [] #建立以mapfiles为名的空集合mapfiles = [] #Create an empty collection named mapfiles
for file in glob.glob("*.csv"): #读取主要元素质量百分比或者原子百分比面分布图原始数据csv文件,文件需以元素符号命名,同适用于tsv文件for file in glob.glob("*.csv"): #Read the original data csv file of the main element mass percentage or atomic percentage area distribution chart. The file must be named after the element symbol. The same applies to tsv files.
mapfiles.append(file) #将读取的csv或tsv文件加入mapfiles集合 mapfiles.append(file) #Add the read csv or tsv file to the mapfiles collection
element = [] #建立以element为名的空集合element = [] #Create an empty collection named element
for i in mapfiles:for i in mapfiles:
element.append(i[:-4]) #读取预设元素种类 element.append(i[:-4]) #Read the default element type
用numpy模块将csv或tsv格式文件中的数值转换为可用matplotlib模块绘制图像的数组,具体处理过程如下:Use the numpy module to convert the values in the csv or tsv format file into an array that can be used to draw images using the matplotlib module. The specific processing process is as follows:
import numpy as npimport numpy as np
t={} #建立以t为名的空字典t={} #Create an empty dictionary named t
for i in range(len(element)):for i in range(len(element)):
a = np.genfromtxt(mapfiles[i], delimiter=',') a = np.genfromtxt(mapfiles[i], delimiter=',')
I=[] I=[]
for j in range(len(a)): for j in range(len(a)):
I.append(np.asarray(a[j][:-1])/100) I.append(np.asarray(a[j][:-1])/100)
t[element[i]] = np.asarray(I) #在t字典中写入预设元素质量百分比或者原子百分比数组 t[element[i]] = np.asarray(I) #Write the preset element mass percentage or atomic percentage array in the t dictionary
使用matplotlib模块中imshow功能绘制各个元素质量百分比或者原子百分比面分布图,具体的处理过程如下:Use the imshow function in the matplotlib module to draw the mass percentage or atomic percentage surface distribution map of each element. The specific processing process is as follows:
import matplotlib.pyplot as pltimport matplotlib.pyplot as plt
for e in element:for e in element:
plt.imshow(t[e], cmap='gray') plt.imshow(t[e], cmap='gray')
plt.show() plt.show()
使用numpy中的hstack功能和matplotlib模块中hist功能绘制质量百分比或者原子百分比面分布频数直方图,具体的处理过程如下:Use the hstack function in numpy and the hist function in the matplotlib module to draw the mass percentage or atomic percentage surface distribution frequency histogram. The specific processing process is as follows:
import matplotlib.pyplot as pltimport matplotlib.pyplot as plt
for e in element:for e in element:
h = np.hstack(t[e]) h = np.hstack(t[e])
n, bins, patches = plt.hist(h, 100, color='black') n, bins, patches = plt.hist(h, 100, color='black')
plt.show() plt.show()
遍历所述面分布频数直方图,读取所述面分布频数直方图中所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比。Traverse the surface distribution frequency histogram, and read the peak position percentage of the chromium element and the peak position percentage of the aluminum element in the surface distribution frequency histogram.
S104、若所述镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计所述镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,所述预设识别条件包括:所述当前像素点的百分比小于所述铬元素的峰值位置百分比大于所述铝元素的峰值位置百分比;S104. If the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions, it is identified as the γ′ phase, and the number of γ′ phases in the nickel-based single crystal superalloy sample that meets the preset identification conditions is counted. , wherein the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element;
本发明实施例中,首先判断所述镍基单晶高温合金样品中当前像素点是否满足预设识别条件,若满足,判定所述当前像素点为γ′相,反之,所述当前像素点为基体,其中,所述预设识别条件包括:所述当前像素点的百分比小于所述铬元素的峰值位置百分比大于所述铝元素的峰值位置百分比具体的识别过程如下:In the embodiment of the present invention, it is first determined whether the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions. If it meets, the current pixel point is determined to be the γ′ phase. Otherwise, the current pixel point is The substrate, wherein the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element. The specific identification process is as follows:
使用Python语言实现:使用matplotlib模块中imshow功能绘制碳化物分布图。Implemented using Python language: Use the imshow function in the matplotlib module to draw the carbide distribution map.
r = np.zeros_like(wt['Co']) #建立与原元素质量百分比或元素百分比面分布数据相同的数据矩阵r = np.zeros_like(wt['Co']) #Create the same data matrix as the original element mass percentage or element percentage surface distribution data
y = len(wt['Co'])y = len(wt['Co'])
x = len(wt['Co'][0]) #统计数据矩阵的横纵坐标数量x = len(wt['Co'][0]) #The number of horizontal and vertical coordinates of the statistical data matrix
c1 = 0c1 = 0
c1x, c1y = [], []c1x, c1y = [], []
for i in range(0, y):for i in range(0, y):
for j in range(0, x): for j in range(0, x):
if wt['Cr'][i][j]<= 0.075: if wt['Cr'][i][j]<= 0.075:
if wt['Al'][i][j]>= 0.06: if wt['Al'][i][j]>= 0.06:
r[i][j]= 1 #进行γ′相识别 r[i][j]= 1 #Perform γ′ phase identification
c1x.append(j) c1x.append(j)
c1y.append(i) c1y.append(i)
c1 += 1 #统计满足γ′相识别条件的坐标位置及数量 c1 += 1 #Count the coordinate positions and quantities that meet the γ′ phase identification conditions
img.imshow(r, vmin=0, vmax=1,interpolation='hamming') #绘制γ′相分布图img.imshow(r, vmin=0, vmax=1,interpolation='hamming') #Draw the γ′ phase distribution diagram
plt.show()plt.show()
S105、基于所述数量,确定所述镍基单晶高温合金样品中γ′相的含量。S105. Based on the quantity, determine the content of the γ' phase in the nickel-based single crystal superalloy sample.
本发明实施例中,获取所述百分比面分布图中横坐标数量和纵坐标数量,基于所述横坐标数量和所述纵坐标数量,计算总像素量,基于所述数量与所述总像素量的比值确定所述镍基单晶高温合金样品中γ′相的含量。In the embodiment of the present invention, the number of abscissas and the number of ordinates in the percentage area distribution map are obtained, and based on the number of abscissas and the number of ordinates, the total pixel amount is calculated, and based on the number and the total pixel amount The ratio of determines the content of γ' phase in the nickel-based single crystal superalloy sample.
本发明公开了一种镍基单晶高温合金γ′相的检测方法,包括:设置镍基单晶高温合金样品中待检测区域的放大倍数;获取镍基单晶高温合金样品中铬元素和铝元素的原始数据;基于原始数据确定铬元素的峰值位置百分比和铝元素的峰值位置百分比;若镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,预设识别条件包括:当前像素点的百分比小于铬元素的峰值位置百分比大于铝元素的峰值位置百分比;基于该数量,确定镍基单晶高温合金样品中γ′相的含量。上述过程,可以同时对待检测区域的γ′相进行组成元素成分分析,并统计该区域γ′相的含量分数。The invention discloses a method for detecting the γ′ phase of nickel-based single crystal high-temperature alloy, which includes: setting the magnification of the area to be detected in the nickel-based single crystal high-temperature alloy sample; obtaining the chromium element and aluminum in the nickel-based single crystal high-temperature alloy sample Original data of elements; determine the peak position percentage of chromium element and the peak position percentage of aluminum element based on the original data; if the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions, it will be identified as γ′ phase, and the statistics of nickel The number of γ' phases in the base single crystal superalloy sample that meets the preset identification conditions, where the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element; based on this number, Determine the content of γ' phase in nickel-based single crystal superalloy samples. In the above process, the component elements of the γ' phase in the area to be detected can be analyzed at the same time, and the content fraction of the γ' phase in the area can be calculated.
本发明所述检测方法实现了对镍基单晶高温合金进行γ′相的微观检测,可在使用扫描电镜进行微区观察的同时,使用能谱仪检测γ′相及基体的元素组成,可实现γ′相的自动识别及含量分数计算。对所述检测方法的处理过程进行举例,主要包括一下步骤:The detection method of the present invention realizes the microscopic detection of the γ' phase of the nickel-based single crystal superalloy. While using the scanning electron microscope for micro-area observation, the energy spectrometer can be used to detect the elemental composition of the γ' phase and the matrix. Realize automatic identification of γ′ phase and calculation of content fraction. An example of the processing process of the detection method is given, which mainly includes the following steps:
1)确定待检测镍基单晶高温合金(DD6)样品待测区域,选择放大倍数为20,000倍;1) Determine the area to be tested of the nickel-based single crystal superalloy (DD6) sample to be tested, and select a magnification of 20,000 times;
2)获取待测区域在扫描电镜与X射线能谱仪条件下的所含主要元素质量百分比面分布图,该样品为磨抛后表面平整无划痕的样品,DD6镍基单晶高温合金样品中主要组成元素有镍Ni,钴Co,铬Cr,铝Al,钼Mo,铼Re,钨W,钽Ta;设置元素质量百分比面分布图的图像分辨率为512*384,总像素数量共196608个;将各元素质量百分比面分布原始数据保存为csv格式文件,分别为“Ni.csv”,“Co.csv”,“Cr.csv”,“Al.csv”,“Mo.csv”,“Re.csv”,“W.csv”,“Ta.csv”。2) Obtain the mass percentage distribution map of the main elements contained in the area to be measured under the conditions of scanning electron microscope and X-ray energy spectrometer. The sample is a sample with a smooth surface without scratches after grinding and polishing, a DD6 nickel-based single crystal superalloy sample The main constituent elements are nickel Ni, cobalt Co, chromium Cr, aluminum Al, molybdenum Mo, rhenium Re, tungsten W, and tantalum Ta; set the image resolution of the element mass percentage area distribution map to 512*384, and the total number of pixels is 196608 ; Save the original data of the mass percentage surface distribution of each element as a csv format file, namely "Ni.csv", "Co.csv", "Cr.csv", "Al.csv", "Mo.csv", " Re.csv", "W.csv", "Ta.csv".
3)读取各元素质量百分比面分布图原始数据文件,绘制元素面分布频数直方图;3) Read the original data file of the surface distribution map of each element's mass percentage, and draw the element surface distribution frequency histogram;
使用Python语言实现,具体过程为:①使用glob模块读取各元素质量百分比或者原子百分比面分布图原始数据csv或tsv格式文件;②使用numpy模块将csv或tsv格式文件中的数值转换为可用matplotlib模块绘制图像的数组;③使用matplotlib模块中imshow功能绘制各个元素质量百分比或者原子百分比面分布图;④使用numpy中的hstack功能和matplotlib模块中hist功能绘制质量百分比或者原子百分比面分布频数直方图。本发明实施例中以Al元素的质量百分比面分布图和面分布频数直方图进行示例,如图2所示,Al元素的质量百分比面分布图(左)和面分布频数直方图(右)。Implemented using Python language, the specific process is: ① Use the glob module to read the original data csv or tsv format file of the mass percentage or atomic percentage surface distribution map of each element; ② Use the numpy module to convert the values in the csv or tsv format file into usable matplotlib The module draws an array of images; ③ Use the imshow function in the matplotlib module to draw the mass percentage or atomic percentage surface distribution map of each element; ④ Use the hstack function in numpy and the hist function in the matplotlib module to draw the mass percentage or atomic percentage surface distribution frequency histogram. In the embodiment of the present invention, the mass percentage area distribution diagram and the area distribution frequency histogram of the Al element are used as examples. As shown in Figure 2, the mass percentage area distribution diagram (left) and the area distribution frequency histogram (right) of the Al element are shown.
4)在铬元素和铝元素质量百分比面分布频数直方图中,读取峰值位置对应的质量百分比;铬元素质量百分比面分布频数直方图中峰值对应的质量百分比:0.058,铝元素质量百分比面分布频数直方图中峰值对应的质量百分比:0.048;4) In the frequency histogram of surface distribution of mass percentage of chromium element and aluminum element, read the mass percentage corresponding to the peak position; the mass percentage corresponding to the peak in the frequency histogram of surface distribution of mass percentage of chromium element: 0.058, surface distribution of mass percentage of aluminum element The mass percentage corresponding to the peak value in the frequency histogram: 0.048;
5)设置γ′相的识别条件:若某像素点上元素质量百分比同时满足小于铬元素峰值位置质量百分比(0.058)和大于铝元素峰值位置质量百分比(0.048),则识别为γ′相,绘制γ′相分布图;5) Set the identification conditions for the γ' phase: If the mass percentage of the element at a certain pixel point is both less than the mass percentage of the peak position of the chromium element (0.058) and greater than the mass percentage of the peak position of the aluminum element (0.048), it will be identified as the γ' phase, and draw γ′ phase distribution diagram;
使用Python语言实现,具体过程为:Implemented using Python language, the specific process is:
m = np.zeros_like(wt['Cr'])m = np.zeros_like(wt['Cr'])
y = len(wt['Cr'])y = len(wt['Cr'])
x = len(wt['Cr'][0])x = len(wt['Cr'][0])
r = 0r = 0
rx, ry = [], []rx, ry = [], []
for i in range(0, y):for i in range(0, y):
for j in range(0, x): for j in range(0, x):
if wt['Cr'][i][j]<= 0.0058: if wt['Cr'][i][j]<= 0.0058:
if wt['Al'][i][j]>= 0.048: if wt['Al'][i][j]>= 0.048:
m[i][j]= 1 m[i][j]= 1
rx.append(j) rx.append(j)
ry.append(i) ry.append(i)
r += 1 r += 1
r即为满足γ′条件的像素数量;r is the number of pixels that meet the γ′ condition;
使用matplotlib模块中imshow功能绘制γ′相分布图,其中,所述γ′相分布图如图3所示。Use the imshow function in the matplotlib module to draw the γ′ phase distribution diagram, where the γ′ phase distribution diagram is shown in Figure 3.
6)满足该条件的像素数量为45985,γ′相含量分数通过计算满足该条件的像素数量与总像素数量之比而获得,即45985/196608*100%=23.39%。6) The number of pixels that meet this condition is 45985. The γ′ phase content score is obtained by calculating the ratio of the number of pixels that meet this condition to the total number of pixels, that is, 45985/196608*100%=23.39%.
基于上述的一种镍基单晶高温合金γ′相的检测方法,本发明实施例中还提供了一种镍基单晶高温合金γ′相的检测装置,所述装置的结构框图如图4所示,包括:Based on the above-mentioned method for detecting the γ′ phase of a nickel-based single crystal superalloy, embodiments of the present invention also provide a device for detecting the γ′ phase of a nickel-based single crystal superalloy. The structural block diagram of the device is shown in Figure 4 shown, including:
设置模块201、获取模块202、第一确定模块203、统计模块204和第二确定模块205。Setting module 201, acquisition module 202, first determination module 203, statistics module 204 and second determination module 205.
其中,in,
所述设置模块201,用于设置镍基单晶高温合金样品中待检测区域的放大倍数;The setting module 201 is used to set the magnification of the area to be detected in the nickel-based single crystal superalloy sample;
所述获取模块202,用于设置完成后,在所述放大倍数下获取所述镍基单晶高温合金样品中预设元素的原始数据,并将所述原始数据保存为预设格式,其中,所述预设元素包括:铬元素和铝元素;The acquisition module 202 is used to acquire the original data of the preset elements in the nickel-based single crystal superalloy sample under the magnification after the setting is completed, and save the original data in a preset format, where, The preset elements include: chromium elements and aluminum elements;
所述第一确定模块203,用于基于所述原始数据确定所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比;The first determination module 203 is configured to determine the peak position percentage of the chromium element and the peak position percentage of the aluminum element based on the original data;
所述统计模块204,用于若所述镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计所述镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,所述预设识别条件包括:所述当前像素点的百分比小于所述铬元素的峰值位置百分比大于所述铝元素的峰值位置百分比;The statistical module 204 is used to identify the γ′ phase if the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions, and count the nickel-based single crystal superalloy sample to meet the preset identification conditions. The number of γ' phases, wherein the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element;
所述第二确定模块205,用于基于所述数量,确定所述镍基单晶高温合金样品中γ′相的含量。The second determination module 205 is used to determine the content of the γ' phase in the nickel-based single crystal superalloy sample based on the quantity.
本发明公开了一种镍基单晶高温合金γ′相的检测装置,包括:设置镍基单晶高温合金样品中待检测区域的放大倍数;获取镍基单晶高温合金样品中铬元素和铝元素的原始数据;基于原始数据确定铬元素的峰值位置百分比和铝元素的峰值位置百分比;若镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,预设识别条件包括:当前像素点的百分比小于铬元素的峰值位置百分比大于铝元素的峰值位置百分比;基于该数量,确定镍基单晶高温合金样品中γ′相的含量。上述过程,可以同时对待检测区域的γ′相进行组成元素成分分析,并统计该区域γ′相的含量分数。The invention discloses a detection device for the γ' phase of nickel-based single crystal high-temperature alloy, which includes: setting the magnification of the area to be detected in the nickel-based single crystal high-temperature alloy sample; obtaining chromium elements and aluminum in the nickel-based single crystal high-temperature alloy sample Original data of elements; determine the peak position percentage of chromium element and the peak position percentage of aluminum element based on the original data; if the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions, it will be identified as γ′ phase, and the statistics of nickel The number of γ' phases in the base single crystal superalloy sample that meets the preset identification conditions, where the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element; based on this number, Determine the content of γ' phase in nickel-based single crystal superalloy samples. In the above process, the component elements of the γ' phase in the area to be detected can be analyzed at the same time, and the content fraction of the γ' phase in the area can be calculated.
本发明实施例中,所述获取模块202包括:In this embodiment of the present invention, the acquisition module 202 includes:
第一获取单元206和第二获取单元207。The first acquisition unit 206 and the second acquisition unit 207.
其中,in,
所述第一获取单元206,用于获取所述待检测区域在扫描电镜与X射线能谱仪条件下包含所述预设元素的百分比面分布图;The first acquisition unit 206 is used to acquire the percentage area distribution map of the area to be detected that contains the preset elements under the conditions of a scanning electron microscope and an X-ray energy spectrometer;
所述第二获取单元207,用于获取所述百分比面分布图中的原始数据;The second acquisition unit 207 is used to acquire the original data in the percentage surface distribution map;
存储单元,用于将所述原始数据存储为csv或者tsv文件格式。A storage unit used to store the original data in csv or tsv file format.
本发明实施例中,所述第一确定模块203包括:In this embodiment of the present invention, the first determination module 203 includes:
绘制单元208和读取单元209。drawing unit 208 and reading unit 209.
其中,in,
所述绘制单元208,用于读取所述原始数据,基于所述原始数据绘制所述预设元素的面分布频数直方图;The drawing unit 208 is configured to read the original data and draw a surface distribution frequency histogram of the preset element based on the original data;
所述读取单元209,用于读取所述面分布频数直方图中所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比。The reading unit 209 is configured to read the peak position percentage of the chromium element and the peak position percentage of the aluminum element in the surface distribution frequency histogram.
本发明实施例中,所述绘制单元208包括:In this embodiment of the present invention, the rendering unit 208 includes:
转换子单元210和绘制子单元211。Conversion sub-unit 210 and rendering sub-unit 211.
其中,in,
所述转换子单元210,用于将所述原始数据转换为数组;The conversion subunit 210 is used to convert the original data into an array;
所述绘制子单元211,用于基于所述数组绘制所述预设元素的面分布频数直方图。The drawing subunit 211 is used to draw the surface distribution frequency histogram of the preset element based on the array.
本发明实施例中,所述第二确定模块205包括:In this embodiment of the present invention, the second determination module 205 includes:
第三获取单元212、计算单元213和确定单元214。The third acquisition unit 212, the calculation unit 213 and the determination unit 214.
其中,in,
所述第三获取单元212,用于获取所述百分比面分布图中横坐标数量和纵坐标数量;The third acquisition unit 212 is used to acquire the number of abscissas and the number of ordinates in the percentage area distribution map;
所述计算单元213,用于基于所述横坐标数量和所述纵坐标数量,计算总像素量;The calculation unit 213 is configured to calculate the total pixel amount based on the number of abscissas and the number of ordinates;
所述确定单元214,用于基于所述数量与所述总像素量的比值确定所述镍基单晶高温合金样品中γ′相的含量。The determination unit 214 is configured to determine the content of the γ′ phase in the nickel-based single crystal superalloy sample based on the ratio of the number to the total pixel amount.
所述检测装置包括处理器和存储器,上述设置模块、获取模块、第一确定模块、统计模块和第二模块等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。The detection device includes a processor and a memory. The above-mentioned setting module, acquisition module, first determination module, statistical module and second module are all stored in the memory as program units. The processor executes the above-mentioned program units stored in the memory. to implement the corresponding functions.
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来实现同时对待检测区域的γ′相进行组成元素成分分析,并统计该区域γ′相的含量分数。The processor contains a core, which retrieves the corresponding program unit from the memory. One or more kernels can be set. By adjusting the kernel parameters, the component elements of the γ′ phase in the area to be detected can be analyzed simultaneously, and the content fraction of the γ′ phase in the area can be counted.
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。Memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). The memory includes at least one memory chip.
本发明实施例提供了一种计算机存储介质,其上存储有程序,该程序被处理器执行时实现所述检测方法。An embodiment of the present invention provides a computer storage medium on which a program is stored, and when the program is executed by a processor, the detection method is implemented.
本发明实施例提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行所述业务数据推送方法。An embodiment of the present invention provides a processor, where the processor is configured to run a program, where the business data pushing method is executed when the program is running.
本发明实施例提供了一种设备,所述设备的结构框图如图5所示,所述设备包括:处理器301、存储介质302及存储在存储介质302上并可在处理器302上运行的程序,处理器301执行程序时实现以下步骤:An embodiment of the present invention provides a device. The structural block diagram of the device is shown in Figure 5. The device includes: a processor 301, a storage medium 302, and a program stored on the storage medium 302 and capable of running on the processor 302. Program, the processor 301 implements the following steps when executing the program:
设置镍基单晶高温合金样品中待检测区域的放大倍数;Set the magnification of the area to be detected in the nickel-based single crystal superalloy sample;
设置完成后,在所述放大倍数下获取所述镍基单晶高温合金样品中预设元素的原始数据,并将所述原始数据保存为预设格式,其中,所述预设元素包括:铬元素和铝元素;After the setting is completed, obtain the original data of the preset elements in the nickel-based single crystal superalloy sample under the magnification, and save the original data in a preset format, where the preset elements include: chromium. elements and aluminum elements;
基于所述原始数据确定所述铬元素的峰值位置百分比和所述铝元素的峰值位置百分比;Determine the peak position percentage of the chromium element and the peak position percentage of the aluminum element based on the raw data;
若所述镍基单晶高温合金样品中当前像素点满足预设识别条件,则识别为γ′相,统计所述镍基单晶高温合金样品满足预设识别条件的γ′相的数量,其中,所述预设识别条件包括:所述当前像素点的百分比小于所述铬元素的峰值位置百分比大于所述铝元素的峰值位置百分比;If the current pixel point in the nickel-based single crystal superalloy sample meets the preset identification conditions, it is identified as a γ′ phase, and the number of γ′ phases in the nickel-based single crystal superalloy sample that meets the preset identification conditions is counted, where , the preset identification conditions include: the percentage of the current pixel points is less than the peak position percentage of the chromium element and greater than the peak position percentage of the aluminum element;
基于所述数量,确定所述镍基单晶高温合金样品中γ′相的含量。Based on the quantity, the content of the γ' phase in the nickel-based single crystal superalloy sample was determined.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will understand that embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine, such that the instructions executed by the processor of the computer or other programmable data processing device produce a use A device for realizing the functions specified in a process or processes in a flowchart and/or a block or blocks in a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions The device implements the functions specified in a process or processes in the flowchart and/or in a block or blocks in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device. Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
在一个典型的配置中,计算设备包括一个或多个处理器 (CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。Memory may include non-volatile memory in computer-readable media, random access memory (RAM), and/or non-volatile memory in the form of read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存 (PRAM)、静态随机存取存储器 (SRAM)、动态随机存取存储器 (DRAM)、其他类型的随机存取存储器 (RAM)、只读存储器 (ROM)、电可擦除可编程只读存储器 (EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘 (DVD) 或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media includes both persistent and non-volatile, removable and non-removable media that can be implemented by any method or technology for storage of information. Information may be computer-readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory. (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, Magnetic tape cassettes, tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by a computing device. As defined in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "comprises," "comprises," or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements not only includes those elements, but also includes Other elements are not expressly listed or are inherent to the process, method, article or equipment. Without further limitation, an element qualified by the statement "comprises a..." does not exclude the presence of additional identical elements in the process, method, good, or device that includes the element.
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will understand that embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above are only examples of the present application and are not used to limit the present application. To those skilled in the art, various modifications and variations may be made to this application. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of this application shall be included in the scope of the claims of this application.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310931566.5A CN116660302B (en) | 2023-07-27 | 2023-07-27 | Detection method and related device for gamma' -phase of nickel-based single crystal superalloy |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310931566.5A CN116660302B (en) | 2023-07-27 | 2023-07-27 | Detection method and related device for gamma' -phase of nickel-based single crystal superalloy |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN116660302A CN116660302A (en) | 2023-08-29 |
| CN116660302B true CN116660302B (en) | 2023-11-07 |
Family
ID=87720919
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310931566.5A Active CN116660302B (en) | 2023-07-27 | 2023-07-27 | Detection method and related device for gamma' -phase of nickel-based single crystal superalloy |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116660302B (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104345071A (en) * | 2014-11-03 | 2015-02-11 | 广东电网有限责任公司电力科学研究院 | Method for expressing gamma/gamma' phase crystal lattice mismatching degree in nickel-based high-temperature alloy |
| CN107607565A (en) * | 2017-08-30 | 2018-01-19 | 华能国际电力股份有限公司 | Method for measuring gamma' phase volume fraction in nickel-based single crystal superalloy |
| CN107702986A (en) * | 2017-09-01 | 2018-02-16 | 西北工业大学 | The method for determining nickel-base high-temperature single crystal alloy residual life |
| CN110196262A (en) * | 2019-05-27 | 2019-09-03 | 西北工业大学 | The appraisal procedure of Crystal Nickel-based Superalloy high temperature Long-term Aging hardening constituent roughening rule |
| CN113376015A (en) * | 2021-06-07 | 2021-09-10 | 北京科技大学 | Method for rapidly characterizing and analyzing microstructure evolution of nickel-based single crystal superalloy |
| CN113528993A (en) * | 2021-07-15 | 2021-10-22 | 河北钢研德凯科技有限公司 | Heat treatment method of nickel-based single crystal superalloy |
| CN115050430A (en) * | 2022-04-13 | 2022-09-13 | 清华大学 | Method for predicting gamma' phase structure of nickel-based single crystal superalloy |
| CN115132301A (en) * | 2022-08-29 | 2022-09-30 | 中国航发北京航空材料研究院 | Cobalt-based superalloy carbide detection method, device, storage medium and electronic equipment |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030041930A1 (en) * | 2001-08-30 | 2003-03-06 | Deluca Daniel P. | Modified advanced high strength single crystal superalloy composition |
| CN111101022B (en) * | 2018-10-29 | 2022-03-22 | 利宝地工程有限公司 | High gamma prime nickel-based superalloy, use thereof and method of manufacturing a turbine engine component |
| CN111696632B (en) * | 2020-06-22 | 2023-10-10 | 钢铁研究总院有限公司 | A full-field quantitative statistical distribution characterization method for γ′ phase microstructure in metallic materials |
-
2023
- 2023-07-27 CN CN202310931566.5A patent/CN116660302B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104345071A (en) * | 2014-11-03 | 2015-02-11 | 广东电网有限责任公司电力科学研究院 | Method for expressing gamma/gamma' phase crystal lattice mismatching degree in nickel-based high-temperature alloy |
| CN107607565A (en) * | 2017-08-30 | 2018-01-19 | 华能国际电力股份有限公司 | Method for measuring gamma' phase volume fraction in nickel-based single crystal superalloy |
| CN107702986A (en) * | 2017-09-01 | 2018-02-16 | 西北工业大学 | The method for determining nickel-base high-temperature single crystal alloy residual life |
| CN110196262A (en) * | 2019-05-27 | 2019-09-03 | 西北工业大学 | The appraisal procedure of Crystal Nickel-based Superalloy high temperature Long-term Aging hardening constituent roughening rule |
| CN113376015A (en) * | 2021-06-07 | 2021-09-10 | 北京科技大学 | Method for rapidly characterizing and analyzing microstructure evolution of nickel-based single crystal superalloy |
| CN113528993A (en) * | 2021-07-15 | 2021-10-22 | 河北钢研德凯科技有限公司 | Heat treatment method of nickel-based single crystal superalloy |
| CN115050430A (en) * | 2022-04-13 | 2022-09-13 | 清华大学 | Method for predicting gamma' phase structure of nickel-based single crystal superalloy |
| CN115132301A (en) * | 2022-08-29 | 2022-09-30 | 中国航发北京航空材料研究院 | Cobalt-based superalloy carbide detection method, device, storage medium and electronic equipment |
Non-Patent Citations (1)
| Title |
|---|
| 镍基单晶高温合金γ和γ′相合金元素分布特征;王建明等;《铸造》;第54卷(第5期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN116660302A (en) | 2023-08-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111696632A (en) | Full-field quantitative statistical distribution characterization method for gamma' phase microstructure in metal material | |
| Randle | Electron backscatter diffraction: Strategies for reliable data acquisition and processing | |
| CN108226159A (en) | The full filed quantitative statistics distribution characterizing method of precipitated phase particle in metal material | |
| CN104880389B (en) | A kind of automatic measurement, sophisticated category method and its system of steel crystal grain mixed crystal degree | |
| CN107102016B (en) | A kind of atomic scale crystal orientation analysis method based on crystal structure | |
| CN101929964A (en) | Method of differentiating martensite in cast ferrite stainless steel and calculating two-phase proportion thereof | |
| CN107702986B (en) | Method for Determining the Residual Life of Nickel-based Single Crystal Superalloys | |
| CN111738131B (en) | Method for extracting parameter characteristics of alloy two-phase microstructure | |
| CN112906639A (en) | Image recognition method and device for ferrite in chromium alloy steel | |
| CN116660302B (en) | Detection method and related device for gamma' -phase of nickel-based single crystal superalloy | |
| CN101419151A (en) | Industrial purified terephthalic acid particle size distribution estimation method based on microscopic image | |
| CN102435628B (en) | Characterization method for structural morphology of porous electrode material | |
| CN110211091A (en) | A kind of full resolution pricture reconstructing method, device and crack nondestructive detection system | |
| CN104182615B (en) | A kind of method that any condition the amount of inclusions is represented in ternary phase diagrams | |
| CN115132301B (en) | Detection method, device, storage medium and electronic equipment of cobalt-based superalloy carbides | |
| CN108490011B (en) | A method for locating the detected area of a bulk sample for transmission electron microscopy | |
| CN114841987A (en) | Ceramic tile flaw detection method and system | |
| CN118465816A (en) | X-ray source focus test method, test card, device, equipment and storage medium | |
| CN113112513B (en) | Method, device, computer equipment and storage medium for AI identifying band organization | |
| CN113112514B (en) | Method, device, computer equipment and storage medium for identifying graphite size by AI | |
| Dubey et al. | Deep learning-powered visual inspection for metal surfaces–Impact of annotations on algorithms based on defect characteristics | |
| CN117760347B (en) | A method and device for detecting thickness of high-temperature alloy thermal barrier coating, a storage medium, and an electronic device | |
| CN115292887A (en) | Plant disease severity evaluation method and device based on lesion area ratio | |
| CN113777115A (en) | Quantitative statistical method for precipitated phase in alloy | |
| CN107255450B (en) | Screening method of tungsten carbide alloy powder |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |