CN116959783B - Conductive film and touch electrode and preparation method thereof - Google Patents
Conductive film and touch electrode and preparation method thereof Download PDFInfo
- Publication number
- CN116959783B CN116959783B CN202310601509.0A CN202310601509A CN116959783B CN 116959783 B CN116959783 B CN 116959783B CN 202310601509 A CN202310601509 A CN 202310601509A CN 116959783 B CN116959783 B CN 116959783B
- Authority
- CN
- China
- Prior art keywords
- conductive
- region
- conductive region
- layer
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Non-Insulated Conductors (AREA)
Abstract
本说明书实施例提供一种导电膜和触控电极及其制备方法。该导电膜包括基膜和导电层,导电层覆盖于基膜上,导电层包括第一导电区域和第二导电区域,其中,第一导电区域包括导电网格结构;导电网格结构包括多个镂空格和导电网格线;第二导电区域环绕第一导电区域设置,第二导电区域与导电网格线相连通;第一导电区域的面电阻大于第二导电区域的面电阻。
The embodiments of the present specification provide a conductive film and a touch electrode and a method for preparing the same. The conductive film includes a base film and a conductive layer, the conductive layer covers the base film, the conductive layer includes a first conductive region and a second conductive region, wherein the first conductive region includes a conductive grid structure; the conductive grid structure includes a plurality of hollow spaces and conductive grid lines; the second conductive region is arranged around the first conductive region, and the second conductive region is connected to the conductive grid lines; the surface resistance of the first conductive region is greater than the surface resistance of the second conductive region.
Description
技术领域Technical Field
本说明书涉及触控技术领域,特别涉及一种导电膜和触控电极及其制备方法。The present invention relates to the field of touch control technology, and in particular to a conductive film and a touch control electrode and a method for preparing the same.
背景技术Background technique
随着科学技术的发展,触控交互已成为人机交互的重要方式之一,广泛应用于智慧家居、智能家电、医疗保健、自助商超、商业广告、智慧物流、智能结算、工业控制、车载显示等领域。触控电极需要在导电膜的基础上进行加工,现有的导电膜在用于后续加工触控电极的触控图形和引线时,会导致触控电极的制备较繁琐。With the development of science and technology, touch interaction has become one of the important ways of human-computer interaction and is widely used in smart homes, smart appliances, healthcare, self-service supermarkets, commercial advertising, smart logistics, smart settlement, industrial control, and vehicle-mounted displays. Touch electrodes need to be processed on the basis of conductive films. When existing conductive films are used for subsequent processing of touch patterns and leads of touch electrodes, the preparation of touch electrodes is cumbersome.
发明内容Summary of the invention
本说明书实施例之一提供一种导电膜。该导电膜包括:基膜和导电层,所述导电层覆盖于所述基膜上,所述导电层包括第一导电区域和第二导电区域,其中,所述第一导电区域包括导电网格结构;所述导电网格结构包括多个镂空格和导电网格线;所述第二导电区域环绕所述第一导电区域设置,所述第二导电区域与所述导电网格线相连通;所述第一导电区域的面电阻大于所述第二导电区域的面电阻。One of the embodiments of the present specification provides a conductive film. The conductive film includes: a base film and a conductive layer, the conductive layer covers the base film, the conductive layer includes a first conductive area and a second conductive area, wherein the first conductive area includes a conductive grid structure; the conductive grid structure includes a plurality of hollow spaces and conductive grid lines; the second conductive area is arranged around the first conductive area, and the second conductive area is connected to the conductive grid lines; the surface resistance of the first conductive area is greater than the surface resistance of the second conductive area.
在一些实施例中,所述导电层上具有至少两个所述第一导电区域,且相邻两个所述第一导电区域之间具有所述第二导电区域。In some embodiments, the conductive layer has at least two first conductive regions, and the second conductive region is located between two adjacent first conductive regions.
在一些实施例中,所述至少两个第一导电区域阵列排布;所述第一导电区域的形状为圆形或多边形。In some embodiments, the at least two first conductive regions are arranged in an array; and the first conductive regions are circular or polygonal in shape.
在一些实施例中,相邻的两个所述第一导电区域之间的最小间距为200mm-350mm。In some embodiments, the minimum distance between two adjacent first conductive regions is 200 mm-350 mm.
在一些实施例中,所述导电层包括导电纳米层,所述导电纳米层包括纳米金属层或纳米金属线层中的至少一种,其中,所述纳米金属层包括纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米铝、纳米锡、纳米铅或纳米钛中的至少一种;所述纳米金属线层包括纳米银线、纳米金线、纳米铜线、纳米铂线、纳米铝线、纳米钛线或纳米锡线中的至少一种。In some embodiments, the conductive layer includes a conductive nanolayer, and the conductive nanolayer includes at least one of a nanometal layer or a nanometal wire layer, wherein the nanometal layer includes at least one of nanogold, nanosilver, nanocopper, nanoplatinum, nanopalladium, nanoaluminum, nanotin, nanolead or nanotitanium; the nanometal wire layer includes at least one of nanosilver wire, nanogold wire, nanocopper wire, nanoplatinum wire, nanoaluminum wire, nanotitanium wire or nanotin wire.
在一些实施例中,所述第一导电区域的面电阻与所述第二导电区域的面电阻的比值不小于5;所述第一导电区域的面电阻为5Ω/□-150Ω/□,所述第二导电区域的面电阻为0.1Ω/□-10Ω/□。In some embodiments, the ratio of the surface resistance of the first conductive region to the surface resistance of the second conductive region is not less than 5; the surface resistance of the first conductive region is 5Ω/□-150Ω/□, and the surface resistance of the second conductive region is 0.1Ω/□-10Ω/□.
在一些实施例中,所述第一导电区域的可见光透光率大于所述第二导电区域的可见光透光率;所述第一导电区域的可见光透光率为80%-92%,所述第二导电区域的可见光透光率为20%-85%。In some embodiments, the visible light transmittance of the first conductive region is greater than that of the second conductive region; the visible light transmittance of the first conductive region is 80%-92%, and the visible light transmittance of the second conductive region is 20%-85%.
在一些实施例中,所述导电网格结构由所述导电层经黄光蚀刻形成。In some embodiments, the conductive mesh structure is formed by photo-etching the conductive layer.
本说明书实施例之一提供一种导电膜的制备方法。该方法包括:在基膜上制备导电层;以及蚀刻所述导电层,制得所述导电膜,其中,所述导电层上包括经过蚀刻形成导电网格结构的第一导电区域,以及未经蚀刻的第二导电区域;所述导电网格结构包括多个镂空格和导电网格线;所述第二导电区域环绕所述第一导电区域,所述第二导电区域与所述导电网格线相连通;所述第一导电区域的面电阻大于所述第二导电区域的面电阻。One of the embodiments of this specification provides a method for preparing a conductive film. The method includes: preparing a conductive layer on a base film; and etching the conductive layer to obtain the conductive film, wherein the conductive layer includes a first conductive region that is etched to form a conductive grid structure, and a second conductive region that is not etched; the conductive grid structure includes a plurality of hollow spaces and conductive grid lines; the second conductive region surrounds the first conductive region, and the second conductive region is connected to the conductive grid line; the surface resistance of the first conductive region is greater than the surface resistance of the second conductive region.
在一些实施例中,蚀刻所述导电层包括:通过黄光蚀刻在所述导电层上形成包括所述导电网格结构的所述第一导电区域。In some embodiments, etching the conductive layer includes: forming the first conductive region including the conductive grid structure on the conductive layer by photo-etching.
本说明书实施例之一提供一种触控电极。该触控电极包括前述的导电膜,触控电极包括触控图形和引线,其中,所述触控图形形成于所述第一导电区域;所述引线形成于所述第二导电区域。One of the embodiments of the present specification provides a touch electrode, which includes the aforementioned conductive film, and includes a touch pattern and a lead, wherein the touch pattern is formed in the first conductive area, and the lead is formed in the second conductive area.
本说明书实施例之一提供一种触控电极的制备方法,使用前述的导电膜,该方法包括:在所述第一导电区域通过激光蚀刻制备所述触控电极的触控图形;以及在所述第二导电区域通过激光蚀刻制备所述触控电极的引线。One of the embodiments of the present specification provides a method for preparing a touch electrode, using the aforementioned conductive film, the method comprising: preparing a touch pattern of the touch electrode by laser etching in the first conductive area; and preparing a lead of the touch electrode by laser etching in the second conductive area.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:This specification will be further described in the form of exemplary embodiments, which will be described in detail by the accompanying drawings. These embodiments are not restrictive, and in these embodiments, the same number represents the same structure, wherein:
图1是根据本说明书一些实施例所示的示例性导电膜的俯视图。FIG. 1 is a top view of an exemplary conductive film according to some embodiments of the present specification.
图2是图1中区域A的局部放大图。FIG. 2 is a partial enlarged view of area A in FIG. 1 .
图3是图1中第一导电区域的B-B剖视图。FIG3 is a B-B cross-sectional view of the first conductive region in FIG1 .
图4是图1中第二导电区域的C-C剖视图。FIG4 is a C-C cross-sectional view of the second conductive region in FIG1.
图中,100为导电膜,110为基膜,120为导电层,121为第一导电区域,1211为镂空格,1212为导电网格线,122为第二导电区域,123为导电纳米层,124为导电保护层。In the figure, 100 is a conductive film, 110 is a base film, 120 is a conductive layer, 121 is a first conductive region, 1211 is a hollow space, 1212 is a conductive grid line, 122 is a second conductive region, 123 is a conductive nanolayer, and 124 is a conductive protective layer.
具体实施方式Detailed ways
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。In order to more clearly illustrate the technical solutions of the embodiments of this specification, the following is a brief introduction to the drawings required for the description of the embodiments. Obviously, the drawings described below are only some examples or embodiments of this specification. For ordinary technicians in this field, without paying creative work, this specification can also be applied to other similar scenarios based on these drawings. Unless it is obvious from the language environment or otherwise explained, the same reference numerals in the figures represent the same structure or operation.
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。As shown in this specification and claims, unless the context clearly indicates an exception, the words "a", "an", "an" and/or "the" do not refer to the singular and may also include the plural. Generally speaking, the terms "comprises" and "includes" only indicate the inclusion of the steps and elements that have been clearly identified, and these steps and elements do not constitute an exclusive list. The method or device may also include other steps or elements.
本说明书实施例之一提供一种导电膜。该导电膜包括基膜和导电层,导电层覆盖于基膜上。导电层包括第一导电区域和第二导电区域,其中,第一导电区域包括导电网格结构;第二导电区域环绕第一导电区域设置。第一导电区域可以用于制备触控电极的触控图形,触控图形区域用于感应外界的触控信号,对导电性要求不高,但其作为可视区域,对光学透过性和外观有较高的要求;第二导电区域可以用于制备触控电极的引线,引线用于信号的传输,要求较高的导电性,而对光学性能和外观无要求。通过在导电层上设计第一导电区域和第二导电区域可以方便触控电极的制备。One of the embodiments of this specification provides a conductive film. The conductive film includes a base film and a conductive layer, and the conductive layer covers the base film. The conductive layer includes a first conductive area and a second conductive area, wherein the first conductive area includes a conductive grid structure; the second conductive area is arranged around the first conductive area. The first conductive area can be used to prepare a touch pattern of a touch electrode. The touch pattern area is used to sense external touch signals and does not require high conductivity, but as a visible area, it has high requirements for optical transmittance and appearance; the second conductive area can be used to prepare a lead of a touch electrode. The lead is used for signal transmission and requires high conductivity, but has no requirements for optical performance and appearance. The preparation of the touch electrode can be facilitated by designing the first conductive area and the second conductive area on the conductive layer.
图1是根据本说明书一些实施例所示的示例性导电膜的俯视图,图2是图1中区域A的局部放大图,图3是图1中第一导电区域的B-B剖视图,图4是图1中第二导电区域的C-C剖视图。Figure 1 is a top view of an exemplary conductive film shown in some embodiments of the present specification, Figure 2 is a partially enlarged view of area A in Figure 1, Figure 3 is a B-B cross-sectional view of the first conductive region in Figure 1, and Figure 4 is a C-C cross-sectional view of the second conductive region in Figure 1.
如图1所示,导电膜100可以包括基膜110(图1中未示出,如图3和图4中示出)和导电层120。导电层120覆盖于基膜110上。导电层120包括第一导电区域121和第二导电区域122。其中,第一导电区域121由导电层120经黄光蚀刻成导电网格结构形成,导电网格结构可以包括多个镂空格1211和导电网格线1212(如图2所示)第二导电区域122环绕第一导电区域121设置。第二导电区域122与导电网格线1212相连通,以实现信号(例如,电信号)的传输。第一导电区域121的面电阻大于第二导电区域122的面电阻。As shown in FIG. 1 , the conductive film 100 may include a base film 110 (not shown in FIG. 1 , as shown in FIG. 3 and FIG. 4 ) and a conductive layer 120. The conductive layer 120 covers the base film 110. The conductive layer 120 includes a first conductive region 121 and a second conductive region 122. Among them, the first conductive region 121 is formed by etching the conductive layer 120 into a conductive grid structure by yellow light, and the conductive grid structure may include a plurality of hollow spaces 1211 and conductive grid lines 1212 (as shown in FIG. 2 ). The second conductive region 122 is arranged around the first conductive region 121. The second conductive region 122 is connected to the conductive grid line 1212 to realize the transmission of signals (e.g., electrical signals). The surface resistance of the first conductive region 121 is greater than the surface resistance of the second conductive region 122.
第一导电区域121用于在触控电极上形成触控图形,第二导电区域122用于在触控电极上形成引线,第二导电区域122的面电阻较第一导电区域121的面电阻更小,可以保证第二导电区域122的导电性能比第一导电区域121好,以实现信号的传输。而第一导电区域121则由于导电层120被黄光蚀刻呈导电网格结构而导致面电阻较大,但是这意味着第一导电区域121的透光率增大,形成触控图形时可以使得触控电极获得较优的光学透光性和外观。需要说明的是,第一导电区域121是导电层120上经过黄光蚀刻的区域,而第二导电区域122是导电层120上没有经过黄光蚀刻的区域。The first conductive region 121 is used to form a touch pattern on the touch electrode, and the second conductive region 122 is used to form a lead on the touch electrode. The surface resistance of the second conductive region 122 is smaller than that of the first conductive region 121, which can ensure that the conductivity of the second conductive region 122 is better than that of the first conductive region 121 to achieve signal transmission. The first conductive region 121 has a larger surface resistance because the conductive layer 120 is etched by yellow light to form a conductive grid structure, but this means that the transmittance of the first conductive region 121 is increased, and when the touch pattern is formed, the touch electrode can obtain better optical transmittance and appearance. It should be noted that the first conductive region 121 is an area on the conductive layer 120 that has been etched by yellow light, and the second conductive region 122 is an area on the conductive layer 120 that has not been etched by yellow light.
导电层120覆盖于基膜110上可以理解为导电层120覆盖在基膜110的一侧表面上。例如,导电层120可以覆盖在基膜110的上方。在本说明书中,上方可以是指当导电膜100用于触控电极时朝向触控电极外侧的一方。The conductive layer 120 covers the base film 110, which can be understood as the conductive layer 120 covers one side of the base film 110. For example, the conductive layer 120 can cover the top of the base film 110. In this specification, the top can refer to the side facing the outside of the touch electrode when the conductive film 100 is used for the touch electrode.
在一些实施例中,基膜110的材质可以包括聚酯、环烯烃聚合物(Cyclo OlefinPlymer,COP)、无色聚酰亚胺(Colorless Polyimide,CPI)、聚丙烯(Polypropylene,PP)、聚乙烯(Polyethylene,PE)、三醋酸纤维素(Tri-cellulose Acetate,TCA)、聚(对苯二甲酸乙二醇酯-1,4-环己二烯二亚甲基对苯二甲酸酯)(Poly(ethylene terephthalateco-1,4-cylclohexylenedimethylene terephthalate),PETG)、热塑性聚氨酯(ThermoplasticUrethane,TPU)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚碳酸酯(Polycarbonate,PC)中的一种或多种的组合。In some embodiments, the material of the base film 110 may include one or more combinations of polyester, cycloolefin polymer (COP), colorless polyimide (CPI), polypropylene (PP), polyethylene (PE), triacetate (TCA), poly(ethylene terephthalateco-1,4-cylclohexylenedimethylene terephthalate) (PETG), thermoplastic polyurethane (TPU), polyvinyl alcohol (PVA), and polycarbonate (PC).
在一些实施例中,聚酯可以包括但不限于聚对苯二甲酸乙二醇酯(Polyethyleneterephthalate,PET)。In some embodiments, the polyester may include, but is not limited to, polyethylene terephthalate (PET).
在一些实施例中,基膜110可以包括经处理后的基膜。在一些实施例中,处理可以包括增透处理、减反处理、加硬处理或防眩处理中的至少一种。在一些实施例中,增透处理、减反处理、加硬处理或防眩处理中的至少一种可以通过涂布实现。In some embodiments, the base film 110 may include a treated base film. In some embodiments, the treatment may include at least one of an anti-reflection treatment, an anti-reflection treatment, a hardening treatment, or an anti-glare treatment. In some embodiments, at least one of the anti-reflection treatment, the anti-reflection treatment, the hardening treatment, or the anti-glare treatment may be achieved by coating.
在一些实施例中,增透处理可以增加基膜的透光性。In some embodiments, the anti-reflection treatment can increase the light transmittance of the base film.
在一些实施例中,减反处理可以减少基膜对光的反射,以进一步增加基膜的透光性。In some embodiments, the anti-reflection treatment can reduce the reflection of light by the base film to further increase the light transmittance of the base film.
在一些实施例中,加硬处理可以增加基膜的硬度。例如,加硬处理可以使基膜的表面硬度达3H以上。In some embodiments, the hardening treatment can increase the hardness of the base film. For example, the hardening treatment can increase the surface hardness of the base film to 3H or more.
在一些实施例中,防眩处理可以使膜材表面变为哑光的漫反射表面,从而减少外界光线对人眼的干扰。In some embodiments, the anti-glare treatment can transform the surface of the film material into a matte diffuse reflection surface, thereby reducing the interference of external light to the human eye.
在一些实施例中,基膜的厚度可以为13μm-300μm。在一些实施例中,基膜的厚度可以为30μm-280μm。在一些实施例中,基膜的厚度可以为50μm-250μm。在一些实施例中,基膜的厚度可以为70μm-230μm。在一些实施例中,基膜的厚度可以为90μm-200μm。在一些实施例中,基膜的厚度可以为110μm-180μm。在一些实施例中,基膜的厚度可以为130μm-150μm。在一些实施例中,基膜的厚度可以为20μm、40μm、60μm、80μm、100μm、120μm、140μm、160μm、180μm、200μm、220μm、240μm、260μm、280μm或300μm等。In some embodiments, the thickness of the base film may be 13 μm-300 μm. In some embodiments, the thickness of the base film may be 30 μm-280 μm. In some embodiments, the thickness of the base film may be 50 μm-250 μm. In some embodiments, the thickness of the base film may be 70 μm-230 μm. In some embodiments, the thickness of the base film may be 90 μm-200 μm. In some embodiments, the thickness of the base film may be 110 μm-180 μm. In some embodiments, the thickness of the base film may be 130 μm-150 μm. In some embodiments, the thickness of the base film may be 20 μm, 40 μm, 60 μm, 80 μm, 100 μm, 120 μm, 140 μm, 160 μm, 180 μm, 200 μm, 220 μm, 240 μm, 260 μm, 280 μm or 300 μm, etc.
关于第一导电区域121、导电层120及导电网格结构的相关描述可以参见下文以及本说明书其他部分(例如,图2-图4及其相关描述)。在一些实施例中,如图1所示,导电层120上可以具有至少两个第一导电区域121。例如,第一导电区域121的数量可以为2个、3个、4个、6个或9个等。在一些实施例中,第一导电区域121的形状可以为圆形或多边形(例如,三角形、正方形、矩形、菱形、六边形、八边形)等规则图形。在一些实施例中,至少两个第一导电区域121的形状可以相同或不同。在一些实施例中,至少两个第一导电区域121可以阵列排布,以提高导电膜100的利用率。在一些实施例中,阵列排布可以包括但不限于矩形阵列(简称“矩阵”)排布、圆形阵列排布等。在一些实施例中,矩阵可以表示为m(行)*n(列),其中,m与n均为大于等于1的整数。例如,4个第一导电区域121可以排列成1*4矩阵或2*2矩阵。又例如,8个第一导电区域121可以排列成1*8矩阵,或2*4矩阵,或4*2矩阵,或8*1矩阵。又例如,如图1所示,9个第一导电区域121可以排列成3*3矩阵。在一些实施例中,至少两个第一导电区域121也可以无规则排布。For the relevant description of the first conductive region 121, the conductive layer 120 and the conductive grid structure, please refer to the following and other parts of this specification (for example, Figures 2-4 and their related descriptions). In some embodiments, as shown in Figure 1, there may be at least two first conductive regions 121 on the conductive layer 120. For example, the number of the first conductive regions 121 may be 2, 3, 4, 6 or 9, etc. In some embodiments, the shape of the first conductive region 121 may be a regular shape such as a circle or a polygon (for example, a triangle, a square, a rectangle, a rhombus, a hexagon, an octagon). In some embodiments, the shapes of at least two first conductive regions 121 may be the same or different. In some embodiments, at least two first conductive regions 121 may be arranged in an array to improve the utilization rate of the conductive film 100. In some embodiments, the array arrangement may include but is not limited to a rectangular array (referred to as a "matrix") arrangement, a circular array arrangement, etc. In some embodiments, the matrix may be expressed as m (row) * n (column), where m and n are both integers greater than or equal to 1. For example, the four first conductive regions 121 may be arranged in a 1*4 matrix or a 2*2 matrix. For another example, eight first conductive regions 121 may be arranged in a 1*8 matrix, or a 2*4 matrix, or a 4*2 matrix, or an 8*1 matrix. For another example, as shown in FIG1 , nine first conductive regions 121 may be arranged in a 3*3 matrix. In some embodiments, at least two first conductive regions 121 may also be arranged irregularly.
在一些实施例中,第一导电区域121的尺寸可以为1英寸-21.5英寸。在一些实施例中,第一导电区域121的尺寸可以为2英寸-21英寸。在一些实施例中,第一导电区域121的尺寸可以为3英寸-20英寸。在一些实施例中,第一导电区域121的尺寸可以为4英寸-19英寸。在一些实施例中,第一导电区域121的尺寸可以为5英寸-18英寸。在一些实施例中,第一导电区域121的尺寸可以为6英寸-17英寸。在一些实施例中,第一导电区域121的尺寸可以为7英寸-16英寸。在一些实施例中,第一导电区域121的尺寸可以为8英寸-15英寸。在一些实施例中,第一导电区域121的尺寸可以为9英寸-14英寸。在一些实施例中,第一导电区域121的尺寸可以为10英寸-13英寸。在一些实施例中,第一导电区域121的尺寸可以为11英寸-12英寸。在一些实施例中,第一导电区域121的尺寸可以为1英寸、3.5英寸、5英寸、5.5英寸、8.9英寸、10.1英寸、13.4英寸、14英寸、15.6英寸、17英寸或21.5英寸等。In some embodiments, the size of the first conductive region 121 may be between 1 inch and 21.5 inches. In some embodiments, the size of the first conductive region 121 may be between 2 inches and 21 inches. In some embodiments, the size of the first conductive region 121 may be between 3 inches and 20 inches. In some embodiments, the size of the first conductive region 121 may be between 4 inches and 19 inches. In some embodiments, the size of the first conductive region 121 may be between 5 inches and 18 inches. In some embodiments, the size of the first conductive region 121 may be between 6 inches and 17 inches. In some embodiments, the size of the first conductive region 121 may be between 7 inches and 16 inches. In some embodiments, the size of the first conductive region 121 may be between 8 inches and 15 inches. In some embodiments, the size of the first conductive region 121 may be between 9 inches and 14 inches. In some embodiments, the size of the first conductive region 121 may be between 10 inches and 13 inches. In some embodiments, the size of the first conductive region 121 may be between 11 inches and 12 inches. In some embodiments, the size of the first conductive region 121 may be 1 inch, 3.5 inches, 5 inches, 5.5 inches, 8.9 inches, 10.1 inches, 13.4 inches, 14 inches, 15.6 inches, 17 inches, 21.5 inches, etc.
在一些实施例中,至少两个第一导电区域121的性能可以相同或不同。在一些实施例中,性能可以包括但不限于尺寸、面电阻、可见光透光率、雾度。In some embodiments, the properties of the at least two first conductive regions 121 may be the same or different. In some embodiments, the properties may include but are not limited to size, sheet resistance, visible light transmittance, and haze.
在一些实施例中,第一导电区域121可以由导电层120经黄光蚀刻成导电网格结构形成。在一些实施例中,黄光蚀刻可以包括但不限于氧化腐蚀、酸腐蚀中的至少一种。例如,黄光蚀刻可以包括氧化腐蚀与酸腐蚀。在一些实施例中,蚀刻液可以包括但不限于盐酸-硝酸体系、氯化铁体系、硝酸铁体系、硝酸铁-硝酸体系和磷酸-硝酸-醋酸体系。In some embodiments, the first conductive region 121 may be formed by etching the conductive layer 120 into a conductive grid structure. In some embodiments, the photoetching may include but is not limited to at least one of oxidative corrosion and acid corrosion. For example, the photoetching may include oxidative corrosion and acid corrosion. In some embodiments, the etching solution may include but is not limited to a hydrochloric acid-nitric acid system, a ferric chloride system, a ferric nitrate system, a ferric nitrate-nitric acid system, and a phosphoric acid-nitric acid-acetic acid system.
导电层120上未经黄光蚀刻的区域为第二导电区域122。在一些实施例中,如图1所示,第二导电区域122可以环绕第一导电区域121设置,这样可以方便在第一导电区域121上制备触控电极的触控图形,以及在第二导电区域122上制备触控电极的引线,以形成触控电极。在一些实施例中,相邻两个第一导电区域121之间可以设有第二导电区域122,以方便将导电膜100上的每个第一导电区域121及环绕每个第一导电区域121设置的第二导电区域122制备为一个触控电极。The area on the conductive layer 120 that has not been photoetched is the second conductive area 122. In some embodiments, as shown in FIG1 , the second conductive area 122 may be arranged around the first conductive area 121, so that it is convenient to prepare the touch pattern of the touch electrode on the first conductive area 121, and to prepare the lead of the touch electrode on the second conductive area 122 to form the touch electrode. In some embodiments, the second conductive area 122 may be arranged between two adjacent first conductive areas 121, so that each first conductive area 121 on the conductive film 100 and the second conductive area 122 arranged around each first conductive area 121 are conveniently prepared as a touch electrode.
在一些实施例中,任意两个第一导电区域121不相交,且相邻的两个第一导电区域121之间具有间距。在一些实施例中,相邻的两个第一导电区域121之间的最小间距(如图1中d所示)可以理解为相邻的两个第一导电区域121之间最小的间隔距离。相邻的两个第一导电区域121之间的间距会影响导电膜100的利用率和后续触控电极的制作。例如,相邻的两个第一导电区域121之间的间距太小,会导致触控电极的引线制作困难,或甚至无法在该间距内制作两条引线,导致无法制备两个触控电极,进一步导致导电膜100的利用率较低。又例如,相邻的两个第一导电区域121之间的间距太大,会产生浪费,也会导致导电膜100的利用率较低。In some embodiments, any two first conductive regions 121 do not intersect, and there is a spacing between two adjacent first conductive regions 121. In some embodiments, the minimum spacing between two adjacent first conductive regions 121 (as shown in d in FIG. 1) can be understood as the minimum spacing distance between two adjacent first conductive regions 121. The spacing between two adjacent first conductive regions 121 will affect the utilization rate of the conductive film 100 and the subsequent production of touch electrodes. For example, if the spacing between two adjacent first conductive regions 121 is too small, it will make it difficult to make the leads of the touch electrodes, or even it will be impossible to make two leads within the spacing, resulting in the inability to prepare two touch electrodes, further resulting in a low utilization rate of the conductive film 100. For another example, if the spacing between two adjacent first conductive regions 121 is too large, waste will occur, and the utilization rate of the conductive film 100 will also be low.
在一些实施例中,为了提高导电膜100的利用率且方便后续制备触控电极(或引线),相邻的两个第一导电区域121之间的最小间距为200mm-350mm。在一些实施例中,相邻的两个第一导电区域121之间的最小间距可以为220mm-330mm。在一些实施例中,相邻的两个第一导电区域121之间的最小间距可以为240mm-310mm。在一些实施例中,相邻的两个第一导电区域121之间的最小间距可以为260mm-290mm。在一些实施例中,相邻的两个第一导电区域121之间的最小间距可以为200mm-330mm。在一些实施例中,相邻的两个第一导电区域121之间的最小间距可以为200mm-300mm。在一些实施例中,相邻的两个第一导电区域121之间的最小间距可以为200mm-250mm。In some embodiments, in order to improve the utilization rate of the conductive film 100 and facilitate the subsequent preparation of touch electrodes (or leads), the minimum spacing between two adjacent first conductive regions 121 is 200mm-350mm. In some embodiments, the minimum spacing between two adjacent first conductive regions 121 may be 220mm-330mm. In some embodiments, the minimum spacing between two adjacent first conductive regions 121 may be 240mm-310mm. In some embodiments, the minimum spacing between two adjacent first conductive regions 121 may be 260mm-290mm. In some embodiments, the minimum spacing between two adjacent first conductive regions 121 may be 200mm-330mm. In some embodiments, the minimum spacing between two adjacent first conductive regions 121 may be 200mm-300mm. In some embodiments, the minimum spacing between two adjacent first conductive regions 121 may be 200mm-250mm.
在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于5。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于10。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于15。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于20。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于25。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于30。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于35。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于40。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于45。在一些实施例中,第一导电区域121的面电阻与第二导电区域122的面电阻的比值可以不小于50。In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be not less than 5. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be not less than 10. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be not less than 15. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be not less than 20. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be not less than 25. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be not less than 30. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be not less than 35. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be not less than 40. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be no less than 45. In some embodiments, the ratio of the sheet resistance of the first conductive region 121 to the sheet resistance of the second conductive region 122 may be no less than 50.
在一些实施例中,第一导电区域121的面电阻可以为5Ω/□-150Ω/□。在一些实施例中,第一导电区域121的面电阻可以为10Ω/□-140Ω/□。在一些实施例中,第一导电区域121的面电阻可以为15Ω/□-130Ω/□。在一些实施例中,第一导电区域121的面电阻可以为20Ω/□-120Ω/□。在一些实施例中,第一导电区域121的面电阻可以为25Ω/□-110Ω/□。在一些实施例中,第一导电区域121的面电阻可以为30Ω/□-100Ω/□。在一些实施例中,第一导电区域121的面电阻可以为35Ω/□-90Ω/□。在一些实施例中,第一导电区域121的面电阻可以为40Ω/□-80Ω/□。在一些实施例中,第一导电区域121的面电阻可以为45Ω/□-70Ω/□。在一些实施例中,第一导电区域121的面电阻可以为50Ω/□-60Ω/□。在一些实施例中,第一导电区域121的面电阻可以为5Ω/□、20Ω/□、50Ω/□、80Ω/□、100Ω/□、120Ω/□或150Ω/□等。In some embodiments, the surface resistance of the first conductive region 121 may be 5Ω/□-150Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 10Ω/□-140Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 15Ω/□-130Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 20Ω/□-120Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 25Ω/□-110Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 30Ω/□-100Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 35Ω/□-90Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 40Ω/□-80Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 45Ω/□-70Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 50Ω/□-60Ω/□. In some embodiments, the surface resistance of the first conductive region 121 may be 5Ω/□, 20Ω/□, 50Ω/□, 80Ω/□, 100Ω/□, 120Ω/□, or 150Ω/□, etc.
在一些实施例中,第二导电区域122的面电阻可以为0.1Ω/□-10Ω/□。在一些实施例中,第二导电区域122的面电阻可以为0.5Ω/□-9Ω/□。在一些实施例中,第二导电区域122的面电阻可以为1Ω/□-8Ω/□。在一些实施例中,第二导电区域122的面电阻可以为1.5Ω/□-7Ω/□。在一些实施例中,第二导电区域122的面电阻可以为2Ω/□-6Ω/□。在一些实施例中,第二导电区域122的面电阻可以为2.5Ω/□-5Ω/□。在一些实施例中,第二导电区域122的面电阻可以为3Ω/□-4Ω/□。在一些实施例中,第二导电区域122的面电阻可以为0.1Ω/□、1Ω/□、2Ω/□、5Ω/□、8Ω/□或10Ω/□等。In some embodiments, the surface resistance of the second conductive region 122 may be 0.1Ω/□-10Ω/□. In some embodiments, the surface resistance of the second conductive region 122 may be 0.5Ω/□-9Ω/□. In some embodiments, the surface resistance of the second conductive region 122 may be 1Ω/□-8Ω/□. In some embodiments, the surface resistance of the second conductive region 122 may be 1.5Ω/□-7Ω/□. In some embodiments, the surface resistance of the second conductive region 122 may be 2Ω/□-6Ω/□. In some embodiments, the surface resistance of the second conductive region 122 may be 2.5Ω/□-5Ω/□. In some embodiments, the surface resistance of the second conductive region 122 may be 3Ω/□-4Ω/□. In some embodiments, the surface resistance of the second conductive region 122 may be 0.1Ω/□, 1Ω/□, 2Ω/□, 5Ω/□, 8Ω/□, or 10Ω/□, etc.
通过设置第一导电区域121的面电阻与第二导电区域122的面电阻的比值不小于5,使得第二导电区域122的导电性能明显优于第一导电区域121的导电性能,第二导电区域122可以在后续工艺中用于形成引线。而设置第一导电区域121的面电阻可以为5Ω/□-150Ω/□,第二导电区域122的面电阻可以为0.1Ω/□-10Ω/□,对于触控电极来说,在满足触控图形信号传输的条件下,触控图形区域的透光率越高越好、雾度越低越好,而触控电极引线区域对光学性能没有要求,但导电性越高越好。所以第一导电区域121在保证触控图形信号传输的前提下,可以尽可能的设计镂空网格来提高第一导电区域121的光学性能。By setting the ratio of the surface resistance of the first conductive region 121 to the surface resistance of the second conductive region 122 to be not less than 5, the conductivity of the second conductive region 122 is significantly better than that of the first conductive region 121, and the second conductive region 122 can be used to form leads in subsequent processes. The surface resistance of the first conductive region 121 can be set to 5Ω/□-150Ω/□, and the surface resistance of the second conductive region 122 can be set to 0.1Ω/□-10Ω/□. For the touch electrode, under the condition of satisfying the transmission of the touch graphic signal, the higher the transmittance of the touch graphic region, the better, and the lower the haze, the better, while the touch electrode lead region has no requirements for optical performance, but the higher the conductivity, the better. Therefore, under the premise of ensuring the transmission of the touch graphic signal, the first conductive region 121 can be designed with a hollow grid as much as possible to improve the optical performance of the first conductive region 121.
在一些实施例中,第一导电区域121的可见光透光率大于第二导电区域122的可见光透光率。黄光蚀刻可以增大第一导电区域121的可见光透光率,通过将第一导电区域121的可见光透光率设置得更大,可以保证第一导电区域121后续形成触控图形的功能。而未经黄光蚀刻的第二导电区域122的可见光透光率较小,但是这意味着导电层120的导电性能没有被影响,可以保证第二导电区域122具有良好的导电性能。In some embodiments, the visible light transmittance of the first conductive region 121 is greater than the visible light transmittance of the second conductive region 122. Yellow light etching can increase the visible light transmittance of the first conductive region 121. By setting the visible light transmittance of the first conductive region 121 to be larger, the function of the first conductive region 121 to form a touch pattern later can be ensured. The visible light transmittance of the second conductive region 122 that has not been yellow light etched is relatively small, but this means that the conductive performance of the conductive layer 120 is not affected, and the second conductive region 122 can be ensured to have good conductive performance.
在一些实施例中,第一导电区域121的可见光透光率可以为80%-92%。在一些实施例中,第一导电区域121的可见光透光率可以为80%-90%。在一些实施例中,第一导电区域121的可见光透光率可以为83%-88%。在一些实施例中,第一导电区域121的可见光透光率可以为84%-86%。在一些实施例中,第一导电区域121的可见光透光率可以为、80%、85%、90%或92%。In some embodiments, the visible light transmittance of the first conductive region 121 may be 80%-92%. In some embodiments, the visible light transmittance of the first conductive region 121 may be 80%-90%. In some embodiments, the visible light transmittance of the first conductive region 121 may be 83%-88%. In some embodiments, the visible light transmittance of the first conductive region 121 may be 84%-86%. In some embodiments, the visible light transmittance of the first conductive region 121 may be 80%, 85%, 90%, or 92%.
在一些实施例中,第二导电区域122的可见光透光率可以为20%-85%。在一些实施例中,第二导电区域122的可见光透光率可以为30%-80%。在一些实施例中,第二导电区域122的可见光透光率可以为40%-75%。在一些实施例中,第二导电区域122的可见光透光率可以为50%-70%。在一些实施例中,第二导电区域122的可见光透光率可以为60%-65%。在一些实施例中,第二导电区域122的可见光透光率可以为20%、30%、40%、50%、60%、70%或80%。In some embodiments, the visible light transmittance of the second conductive region 122 may be 20%-85%. In some embodiments, the visible light transmittance of the second conductive region 122 may be 30%-80%. In some embodiments, the visible light transmittance of the second conductive region 122 may be 40%-75%. In some embodiments, the visible light transmittance of the second conductive region 122 may be 50%-70%. In some embodiments, the visible light transmittance of the second conductive region 122 may be 60%-65%. In some embodiments, the visible light transmittance of the second conductive region 122 may be 20%, 30%, 40%, 50%, 60%, 70% or 80%.
通过设置第一导电区域121的可见光透光率可以为80%-92%,第二导电区域122的可见光透光率可以为20%-85%,第一导电区域121的可见光透光率设置可以保证触控电极区域对透光率的基本需求,而用于导电的第二导电区域122也能够透过可见光,使得第二导电区域122镂空得到第一导电区域121内部的导电网格线1212也可以透过可见光,因而避免了传统实心(不透光)导电网格线在后期具体应用中出现莫尔纹或散点的外观问题,同时增加了第一导电区域121的透光率,光学性能得到提升。By setting the visible light transmittance of the first conductive region 121 to 80%-92% and the visible light transmittance of the second conductive region 122 to 20%-85%, the visible light transmittance setting of the first conductive region 121 can ensure the basic transmittance requirement of the touch electrode region, and the second conductive region 122 used for conduction can also transmit visible light, so that the conductive grid lines 1212 inside the first conductive region 121 obtained by hollowing out the second conductive region 122 can also transmit visible light, thereby avoiding the appearance problem of moiré or scattered points of traditional solid (opaque) conductive grid lines in later specific applications, while increasing the transmittance of the first conductive region 121, and improving the optical performance.
如图2和图3所示,镂空格1211为通过黄光蚀刻将导电层120蚀刻后形成。未经黄光蚀刻的导电层120为导电网格线1212。As shown in FIG2 and FIG3 , the hollow spaces 1211 are formed by etching the conductive layer 120 by photolithography. The conductive layer 120 that has not been photolithography is the conductive grid lines 1212 .
多个镂空格1211的面积总和与第一导电区域121的面积之比S会影响第一导电区域121的导电性和光学性能。例如,多个镂空格1211的面积总和与第一导电区域121的面积之比S太小,会导致第一导电区域121的光学性能较差(例如,透光率较低、雾度较高)。又例如,多个镂空格1211的面积总和与第一导电区域121的面积之比S太大,会导致第一导电区域121的导电性较差。因此,在一些实施例中,为了提高第一导电区域121的光学性能和导电性,多个镂空格1211的面积总和与第一导电区域121的面积之比S需满足预设要求。The ratio S of the sum of the areas of the plurality of hollow spaces 1211 to the area of the first conductive region 121 may affect the conductivity and optical properties of the first conductive region 121. For example, if the ratio S of the sum of the areas of the plurality of hollow spaces 1211 to the area of the first conductive region 121 is too small, the optical properties of the first conductive region 121 may be poor (e.g., low light transmittance and high haze). For another example, if the ratio S of the sum of the areas of the plurality of hollow spaces 1211 to the area of the first conductive region 121 is too large, the conductivity of the first conductive region 121 may be poor. Therefore, in some embodiments, in order to improve the optical properties and conductivity of the first conductive region 121, the ratio S of the sum of the areas of the plurality of hollow spaces 1211 to the area of the first conductive region 121 may meet a preset requirement.
在一些实施例中,多个镂空格1211的面积总和与第一导电区域121的面积之比S可以大于等于60%且小于等于97%。In some embodiments, a ratio S of the sum of the areas of the plurality of hollow spaces 1211 to the area of the first conductive region 121 may be greater than or equal to 60% and less than or equal to 97%.
导电网格线1212可以用于构建触控图形电极的超精细感应电路通道。在一些实施例中,导电网格线1212是多条相互搭接的纳米金属线构成的导电通道。在一些实施例中,导电网格线1212可以呈直线形、曲线型、波浪线形等。在一些实施例中,通过导电网格线1212形成的网格的形状(也可以理解为镂空格1211的形状)可以为多边形。例如,三角形、菱形(如图2所示)、正方形、矩形等。在另一些实施例中,通过导电网格线1212形成的网格的形状(也可以理解为镂空格1211的形状)可以为椭圆形、圆形或不规则形状。在一些实施例中,通过导电网格线1212形成的网格(也可以理解为镂空格1211)可以是阵列排布的。在一些实施例中,导电网格线1212可以形成一种或多种形状的网格。例如,圆形与多边形的任意组合。Conductive grid lines 1212 can be used to construct ultra-fine sensing circuit channels of touch graphic electrodes. In some embodiments, conductive grid lines 1212 are conductive channels composed of multiple overlapping nanometal wires. In some embodiments, conductive grid lines 1212 can be straight, curved, wavy, etc. In some embodiments, the shape of the grid formed by conductive grid lines 1212 (which can also be understood as the shape of hollow spaces 1211) can be polygonal. For example, triangles, rhombuses (as shown in FIG. 2), squares, rectangles, etc. In other embodiments, the shape of the grid formed by conductive grid lines 1212 (which can also be understood as the shape of hollow spaces 1211) can be elliptical, circular, or irregular. In some embodiments, the grid formed by conductive grid lines 1212 (which can also be understood as hollow spaces 1211) can be arranged in an array. In some embodiments, conductive grid lines 1212 can form grids of one or more shapes. For example, any combination of circles and polygons.
在一些实施例中,导电网格线1212的宽度(如图3中w所示)可以为3μm-30μm。在一些实施例中,导电网格线1212的宽度可以为5μm-28μm。在一些实施例中,导电网格线1212的宽度可以为8μm-27μm。在一些实施例中,导电网格线1212的宽度可以为10μm-25μm。在一些实施例中,导电网格线1212的宽度可以为12μm-23μm。在一些实施例中,导电网格线1212的宽度可以为15μm-20μm。在一些实施例中,导电网格线1212的宽度可以为3μm、5μm、10μm、15μm、20μm、25μm或30μm。由于导电网格线1212处也能够透过可见光(例如,透光率大于50%),导电网格线1212的宽度为3μm-30μm范围内时,既可以构建触控图形电极的超精细感应电路通道,又可以降低黄光蚀刻的难度,提升黄光蚀刻的效率。In some embodiments, the width of the conductive grid line 1212 (as shown by w in FIG. 3 ) may be 3 μm-30 μm. In some embodiments, the width of the conductive grid line 1212 may be 5 μm-28 μm. In some embodiments, the width of the conductive grid line 1212 may be 8 μm-27 μm. In some embodiments, the width of the conductive grid line 1212 may be 10 μm-25 μm. In some embodiments, the width of the conductive grid line 1212 may be 12 μm-23 μm. In some embodiments, the width of the conductive grid line 1212 may be 15 μm-20 μm. In some embodiments, the width of the conductive grid line 1212 may be 3 μm, 5 μm, 10 μm, 15 μm, 20 μm, 25 μm, or 30 μm. Since the conductive grid lines 1212 can also transmit visible light (for example, the transmittance is greater than 50%), when the width of the conductive grid lines 1212 is in the range of 3μm-30μm, it can not only construct an ultra-fine sensing circuit channel for the touch graphic electrode, but also reduce the difficulty of yellow light etching and improve the efficiency of yellow light etching.
可以理解地,第二导电区域122的结构与第一导电区域121中未经黄光蚀刻的导电层(即导电网格线1212)的结构相同。图4也可以理解为图3中导电网格线的D-D剖视图。It can be understood that the structure of the second conductive region 122 is the same as the structure of the conductive layer (i.e., the conductive grid line 1212) in the first conductive region 121. FIG4 can also be understood as a D-D cross-sectional view of the conductive grid line in FIG3.
在一些实施例中,未经黄光蚀刻的导电层(例如,如图2和图3中所示的导电网格线1212或如图4中所示的导电层)可以包括导电纳米层123和导电保护层124。镂空格1211可以理解为通过黄光蚀刻将导电纳米层123和导电保护层124蚀刻后形成。In some embodiments, the conductive layer that has not been etched by photolithography (e.g., the conductive grid lines 1212 shown in FIGS. 2 and 3 or the conductive layer shown in FIG. 4 ) may include a conductive nanolayer 123 and a conductive protective layer 124. The hollow space 1211 may be understood to be formed by etching the conductive nanolayer 123 and the conductive protective layer 124 by photolithography.
在一些实施例中,如图3和图4所示,导电纳米层123可以位于导电保护层124下方。在一些实施例中,导电纳米层123与导电保护层124可以混合(也可以理解为不分层)形成未经黄光蚀刻的导电层120。3 and 4, the conductive nanolayer 123 may be located below the conductive protective layer 124. In some embodiments, the conductive nanolayer 123 and the conductive protective layer 124 may be mixed (also understood as not being layered) to form a conductive layer 120 that is not photo-etched.
在一些实施例中,导电纳米层123可以包括纳米金属层或纳米金属线层中的至少一种。在一些实施例中,导电纳米层123包括纳米金属层和纳米金属线层时,纳米金属层可以位于纳米金属线层的上方或下方。在一些实施例中,纳米导电层123的厚度可以为100nm-500nm。在一些实施例中,纳米导电层123的厚度可以为150nm-450nm。在一些实施例中,纳米导电层123的厚度可以为200nm-400nm。在一些实施例中,纳米导电层123的厚度可以为250nm-350nm。In some embodiments, the conductive nano layer 123 may include at least one of a nano metal layer or a nano metal wire layer. In some embodiments, when the conductive nano layer 123 includes a nano metal layer and a nano metal wire layer, the nano metal layer may be located above or below the nano metal wire layer. In some embodiments, the thickness of the nano conductive layer 123 may be 100nm-500nm. In some embodiments, the thickness of the nano conductive layer 123 may be 150nm-450nm. In some embodiments, the thickness of the nano conductive layer 123 may be 200nm-400nm. In some embodiments, the thickness of the nano conductive layer 123 may be 250nm-350nm.
在一些实施例中,纳米金属层可以包括纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米铝、纳米锡、纳米铅或纳米钛中的至少一种。在一些实施例中,纳米金属层可以包括通过磁控溅射纳米金属(例如,纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米铝、纳米锡、纳米铅或纳米钛中的至少一种)制得的膜层结构。纳米金属或其合金对特定波段的光具有吸收作用,因此,纳米金属层不仅可以调节导电纳米层121的色度,还可以增加制得的导电膜100的导电性。在一些实施例中,纳米金属层的厚度可以为3nm-10nm。在一些实施例中,纳米金属层的厚度可以为4nm-9nm。在一些实施例中,纳米金属层的厚度可以为5nm-8nm。在一些实施例中,纳米金属层的厚度可以为6nm-7nm。In some embodiments, the nanometal layer may include at least one of nanogold, nanosilver, nanocopper, nanoplatinum, nanopalladium, nanoaluminum, nanotin, nanolead or nanotitanium. In some embodiments, the nanometal layer may include a film layer structure made by magnetron sputtering nanometal (e.g., at least one of nanogold, nanosilver, nanocopper, nanoplatinum, nanopalladium, nanoaluminum, nanotin, nanolead or nanotitanium). Nanometal or its alloy has an absorption effect on light of a specific wavelength band, so the nanometal layer can not only adjust the chromaticity of the conductive nanolayer 121, but also increase the conductivity of the conductive film 100 obtained. In some embodiments, the thickness of the nanometal layer may be 3nm-10nm. In some embodiments, the thickness of the nanometal layer may be 4nm-9nm. In some embodiments, the thickness of the nanometal layer may be 5nm-8nm. In some embodiments, the thickness of the nanometal layer may be 6nm-7nm.
在一些实施例中,纳米金属线层可以包括纳米银线、纳米金线、纳米铜线、纳米铂线、纳米铝线、纳米钛线或纳米锡线中的至少一种。在一些实施例中,纳米金属线层可以包括通过涂布纳米金属线墨水制得的膜层结构。在一些实施例中,纳米金属线墨水中所含的纳米金属线可以包括纳米银线、纳米金线、纳米铜线、纳米铂线、纳米铝线、纳米钛线或纳米锡线中的至少一种。In some embodiments, the nanometal wire layer may include at least one of nanosilver wires, nanogold wires, nanocopper wires, nanoplatinum wires, nanoaluminum wires, nanotitanium wires, or nanotin wires. In some embodiments, the nanometal wire layer may include a film layer structure prepared by coating nanometal wire ink. In some embodiments, the nanometal wires contained in the nanometal wire ink may include at least one of nanosilver wires, nanogold wires, nanocopper wires, nanoplatinum wires, nanoaluminum wires, nanotitanium wires, or nanotin wires.
导电保护层124可以保护导电纳米层123,以避免其被腐蚀。在一些实施例中,导电保护层124可以包括高分子层、金属氧化物层或石墨烯层中的至少一种。The conductive protection layer 124 can protect the conductive nano-layer 123 from being corroded. In some embodiments, the conductive protection layer 124 can include at least one of a polymer layer, a metal oxide layer, or a graphene layer.
在一些实施例中,高分子层可以包括通过涂布含有高分子的保护液后,经干燥固化得到的膜层结构。在一些实施例中,含有高分子的保护液可以包括但不限于脂肪族聚氨酯丙烯酸酯、芳香族聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯、邻苯二甲酸二烯丙酯、环氧丙烯酸酯和环氧甲基丙烯酸酯的一种或几种。在一些实施例中,导电纳米层123与导电保护层124分层排布(例如,导电纳米层123位于导电保护层124下方)时,高分子层的厚度可以为0.5nm-10nm。在一些实施例中,高分子层的厚度可以为1nm-9nm。在一些实施例中,高分子层的厚度可以为2nm-8nm。在一些实施例中,高分子层的厚度可以为3nm-7nm。在一些实施例中,高分子层的厚度可以为4nm-6nm。在一些实施例中,高分子层的厚度可以为4.5nm-5nm。在一些实施例中,高分子层的厚度可以为0.5nm、1nm、3nm、5nm、7nm、9nm或10nm。In some embodiments, the polymer layer may include a film structure obtained by drying and curing after coating a protective liquid containing a polymer. In some embodiments, the protective liquid containing a polymer may include but is not limited to one or more of aliphatic polyurethane acrylate, aromatic polyurethane acrylate, polyurethane methacrylate, diallyl phthalate, epoxy acrylate and epoxy methacrylate. In some embodiments, when the conductive nano layer 123 and the conductive protective layer 124 are arranged in layers (for example, the conductive nano layer 123 is located below the conductive protective layer 124), the thickness of the polymer layer may be 0.5nm-10nm. In some embodiments, the thickness of the polymer layer may be 1nm-9nm. In some embodiments, the thickness of the polymer layer may be 2nm-8nm. In some embodiments, the thickness of the polymer layer may be 3nm-7nm. In some embodiments, the thickness of the polymer layer may be 4nm-6nm. In some embodiments, the thickness of the polymer layer may be 4.5nm-5nm. In some embodiments, the thickness of the polymer layer may be 0.5nm, 1nm, 3nm, 5nm, 7nm, 9nm or 10nm.
在一些实施例中,金属氧化物层可以包括通过磁控溅射金属氧化物得到的膜层结构。在一些实施例中,金属氧化物可以包括但不限于氧化铟锡(Indium tin oxide,ITO)。在一些实施例中,导电纳米层123与导电保护层124分层排布(例如,导电纳米层123位于导电保护层124下方)时,金属氧化物层的厚度可以为10nm-50nm。在一些实施例中,金属氧化物层的厚度可以为15nm-45nm。在一些实施例中,金属氧化物层的厚度可以为20nm-40nm。在一些实施例中,金属氧化物层的厚度可以为25nm-35nm。在一些实施例中,金属氧化物层的厚度可以为28nm-30nm。在一些实施例中,金属氧化物层的厚度可以为10nm、20nm、30nm、40nm或50nm。In some embodiments, the metal oxide layer may include a film structure obtained by magnetron sputtering metal oxide. In some embodiments, the metal oxide may include but is not limited to indium tin oxide (ITO). In some embodiments, when the conductive nano layer 123 and the conductive protective layer 124 are arranged in layers (for example, the conductive nano layer 123 is located below the conductive protective layer 124), the thickness of the metal oxide layer may be 10nm-50nm. In some embodiments, the thickness of the metal oxide layer may be 15nm-45nm. In some embodiments, the thickness of the metal oxide layer may be 20nm-40nm. In some embodiments, the thickness of the metal oxide layer may be 25nm-35nm. In some embodiments, the thickness of the metal oxide layer may be 28nm-30nm. In some embodiments, the thickness of the metal oxide layer may be 10nm, 20nm, 30nm, 40nm or 50nm.
本说明书实施例中,针对不同的导电保护层124(例如,高分子层或金属氧化物层),可以设置不同的导电保护层124的厚度,不仅可以提高制得的导电膜100的耐候性,还可以降低黄光蚀刻的难度,提高黄光蚀刻的效率。In the embodiments of this specification, different thicknesses of the conductive protective layer 124 can be set for different conductive protective layers 124 (for example, a polymer layer or a metal oxide layer), which can not only improve the weather resistance of the conductive film 100 obtained, but also reduce the difficulty of yellow light etching and improve the efficiency of yellow light etching.
通过使用黄光蚀刻来蚀导电层120,黄光蚀刻能够将导电纳米层和导电保护层124更有效地蚀刻掉,这样可以使得导电膜的第一导电区域具有优异的光学性能(例如,较高的透光率、较低的雾度)。By using yellow light etching to etch the conductive layer 120, the yellow light etching can more effectively etch away the conductive nanolayer and the conductive protective layer 124, so that the first conductive region of the conductive film can have excellent optical properties (eg, higher light transmittance, lower haze).
应当注意的是,上述有关导电膜的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对导电膜进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。It should be noted that the above description of the conductive film is only for illustration and explanation, and does not limit the scope of application of the present application. For those skilled in the art, various modifications and changes can be made to the conductive film under the guidance of the present application. However, these modifications and changes are still within the scope of the present application.
本说明书实施例之一提供一种导电膜的制备方法。该方法可以包括以下步骤:One of the embodiments of this specification provides a method for preparing a conductive film. The method may include the following steps:
步骤S1,在基膜上制备导电层。Step S1, preparing a conductive layer on a base film.
在一些实施例中,导电层可以包括导电纳米层。导电纳米层可以包括纳米金属层或纳米金属线层中的至少一种。In some embodiments, the conductive layer may include a conductive nanolayer. The conductive nanolayer may include at least one of a nanometal layer or a nanometal wire layer.
在一些实施例中,可以通过磁控溅射纳米金属,以形成纳米金属层。在一些实施例中,可以通过涂布纳米金属线墨水以形成纳米金属线层。例如,可以采用卷对卷涂布的方式将纳米金属线墨水涂布在基膜(例如,PET基膜,CPI基膜)上,以制得纳米金属线层。纳米金属线墨水的固含量可以理解为纳米金属线墨水中纳米金属线的质量分数。在一些实施例中,纳米金属线墨水的固含量可以为0.08%~1.0%。在一些实施例中,纳米金属线的直径可以为10nm~50nm。在一些实施例中,纳米金属线的长度可以为10μm~40μm。In some embodiments, nanometal can be formed by magnetron sputtering nanometal. In some embodiments, a nanometal wire layer can be formed by coating nanometal wire ink. For example, the nanometal wire ink can be coated on a base film (e.g., a PET base film, a CPI base film) by roll-to-roll coating to obtain a nanometal wire layer. The solid content of the nanometal wire ink can be understood as the mass fraction of the nanometal wires in the nanometal wire ink. In some embodiments, the solid content of the nanometal wire ink can be 0.08% to 1.0%. In some embodiments, the diameter of the nanometal wire can be 10nm to 50nm. In some embodiments, the length of the nanometal wire can be 10μm to 40μm.
在一些实施例中,导电层还可以包括导电保护层。在一些实施例中,导电保护层可以包括高分子层、金属氧化物层或石墨烯层中的至少一种。在一些实施例中,制备导电保护层可以包括在导电纳米层上涂布含有高分子的保护液,经干燥后得到高分子层。在一些实施例中,制备导电保护层可以包括在导电纳米层上通过磁控溅射金属氧化物,形成金属氧化物层。在一些实施例中,制备导电保护层可以包括在导电纳米层上通过涂布氧化石墨烯溶液,经干燥和还原得到石墨烯层。In some embodiments, the conductive layer may further include a conductive protective layer. In some embodiments, the conductive protective layer may include at least one of a polymer layer, a metal oxide layer, or a graphene layer. In some embodiments, preparing the conductive protective layer may include coating a protective liquid containing a polymer on the conductive nanolayer, and obtaining a polymer layer after drying. In some embodiments, preparing the conductive protective layer may include forming a metal oxide layer by magnetron sputtering a metal oxide on the conductive nanolayer. In some embodiments, preparing the conductive protective layer may include coating a graphene oxide solution on the conductive nanolayer, and obtaining a graphene layer after drying and reduction.
在一些实施例中,导电纳米层和导电保护层不分层时,在基膜上制备导电层可以包括将纳米金属线墨水和保护液混合后,涂布在基膜上。In some embodiments, when the conductive nanolayer and the conductive protective layer are not separated into layers, preparing the conductive layer on the base film may include mixing nanometal wire ink and protective liquid and coating the mixture on the base film.
在一些实施例中,导电纳米层和导电保护层分层时,在基膜上制备导电层可以包括在基膜上制备纳米金属线层以及在纳米金属线层上制备导电保护层。In some embodiments, when the conductive nanolayer and the conductive protective layer are layered, preparing the conductive layer on the base film may include preparing a nanometal wire layer on the base film and preparing the conductive protective layer on the nanometal wire layer.
步骤S2,黄光蚀刻导电层,制得导电膜,其中,导电层上包括经过黄光蚀刻形成导电网格结构的第一导电区域,以及未经黄光蚀刻的第二导电区域,第二导电区域环绕第一导电区域。Step S2, photo-etching the conductive layer to obtain a conductive film, wherein the conductive layer includes a first conductive region that is photo-etched to form a conductive grid structure, and a second conductive region that is not photo-etched, and the second conductive region surrounds the first conductive region.
在一些实施例中,在步骤S2中,可以在黄光环境下,在基膜与未经黄光蚀刻的导电层上方涂布光刻胶(例如,通过卷对卷装置),并使得光刻胶干燥而得到膜材。在一些实施例中,干燥后光刻胶厚度为1.2μm-1.8μm。在一些实施例中,还可以在导电层上压预设厚度(例如,10μm~30μm)的负性感光干膜材。膜材在存储、转移或运输过程中注意避光。在一些实施例中,将涂布有光刻胶的膜材通过曝光转移菲林上的图案,可以包括连续曝光或片材式曝光。其中,菲林上的图案可以为多边形网格图像(例如,正方形网格图案、菱形网格图案等)。菲林上的图案与导电网格结构所形成的图案相匹配。In some embodiments, in step S2, a photoresist can be coated on the base film and the conductive layer that has not been etched by yellow light (for example, by a roll-to-roll device) under a yellow light environment, and the photoresist is dried to obtain a film material. In some embodiments, the thickness of the photoresist after drying is 1.2μm-1.8μm. In some embodiments, a negative photosensitive dry film material of a preset thickness (for example, 10μm to 30μm) can also be pressed on the conductive layer. The film material should be protected from light during storage, transfer or transportation. In some embodiments, the film material coated with photoresist is transferred by exposure to a pattern on the film, which may include continuous exposure or sheet exposure. Among them, the pattern on the film can be a polygonal grid image (for example, a square grid pattern, a diamond grid pattern, etc.). The pattern on the film matches the pattern formed by the conductive grid structure.
在一些实施例中,可以在DES(DES是显影(developing)、蚀刻(etching)、退膜(stripping)的缩写)线上将已曝光好的膜材用显影液显影,得到网格图案,再将显影后的膜材转移至烘箱烘干。在一些实施例中,显影液可以为0.8wt%-0.9wt%的KOH显影液,或0.7~1.2wt%的碳酸钠溶液。在一些实施例中,烘箱的烘烤温度可以为80℃~120℃。在一些实施例中,烘箱的烘烤时间可以为60s~300s。In some embodiments, the exposed film material can be developed with a developer on a DES (DES is the abbreviation of developing, etching, and stripping) line to obtain a grid pattern, and then the developed film material is transferred to an oven for drying. In some embodiments, the developer can be a 0.8wt%-0.9wt% KOH developer, or a 0.7-1.2wt% sodium carbonate solution. In some embodiments, the baking temperature of the oven can be 80°C to 120°C. In some embodiments, the baking time of the oven can be 60s to 300s.
在一些实施例中,可以在DES线上进行蚀刻处理和退膜处理,得到导电膜。其中,蚀刻液可以为盐酸-硝酸体系、氯化铁体系、硝酸铁体系、硝酸铁-硝酸体系和磷酸-硝酸-醋酸体系等,退膜液为NaOH水溶液等。In some embodiments, etching and film stripping can be performed on the DES line to obtain a conductive film, wherein the etching solution can be a hydrochloric acid-nitric acid system, a ferric chloride system, a ferric nitrate system, a ferric nitrate-nitric acid system, a phosphoric acid-nitric acid-acetic acid system, etc., and the film stripping solution is a NaOH aqueous solution, etc.
在一些实施例中,通过上述方法制造的第一导电区域的可见光透光率可以为80%-92%,雾度为0.8%~4.0%,面电阻为5Ω-150Ω。In some embodiments, the first conductive region manufactured by the above method may have a visible light transmittance of 80%-92%, a haze of 0.8%-4.0%, and a surface resistance of 5Ω-150Ω.
关于基膜、导电层、导电纳米层、纳米金属线层、纳米金属层、导电保护层、高分子层、金属氧化物层、第一导电区域、第二导电区域以及导电膜的相关描述可以参见本说明书其他部分(例如,图1-图4及其相关描述),在此不再赘述。For related descriptions about the base film, conductive layer, conductive nanolayer, nanometal wire layer, nanometal layer, conductive protective layer, polymer layer, metal oxide layer, first conductive region, second conductive region and conductive film, please refer to other parts of this specification (for example, Figures 1-4 and related descriptions), which will not be repeated here.
按照上述黄光蚀刻的方式制备导电膜,可以使得导电膜的第一导电区域具有较优异的光学性能。例如,第一导电区域的可见光透光率可以达80%-92%,导电膜的雾度可以达到4.0%以下。相比于激光蚀刻而言,本说明书实施例通过黄光蚀刻制备具有上述特定结构的导电膜(例如,第一导电区域)可以提高导电膜的生产效率,且适用于大规模批量生产。By preparing the conductive film in the above-mentioned yellow light etching method, the first conductive region of the conductive film can have excellent optical properties. For example, the visible light transmittance of the first conductive region can reach 80%-92%, and the haze of the conductive film can reach less than 4.0%. Compared with laser etching, the embodiment of this specification prepares the conductive film (for example, the first conductive region) having the above-mentioned specific structure by yellow light etching, which can improve the production efficiency of the conductive film and is suitable for large-scale batch production.
应当注意的是,上述有关导电膜的制备方法的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对导电膜的制备方法进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。It should be noted that the above description of the method for preparing the conductive film is only for illustration and description, and does not limit the scope of application of the present application. For those skilled in the art, various modifications and changes can be made to the method for preparing the conductive film under the guidance of the present application. However, these modifications and changes are still within the scope of the present application.
本说明书实施例之一还提供一种触控电极。该触控电极包括前述的导电膜。在一些实施例中,触控电极可以包括触控图形和引线。触控图形可以形成于前述导电膜的第一导电区域,引线可以形成于导电膜的第二导电区域。由于导电膜的第一导电区域具有较优异的光学性能,相应地,该触控电极也具有较优异的光学性能。One of the embodiments of the present specification also provides a touch electrode. The touch electrode includes the aforementioned conductive film. In some embodiments, the touch electrode may include a touch pattern and a lead. The touch pattern may be formed in the first conductive region of the aforementioned conductive film, and the lead may be formed in the second conductive region of the conductive film. Since the first conductive region of the conductive film has relatively excellent optical properties, the touch electrode also has relatively excellent optical properties accordingly.
本说明书实施例之一还提供一种使用前述的导电膜制备触控电极的方法。该方法可以包括:在第一导电区域通过激光蚀刻制备触控电极的触控图形;以及在第二导电区域通过激光蚀刻制备触控电极的引线。本说明书实施例采用激光蚀刻可以一次完成触控电极的触控图形和引线的制备,无需进行丝印银浆等传统操作,可以简化触控电极的生产工艺,提高触控电极的制备效率。One of the embodiments of this specification also provides a method for preparing a touch electrode using the aforementioned conductive film. The method may include: preparing a touch pattern of the touch electrode by laser etching in the first conductive region; and preparing a lead of the touch electrode by laser etching in the second conductive region. The embodiment of this specification uses laser etching to complete the preparation of the touch pattern and lead of the touch electrode at one time, without the need for traditional operations such as screen printing of silver paste, which can simplify the production process of the touch electrode and improve the preparation efficiency of the touch electrode.
在一些实施例中,触控电极的可见光透光率可以80%-92%。In some embodiments, the visible light transmittance of the touch electrode may be 80%-92%.
在一些实施例中,触控电极的雾度可以为0.8%~4.0%。In some embodiments, the haze of the touch electrode may be 0.8% to 4.0%.
应当注意的是,上述有关触控电极及其制备方法的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对触控电极及其制备方法进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。It should be noted that the above description of the touch electrode and the method for preparing the same is only for illustration and description, and does not limit the scope of application of the present application. For those skilled in the art, various modifications and changes can be made to the touch electrode and the method for preparing the same under the guidance of the present application. However, these modifications and changes are still within the scope of the present application.
表1为根据前述制备方法制备的导电膜的相关实验数据。需要说明的是,表1未列出全部的相关参数。Table 1 shows the experimental data of the conductive film prepared according to the above preparation method. It should be noted that Table 1 does not list all the relevant parameters.
表1实施例1-实施例5以及对比例比对表Table 1 Comparison table of Examples 1 to 5 and comparative examples
表1实施例1-实施例5以及对比例比对表(续)Table 1 Comparison table of Examples 1 to 5 and comparative examples (continued)
由表1可知,按照上述实施例中的导电膜制备方法(黄光蚀刻)制备的导电膜的第一导电区域的透光率可以达到88%以上,第一导电区域的雾度可以达到3.2%以下。需要说明的是,上表中的各项参数仅为单项实验数据的参数记录,并不意味着一定需要采用上述所有参数,才能够达到提升导电膜的第一导电区域的透光率和雾度的效果。例如,当基膜与未经黄光蚀刻的导电层面电阻不同于上表中实施例1-3中所记录的参数时,按照上文所述的导电膜的制备方法所制备的导电膜的第一导电区域的透光率也能够达到85%以上,雾度也能够低于3.2%。It can be seen from Table 1 that the transmittance of the first conductive region of the conductive film prepared according to the conductive film preparation method (yellow light etching) in the above embodiment can reach more than 88%, and the haze of the first conductive region can reach less than 3.2%. It should be noted that the parameters in the above table are only parameter records of single experimental data, and it does not mean that all of the above parameters must be used to achieve the effect of improving the transmittance and haze of the first conductive region of the conductive film. For example, when the resistance of the base film and the conductive layer without yellow light etching is different from the parameters recorded in Examples 1-3 in the above table, the transmittance of the first conductive region of the conductive film prepared according to the conductive film preparation method described above can also reach more than 85%, and the haze can also be lower than 3.2%.
本申请实施例可能带来的有益效果包括但不限于:(1)导电膜的第一导电区域可以用于制备触控电极的触控图形,第二导电区域可以用于制备触控电极的引线,可以方便触控电极的制备,同时采用激光蚀刻可以一次完成触控电极的触控图形和引线的制备,无需进行丝印银浆等传统操作,可以简化触控电极的生产工艺,提高触控电极的制备效率。(2)导电膜的第一导电区域具有优异的光学性能,其中,可见光透光率可以为80%-92%,雾度0.8%~4.0%;(3)相比于激光蚀刻而言,本说明书实施例通过黄光蚀刻制备具有特定结构的导电膜(例如,第一导电区域),可以提高导电膜的生产效率,且适用于大规模批量生产;(4)采用前述导电膜制得的触控电极具有优异的光学性能,其中,透光率80%-92%,雾度0.8%~4.0%;需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。The beneficial effects that may be brought about by the embodiments of the present application include but are not limited to: (1) the first conductive region of the conductive film can be used to prepare the touch pattern of the touch electrode, and the second conductive region can be used to prepare the lead of the touch electrode, which can facilitate the preparation of the touch electrode. At the same time, laser etching can be used to complete the preparation of the touch pattern and the lead of the touch electrode at one time, without the need for traditional operations such as silk-screen silver paste, which can simplify the production process of the touch electrode and improve the preparation efficiency of the touch electrode. (2) The first conductive region of the conductive film has excellent optical properties, wherein the visible light transmittance can be 80%-92% and the haze is 0.8%-4.0%; (3) Compared with laser etching, the embodiment of the present specification prepares a conductive film with a specific structure (for example, the first conductive region) by yellow light etching, which can improve the production efficiency of the conductive film and is suitable for large-scale batch production; (4) The touch electrode made using the above-mentioned conductive film has excellent optical properties, wherein the transmittance is 80%-92% and the haze is 0.8%-4.0%; It should be noted that different embodiments may produce different beneficial effects. In different embodiments, the beneficial effects that may be produced may be any one or a combination of the above, or any other possible beneficial effects.
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。The basic concepts have been described above. Obviously, for those skilled in the art, the above detailed disclosure is only for example and does not constitute a limitation of this specification. Although not explicitly stated here, those skilled in the art may make various modifications, improvements and corrections to this specification. Such modifications, improvements and corrections are suggested in this specification, so such modifications, improvements and corrections still belong to the spirit and scope of the exemplary embodiments of this specification.
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。At the same time, this specification uses specific words to describe the embodiments of this specification. For example, "one embodiment", "an embodiment", and/or "some embodiments" refer to a certain feature, structure or characteristic related to at least one embodiment of this specification. Therefore, it should be emphasized and noted that "one embodiment" or "an embodiment" or "an alternative embodiment" mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. In addition, certain features, structures or characteristics in one or more embodiments of this specification can be appropriately combined.
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。Similarly, it should be noted that in order to simplify the description disclosed in this specification and thus help understand one or more embodiments of the invention, in the above description of the embodiments of this specification, multiple features are sometimes combined into one embodiment, figure or description thereof. However, this disclosure method does not mean that the features required by the subject matter of this specification are more than the features mentioned in the claims. In fact, the features of the embodiments are less than all the features of the single embodiment disclosed above.
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。Finally, it should be understood that the embodiments described in this specification are only used to illustrate the principles of the embodiments of this specification. Other variations may also fall within the scope of this specification. Therefore, as an example and not a limitation, alternative configurations of the embodiments of this specification may be considered consistent with the teachings of this specification. Accordingly, the embodiments of this specification are not limited to the embodiments explicitly introduced and described in this specification.
Claims (10)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310601509.0A CN116959783B (en) | 2023-05-25 | 2023-05-25 | Conductive film and touch electrode and preparation method thereof |
| PCT/CN2024/094511 WO2024240154A1 (en) | 2023-05-25 | 2024-05-21 | Conductive film, touch component, and preparation methods therefor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310601509.0A CN116959783B (en) | 2023-05-25 | 2023-05-25 | Conductive film and touch electrode and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN116959783A CN116959783A (en) | 2023-10-27 |
| CN116959783B true CN116959783B (en) | 2024-05-17 |
Family
ID=88446871
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310601509.0A Active CN116959783B (en) | 2023-05-25 | 2023-05-25 | Conductive film and touch electrode and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116959783B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024240154A1 (en) * | 2023-05-25 | 2024-11-28 | 江苏纳美达光电科技有限公司 | Conductive film, touch component, and preparation methods therefor |
| CN118169916A (en) * | 2024-04-18 | 2024-06-11 | 深圳市联合立元信息科技有限公司 | A touch display module |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007265705A (en) * | 2006-03-28 | 2007-10-11 | Jsr Corp | Anisotropic conductive connector and its application |
| JP2012198879A (en) * | 2011-03-08 | 2012-10-18 | Fujifilm Corp | Resistive multi-touch panel and electrode sheet used for resistive multi-touch panel |
| CN203276888U (en) * | 2013-05-30 | 2013-11-06 | 南昌欧菲光科技有限公司 | Conductive film of touch screen |
| WO2014117479A1 (en) * | 2013-02-04 | 2014-08-07 | 南昌欧菲光科技有限公司 | Transparent conductive film |
| CN104616725A (en) * | 2013-11-04 | 2015-05-13 | 南昌欧菲光科技有限公司 | Transparent conductive film |
| CN207833940U (en) * | 2018-02-09 | 2018-09-07 | 昇印光电(昆山)股份有限公司 | Conductive film |
| WO2018172623A2 (en) * | 2017-07-14 | 2018-09-27 | Senseg Oy | A tactile feedback system |
| CN113963857A (en) * | 2021-11-22 | 2022-01-21 | 无锡变格新材料科技有限公司 | Manufacturing method of conductive film layer, conductive film layer structure and touch sensor |
| CN114327118A (en) * | 2020-10-09 | 2022-04-12 | 天材创新材料科技(厦门)有限公司 | Transparent conductive film, method for manufacturing transparent conductive film, and touch panel |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2795628B1 (en) * | 2011-12-22 | 2020-02-19 | 3M Innovative Properties Company | Electrically conductive article with high optical transmission |
| US9538654B2 (en) * | 2013-03-30 | 2017-01-03 | Shenzhen O-Film Tech Co., Ltd. | Conductive film, method for manufacturing the same, and touch screen including the same |
| KR20160138139A (en) * | 2014-03-25 | 2016-12-02 | 도판 인사츠 가부시키가이샤 | Transparent conductive laminated body and touch panel provided with transparent conductive laminated body |
-
2023
- 2023-05-25 CN CN202310601509.0A patent/CN116959783B/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007265705A (en) * | 2006-03-28 | 2007-10-11 | Jsr Corp | Anisotropic conductive connector and its application |
| JP2012198879A (en) * | 2011-03-08 | 2012-10-18 | Fujifilm Corp | Resistive multi-touch panel and electrode sheet used for resistive multi-touch panel |
| WO2014117479A1 (en) * | 2013-02-04 | 2014-08-07 | 南昌欧菲光科技有限公司 | Transparent conductive film |
| CN203276888U (en) * | 2013-05-30 | 2013-11-06 | 南昌欧菲光科技有限公司 | Conductive film of touch screen |
| CN104616725A (en) * | 2013-11-04 | 2015-05-13 | 南昌欧菲光科技有限公司 | Transparent conductive film |
| WO2018172623A2 (en) * | 2017-07-14 | 2018-09-27 | Senseg Oy | A tactile feedback system |
| CN207833940U (en) * | 2018-02-09 | 2018-09-07 | 昇印光电(昆山)股份有限公司 | Conductive film |
| CN114327118A (en) * | 2020-10-09 | 2022-04-12 | 天材创新材料科技(厦门)有限公司 | Transparent conductive film, method for manufacturing transparent conductive film, and touch panel |
| CN113963857A (en) * | 2021-11-22 | 2022-01-21 | 无锡变格新材料科技有限公司 | Manufacturing method of conductive film layer, conductive film layer structure and touch sensor |
Also Published As
| Publication number | Publication date |
|---|---|
| CN116959783A (en) | 2023-10-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN116959783B (en) | Conductive film and touch electrode and preparation method thereof | |
| US9035198B2 (en) | Transparent conductive substrate and method for manufacturing same | |
| CN116631676B (en) | Conductive film, preparation method thereof and touch functional sheet | |
| CN104246676A (en) | Touch panel member and its manufacturing method | |
| TWI780454B (en) | Touch panel and manufacturing method thereof | |
| CN108874228A (en) | Touch-control device, touch display substrate and display device | |
| CN203117930U (en) | Touch electrode structure | |
| JP6070675B2 (en) | Method for producing transparent conductive substrate and touch panel sensor | |
| CN106681559A (en) | Touch control panel, manufacturing method thereof and touch control display device | |
| TWI521575B (en) | Touch electrode structure and methods for forming the same | |
| TWI492356B (en) | Conductive film and electrode layer of touch panel, manufacturing method thereof and touch panel thereof | |
| US9865223B2 (en) | Optoelectronic modulation stack | |
| KR20130047618A (en) | Touch panel | |
| WO2024240154A1 (en) | Conductive film, touch component, and preparation methods therefor | |
| CN103870043B (en) | Touch electrode structure and manufacturing process thereof | |
| CN203117929U (en) | Touch electrode structure | |
| TWM593003U (en) | Dual touch sensor structure | |
| TWI760092B (en) | Touch sensor and manufacturing method thereof | |
| JP2024033818A (en) | Conductive film, touch sensor film and image display device | |
| TWM593002U (en) | Improved capacitive touch sensor structure | |
| CN105334995A (en) | Touch panel and manufacturing method thereof | |
| TW202109261A (en) | Method for manufacturing auxiliary conductive unit on transparent electrode of touch sensor and product thereof | |
| KR20180086586A (en) | Manufacturing method of conducting pattern | |
| CN104571669A (en) | Electronic device, touch panel and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |