CN117106773A - Gene time sequence expression regulation and control system and method based on single base editing and application - Google Patents
Gene time sequence expression regulation and control system and method based on single base editing and application Download PDFInfo
- Publication number
- CN117106773A CN117106773A CN202210525569.4A CN202210525569A CN117106773A CN 117106773 A CN117106773 A CN 117106773A CN 202210525569 A CN202210525569 A CN 202210525569A CN 117106773 A CN117106773 A CN 117106773A
- Authority
- CN
- China
- Prior art keywords
- target
- sequence
- plasmid
- conduction
- gene expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/66—General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域Technical field
本发明属于分子生物学技术领域,具体涉及基于单碱基编辑的基因时序性表达调控系统和方法及应用。The invention belongs to the technical field of molecular biology, and specifically relates to a gene temporal expression control system, method and application based on single base editing.
背景技术Background technique
基因动态表达调控元件是合成生物学研究的重要领域。可以通过基因组编辑改变顺式作用元件实现基因的表达调控。Gene dynamic expression regulatory elements are an important field of synthetic biology research. Gene expression regulation can be achieved by changing cis-acting elements through genome editing.
单碱基编辑系统是在无核酸内切酶活性的Cas9(dCas9)和Cas9切口酶(nCas9)的基础上,由David Liu实验室使用噬菌体定向进化的方式得到的两种具有单碱基编辑功能的融合蛋白:胞嘧啶碱基编辑器(cytosine base editor,CBE)和腺嘌呤碱基编辑器(adenine base editor,ABE)。单碱基编辑系统中,dCas9或nCas9没有切割DNA双链的核酸内切酶活性,但保留了DNA结合活性,在不断裂DNA双链和提供DNA模板的情况下,sgRNA通过与靶位点互补配对,引导融合脱氨酶蛋白中dCas9或nCas9结合到靶位点直接对靶向位点进行精准编辑,实现了在一定的活性窗口内胞嘧啶(C)到胸腺嘧啶(T)或鸟嘌呤(G)到腺嘌呤(A)的单碱基转换。其中,CBE能够把DNA双链特异目标位点中的胞嘧啶(C)编辑为胸腺嘧啶(T),使C·G转换为T·A;ABE能够把DNA双链特异目标位点中的腺嘌呤(A)编辑为鸟嘌呤(G),使A·T转换为G·C。The single base editing system is based on Cas9 (dCas9) and Cas9 nickase (nCas9) without endonuclease activity. Two systems with single base editing functions were obtained by David Liu's laboratory using phage directed evolution. Fusion proteins: cytosine base editor (CBE) and adenine base editor (ABE). In the single base editing system, dCas9 or nCas9 does not have the endonuclease activity to cut the DNA double strands, but retains the DNA binding activity. Without breaking the DNA double strands and providing a DNA template, sgRNA can complement the target site by complementing the target site. Pairing guides the dCas9 or nCas9 in the fusion deaminase protein to bind to the target site and directly edit the target site accurately, achieving a certain activity window from cytosine (C) to thymine (T) or guanine ( G) Single base conversion to adenine (A). Among them, CBE can edit cytosine (C) in the specific target site of the DNA double strand into thymine (T), converting C·G into T·A; ABE can edit the adenosine (C) in the specific target site of the DNA double strand. Purine (A) is edited into guanine (G), converting A·T into G·C.
ABE是大肠杆菌腺嘌呤脱氨酶和化脓链球菌nCas9蛋白的融合蛋白,它是通过噬菌体辅助进化而来的(Gaudelli N M,Komor A C,Rees H A,et al.,Nature,2017,551,464-471)。以ABE7.10为例,由spdCas9和TadA的融合蛋白定向进化而来的碱基编辑器ABE7.10,是在nCas9(D10A)的N端加上一个失活大肠杆菌脱氨酶(TadA*)和一个有活性的大肠杆菌脱氨酶(TadA)并且经过氨基酸优化得到的,三个蛋白之间由柔性的蛋白接头(flexiblelinker)连接,其功能是通过sgRNA识别3’端带有NGG序列的靶位点,结合后由TadA结合单链区域(原间隔区同源序列)使原间隔区中4-7位中的腺嘌呤(A)脱氨为次黄嘌呤(I),而次黄嘌呤和胞嘧啶配对(C),因此,在后续的DNA复制完成后,原来腺嘌呤(A)的位置将由与胞嘧啶(C)配对的鸟嘌呤(G)替换,同时双链中的另一条链被nCas9(D10A)的HNH结构域切割,这样就完成了A到G的转换。ABE7.10的基本功能是把原间隔区中从5’端开始的4-7个碱基中的腺嘌呤修改为鸟嘌呤,这4-7个碱基被称为编辑窗口(edit window)。ABE is a fusion protein of Escherichia coli adenine deaminase and Streptococcus pyogenes nCas9 protein, which was evolved through phage-assisted evolution (Gaudelli N M, Komor A C, Rees H A, et al., Nature, 2017, 551, 464-471) . Taking ABE7.10 as an example, the base editor ABE7.10, which is directed evolution from the fusion protein of spdCas9 and TadA, adds an inactive E. coli deaminase (TadA*) to the N-terminus of nCas9 (D10A). and an active E. coli deaminase (TadA) and obtained through amino acid optimization. The three proteins are connected by a flexible linker. Its function is to recognize the target with an NGG sequence at the 3' end through sgRNA. site, after binding, TadA binds to the single-stranded region (homologous sequence of the original spacer) to deaminate adenine (A) in positions 4-7 of the original spacer to hypoxanthine (I), and hypoxanthine and Cytosine pairs (C), so after subsequent DNA replication is completed, the original position of adenine (A) will be replaced by guanine (G) paired with cytosine (C), and the other strand of the duplex is The HNH domain of nCas9(D10A) cleaves, thus completing the A to G conversion. The basic function of ABE7.10 is to modify adenine to guanine in the 4-7 bases starting from the 5' end of the original spacer region. These 4-7 bases are called the edit window.
ABE的识别DNA序列位点由两部分组成:20bp的原间隔区(protospacer)和紧邻原间隔区3’端的原间隔区相邻位点NGG(protospacer adjacent motif,以下简称PAM)组成,其整体靶序列为5’-(N*20)(NGG)-3’,其中原间隔区可以直接作为sgRNA的间隔区(spacer)的设计模板,间隔区可以与原间隔区有2bp(含)及以下的差别,有差别可能使结合效率下降,而如果PAM即NGG序列如果有误(GG被替换成其他碱基),将导致ABE几乎无法结合。The recognition DNA sequence site of ABE consists of two parts: a 20 bp protospacer and a protospacer adjacent site NGG (protospacer adjacent motif, hereinafter referred to as PAM) immediately adjacent to the 3' end of the protospacer. Its overall target The sequence is 5'-(N*20)(NGG)-3', in which the original spacer can be directly used as the design template for the spacer of sgRNA. The spacer can be 2bp (inclusive) or less from the original spacer. Differences may reduce the binding efficiency. If the PAM or NGG sequence is wrong (GG is replaced with other bases), ABE will be almost unable to bind.
由于单碱基编辑系统可以在不引入双链断裂的情况下实现高效的单碱基置换,避免了传统的CRISPR/Cas9在进行非同源末端连接(nonhomologous end-joining,NHEJ)时引入不可控的插入或缺失突变(Indels),因此,单碱基编辑技术的出现促进了点突变基因编辑的有效性和使用范围。然而,利用ABE技术实现基因表达的时序性调控,尚无相关文献和专利报道。Since the single base editing system can achieve efficient single base replacement without introducing double-strand breaks, it avoids the uncontrollable introduction of traditional CRISPR/Cas9 when performing nonhomologous end-joining (NHEJ). Insertion or deletion mutations (Indels), therefore, the emergence of single base editing technology has promoted the effectiveness and scope of use of point mutation gene editing. However, there are no relevant literature and patent reports on the use of ABE technology to achieve temporal regulation of gene expression.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种基于单碱基编辑的基因时序性表达调控系统和方法及应用。本发明构建了基因表达调控开关元件,通过ABE7.10对互相影响、串联排列的DNA序列上若干个腺嘌呤靶点进行单碱基编辑,最后通过修改启动子的-35box序列,实现关闭或开启最后一个靶点所重叠的启动子,来达到延时调控目的基因表达的激活或遏制的目的。In view of this, the purpose of the present invention is to provide a gene temporal expression control system, method and application based on single base editing. The present invention constructs a gene expression control switch element, uses ABE7.10 to perform single base editing on several adenine target points on the DNA sequences that interact with each other and are arranged in series, and finally realizes closing or opening by modifying the -35box sequence of the promoter. The last target overlaps the promoter to achieve the purpose of delaying the activation or suppression of the expression of the target gene.
为了达到上述目的,本发明采取了以下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
本发明公开了一种基因表达调控开关元件,所述元件的总体组织方式(或者说,总体序列)如下:The invention discloses a gene expression control switch element. The overall organization mode (or overall sequence) of the element is as follows:
5’-Tac启动子-衔接段-[基本单元]×n-NBB-TGG-3’5’-Tac promoter-adapter-[basic unit]×n-NBB-TGG-3’
其中,in,
所述基本单元的序列为:5’-NBBTAABNNNNNNNNNN-3’;The sequence of the basic unit is: 5’-NBBTAABNNNNNNNNNN-3’;
所述衔接段(linker)的序列为:5’-NNNNNNNNNNN-3’;The sequence of the linker is: 5’-NNNNNNNNNNN-3’;
所述Tac启动子的核苷酸序列如SEQ ID NO.1所示,所述Tac启动子的-35box为TGTCAA;The nucleotide sequence of the Tac promoter is shown in SEQ ID NO.1, and the -35box of the Tac promoter is TGTCAA;
B代表G、T、C中的一种碱基,N代表任意碱基,n为基本单元的数量,n=1,2,3……;B represents one of the bases among G, T, and C, N represents any base, n is the number of basic units, n=1,2,3...;
设所述基本单元中最靠近5’端的3个碱基中G和C的数量和为x,所述基本单元的全部17个碱基中G和C的数量和为y,那么x+y=10;设所述衔接段的全部11个碱基中G和C的数量为z,那么x+z=8。Suppose the sum of the number of G and C in the three bases closest to the 5' end of the basic unit is x, and the sum of the number of G and C in all 17 bases of the basic unit is y, then x+y= 10; Suppose the number of G and C in all 11 bases of the adapter segment is z, then x+z=8.
在本发明的一些具体实例中,所述基因表达调控开关元件在初始状态下存在1个初始传导靶点、m个传导靶点和1个激发靶点,m=0,1,2,3……;其中,In some specific examples of the present invention, the gene expression regulation switch element has 1 initial conduction target point, m conduction target points and 1 excitation target point in the initial state, m=0,1,2,3... …;in,
所述初始传导靶点位于所述总体序列最靠近3’端的部分,所述初始传导靶点的序列为:5’-NBB-TAABNNNNNNNNNNNBB-TGG-3’;The initial conduction target is located in the part closest to the 3' end of the overall sequence, and the sequence of the initial conduction target is: 5'-NBB-TAABNNNNNNNNNNBB-TGG-3';
所述传导靶点位于所述总体序列的中段,所述传导靶点的序列为:5’-NBB-TAABNNNNNNNNNNNBB-TAA-3’;The conduction target is located in the middle of the overall sequence, and the sequence of the conduction target is: 5’-NBB-TAABNNNNNNNNNNNBB-TAA-3’;
所述激发靶点位于所述总体序列靠近Tac启动子的部分,所述激发靶点的序列为:5’-TGTCAA-衔接段-NBB-TAA-3’;The excitation target point is located in the part of the overall sequence close to the Tac promoter, and the sequence of the excitation target point is: 5’-TGTCAA-adapter segment-NBB-TAA-3’;
所述初始传导靶点和传导靶点共用一个sgRNA,称为传导sgRNA,所述传导sgRNA的序列为:5-NBBTAABNNNNNNNNNNNBB-gRNAscaffold-3’;The initial conduction target and the conduction target share one sgRNA, which is called conduction sgRNA. The sequence of the conduction sgRNA is: 5-NBBTAABNNNNNNNNNNNBB-gRNAscaffold-3’;
所述激发靶点使用的sgRNA,称为激发sgRNA,所述激发sgRNA的序列为5’-TGTCAA-衔接段-NBB-gRNAscaffold-3’。The sgRNA used to excite the target is called excitation sgRNA, and the sequence of the excitation sgRNA is 5’-TGTCAA-adapter-NBB-gRNAscaffold-3’.
在本发明的一些具体实例中,所述Tac启动子的核苷酸序列如SEQ ID NO.1所示,所述基本单元的核苷酸序列如SEQ ID NO.2所示,所述衔接段的核苷酸序列如SEQ ID NO.3所示;所述基因表达调控开关元件的总体组织方式(或者说,总体序列)如下:In some specific examples of the present invention, the nucleotide sequence of the Tac promoter is shown in SEQ ID NO.1, the nucleotide sequence of the basic unit is shown in SEQ ID NO.2, and the adapter section The nucleotide sequence is shown in SEQ ID NO.3; the overall organization (or overall sequence) of the gene expression control switch element is as follows:
5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTGACG-[AGCTAACTGCAGTCACT]×n-NBB-TGG-3’5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTGACG-[AGCTAACTGCAGTCACT]×n-NBB-TGG-3’
其中,B代表G、T、C中的一种碱基,N代表任意碱基,n=1,2,3……。Among them, B represents a base among G, T, and C, N represents any base, n=1, 2, 3...
在本发明的一些具体实例中,所述基因表达调控开关元件在初始状态下存在1个初始传导靶点、m个传导靶点和1个激发靶点,m=0,1,2,3……;其中,In some specific examples of the present invention, the gene expression regulation switch element has 1 initial conduction target point, m conduction target points and 1 excitation target point in the initial state, m=0,1,2,3... …;in,
所述初始传导靶点位于所述总体序列最靠近3’端的部分,所述初始传导靶点的核苷酸序列如SEQ ID NO.4所示;所述传导靶点位于所述总体序列的中段,所述传导靶点的核苷酸序列如SEQ ID NO.5所示,m=0,1,2,3……;所述激发靶点位于所述总体序列靠近Tac启动子的部分,所述激发靶点的核苷酸序列如SEQ ID NO.6所示;The initial conduction target point is located in the part closest to the 3' end of the overall sequence. The nucleotide sequence of the initial conduction target point is shown in SEQ ID NO. 4; the conduction target point is located in the middle of the overall sequence. , the nucleotide sequence of the conductive target point is shown in SEQ ID NO.5, m=0,1,2,3...; the excitation target point is located in the part of the overall sequence close to the Tac promoter, so The nucleotide sequence of the excitation target is shown in SEQ ID NO. 6;
所述初始传导靶点和传导靶点共用一个sgRNA,称为传导sgRNA,所述传导sgRNA的核苷酸序列如SEQ ID NO.7所示;所述激发靶点使用的sgRNA序列为激发sgRNA,所述激发sgRNA的核苷酸序列如SEQ ID NO.8所示。The initial conduction target and the conduction target share one sgRNA, which is called conduction sgRNA. The nucleotide sequence of the conduction sgRNA is shown in SEQ ID NO.7; the sgRNA sequence used for the excitation target is excitation sgRNA. The nucleotide sequence of the stimulating sgRNA is shown in SEQ ID NO. 8.
在本发明的所述基因表达调控开关元件中,在初始状态下仅有初始传导靶点能被ABE7.10识别和编辑,但是,在初始传导靶点被ABE7.10修改后,由于初始传导靶点的5’端与传导靶点的3’端重叠,上述修改使得传导靶点的PAM被激活,该传导靶点被转化为初始传导靶点进而被修改,并激活下一个传导靶点,以此类推,整个序列从3’端到5’端的各个靶点将依顺序被激活,最后修改Tac启动子的-35box最外侧的两个腺嘌呤碱基,使Tac启动子失活,从而达到调控基因表达的目的。各个靶点顺序激发的逻辑类似导火索,因此,所述基因表达调控开关元件被命名为“导火索序列”(Fuse sequence)。In the gene expression control switch element of the present invention, in the initial state, only the initial conduction target can be recognized and edited by ABE7.10. However, after the initial conduction target is modified by ABE7.10, due to the initial conduction target The 5' end of the dot overlaps with the 3' end of the conduction target. The above modification causes the PAM of the conduction target to be activated. The conduction target is converted into the initial conduction target and then modified, and activates the next conduction target to By analogy, each target point of the entire sequence from the 3' end to the 5' end will be activated sequentially, and finally the two outermost adenine bases of the -35box of the Tac promoter are modified to inactivate the Tac promoter, thereby achieving regulation. Gene expression purposes. The logic of sequential activation of each target is similar to that of a fuse. Therefore, the gene expression regulation switch element is named "Fuse sequence".
本发明还公开了一种基因表达调控系统,包括:pFuse质粒和pACYC-ABE7.10(dCas9)质粒,其中,The invention also discloses a gene expression control system, including: pFuse plasmid and pACYC-ABE7.10 (dCas9) plasmid, wherein,
所述pFuse质粒通过以下方法得到:将预设长度的所述基因表达调控开关元件克隆到pCDFDuet-1质粒,得到导火索质粒;再将目的基因和所述传导sgRNA克隆到所述导火索质粒,得到pFuse质粒;The pFuse plasmid is obtained by the following method: clone the gene expression control switch element of a preset length into the pCDFDuet-1 plasmid to obtain a fuse plasmid; then clone the target gene and the conductive sgRNA into the fuse plasmid to obtain pFuse plasmid;
所述pACYC-ABE7.10(dCas9)质粒通过以下方法得到:将ABE7.10的第840个残基组氨酸点突变为丙氨酸,得到ABE7.10(dCas9);再将所述ABE7.10(dCas9)和所述激发sgRNA克隆到pACYCDuet-1,得到pACYC-ABE7.10(dCas9)质粒。The pACYC-ABE7.10 (dCas9) plasmid is obtained by the following method: point mutation of the 840th residue histidine of ABE7.10 to alanine to obtain ABE7.10 (dCas9); and then the ABE7. 10 (dCas9) and the excitation sgRNA were cloned into pACYCDuet-1 to obtain pACYC-ABE7.10 (dCas9) plasmid.
在本发明的一些具体实例中,所述目的基因包括功能基因或调控因子。In some specific examples of the present invention, the target gene includes a functional gene or regulatory factor.
在本发明的一些具体实例中,所述目的基因包括天然产物合成代谢途径、抗生素合成代谢途径和环境污染物降解途径的功能基因或调控因子。In some specific examples of the present invention, the target genes include functional genes or regulatory factors of natural product anabolic pathways, antibiotic anabolic pathways, and environmental pollutant degradation pathways.
本发明还公开了一种基因表达调控的方法,包括:The invention also discloses a method for regulating gene expression, including:
(1)设计并合成预定长度的上述基因表达调控开关元件,将所述基因表达调控开关元件克隆到pCDFDuet-1质粒,从而构建了导火索质粒,将目的基因和所述传导sgRNA克隆到所述导火索质粒,得到pFuse质粒;(1) Design and synthesize the above-mentioned gene expression control switch element of a predetermined length, clone the gene expression control switch element into the pCDFDuet-1 plasmid, thereby constructing a fuse plasmid, and clone the target gene and the conductive sgRNA into the pCDFDuet-1 plasmid. Describe the fuse plasmid to obtain pFuse plasmid;
(2)将ABE7.10的第840个残基组氨酸点突变为丙氨酸,得到ABE7.10(dCas9);再将所述ABE7.10(dCas9)和所述激发sgRNA克隆到pACYCDuet-1,得到pACYC-ABE7.10(dCas9)质粒。(2) Point-mute the 840th residue histidine of ABE7.10 to alanine to obtain ABE7.10 (dCas9); then clone the ABE7.10 (dCas9) and the stimulating sgRNA into pACYCDuet- 1. Obtain pACYC-ABE7.10(dCas9) plasmid.
(3)把所述pFuse质粒和pACYC-ABE7.10(dCas9)质粒同时转化入受体细胞中,以调控所述目的基因的表达。(3) Transform the pFuse plasmid and pACYC-ABE7.10 (dCas9) plasmid into recipient cells at the same time to regulate the expression of the target gene.
在本发明的一些具体实例中,步骤(3)中,将所述pFuse质粒和pACYC-ABE7.10(dCas9)质粒同时转化入大肠杆菌感受态细胞中,以调控所述目的基因的表达。In some specific examples of the present invention, in step (3), the pFuse plasmid and pACYC-ABE7.10 (dCas9) plasmid are simultaneously transformed into E. coli competent cells to regulate the expression of the target gene.
在本发明的一些具体实例中,所述目的基因包括功能基因或调控因子。In some specific examples of the present invention, the target gene includes a functional gene or regulatory factor.
在本发明的一些具体实例中,所述目的基因包括天然产物合成代谢途径、抗生素合成代谢途径和环境污染物降解途径的功能基因或调控因子。In some specific examples of the present invention, the target genes include functional genes or regulatory factors of natural product anabolic pathways, antibiotic anabolic pathways, and environmental pollutant degradation pathways.
本发明还公开了上述基因表达调控开关元件或基因表达调控系统的应用,包括但不限于:用于工程菌株的不同代谢产物途径合成基因进行时序性(temporal sequential)表达的预编程;用于合成天然产物和抗生素的工程菌株的基因表达控制;用于合成环境污染物处理工程菌的基因表达控制。The invention also discloses the application of the above-mentioned gene expression control switch element or gene expression control system, including but not limited to: pre-programming for temporal sequential expression of synthetic genes of different metabolite pathways of engineering strains; for synthesis Gene expression control of engineered strains of natural products and antibiotics; gene expression control of engineered strains used to synthesize environmental pollutants.
本发明中,ABE7.10(dCas9)也记为ABE7.10-dCas9,pACYC-ABE7.10(dCas9)质粒也记为pACYC-ABE7.10-dCas9质粒。In the present invention, ABE7.10(dCas9) is also referred to as ABE7.10-dCas9, and pACYC-ABE7.10(dCas9) plasmid is also referred to as pACYC-ABE7.10-dCas9 plasmid.
相对于现有技术,本发明具有以下有益的技术效果:Compared with the existing technology, the present invention has the following beneficial technical effects:
本发明构建了腺嘌呤碱基编辑酶ABE7.10所识别的串联DNA序列(命名为Fusesequence,中文名“导火索序列”)作为基因表达调控开关元件,通过ABE7.10对互相影响、串联排列的DNA序列上若干个腺嘌呤靶点进行单碱基编辑,最后通过修改启动子的-35box序列,实现关闭或开启最后一个靶点所重叠的启动子,来达到延时调控目的基因表达的激活或遏制的目的。The present invention constructs a tandem DNA sequence (named Fusesequence, Chinese name "fuse sequence") recognized by the adenine base editing enzyme ABE7.10 as a gene expression control switch element, which interacts with each other and is arranged in tandem through ABE7.10 Single base editing is performed on several adenine target sites on the DNA sequence. Finally, by modifying the -35box sequence of the promoter, the promoter overlapping the last target site is closed or opened to achieve delayed regulation of the activation of gene expression. or containment purposes.
本发明可以通过改变基因表达调控开关元件中基本单元的数量(或者说元件的序列长度)来控制一个或多个基因表达发生的时间。含腺嘌呤靶点越多,目的基因调控发生所需要的代时时间就越久,从而实现可预先设定基因表达计时的调控。The present invention can control the time when one or more gene expression occurs by changing the number of basic units (or the sequence length of the element) in the gene expression control switch element. The more adenine-containing targets there are, the longer it takes for target gene regulation to occur, allowing for preset regulation of gene expression timing.
本发明首次实现的可预先设定基因表达计时的调控元件,能在工程菌中预先设定基因表达时间,其特性使其可以对工程菌株进行不同代谢产物途径合成基因进行时序性表达的预编程,可用于合成天然产物和抗生素等生物医药领域工程菌株、环境污染物处理工程菌等的基因表达控制。The regulatory element that can be preset for gene expression timing is realized for the first time in the present invention. It can preset gene expression time in engineering bacteria. Its characteristics make it possible to preprogram the engineered strains to perform chronological expression of different metabolite pathway synthesis genes. , can be used to control the gene expression of engineering strains in biomedical fields such as the synthesis of natural products and antibiotics, and engineering bacteria for the treatment of environmental pollutants.
附图说明Description of drawings
图1为导火索序列中初始传导靶点将其相邻的传导靶点激活转化为初始传导靶点的原理示意图。Figure 1 is a schematic diagram of the principle that the initial conduction target in the fuse sequence activates its adjacent conduction targets and transforms them into the initial conduction target.
图2为导火索序列中激发靶点被与其相邻的传导靶点激活进而修改tac启动子的-35box的原理示意图。Figure 2 is a schematic diagram of the principle in which the excitation target point in the fuse sequence is activated by its adjacent conduction target point and thereby modifies the -35box of the tac promoter.
图3给出了导火索序列中激发靶点和启动子的相对位置示意图。Figure 3 shows a schematic diagram of the relative positions of the priming target and promoter in the fuse sequence.
图4给出了同时包含有初始传导靶点、传导靶点(1个)和激发靶点的导火索序列的结构示意图。Figure 4 shows a schematic structural diagram of a fuse sequence including an initial conduction target, a conduction target (1) and an excitation target.
图5为pFuse1质粒图谱。Figure 5 shows the pFuse1 plasmid map.
图6为pFuse2质粒图谱。Figure 6 shows the pFuse2 plasmid map.
图7为pFuse3质粒图谱。Figure 7 shows the pFuse3 plasmid map.
图8为pACYC-ABE7.10(dCas9)质粒图谱。Figure 8 is the plasmid map of pACYC-ABE7.10(dCas9).
图9展示了不同培养时长的平板上菌落情况。Figure 9 shows the colony status on the plates with different culture times.
图10展示了相同培养时长(7天)下不同平板上菌落情况。Figure 10 shows the colony status on different plates under the same culture time (7 days).
图11为相同培养时长下不同平板上菌落的荧光强度分析(图中****,表示有显著性差异,P<0.0001)。Figure 11 shows the fluorescence intensity analysis of colonies on different plates under the same culture time (**** in the figure indicates a significant difference, P<0.0001).
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明的实施方案进行详细描述。应理解,这些实施例仅用于说明本发明,而不应视为限定本发明的范围。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings and specific examples. It should be understood that these examples are only used to illustrate the present invention and should not be regarded as limiting the scope of the present invention.
本发明设计了一种导火索序列作为基因表达调控开关元件。The present invention designs a fuse sequence as a gene expression control switch element.
一、导火索序列的设计规则1. Design rules of fuse sequence
设计导火索序列的总体组织方式(也可以称为总体序列)如下:The overall organization of the design fuse sequence (which can also be called the overall sequence) is as follows:
5’-Tac启动子-衔接段-[基本单元]×n-NBB-TGG-3’5’-Tac promoter-adapter-[basic unit]×n-NBB-TGG-3’
其中,Tac启动子的核苷酸序列如SEQ ID NO.1所示,而TGTCAA为Tac启动子的-35box;Among them, the nucleotide sequence of the Tac promoter is shown in SEQ ID NO.1, and TGTCAA is the -35box of the Tac promoter;
衔接段(linker)的序列设计为:5’-NNNNNNNNNNN-3’,其中,N代表任意碱基,即,衔接段有11个任意碱基;The sequence of the linker is designed as: 5’-NNNNNNNNNNN-3’, where N represents any base, that is, the linker has 11 arbitrary bases;
基本单元的序列设计为:5’-NBBTAABNNNNNNNNNN-3’,即,一个基本单元有17个碱基对,其中,B代表G、T、C中的一种碱基,N代表任意碱基,n为基本单元的数量,n=1,2,3……;The sequence of the basic unit is designed as: 5'-NBBTAABNNNNNNNNNN-3', that is, a basic unit has 17 base pairs, where B represents one of G, T, and C bases, N represents any base, and n is the number of basic units, n=1,2,3...;
设基本单元中最靠近5’端的3个碱基中G和C的数量和为x,基本单元的全部17个碱基中G和C的数量和为y,那么x+y=10。设衔接段的11个碱基中G和C的数量和为z,那么x+z=8。Assume that the sum of the number of G and C in the three bases closest to the 5' end of the basic unit is x, and the sum of the number of G and C in all 17 bases of the basic unit is y, then x+y=10. Assume that the sum of the numbers of G and C in the 11 bases of the adapter segment is z, then x+z=8.
根据在上述导火索序列中的位置的不同,上述导火索序列在初始状态下存在三种不同序列的ABE7.10靶点:According to the different positions in the above-mentioned fuse sequence, there are three different sequences of ABE7.10 targets in the above-mentioned fuse sequence in the initial state:
(1)初始传导靶点(5’-NBB-TAABNNNNNNNNNNNBB-TGG-3’),为总体序列最靠近3’端的部分,该靶点可以被ABE7.10(dCas9)识别,且其靠近5’端的第5和6腺嘌呤碱基(A)会被ABE7.10(dCas9)修改为鸟嘌呤碱基(G)。(1) The initial conduction target (5'-NBB-TAABNNNNNNNNNNNNBB-TGG-3') is the part of the overall sequence closest to the 3' end. This target can be recognized by ABE7.10 (dCas9), and it is close to the 5' end. The 5th and 6th adenine bases (A) will be modified to guanine bases (G) by ABE7.10 (dCas9).
(2)传导靶点(5’-NBB-TAABNNNNNNNNNNNBB-TAA-3’),总体序列的中段在初始状态下皆为这种序列。传导靶点的3’端不存在有活性的PAM,故其在初始状态下不可以被ABE7.10(dCas9)识别修改。但由于传导靶点的3’端与初始传导靶点的编辑窗口重叠,在初始传导靶点被ABE7.10(dCas9)编辑后,传导靶点的PAM序列被转化为TGG,从而使该传导靶点转化为新的初始传导靶点。(2) The conduction target (5’-NBB-TAABNNNNNNNNNNNNBB-TAA-3’), the middle part of the overall sequence is this sequence in the initial state. There is no active PAM at the 3' end of the conduction target, so it cannot be recognized and modified by ABE7.10 (dCas9) in its initial state. However, because the 3' end of the conduction target overlaps with the editing window of the initial conduction target, after the initial conduction target is edited by ABE7.10 (dCas9), the PAM sequence of the conduction target is converted into TGG, thus making the conduction target point is converted into a new initial conduction target.
(3)激发靶点(5’-TGTCAA-衔接段-NBB-TAA-3’),其为总体序列靠近Tac启动子的部分。激发靶点的3’端也不存在有活性的PAM,所以其在初始状态下不可以被ABE7.10(dCas9)识别修改。同样,由于激发靶点的3’端与上一个传导靶点的编辑窗口重叠,当上一个传导靶点被激活转化为新的初始传导靶点并且被ABE7.10(dCas9)修改后,激发靶点的PAM序列会被转化为TGG,从而可以被ABE7.10(dCas9)识别,并使得Tac启动子的-35box最外侧的两个腺嘌呤碱基被修改,使Tac启动子失活。(3) Excitation target (5'-TGTCAA-adapter-NBB-TAA-3'), which is the part of the overall sequence close to the Tac promoter. There is no active PAM at the 3' end of the excitation target, so it cannot be recognized and modified by ABE7.10 (dCas9) in its initial state. Similarly, since the 3' end of the excitation target overlaps with the editing window of the previous conduction target, when the previous conduction target is activated and converted into a new initial conduction target and modified by ABE7.10 (dCas9), the excitation target The PAM sequence of the dot will be converted into TGG, which can be recognized by ABE7.10 (dCas9), and the two outermost adenine bases of the -35 box of the Tac promoter will be modified, inactivating the Tac promoter.
上述初始传导靶点和传导靶点共用一个sgRNA,其序列为:5-NBBTAABNNNNNNNNNNNBB-gRNAscaffold-3’,称其为传导sgRNA;The above-mentioned initial conduction target and conduction target share a sgRNA, whose sequence is: 5-NBBTAABNNNNNNNNNNNBB-gRNAscaffold-3’, which is called conduction sgRNA;
上述激发靶点使用序列5’-TGTCAA-衔接段-NBB-gRNAscaffold-3’作为sgRNA,称其为激发sgRNA。The above excitation target uses the sequence 5’-TGTCAA-Adapter-NBB-gRNAscaffold-3’ as sgRNA, which is called excitation sgRNA.
可见,对于导火索序列来说,在初始状态下,仅有初始传导靶点可以被ABE7.10(dCas9)修改,传导靶点和激发靶点都不可以被ABE7.10(dCas9)修改。但是,当ABE7.10(dCas9)识别最靠近3’端的靶点(初始传导靶点)后,会将该靶点靠近5’端的AA修改为GG,由于初始传导靶点的5’端与传导靶点的3’端重叠,上述修改使得传导靶点的PAM被激活,该传导靶点被转化为初始传导靶点,进而可以被ABE7.10(dCas9)识别,那么该靶点靠近5’端的AA被修改为GG,由于该靶点的5’端与下一个传导靶点的3’端重叠,上述修改使得下一个传导靶点的PAM被激活。以此类推,每一个靶点靠近5’端的修改,都会使得下一个靶点的PAM被激活,从而使得在整个序列的3’端到5’端依顺序激活各个靶点,直到最后靠近衔接段和启动子的激发靶点的PAM被激活,在激发靶点被ABE7.10(dCas9)识别后,Tac启动子的-35box最外侧的两个腺嘌呤碱基被修改,使Tac启动子失活,从而达到调控基因表达的目的。在上述导火索序列中,各个靶点顺序激发的逻辑类似导火索,这是该“导火索序列”(Fusesequence)的命名由来。It can be seen that for the fuse sequence, in the initial state, only the initial conduction target can be modified by ABE7.10 (dCas9), and neither the conduction target nor the excitation target can be modified by ABE7.10 (dCas9). However, when ABE7.10 (dCas9) recognizes the target closest to the 3' end (the initial conduction target), it will modify the AA near the 5' end of the target to GG, because the 5' end of the initial conduction target is different from the conduction target. The 3' end of the target overlaps. The above modification activates the PAM of the conduction target, and the conduction target is converted into the initial conduction target, which can then be recognized by ABE7.10 (dCas9). Then the target is close to the 5' end. AA is modified to GG. Since the 5' end of this target overlaps with the 3' end of the next conduction target, the above modification causes the PAM of the next conduction target to be activated. By analogy, each modification of the target near the 5' end will activate the PAM of the next target, thereby activating each target in sequence from the 3' end to the 5' end of the entire sequence, until finally it is close to the adapter segment. The PAM of the triggering target of the promoter is activated. After the triggering target is recognized by ABE7.10 (dCas9), the two outermost adenine bases of the -35box of the Tac promoter are modified, inactivating the Tac promoter. , thereby achieving the purpose of regulating gene expression. In the above fuse sequence, the logic of sequential activation of each target is similar to that of a fuse, which is the origin of the name of the "fuse sequence".
图1为导火索序列中最靠近3’端的初始传导靶点将其相邻的传导靶点激活转化为初始传导靶点的原理示意图。Figure 1 is a schematic diagram of the principle that the initial conduction target closest to the 3' end in the fuse sequence activates its adjacent conduction target and converts it into an initial conduction target.
如图1所示,初始传导靶点的编辑窗口中的AA处于两靶点共用区域,因此,初始传导靶点的编辑窗口中的AA被ABE7.10(dCas9)编辑为GG,相当于传导靶点的失活PAM转化为有活性的PAM,该传导靶点被转化为初始传导靶点,从而就能被ABE7.10(dCas9)识别,进而传导靶点的编辑窗口中的AA也被ABE7.10(dCas9)编辑为GG。As shown in Figure 1, the AA in the editing window of the initial conduction target is in the area shared by the two targets. Therefore, the AA in the editing window of the initial conduction target is edited into GG by ABE7.10 (dCas9), which is equivalent to the conduction target. The inactivated PAM of the point is converted into an active PAM, and the conduction target is converted into the initial conduction target, so that it can be recognized by ABE7.10 (dCas9), and then the AA in the editing window of the conduction target is also recognized by ABE7. 10(dCas9) edited to GG.
此外,虽然图1中没有示出,但是,很明显,当图1中的传导靶点被激活转化为初始传导靶点后,其与下一个传导靶点也会构成一组如图1所示的初始传导靶点和相邻的传导靶点,从而使得下一个传导靶点也会被激活转化为初始传导靶点。如此顺序激发各个传导靶点。In addition, although it is not shown in Figure 1, it is obvious that when the conduction target in Figure 1 is activated and converted into an initial conduction target, it and the next conduction target will also form a group as shown in Figure 1 The initial conduction target and the adjacent conduction target, so that the next conduction target will also be activated and converted into the initial conduction target. Each conduction target is stimulated in this sequence.
图2为导火索序列中激发靶点被与其相邻的传导靶点激活进而修改tac启动子的-35box的原理示意图。图3给出了导火索序列中激发靶点和启动子的相对位置示意图。Figure 2 is a schematic diagram of the principle in which the excitation target point in the fuse sequence is activated by its adjacent conduction target point and thereby modifies the -35box of the tac promoter. Figure 3 shows a schematic diagram of the relative positions of the priming target and promoter in the fuse sequence.
如图2所示,传导靶点的编辑窗口中的AA处于两靶点共用区域,因此,传导靶点的编辑窗口中的AA被ABE7.10(dCas9)编辑为GG后,激发靶点的失活PAM转化为有活性的PAM,激发靶点就能被ABE7.10(dCas9)识别,进而Tac启动子的-35box最外侧的两个腺嘌呤碱基被ABE7.10(dCas9)编辑,Tac启动子失活。As shown in Figure 2, the AA in the editing window of the conduction target is in the area shared by the two targets. Therefore, after the AA in the editing window of the conduction target is edited to GG by ABE7.10 (dCas9), the loss of the stimulation target Live PAM is converted into active PAM, and the excitation target can be recognized by ABE7.10 (dCas9). Then the two outermost adenine bases of the -35box of the Tac promoter are edited by ABE7.10 (dCas9), and Tac is started. Son is inactivated.
图4给出了同时包含有初始传导靶点、传导靶点(1个)和激发靶点的导火索序列的结构示意图。图4中,初始传导靶点和传导靶点存在共用区域,传导靶点和激发靶点存在共用区域。Figure 4 shows a schematic structural diagram of a fuse sequence including an initial conduction target, a conduction target (1) and an excitation target. In Figure 4, there is a common area between the initial conduction target point and the conduction target point, and there is a common area between the conduction target point and the excitation target point.
当然,由于导火索序列中基本单元的数量n可以取值为1,2,3……,所以,导火索序列中,可以是仅包含初始传导靶点和激发靶点(n=1),也可以是包含初始传导靶点、传导靶点(1个)和激发靶点(n=2),还可以是包含初始传导靶点、传导靶点(多个)和激发靶点(n>2),此时传导靶点的数量是可调的,m=0,1,2,3……。Of course, since the number n of basic units in the fuse sequence can be 1, 2, 3..., the fuse sequence can only include the initial conduction target point and the excitation target point (n=1) , it can also include initial conduction target, conduction target (1) and excitation target (n=2), or it can include initial conduction target, conduction target (multiple) and excitation target (n> 2). At this time, the number of conduction targets is adjustable, m=0,1,2,3...
可以发现,上述导火索序列中,根据基本单元的数量n的取值不同,序列的长度不同,序列在初始状态下能够被ABE7.10编辑的靶点的数量不同。那么,通过调整基本单元的数量,就可以调整靶点的种类和/或数量,就可以预先设定基因表达调控的相对时间。对于导火索序列来说,靶点数量越多,基因表达的时间越长。对于同时包含有初始传导靶点、传导靶点和激发靶点的导火索序列来说,传导靶点的数量越多,基因表达的时间越长。导火索序列可以作为基因表达的调控开关元件。It can be found that in the above fuse sequence, depending on the value of the number of basic units n, the length of the sequence is different, and the number of targets that can be edited by ABE7.10 in the initial state of the sequence is different. Then, by adjusting the number of basic units, the type and/or quantity of targets can be adjusted, and the relative time of gene expression regulation can be preset. For fuse sequences, the greater the number of targets, the longer the gene expression time. For a fuse sequence that contains an initial conduction target, a conduction target, and an excitation target at the same time, the greater the number of conduction targets, the longer the gene expression time. The fuse sequence can be used as a regulatory switch element for gene expression.
为了更加具体地说明导火索序列对于目的基因的时序性表达的调控,以下将举例说明:选择一种符合上述导火索序列设计规则的基本单元和相应的衔接段来构建不同长度的导火索序列,并且以mCherry红色荧光报告基因作为目的基因来表征不同长度的导火索序列的激发的时间差异。In order to more specifically illustrate the regulation of the temporal expression of the target gene by the fuse sequence, an example will be given below: select a basic unit and corresponding connecting segment that conforms to the above fuse sequence design rules to construct fuses of different lengths. fuse sequence, and the mCherry red fluorescent reporter gene was used as the target gene to characterize the excitation time differences of fuse sequences of different lengths.
二、实例2. Examples
(一)导火索总体序列(1) Overall sequence of fuses
根据上述的规则设计出符合要求的基本单元和衔接段,如下:According to the above rules, the basic units and connecting sections that meet the requirements are designed, as follows:
基本单元的核苷酸序列如SEQ ID NO.2所示;衔接段的核苷酸序列如SEQ ID NO.3所示。The nucleotide sequence of the basic unit is shown in SEQ ID NO.2; the nucleotide sequence of the adapter segment is shown in SEQ ID NO.3.
导火索的总体序列为:The overall sequence of fuses is:
5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTGACG-5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTGACG-
[AGCTAACTGCAGTCACT]×n-NBB-TGG-3’[AGCTAACTGCAGTCACT]×n-NBB-TGG-3’
其中,B代表G、T、C中的一种碱基,N代表任意碱基,n=1,2,3……。Among them, B represents a base among G, T, and C, N represents any base, n=1, 2, 3...
上述导火索的总体序列中,初始传导靶点位于总体序列最靠近3’端的部分,初始传导靶点的核苷酸序列如SEQ ID NO.4所示;传导靶点位于总体序列的中段,传导靶点的核苷酸序列如SEQ ID NO.5所示,m=0,1,2,3……;激发靶点位于总体序列靠近Tac启动子的部分,激发靶点的核苷酸序列如SEQ ID NO.6所示。In the overall sequence of the above-mentioned fuse, the initial conduction target is located in the part closest to the 3' end of the overall sequence. The nucleotide sequence of the initial conduction target is shown in SEQ ID NO. 4; the conduction target is located in the middle of the overall sequence. The nucleotide sequence of the conduction target is shown in SEQ ID NO.5, m=0,1,2,3...; the excitation target is located in the part of the overall sequence close to the Tac promoter, and the nucleotide sequence of the excitation target is As shown in SEQ ID NO.6.
初始传导靶点和传导靶点共用一个传导sgRNA,传导sgRNA的核苷酸序列如SEQ IDNO.7所示,可以写作:5’-AGCTAACTGCAGTCACTAGC-gRNAscaffold-3’。The initial conduction target and the conduction target share a conduction sgRNA. The nucleotide sequence of the conduction sgRNA is shown in SEQ IDNO.7, which can be written as: 5’-AGCTAACTGCAGTCACTAGC-gRNAscaffold-3’.
激发靶点使用的sgRNA序列为激发sgRNA,激发sgRNA的核苷酸序列如SEQ ID NO.8所示,也可以写作:5’-TGTCAATCATGCTGACGAGC-gRNAscaffold-3’。The sgRNA sequence used to excite the target is excitation sgRNA. The nucleotide sequence of the excitation sgRNA is shown in SEQ ID NO.8, which can also be written as: 5’-TGTCAATCATGCTGACGAGC-gRNAscaffold-3’.
(二)三种不同长度的导火索序列的设计(2) Design of three fuse sequences of different lengths
根据上述的序列组织方式规则,用设计好的基本单元和衔接段排列出两种不同长度的导火索序列Fuse2和Fuse3,Fuse2序列包含一个初始传导靶点和一个激发靶点,Fuse3序列包含一个初始传导靶点、一个传导靶点和一个激发靶点。According to the above sequence organization rules, two fuse sequences of different lengths, Fuse2 and Fuse3, are arranged using the designed basic units and connecting segments. The Fuse2 sequence contains an initial conduction target and an excitation target, and the Fuse3 sequence contains an An initial conduction target, a conduction target, and an excitation target.
此外,为了方便对比,在此还设计了仅包含一个激发靶点的序列,同时为了使得单独的激发靶点能够被ABE7.10识别,将激发靶点的3’的TAA修改为TGG。为了方便说明,在此将该系列称为Fuse1序列。In addition, for the convenience of comparison, a sequence containing only one excitation target was designed here. At the same time, in order to enable a single excitation target to be recognized by ABE7.10, the 3' TAA of the excitation target was modified to TGG. For convenience of explanation, this series is called Fuse1 sequence here.
因此,虽然Fuse1序列是特别设计的对比序列,与导火索序列Fuse2和Fuse3有所不同,但是,在以下的说明中,为了方便起见,还是将Fuse1序列、Fuse2序列和Fuse3序列一并称为三种不同长度的导火索序列。Therefore, although the Fuse1 sequence is a specially designed comparison sequence and is different from the fuse sequences Fuse2 and Fuse3, in the following description, for the sake of convenience, the Fuse1 sequence, Fuse2 sequence and Fuse3 sequence are collectively referred to as Three different length fuse sequences.
相应的序列分别如下:The corresponding sequences are as follows:
Fuse1序列:5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTG ACG-NBB-TGG-3’;Fuse1 sequence: 5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTG ACG-NBB-TGG-3’;
Fuse2序列:5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTG ACG-AGCTAACTGCAGTCACT-NBB-TGG-3’;Fuse2 sequence: 5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTG ACG-AGCTAACTGCAGTCACT-NBB-TGG-3’;
Fuse3序列:5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTG ACG-AGCTAACTGCAGTCACT-AGCTAACTGCAGTCACT-NBB-TGG-3’;Fuse3 sequence: 5’-CATTATACGAGCCGATGATTAAT-TGTCAA-TCATGCTG ACG-AGCTAACTGCAGTCACT-AGCTAACTGCAGTCACT-NBB-TGG-3’;
B代表G、T、C中的一种碱基,N代表任意碱基。B represents one of G, T, and C bases, and N represents any base.
(三)导火索序列用于基因表达的时序性调控(3) Trigger sequences are used for temporal regulation of gene expression
3.1原料说明3.1 Instructions for raw materials
大肠杆菌BL21(DE3)感受态细胞购买自TransGen。DNA聚合酶为TransGen生产的FastPfu Fly DNA Polymerase。质粒提取试剂盒购买自AXYGEN有限公司,PCR产物核酸纯化试剂盒购买自Promega公司,一步克隆试剂盒为Vazyme公司的/>Ultra One Step Cloning Kit试剂盒,点突变试剂盒为TransGen公司的Fast MutagenesisSystem。pCDFDuet-1质粒和pACYCDuet-1质粒购买自Novagen公司。pCMV-ABE7.10质粒用作为ABE7.10的片段模板,可从addgene购买。LB液体培养基配方为:蛋白胨10g、酵母提取物5g、NaCl 10g,去离子水1L。胰蛋白胨、氯化钠、酵母浸提物购自OXOID公司。含氯霉素链霉素双抗的LB培养基平板中,氯霉素的浓度为34ug/ml,链霉素的浓度为40ug/ml。含链霉素的LB培养基平板中,链霉素的浓度为40ug/ml。氯霉素和链霉素购自Sangon Biotech公司。E. coli BL21(DE3) competent cells were purchased from TransGen. DNA polymerase produced by TransGen FastPfu Fly DNA Polymerase. The plasmid extraction kit was purchased from AXYGEN Co., Ltd., the PCR product nucleic acid purification kit was purchased from Promega Company, and the one-step cloning kit was purchased from Vazyme Company/> Ultra One Step Cloning Kit, point mutation kit is TransGen's Fast Mutagenesis System. pCDFDuet-1 plasmid and pACYCDuet-1 plasmid were purchased from Novagen Company. The pCMV-ABE7.10 plasmid is used as a fragment template for ABE7.10 and can be purchased from addgene. The formula of LB liquid medium is: 10g peptone, 5g yeast extract, 10g NaCl, and 1L deionized water. Tryptone, sodium chloride, and yeast extract were purchased from OXOID Company. In the LB medium plate containing double antibodies of chloramphenicol and streptomycin, the concentration of chloramphenicol is 34ug/ml and the concentration of streptomycin is 40ug/ml. In the LB medium plate containing streptomycin, the concentration of streptomycin is 40ug/ml. Chloramphenicol and streptomycin were purchased from Sangon Biotech.
3.2序列合成3.2 Sequence synthesis
委托北京擎科生物科技有限公司合成以下片段:mCherry蛋白片段、传导sgRNA片段、激发sgRNA片段、Fuse1片段、Fuse2片段、Fuse3片段。Beijing Qingke Biotechnology Co., Ltd. was entrusted to synthesize the following fragments: mCherry protein fragment, conductive sgRNA fragment, excitation sgRNA fragment, Fuse1 fragment, Fuse2 fragment, and Fuse3 fragment.
mCherry蛋白片段的核苷酸序列如SEQ ID NO.9所示The nucleotide sequence of the mCherry protein fragment is shown in SEQ ID NO.9
传导sgRNA片段的核苷酸序列如SEQ ID NO.10所示,该片段包含传导sgRNA以及与其他组件同源性较低的片段,以便于重组。The nucleotide sequence of the conducting sgRNA fragment is shown in SEQ ID NO. 10. This fragment contains the conducting sgRNA and fragments with low homology to other components to facilitate recombination.
激发sgRNA片段的核苷酸序列如SEQ ID NO.11所示。该片段包含激发sgRNA以及与其他组件同源性较低的片段,以便于重组。The nucleotide sequence of the priming sgRNA fragment is shown in SEQ ID NO. 11. This fragment contains the priming sgRNA as well as fragments with low homology to other components to facilitate recombination.
Fuse1片段的核苷酸序列如SEQ ID NO.12所示,该片段包含预留的一步克隆同源区域(前21位)、Fuse1序列的反义链序列(与Fuse1序列反向平行)以及与其他组件同源性较低的片段,以便于重组。The nucleotide sequence of the Fuse1 fragment is shown in SEQ ID NO. 12. This fragment contains the reserved one-step cloning homology region (the first 21 positions), the antisense strand sequence of the Fuse1 sequence (antiparallel to the Fuse1 sequence) and the Other components are fragments with lower homology to facilitate recombination.
Fuse2片段的核苷酸序列如SEQ ID NO.13所示,该片段包含预留的一步克隆同源区域(前21位)、Fuse2序列的反义链序列(与Fuse1序列反向平行)以及与其他组件同源性较低的片段,以便于重组。The nucleotide sequence of the Fuse2 fragment is shown in SEQ ID NO. 13. This fragment contains the reserved one-step cloning homology region (the first 21 positions), the antisense strand sequence of the Fuse2 sequence (antiparallel to the Fuse1 sequence) and the Other components are fragments with lower homology to facilitate recombination.
Fuse3片段的核苷酸序列如SEQ ID NO.14所示,该片段包含预留的一步克隆同源区域(前21位)、Fuse3序列的反义链序列(与Fuse1序列反向平行)以及与其他组件同源性较低的片段,以便于重组。Fuse3片段中,第73-101位为tac启动子序列,第102-146位包含了核糖体结合位点(即,夏因-达尔加诺序列)。tac启动子和核糖体结合位点保证其后的mCherry蛋白序列可以被正常的转录、翻译。The nucleotide sequence of the Fuse3 fragment is shown in SEQ ID NO. 14. This fragment contains the reserved one-step cloning homology region (the first 21 positions), the antisense strand sequence of the Fuse3 sequence (antiparallel to the Fuse1 sequence) and the Other components are fragments with lower homology to facilitate recombination. In the Fuse3 fragment, positions 73-101 are the tac promoter sequence, and positions 102-146 contain the ribosome binding site (i.e., the Schein-Dalgarno sequence). The tac promoter and ribosome binding site ensure that the subsequent mCherry protein sequence can be transcribed and translated normally.
3.3质粒构建3.3 Plasmid construction
(1)pFuse1质粒构建:(1) pFuse1 plasmid construction:
使用第一引物CD1和第二引物CD2扩增传导sgRNA片段,使用第三引物Fuse-1和第四引物Fuse-2扩增Fuse1片段,使用第五引物mCherry1和第六引物mCherry2扩增mCherry片段,使用第七引物pCDFDuet1-1和第八引物pCDFDuet1-2扩增质粒pCDFDuet-1。Use the first primer CD1 and the second primer CD2 to amplify the conducting sgRNA fragment, use the third primer Fuse-1 and the fourth primer Fuse-2 to amplify the Fuse1 fragment, use the fifth primer mCherry1 and the sixth primer mCherry2 to amplify the mCherry fragment, Plasmid pCDFDuet-1 was amplified using the seventh primer pCDFDuet1-1 and the eighth primer pCDFDuet1-2.
第一引物CD1的核苷酸序列如SEQ ID NO.15所示,第二引物CD2的核苷酸序列如SEQ ID NO.16所示,第三引物Fuse-1的核苷酸序列分别如SEQ ID NO.17所示,第四引物Fuse-2的核苷酸序列如SEQ ID NO.18所示,第五引物mCherry1的核苷酸序列如SEQ IDNO.19所示,第六引物mCherry2的核苷酸序列如SEQ ID NO.20所示,第七引物引物pCDFDuet1-1的核苷酸序列如SEQ ID NO.21所示,第八引物的核苷酸序列如SEQ ID NO.22所示。The nucleotide sequence of the first primer CD1 is shown in SEQ ID NO.15, the nucleotide sequence of the second primer CD2 is shown in SEQ ID NO.16, and the nucleotide sequence of the third primer Fuse-1 is shown in SEQ ID NO.15. ID NO.17 is shown. The nucleotide sequence of the fourth primer Fuse-2 is shown in SEQ ID NO.18. The nucleotide sequence of the fifth primer mCherry1 is shown in SEQ ID NO.19. The core sequence of the sixth primer mCherry2 is shown in SEQ ID NO.18. The nucleotide sequence is shown in SEQ ID NO.20, the nucleotide sequence of the seventh primer pCDFDuet1-1 is shown in SEQ ID NO.21, and the nucleotide sequence of the eighth primer is shown in SEQ ID NO.22.
扩增使用Transgen公司的FastPfu Fly DNA Polymerase。扩增体系包括:FastPfu Fly DNA Polymerase 1微升、Fly Buffer 10微升、2.5mM dNTPs 6微升,去离子水30微升、引物各1微升、模板1微升。PCR程序如下:(1)95℃,3分钟;(2)95℃,30秒;(3)58℃,30秒;(4)72℃,2分钟;步骤(2)-步骤(4)重复35个循环;(5)72℃,5分钟。Amplified using Transgen’s FastPfu Fly DNA Polymerase. The amplification system includes: 1 μl of FastPfu Fly DNA Polymerase, 10 μl of Fly Buffer, 6 μl of 2.5mM dNTPs, 30 μl of deionized water, 1 μl of each primer, and 1 μl of template. The PCR program is as follows: (1) 95°C, 3 minutes; (2) 95°C, 30 seconds; (3) 58°C, 30 seconds; (4) 72°C, 2 minutes; repeat steps (2) to (4) 35 cycles; (5) 72°C, 5 minutes.
把扩增出的PCR产物使用Vazyme公司的Ultra One Step CloningKit试剂盒进行一步克隆,把上述四种扩增片段(传导sgRNA片段、Fuse1片段、mCherry片段和质粒pCDFDuet-1)按1:1:1:1的分子量混合后,加入等量的2×ClonExpress Mix,在50℃水浴锅中连接1小时后,在冰上冷却5分钟后,吸取10微升加入Transgen的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,在42℃水浴锅中热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,涂布到含链霉素的LB培养基平板,37℃倒置培养24小时后挑菌测序,挑出正确的菌落后pFuse1质粒构建完成。pFuse1质粒图谱如图5所示。Use the amplified PCR product using Vazyme's The Ultra One Step CloningKit kit performs one-step cloning. After mixing the above four amplified fragments (conduction sgRNA fragment, Fuse1 fragment, mCherry fragment and plasmid pCDFDuet-1) according to the molecular weight of 1:1:1:1, add an equal amount of 2×ClonExpress Mix, connect in a 50°C water bath for 1 hour, cool on ice for 5 minutes, take 10 μl of Transgen-added E. coli BL21 (DE3) competent cells, incubate on ice for 30 minutes, and cool in a 42°C water bath Heat shock in the pot for 75 seconds, add 500 microliters of LB liquid culture medium, incubate for two hours on a shaker at 37°C at 220rpm, spread onto a LB medium plate containing streptomycin, invert the culture at 37°C for 24 hours, and then pick and sequence the bacteria. After picking the correct colony, the pFuse1 plasmid construction is completed. The pFuse1 plasmid map is shown in Figure 5.
(2)pFuse2质粒构建:(2) pFuse2 plasmid construction:
与pFuse1质粒构建相同,使用第一引物CD1和第二引物CD2扩增传导sgRNA片段,使用第三引物Fuse-1和第四引物Fuse-2扩增Fuse2片段,使用第五引物mCherry1和第六引物mCherry2扩增mCherry片段,使用第七引物pCDFDuet1-1和第八引物pCDFDuet1-2扩增质粒pCDFDuet-1。The same as the pFuse1 plasmid construction, use the first primer CD1 and the second primer CD2 to amplify the conducting sgRNA fragment, use the third primer Fuse-1 and the fourth primer Fuse-2 to amplify the Fuse2 fragment, use the fifth primer mCherry1 and the sixth primer mCherry2 amplifies the mCherry fragment, and uses the seventh primer pCDFDuet1-1 and the eighth primer pCDFDuet1-2 to amplify plasmid pCDFDuet-1.
扩增使用Transgen公司的FastPfu Fly DNA Polymerase。扩增体系包括:FastPfu Fly DNA Polymerase 1微升、Fly Buffer 10微升、2.5mM dNTPs 6微升,去离子水30微升、引物各1微升、模板1微升。PCR程序如下:(1)95℃,3分钟;(2)95℃,30秒;(3)58℃,30秒;(4)72℃,2分钟;步骤(2)-步骤(4)重复35个循环;(5)72℃,5分钟。Amplified using Transgen’s FastPfu Fly DNA Polymerase. The amplification system includes: 1 μl of FastPfu Fly DNA Polymerase, 10 μl of Fly Buffer, 6 μl of 2.5mM dNTPs, 30 μl of deionized water, 1 μl of each primer, and 1 μl of template. The PCR program is as follows: (1) 95°C, 3 minutes; (2) 95°C, 30 seconds; (3) 58°C, 30 seconds; (4) 72°C, 2 minutes; repeat steps (2) to (4) 35 cycles; (5) 72°C, 5 minutes.
把扩增出的PCR产物使用Vazyme公司的Ultra One Step CloningKit试剂盒进行一步克隆,把上述四种片段(传导sgRNA片段、Fuse2片段、mCherry片段和质粒pCDFDuet-1)按1:1:1:1的分子量混合后,加入等量的2×ClonExpress Mix,在50℃水浴锅中连接1小时后,在冰上冷却5分钟后,吸取10微升加入Transgen的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,在42℃水浴锅中热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,涂布到含链霉素的LB培养基平板,37℃倒置培养24小时后挑菌测序,挑出正确的菌落后pFuse2质粒构建完成。pFuse2质粒图谱如图6所示。Use the amplified PCR product using Vazyme's The Ultra One Step CloningKit kit performs one-step cloning. After mixing the above four fragments (conducting sgRNA fragment, Fuse2 fragment, mCherry fragment and plasmid pCDFDuet-1) according to the molecular weight of 1:1:1:1, add an equal amount of 2× ClonExpress Mix, after connecting in a 50°C water bath for 1 hour, cool on ice for 5 minutes, take 10 μl of E. coli BL21 (DE3) competent cells added to Transgen, incubate on ice for 30 minutes, and place in a 42°C water bath. Heat shock for 75 seconds, add 500 microliters of LB liquid culture medium, incubate at 37°C shaker at 220rpm for two hours, spread on the LB medium plate containing streptomycin, invert the culture at 37°C for 24 hours, pick the bacteria for sequencing, and pick out After the correct colony is created, the pFuse2 plasmid construction is completed. The pFuse2 plasmid map is shown in Figure 6.
(3)pFuse3质粒构建:(3) pFuse3 plasmid construction:
与pFuse1质粒构建相同,使用第一引物CD1和第二引物CD2扩增传导sgRNA片段,使用第三引物Fuse-1和第四引物Fuse-2扩增Fuse3片段,使用第五引物mCherry1和第六引物mCherry2扩增mCherry片段,使用第七引物pCDFDuet1-1和第八引物pCDFDuet1-2扩增质粒pCDFDuet-1。The same as the pFuse1 plasmid construction, use the first primer CD1 and the second primer CD2 to amplify the conducting sgRNA fragment, use the third primer Fuse-1 and the fourth primer Fuse-2 to amplify the Fuse3 fragment, use the fifth primer mCherry1 and the sixth primer mCherry2 amplifies the mCherry fragment, and uses the seventh primer pCDFDuet1-1 and the eighth primer pCDFDuet1-2 to amplify plasmid pCDFDuet-1.
扩增使用Transgen公司的FastPfu Fly DNA Polymerase。扩增体系包括:FastPfu Fly DNA Polymerase 1微升、Fly Buffer 10微升、2.5mM dNTPs 6微升,去离子水30微升、引物各1微升、模板1微升。PCR程序如下:(1)95℃,3分钟;(2)95℃,30秒;(3)58℃,30秒;(4)72℃,2分钟;步骤(2)-步骤(4)重复35个循环;(5)72℃,5分钟。Amplified using Transgen’s FastPfu Fly DNA Polymerase. The amplification system includes: 1 μl of FastPfu Fly DNA Polymerase, 10 μl of Fly Buffer, 6 μl of 2.5mM dNTPs, 30 μl of deionized water, 1 μl of each primer, and 1 μl of template. The PCR program is as follows: (1) 95°C, 3 minutes; (2) 95°C, 30 seconds; (3) 58°C, 30 seconds; (4) 72°C, 2 minutes; repeat steps (2) to (4) 35 cycles; (5) 72°C, 5 minutes.
把扩增出的PCR产物使用Vazyme公司的Ultra One Step CloningKit试剂盒进行一步克隆,把上述四种扩增片段(传导sgRNA片段、Fuse3片段、mCherry片段和质粒pCDFDuet-1)按1:1:1:1的分子量混合后,加入等量的2×ClonExpress Mix,在50℃水浴锅中连接1小时后,在冰上冷却5分钟后,吸取10微升加入Transgen的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,在42℃水浴锅中热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,涂布到含链霉素的LB培养基平板,37℃倒置培养24小时后挑菌测序,挑出正确的菌落后pFuse3质粒构建完成。pFuse3质粒图谱如图7所示。Use the amplified PCR product using Vazyme's The Ultra One Step CloningKit kit performs one-step cloning. After mixing the above four amplified fragments (conducting sgRNA fragment, Fuse3 fragment, mCherry fragment and plasmid pCDFDuet-1) according to the molecular weight of 1:1:1:1, add an equal amount of 2×ClonExpress Mix, connect in a 50°C water bath for 1 hour, cool on ice for 5 minutes, take 10 μl of Transgen-added E. coli BL21 (DE3) competent cells, incubate on ice for 30 minutes, and cool in a 42°C water bath Heat shock in the pot for 75 seconds, add 500 microliters of LB liquid culture medium, incubate on a 37°C shaker at 220rpm for two hours, spread on the LB medium plate containing streptomycin, invert the culture at 37°C for 24 hours, then pick the bacteria for sequencing. After picking the correct colony, the pFuse3 plasmid construction is completed. The pFuse3 plasmid map is shown in Figure 7.
(4)pJF质粒构建:(4) pJF plasmid construction:
使用第九引物JF1和第十引物JF2扩增激发sgRNA片段,使用第十一引物pACYCDuet1-1和第十二引物pACYCDuet1-2扩增质粒pACYCDuet-1。The ninth primer JF1 and the tenth primer JF2 were used to amplify the excitation sgRNA fragment, and the eleventh primer pACYCDuet1-1 and the twelfth primer pACYCDuet1-2 were used to amplify the plasmid pACYCDuet-1.
第九引物JF1的核苷酸序列如SEQ ID NO.23所示,第十引物JF2的核苷酸序列如SEQ ID NO.24所示,第十一引物pACYCDuet1-1的核苷酸序列如SEQ ID NO.25所示,第十二引物pACYCDuet1-2的核苷酸序列如SEQ ID NO.26所示。The nucleotide sequence of the ninth primer JF1 is shown in SEQ ID NO.23, the nucleotide sequence of the tenth primer JF2 is shown in SEQ ID NO.24, and the nucleotide sequence of the eleventh primer pACYCDuet1-1 is shown in SEQ ID NO. 25 is shown, and the nucleotide sequence of the twelfth primer pACYCDuet1-2 is shown in SEQ ID NO. 26.
扩增使用Transgen公司的FastPfu Fly DNA Polymerase。扩增体系包括:FastPfu Fly DNA Polymerase 1微升、Fly Buffer 10微升、2.5mM dNTPs 6微升,去离子水30微升、引物各1微升、模板1微升。PCR程序如下:(1)95℃,3分钟;(2)95℃,30秒;(3)58℃,30秒;(4)72℃,2分钟;步骤(2)-步骤(4)重复35个循环;(5)72℃,5分钟。Amplified using Transgen’s FastPfu Fly DNA Polymerase. The amplification system includes: 1 μl of FastPfu Fly DNA Polymerase, 10 μl of Fly Buffer, 6 μl of 2.5mM dNTPs, 30 μl of deionized water, 1 μl of each primer, and 1 μl of template. The PCR program is as follows: (1) 95°C, 3 minutes; (2) 95°C, 30 seconds; (3) 58°C, 30 seconds; (4) 72°C, 2 minutes; repeat steps (2) to (4) 35 cycles; (5) 72°C, 5 minutes.
把扩增出的PCR产物使用Vazyme公司的Ultra One Step CloningKit试剂盒进行一步克隆,把上述两种扩增片段(激发sgRNA片段和质粒pACYCDuet-1)按1:1的分子量混合后,加入等量的2×ClonExpress Mix,在50℃水浴锅中连接1小时后,在冰上冷却5分钟后,吸取10微升加入Transgen的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,在42℃水浴锅中热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,涂布到含链霉素的LB培养基平板,37℃倒置培养24小时后挑菌测序,挑出正确的菌落后pJF质粒构建完成。Use the amplified PCR product using Vazyme's The Ultra One Step CloningKit kit performs one-step cloning. Mix the above two amplified fragments (stimulating sgRNA fragment and plasmid pACYCDuet-1) at a molecular weight of 1:1, add an equal amount of 2×ClonExpress Mix, and incubate in a 50°C water bath. After ligation for 1 hour, cool on ice for 5 minutes, absorb 10 μl of E. coli BL21 (DE3) competent cells added with Transgen, incubate on ice for 30 minutes, heat shock in a 42°C water bath for 75 seconds, add 500 μl Literally increase the LB liquid medium, culture it on a shaker at 220 rpm at 37°C for two hours, spread it onto the LB medium plate containing streptomycin, invert it at 37°C for 24 hours, then select the bacteria for sequencing. After picking the correct bacteria, the pJF plasmid is constructed. .
(5)pACYC-ABE7.10质粒构建:(5) pACYC-ABE7.10 plasmid construction:
使用第十三引物ABE7.10-1和第十四引物ABE7.10-2扩增ABE7.10质粒,使用第十五引物pJF-1和第十六引物pJF-2扩增质粒pJF。The thirteenth primer ABE7.10-1 and the fourteenth primer ABE7.10-2 were used to amplify the ABE7.10 plasmid, and the fifteenth primer pJF-1 and the sixteenth primer pJF-2 were used to amplify the plasmid pJF.
第十三引物ABE7.10-1的核苷酸序列如SEQ ID NO.27所示,第十四引物ABE7.10-2的核苷酸序列如SEQ ID NO.28所示,第十五引物pJF-1的核苷酸序列如SEQ ID NO.29所示,第十六引物pJF-2的核苷酸序列如SEQ ID NO.30所示。The nucleotide sequence of the thirteenth primer ABE7.10-1 is shown in SEQ ID NO.27, the nucleotide sequence of the fourteenth primer ABE7.10-2 is shown in SEQ ID NO.28, and the fifteenth primer The nucleotide sequence of pJF-1 is shown in SEQ ID NO. 29, and the nucleotide sequence of the sixteenth primer pJF-2 is shown in SEQ ID NO. 30.
扩增使用Transgen公司的FastPfu Fly DNA Polymerase。扩增体系包括:FastPfu Fly DNA Polymerase 1微升、Fly Buffer 10微升、2.5mM dNTPs 6微升,去离子水30微升、引物各1微升、模板1微升。PCR程序如下:(1)95℃,3分钟;(2)95℃,30秒;(3)58℃,30秒;(4)72℃,2分钟;步骤(2)-步骤(4)重复35个循环;(5)72℃,5分钟。Amplified using Transgen's FastPfu Fly DNA Polymerase. The amplification system includes: 1 μl of FastPfu Fly DNA Polymerase, 10 μl of Fly Buffer, 6 μl of 2.5mM dNTPs, 30 μl of deionized water, 1 μl of each primer, and 1 μl of template. The PCR program is as follows: (1) 95°C, 3 minutes; (2) 95°C, 30 seconds; (3) 58°C, 30 seconds; (4) 72°C, 2 minutes; repeat steps (2) to (4) 35 cycles; (5) 72°C, 5 minutes.
把扩增出的PCR产物使用Vazyme公司的Ultra One Step CloningKit试剂盒进行一步克隆,把上述两种扩增片段(ABE7.10质粒和pJF质粒)按1:1的分子量混合后,加入等量的2×ClonExpress Mix,在50℃水浴锅中连接1小时后,在冰上冷却5分钟后,吸取10微升加入Transgen的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,在42℃水浴锅中热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,涂布到含链霉素的LB培养基平板,37℃倒置培养24小时后挑菌测序,挑出正确的菌落后,pACYC-ABE7.10质粒构建完成。Use the amplified PCR product using Vazyme's The Ultra One Step CloningKit kit performs one-step cloning. Mix the above two amplified fragments (ABE7.10 plasmid and pJF plasmid) at a molecular weight of 1:1, add an equal amount of 2×ClonExpress Mix, and incubate in a 50°C water bath. After 1 hour of connection, cool on ice for 5 minutes, take 10 μl of E. coli BL21 (DE3) competent cells added to Transgen, incubate on ice for 30 minutes, heat shock in a 42°C water bath for 75 seconds, add 500 μl LB liquid culture medium, culture at 37°C shaker at 220rpm for two hours, spread onto LB medium plate containing streptomycin, invert culture at 37°C for 24 hours, then pick the bacteria for sequencing. After picking the correct bacteria, pACYC-ABE7. 10. Plasmid construction is completed.
(6)pACYC-ABE7.10(dCas9)质粒的构建(6) Construction of pACYC-ABE7.10(dCas9) plasmid
使用第十七引物H840A-1和第十八引物H840A-2扩增pACYC-ABE7.10质粒,第十七引物H H840A-1的核苷酸序列如SEQ ID NO.31所示,第十八引物H840A-2的核苷酸序列如SEQ ID NO.32所示。The seventeenth primer H840A-1 and the eighteenth primer H840A-2 were used to amplify the pACYC-ABE7.10 plasmid. The nucleotide sequence of the seventeenth primer H840A-1 is shown in SEQ ID NO.31. The eighteenth primer The nucleotide sequence of primer H840A-2 is shown in SEQ ID NO. 32.
扩增体系包括:FastPfu Fly DNA Polymerase 1微升、Fly Buffer 10微升、2.5mMdNTPs 6微升,去离子水30微升、引物各1微升、模板1微升。PCR程序如下:(1)95℃,3分钟;(2)95℃,30秒;(3)58℃,30秒;(4)72℃,2分钟;步骤(2)-步骤(4)重复25个循环;(5)72℃,5分钟。The amplification system includes: 1 μl of FastPfu Fly DNA Polymerase, 10 μl of Fly Buffer, 6 μl of 2.5mMdNTPs, 30 μl of deionized water, 1 μl of each primer, and 1 μl of template. The PCR program is as follows: (1) 95°C, 3 minutes; (2) 95°C, 30 seconds; (3) 58°C, 30 seconds; (4) 72°C, 2 minutes; repeat steps (2) to (4) 25 cycles; (5) 72°C, 5 minutes.
在产物中加入1微升Transgen的Fast Mutagenesis System中的DMT酶,把混合物放入37℃水浴锅孵育1小时后,吸取10微升加入Transgen的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,在42℃水浴锅中热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,涂布到含链霉素的LB培养基平板,37℃倒置培养24小时后挑菌测序,挑出正确的菌落后,pACYC-ABE7.10(dCas9)质粒构建完成。该过程也可称为pACYC-ABE7.10(dCas9)的H840A点突变。pACYC-ABE7.10(dCas9)质粒图谱如图8所示。Add 1 microliter of DMT enzyme from Transgen's Fast Mutagenesis System to the product, put the mixture into a 37°C water bath and incubate for 1 hour, then take 10 microliters of Transgen's E. coli BL21 (DE3) competent cells and incubate on ice for 30 minutes, heat shock in a 42°C water bath for 75 seconds, add 500 μl of LB liquid culture medium, incubate on a 37°C shaker at 220 rpm for two hours, spread onto an LB medium plate containing streptomycin, and incubate upside down at 37°C for 24 Hours later, the bacteria were picked and sequenced. After the correct bacteria were picked, the pACYC-ABE7.10 (dCas9) plasmid was constructed. This process can also be referred to as the H840A point mutation of pACYC-ABE7.10(dCas9). The plasmid map of pACYC-ABE7.10(dCas9) is shown in Figure 8.
3.4质粒DNA转化大肠杆菌3.4 Transformation of E. coli with plasmid DNA
把200纳克pFuse1质粒和250纳克pACYC-ABE7.10(dCas9)质粒加入Transgen公司的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,于水浴锅中42℃热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,并且涂布于含氯霉素链霉素双抗的LB培养基平板上生长,37℃倒置培养一段时间后,观察平板1。Add 200 ng of pFuse1 plasmid and 250 ng of pACYC-ABE7.10 (dCas9) plasmid to Transgen's Escherichia coli BL21 (DE3) competent cells, incubate on ice for 30 minutes, heat shock at 42°C in a water bath for 75 seconds, and add 500 microliters of LB liquid culture medium was cultured for two hours on a shaker at 220 rpm at 37°C, and spread on an LB medium plate containing chloramphenicol and streptomycin for growth. After incubation at 37°C for a period of time, observe the plate 1 .
把200纳克pFuse2质粒和250纳克pACYC-ABE7.10(dCas9)质粒加入Transgen公司的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,于水浴锅中42℃热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,并且涂布于含氯霉素链霉素双抗的LB培养基平板上生长,37℃倒置培养一段时间后,观察平板2。Add 200 ng of pFuse2 plasmid and 250 ng of pACYC-ABE7.10 (dCas9) plasmid to Transgen's Escherichia coli BL21 (DE3) competent cells, incubate on ice for 30 minutes, heat shock at 42°C in a water bath for 75 seconds, and add 500 microliters of LB liquid culture medium was cultured for two hours on a shaker at 220 rpm at 37°C, and spread on an LB medium plate containing chloramphenicol and streptomycin for growth. After incubation at 37°C for a period of time, observe the plate 2 .
把200纳克pFuse3质粒和250纳克pACYC-ABE7.10(dCas9)质粒加入Transgen公司的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,于水浴锅中42℃热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,并且涂布于含氯霉素链霉素双抗的LB培养基平板上生长,37℃倒置培养一段时间后,观察平板3。Add 200 ng of pFuse3 plasmid and 250 ng of pACYC-ABE7.10 (dCas9) plasmid to Transgen's Escherichia coli BL21 (DE3) competent cells, incubate on ice for 30 minutes, heat shock at 42°C in a water bath for 75 seconds, and add 500 microliters of LB liquid culture medium was cultured for two hours on a shaker at 220 rpm at 37°C, and spread on an LB medium plate containing chloramphenicol and streptomycin for growth. After incubation at 37°C for a period of time, observe the plate 3 .
对照组:将200纳克pCDFDuet-1质粒和250纳克pACYC-ABE7.10(dCas9)质粒加入Transgen公司的大肠杆菌BL21(DE3)感受态细胞,冰浴30分钟,于水浴锅中42℃热激75秒,加入500微升LB液体培养基,在37℃摇床220rpm培养两小时,并且涂布于含氯霉素链霉素双抗的LB培养基平板上生长,37℃倒置培养一段时间后,观察平板4。Control group: Add 200 ng of pCDFDuet-1 plasmid and 250 ng of pACYC-ABE7.10 (dCas9) plasmid to Transgen's Escherichia coli BL21 (DE3) competent cells, incubate on ice for 30 minutes, and heat in a water bath at 42°C. Stimulate for 75 seconds, add 500 microliters of LB liquid culture medium, incubate for two hours on a 37°C shaker at 220rpm, and spread on an LB medium plate containing chloramphenicol and streptomycin for growth, and incubate at 37°C for a period of time. Finally, observe plate 4.
3.5结果3.5 Results
在培养时间为2天、3天、4天、5天、7天时,分别观察平板3并记录菌落的生长情况,如图9所示。图9记录了在平板3上表达红色荧光蛋白的嵌合体菌落的发展过程,其中,菌落深色区域为mCherry表达呈现的红色,菌落浅色区域为对照菌落(大肠杆菌)的乳白色。When the culture time is 2 days, 3 days, 4 days, 5 days, and 7 days, observe plate 3 and record the growth of the colonies, as shown in Figure 9. Figure 9 records the development process of the chimeric colony expressing red fluorescent protein on plate 3. The dark area of the colony is the red color of mCherry expression, and the light area of the colony is the milky white color of the control colony (E. coli).
从图9可以看出,在培养时间较短时,菌落整体为mCherry表达呈现出的红色;随着培养时间的延长,菌落周边新生长出来的部分呈现出不表达mCherry的乳白色,并且,在一段时间后,乳白色菌完全包围了菌落的外圈。这是因为由调控元件开关所控制的基因会在一段时间后失活,即,在一段时间后mCherry基因会停止表达。因此,在平板上生长的菌落中会存在两种表型,一种表达mCherry,呈现为红色;另一种不表达mCherry,呈现为乳白色。由于在平板上生长,菌落外周的菌细胞比较新,倾向于显现出现基因表达时间延迟的不表达mCherry的白色表型;而菌落中心的菌生长时间较早,倾向于显现出现基因表达时间早的表达mCherry的红色表型。As can be seen from Figure 9, when the culture time is short, the colony as a whole is red with mCherry expression; as the culture time increases, the newly grown parts around the colony appear milky white without mCherry expression, and, within a period of time, After a while, the milky white bacteria completely surrounded the outer ring of the colony. This is because the genes controlled by the regulatory element switch will be inactivated after a period of time, that is, the mCherry gene will stop expression after a period of time. Therefore, there will be two phenotypes in the colonies growing on the plate, one expresses mCherry and appears red; the other does not express mCherry and appears milky white. Because they grow on a plate, the bacterial cells on the periphery of the colony are relatively new and tend to show a white phenotype that does not express mCherry with delayed gene expression time; while the bacteria in the center of the colony grow earlier and tend to show earlier gene expression time. Expresses the red phenotype of mCherry.
在相同的培养时间下(7天),观察平板1、平板2和平板3,如图10所示。可以发现三者菌落表现有所差别:平板3上菌落整体更加偏红,平板1上菌落整体偏白,平板2上菌落整体颜色介于两者之间。这说明:在相同的培养时间下(7天),搭载pFuse3的菌落中表达mCherry的时间最长,在平板3上表达mCherry的区域会更多;搭载pFuse1的菌落中表达mCherry的时间最短,在平板1上表达mCherry的区域会更少;搭载pFuse2的菌落中表达mCherry的时间介于两者之间,在平板2上表达mCherry的区域也介于两者之间。其原因在于pFuse3的靶点最多,pFuse1的靶点最少,pFuse2的靶点介于两者之间。不同数量的靶点使得传导激活的时间不同,从而使得到达并激活激发靶点进而修改Tac启动子的-35box最外侧的两个腺嘌呤碱基以使Tac启动子失活的时间不同,因此,表达mCherry的时间长短不同。这说明:含三种不同长度的导火索序列(pFuse1、pFuse2、pFuse3)的调控元件,其靶点数不一样,mCherry表达的时间长短有所区别。即,可以通过对导火索序列中靶点数量的调整,实现mCherry基因表达的时序性调控。例如,当导火索序列中传导靶点的数量增加,搭载该导火索序列的菌落中表达mCherry的时间变长。Under the same culture time (7 days), observe plate 1, plate 2 and plate 3, as shown in Figure 10. It can be found that the colony performance of the three is different: the overall color of the colonies on plate 3 is more reddish, the overall color of the colonies on plate 1 is whiter, and the overall color of the colonies on plate 2 is somewhere in between. This shows that under the same culture time (7 days), the colony carrying pFuse3 expresses mCherry for the longest time, and there will be more areas expressing mCherry on plate 3; the colony carrying pFuse1 expresses mCherry for the shortest time, and on plate 3 the mCherry expression time is the shortest. The area expressing mCherry on plate 1 will be less; the expression of mCherry in the colony carrying pFuse2 is somewhere in between, and the area expressing mCherry on plate 2 is also somewhere in between. The reason is that pFuse3 has the most targets, pFuse1 has the least targets, and pFuse2 has targets in between. Different numbers of targets result in different conduction activation times, which lead to different times for reaching and activating the excitation target and then modifying the two outermost adenine bases of the -35box of the Tac promoter to inactivate the Tac promoter. Therefore, The length of time mCherry is expressed varies. This shows that regulatory elements containing three different lengths of fuse sequences (pFuse1, pFuse2, and pFuse3) have different numbers of targets and different lengths of mCherry expression. That is, the temporal regulation of mCherry gene expression can be achieved by adjusting the number of targets in the fuse sequence. For example, when the number of conduction targets in the fuse sequence increases, the time for expressing mCherry in colonies carrying the fuse sequence becomes longer.
为了表征上述搭载不同长度导火索的菌落中mCherry表达总量的差距,对上述三种平板和对照组平板进行荧光表征。把上述生长了7天的各平板上的菌落用1×PBS缓冲液全部洗下,并且稀释到OD600=1.0,在透明底面的标准96孔板中,以对照组中平板4上不表达mCherry的BL21(DE3)的菌落作为对照,使用Molecular Divices公司的SpectraMax M5酶标仪测量其荧光强度。激发光波长为587nm,发射光波长为610nm,加样量为100微升,重复次数为3次,得到如图11所示的荧光强度数据。In order to characterize the difference in total mCherry expression among the above-mentioned colonies equipped with fuses of different lengths, fluorescent characterization was performed on the above three types of plates and the control plate. Wash all the colonies on each plate that have been grown for 7 days with 1×PBS buffer, and dilute to OD600 = 1.0. In a standard 96-well plate with a transparent bottom, use the colonies on plate 4 in the control group that do not express mCherry. The colony of BL21(DE3) was used as a control, and its fluorescence intensity was measured using the SpectraMax M5 microplate reader from Molecular Divices. The excitation light wavelength is 587nm, the emission light wavelength is 610nm, the sample volume is 100 microliters, and the number of repetitions is 3 times, and the fluorescence intensity data shown in Figure 11 is obtained.
由图11可以看出:搭载pFuse3的菌落的荧光强度高于搭载pFuse2、pFuse1的菌落的荧光强度,表明导火索序列越长,报告基因(mCherry红色荧光基因)表达越多,报告基因失活速度越慢。由于在未激活状态下,基因调控元件的tac启动子未被修改,mCherry荧光蛋白正常表达,在大肠杆菌中呈现红色荧光;在激活状态下,基因调控元件的tac启动子被修改,mCherry表达失活,红色荧光消失。这说明,在相同的ABE7.10(dCas9)、激发sgRNA和传导sgRNA浓度水平下,导火索序列的长度越短,mCherry停止表达所需的时间越短。因此,可以通过调节导火索序列的长度来控制基因表达时序。由此证明,可以通过预先编程设定调控元件导火索序列的长度,可实现调控基因表达时序性的目的。It can be seen from Figure 11 that the fluorescence intensity of colonies carrying pFuse3 is higher than that of colonies carrying pFuse2 and pFuse1, indicating that the longer the fuse sequence, the more the reporter gene (mCherry red fluorescent gene) is expressed, and the reporter gene is inactivated. The slower the speed. Because in the inactive state, the tac promoter of the gene regulatory element is not modified, mCherry fluorescent protein is expressed normally and displays red fluorescence in E. coli; in the activated state, the tac promoter of the gene regulatory element is modified, and mCherry expression is lost. alive, the red fluorescence disappears. This shows that at the same concentration levels of ABE7.10(dCas9), excitation sgRNA and conduction sgRNA, the shorter the length of the fuse sequence, the shorter the time required for mCherry to stop expression. Therefore, gene expression timing can be controlled by adjusting the length of the fuse sequence. This proves that the purpose of regulating the timing of gene expression can be achieved by pre-programming the length of the fuse sequence of the regulatory element.
基于同样的原理,符合本发明实施例中设计规则的导火索序列,均可以实现上述基因表达时序性调控的功能。基本单元和衔接段绝不仅仅限于实例中的一种,在本发明的设计规则下,可以根据需要进行调整,使得dCas9通过sgRNA结合到sgRNA所匹配的靶点。而且,靶点的数量(即导火索序列的长度)也可以根据实际要求调整。Based on the same principle, any fuse sequence that complies with the design rules in the embodiments of the present invention can achieve the above function of sequential regulation of gene expression. The basic unit and adapter segment are by no means limited to one of the examples. Under the design rules of the present invention, they can be adjusted as needed so that dCas9 binds to the target matched by the sgRNA through the sgRNA. Moreover, the number of targets (i.e., the length of the fuse sequence) can also be adjusted according to actual requirements.
同时,本发明中使用的tac启动子是大肠杆菌中的通用型启动子,可以高效地启动其下游的基因,因此,如果把实例中的mCherry换成其他报告基因也是可以的。同样,选择功能基因或调控因子(例如天然产物合成代谢途径、抗生素合成代谢途径和环境污染物降解途径的功能基因或调控因子)作为目的基因也是可行的。At the same time, the tac promoter used in the present invention is a universal promoter in E. coli and can efficiently activate its downstream genes. Therefore, it is also possible to replace mCherry in the example with other reporter genes. Similarly, it is also feasible to select functional genes or regulatory factors (such as functional genes or regulatory factors of natural product anabolic pathways, antibiotic anabolic pathways, and environmental pollutant degradation pathways) as target genes.
因此,上述基因表达调控元件或系统的应用,包括但不限于:用于工程菌株的不同代谢产物途径合成基因进行时序性(temporal sequential)表达的预编程;用于合成天然产物和抗生素的工程菌株的基因表达控制;用于合成环境污染物处理工程菌的基因表达控制。Therefore, the applications of the above-mentioned gene expression control elements or systems include, but are not limited to: pre-programming of temporal sequential expression of different metabolite pathway synthesis genes of engineered strains; engineered strains for the synthesis of natural products and antibiotics Gene expression control; gene expression control for engineering bacteria that synthesize environmental pollutants.
序列表sequence list
<110> 浙江大学<110> Zhejiang University
<120> 基于单碱基编辑的基因时序性表达调控系统和方法及应用<120> Gene temporal expression regulation system and methods and applications based on single base editing
<160> 32<160> 32
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 29<211> 29
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
cattatacga gccgatgatt aattgtcaa 29cattatacga gccgatgatt aattgtcaa 29
<210> 2<210> 2
<211> 17<211> 17
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
agctaactgc agtcact 17agctaactgc agtcact 17
<210> 3<210> 3
<211> 11<211> 11
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
tcatgctgac g 11tcatgctgac g 11
<210> 4<210> 4
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
agctaactgc agtcactagc tgg 23agctaactgc agtcactagc tgg 23
<210> 5<210> 5
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
agctaactgc agtcactagc taa 23agctaactgc agtcactagc taa 23
<210> 6<210> 6
<211> 23<211> 23
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
tgtcaatcat gctgacgagc taa 23tgtcaatcat gctgacgagc taa 23
<210> 7<210> 7
<211> 104<211> 104
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
agctaactgc agtcactagc gttttagagc tagaaatagc aagttaaaat aaggctagtc 60agctaactgc agtcactagc gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt tttt 104cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt tttt 104
<210> 8<210> 8
<211> 104<211> 104
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
tgtcaatcat gctgacgagc gttttagagc tagaaatagc aagttaaaat aaggctagtc 60tgtcaatcat gctgacgagc gttttagagc tagaaatagc aagttaaaat aaggctagtc 60
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt tttt 104cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt tttt 104
<210> 9<210> 9
<211> 711<211> 711
<212> DNA<212> DNA
<213> 红色荧光蛋白(MCherry fluorescent protein)<213> Red fluorescent protein (MCherry fluorescent protein)
<400> 9<400> 9
atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat gcgcttcaag 60atggtgagca agggcgagga ggataacatg gccatcatca aggagttcat gcgcttcaag 60
gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga gggcgagggc 120gtgcacatgg agggctccgt gaacggccac gagttcgaga tcgagggcga gggcgagggc 120
cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc 180cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc 180
ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta cgtgaagcac 240ttcgcctggg acatcctgtc ccctcagttc atgtacggct ccaaggccta cgtgaagcac 240
cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa gtgggagcgc 300cccgccgaca tccccgacta cttgaagctg tccttccccg agggcttcaa gtgggagcgc 300
gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc cctgcaggac 360gtgatgaact tcgaggacgg cggcgtggtg accgtgaccc aggactcctc cctgcaggac 360
ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga cggccccgta 420ggcgagttca tctacaaggt gaagctgcgc ggcaccaact tcccctccga cggccccgta 420
atgcagaaga agaccatggg ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc 480atgcagaaga agaccatggg ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc 480
gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca ctacgacgct 540gccctgaagg gcgagatcaa gcagaggctg aagctgaagg acggcggcca ctacgacgct 540
gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc 600gaggtcaaga ccacctacaa ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc 600
aacatcaagt tggacatcac ctcccacaac gaggactaca ccatcgtgga acagtacgaa 660aacatcaagt tggacatcac ctcccacaac gaggactaca ccatcgtgga acagtacgaa 660
cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaagta a 711cgcgccgagg gccgccactc caccggcggc atggacgagc tgtacaagta a 711
<210> 10<210> 10
<211> 259<211> 259
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
ttgacagcta gctcagtcct aggtataata ctagtagcta actgcagtca ctagcgtttt 60ttgacagcta gctcagtcct aggtataata ctagtagcta actgcagtca ctagcgtttt 60
agagctagaa atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac 120agagctagaa atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac 120
cgagtcggtg cttttttttg gcggccgcat aatgcttaag tcgaacagaa agtaatcgta 180cgagtcggtg cttttttttg gcggccgcat aatgcttaag tcgaacagaa agtaatcgta 180
ttgtacacgg ccgcgggatc tcgacgctct cccttatgcg actccgcaag gaatggtaat 240ttgtacacgg ccgcgggatc tcgacgctct cccttatgcg actccgcaag gaatggtaat 240
gggtcgcgga tccgaattc 259gggtcgcgga tccgaattc 259
<210> 11<210> 11
<211> 205<211> 205
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
ttgacagcta gctcagtcct aggtataata ctagttgtca atcatgctga cgagcgtttt 60ttgacagcta gctcagtcct aggtataata ctagttgtca atcatgctga cgagcgtttt 60
agagctagaa atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac 120agagctagaa atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac 120
cgagtcggtg cttttttttg gcggccgcat aatgcttaag tcgaacagaa agtaatcgta 180cgagtcggtg cttttttttg gcggccgcat aatgcttaag tcgaacagaa agtaatcgta 180
ttgtacacgg ccgcataatc gaaat 205ttgtacacgg ccgcataatc gaaat 205
<210> 12<210> 12
<211> 112<211> 112
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
atgggtcgcg gatccgaatt cccagctcgt cagcatgatt gacaattaat catcggctcg 60atgggtcgcg gatccgaatt cccagctcgt cagcatgatt gacaattaat catcggctcg 60
tataatgttt ccctctagaa ataatcctct agaaataata ggaggaaaac tt 112tataatgttt ccctctagaa ataatcctct agaaataata ggaggaaaac tt 112
<210> 13<210> 13
<211> 129<211> 129
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
atgggtcgcg gatccgaatt cccagctagt gactgcagtt agctcgtcag catgattgac 60atgggtcgcg gatccgaatt cccagctagt gactgcagtt agctcgtcag catgattgac 60
aattaatcat cggctcgtat aatgtttccc tctagaaata atcctctaga aataatagga 120aattaatcat cggctcgtat aatgtttccc tctagaaata atcctctaga aataatagga 120
ggaaaactt 129ggaaaactt 129
<210> 14<210> 14
<211> 146<211> 146
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
atgggtcgcg gatccgaatt cccagctagt gactgcagtt agctagtgac tgcagttagc 60atgggtcgcg gatccgaatt cccagctagt gactgcagtt agctagtgac tgcagttagc 60
tcgtcagcat gattgacaat taatcatcgg ctcgtataat gtttccctct agaaataatc 120tcgtcagcat gattgacaat taatcatcgg ctcgtataat gtttccctct agaaataatc 120
ctctagaaat aataggagga aaactt 146ctctagaaat aataggagga aaactt 146
<210> 15<210> 15
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
ctgcattagg ttgacagcta gctcagtcct aggtataata ctagt 45ctgcattagg ttgacagcta gctcagtcct aggtataata ctagt 45
<210> 16<210> 16
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
cactagctgg gaattcggat ccgcgaccca ttacc 35cactagctgggaattcggatccgcgacccattacc 35
<210> 17<210> 17
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 17<400> 17
atccgaattc ccagctagtg actgcagtta gctcg 35atccgaattc ccagctagtg actgcagtta gctcg 35
<210> 18<210> 18
<211> 55<211> 55
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 18<400> 18
tgctcaccat aagttttcct cctattattt ctagaggatt atttctagag ggaaa 55tgctcaccat aagttttcct cctattattt ctagaggatt atttctagag ggaaa 55
<210> 19<210> 19
<211> 31<211> 31
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 19<400> 19
aggaaaactt atggtgagca agggcgagga g 31aggaaaactt atggtgagca agggcgagga g 31
<210> 20<210> 20
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 20<400> 20
tcgggctttg ttacttgtac agctcgtcca tgccg 35tcgggctttg ttacttgtac agctcgtcca tgccg 35
<210> 21<210> 21
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 21<400> 21
tagctgtcaa cctaatgcag gagtcgcata agggag 36tagctgtcaa cctaatgcag gagtcgcata aggggag 36
<210> 22<210> 22
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 22<400> 22
gtacaagtaa caaagcccga aaggaagctg agttg 35gtacaagtaa caaagcccga aaggaagctg agttg 35
<210> 23<210> 23
<211> 45<211> 45
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 23<400> 23
ctgcattagg ttgacagcta gctcagtcct aggtataata ctagt 45ctgcattagg ttgacagcta gctcagtcct aggtataata ctagt 45
<210> 24<210> 24
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 24<400> 24
agtcgtatta atttcgatta tgcggccgtg tacaat 36agtcgtatta atttcgatta tgcggccgtg tacaat 36
<210> 25<210> 25
<211> 42<211> 42
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 25<400> 25
taatcgaaat taatacgact cactataggg gaattgtgag cg 42taatcgaaat taatacgact cactataggg gaattgtgag cg 42
<210> 26<210> 26
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 26<400> 26
tagctgtcaa cctaatgcag gagtcgcata agggag 36tagctgtcaa cctaatgcag gagtcgcata aggggag 36
<210> 27<210> 27
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 27<400> 27
agatatacat atgtccgaag tcgagttttc ccatga 36agatatacat atgtccgaag tcgagttttc ccatga 36
<210> 28<210> 28
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 28<400> 28
tggcagcagc ctaggttaag tcacccccaa gctgtg 36tggcagcagc ctaggttaag tcacccccaa gctgtg 36
<210> 29<210> 29
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 29<400> 29
cttaacctag gctgctgcca ccgctgag 28cttaacctag gctgctgcca ccgctgag 28
<210> 30<210> 30
<211> 60<211> 60
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 30<400> 30
cttcggacat atgtatatct ccttcttata cttaactaat atactaagat ggggaattgt 60cttcggacat atgtatatct ccttcttata cttaactaat atactaagat ggggaattgt 60
<210> 31<210> 31
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 31<400> 31
gattacgacg tcgatgcgat tgtaccccaa tcctt 35gattacgacg tcgatgcgat tgtaccccaa tcctt 35
<210> 32<210> 32
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 32<400> 32
gtacaatcgc atcgacgtcg taatcagata aacggt 36gtacaatcgc atcgacgtcg taatcagata aacggt 36
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210525569.4A CN117106773A (en) | 2022-05-16 | 2022-05-16 | Gene time sequence expression regulation and control system and method based on single base editing and application |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210525569.4A CN117106773A (en) | 2022-05-16 | 2022-05-16 | Gene time sequence expression regulation and control system and method based on single base editing and application |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN117106773A true CN117106773A (en) | 2023-11-24 |
Family
ID=88798890
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210525569.4A Pending CN117106773A (en) | 2022-05-16 | 2022-05-16 | Gene time sequence expression regulation and control system and method based on single base editing and application |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN117106773A (en) |
-
2022
- 2022-05-16 CN CN202210525569.4A patent/CN117106773A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11802277B2 (en) | Thermostable Cas9 nucleases | |
| CN107794272B (en) | High-specificity CRISPR genome editing system | |
| US11286504B2 (en) | Method to produce protein in Penicillium amagasakiense's sleeping spores by transformation of ssRNA | |
| AU2002253226B2 (en) | Synthetic genes and bacterial plasmids devoid of CpG | |
| CN110352241A (en) | Heat-staple Cas9 nuclease | |
| CN106995813B (en) | Direct cloning of large genomic fragments and new technologies for DNA multi-molecule assembly | |
| AU2008254291B2 (en) | Methods of genome installation in a recipient host cell | |
| US20040053412A1 (en) | Cells resistant to toxic genes and uses thereof | |
| CN109929839A (en) | Detatching single base gene editing system and its application | |
| CN108165551A (en) | A kind of improved promoter and its composition T carrier and application | |
| Penewit et al. | Genome editing in Staphylococcus aureus by conditional recombineering and CRISPR/Cas9-mediated counterselection | |
| CN117106773A (en) | Gene time sequence expression regulation and control system and method based on single base editing and application | |
| CN106381304A (en) | Method for expressing proteins in aspergillus oryzae resting spores by using exogenous single chain RNA (Ribose Nucleic Acid) | |
| CN114540421B (en) | Controllable editing method for silkworm MSG and PSG expression genes | |
| CN110229839A (en) | A method of significantly promoting Escherichia coli dsRNA expression productivity | |
| CN106148412A (en) | A kind of method not sprouting spore transfer outside the pale of civilization source ssRNA in aspergillus flavus | |
| CN106191123A (en) | Use external source single stranded RNA method of marking protein in trichoderma reesei resting spore | |
| CN103849640B (en) | A kind of oligonucleotide and the method for plasmid cotransformation for the point mutation of intestinal bacteria indispensable gene can be eliminated | |
| Penewit et al. | Recombineering in Staphylococcus aureus | |
| WO2022166572A1 (en) | Method and system for continuous cloning of long dna fragment | |
| CN106148410A (en) | A kind of method producing protein molecule in a penicillium sp resting spore | |
| CN118460446A (en) | A mycoplasma mutant strain and its preparation method and application | |
| CN119998453A (en) | Novel LoxPsym sites for large-scale orthogonal CRE-mediated recombination | |
| Hayashi et al. | Microhomology-mediated CRISPR/Cas9-based method for genome editing in fission yeast | |
| Webster | Mechanisms of mRNA substrate-selection by the Ccr4-Not deadenylase complex |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |