CN117126923A - Molecular detection method - Google Patents
Molecular detection method Download PDFInfo
- Publication number
- CN117126923A CN117126923A CN202310992413.1A CN202310992413A CN117126923A CN 117126923 A CN117126923 A CN 117126923A CN 202310992413 A CN202310992413 A CN 202310992413A CN 117126923 A CN117126923 A CN 117126923A
- Authority
- CN
- China
- Prior art keywords
- rolling circle
- nucleic acid
- analyte
- force
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 112
- 239000000523 sample Substances 0.000 claims abstract description 103
- 239000012491 analyte Substances 0.000 claims abstract description 99
- 238000000034 method Methods 0.000 claims abstract description 68
- 230000008569 process Effects 0.000 claims abstract description 40
- 238000005859 coupling reaction Methods 0.000 claims abstract description 38
- 230000008878 coupling Effects 0.000 claims abstract description 34
- 238000010168 coupling process Methods 0.000 claims abstract description 34
- 125000000524 functional group Chemical group 0.000 claims abstract description 32
- 238000005516 engineering process Methods 0.000 claims abstract description 22
- 230000008859 change Effects 0.000 claims abstract description 19
- 239000003068 molecular probe Substances 0.000 claims abstract description 15
- 238000005096 rolling process Methods 0.000 claims description 169
- 108020004711 Nucleic Acid Probes Proteins 0.000 claims description 136
- 239000002853 nucleic acid probe Substances 0.000 claims description 136
- 230000003321 amplification Effects 0.000 claims description 104
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 104
- 238000013518 transcription Methods 0.000 claims description 84
- 230000035897 transcription Effects 0.000 claims description 84
- 238000006116 polymerization reaction Methods 0.000 claims description 64
- 239000000758 substrate Substances 0.000 claims description 46
- 238000006243 chemical reaction Methods 0.000 claims description 32
- 125000003729 nucleotide group Chemical group 0.000 claims description 30
- 239000002773 nucleotide Substances 0.000 claims description 27
- 230000000295 complement effect Effects 0.000 claims description 26
- 230000000977 initiatory effect Effects 0.000 claims description 13
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 11
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 11
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 claims description 9
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 claims description 9
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 239000002777 nucleoside Substances 0.000 claims description 2
- 150000003833 nucleoside derivatives Chemical class 0.000 claims 1
- 150000003384 small molecules Chemical class 0.000 abstract description 6
- 108090000623 proteins and genes Proteins 0.000 abstract description 2
- 102000004169 proteins and genes Human genes 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract 1
- 229940079593 drug Drugs 0.000 abstract 1
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 38
- 210000004027 cell Anatomy 0.000 description 31
- 239000000243 solution Substances 0.000 description 30
- 239000004005 microsphere Substances 0.000 description 25
- 108020004414 DNA Proteins 0.000 description 21
- 150000007523 nucleic acids Chemical class 0.000 description 20
- 229960002685 biotin Drugs 0.000 description 19
- 235000020958 biotin Nutrition 0.000 description 19
- 239000011616 biotin Substances 0.000 description 19
- 238000011065 in-situ storage Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 18
- 230000035772 mutation Effects 0.000 description 18
- 108020004707 nucleic acids Proteins 0.000 description 18
- 102000039446 nucleic acids Human genes 0.000 description 18
- 238000003786 synthesis reaction Methods 0.000 description 18
- 239000000126 substance Substances 0.000 description 17
- 108091007780 MiR-122 Proteins 0.000 description 16
- 108091051828 miR-122 stem-loop Proteins 0.000 description 16
- 125000006850 spacer group Chemical group 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 108091007423 let-7b Proteins 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 108091007772 MIRLET7C Proteins 0.000 description 10
- 230000002950 deficient Effects 0.000 description 10
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 108091081406 G-quadruplex Proteins 0.000 description 9
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 9
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 9
- 230000001360 synchronised effect Effects 0.000 description 9
- 108010061982 DNA Ligases Proteins 0.000 description 8
- 102000012410 DNA Ligases Human genes 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 230000008929 regeneration Effects 0.000 description 8
- 238000011069 regeneration method Methods 0.000 description 8
- 102000003960 Ligases Human genes 0.000 description 7
- 108090000364 Ligases Proteins 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 6
- 238000002372 labelling Methods 0.000 description 6
- 239000013642 negative control Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 5
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 5
- 108020004682 Single-Stranded DNA Proteins 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 108091091807 let-7a stem-loop Proteins 0.000 description 5
- 108091057746 let-7a-4 stem-loop Proteins 0.000 description 5
- 108091028376 let-7a-5 stem-loop Proteins 0.000 description 5
- 108091024393 let-7a-6 stem-loop Proteins 0.000 description 5
- 108091091174 let-7a-7 stem-loop Proteins 0.000 description 5
- 108091033753 let-7d stem-loop Proteins 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000026731 phosphorylation Effects 0.000 description 4
- 238000006366 phosphorylation reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- 108020004638 Circular DNA Proteins 0.000 description 3
- 241000711573 Coronaviridae Species 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 201000007270 liver cancer Diseases 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 239000011535 reaction buffer Substances 0.000 description 3
- 210000003296 saliva Anatomy 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 108091023037 Aptamer Proteins 0.000 description 2
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 2
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 2
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 2
- 108010007577 Exodeoxyribonuclease I Proteins 0.000 description 2
- 102100029075 Exonuclease 1 Human genes 0.000 description 2
- 101001066878 Homo sapiens Polyribonucleotide nucleotidyltransferase 1, mitochondrial Proteins 0.000 description 2
- 102000002681 Polyribonucleotide nucleotidyltransferase Human genes 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 2
- 101710137500 T7 RNA polymerase Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000000980 acid dye Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical class C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 2
- 229960005156 digoxin Drugs 0.000 description 2
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 2
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 2
- JGBUYEVOKHLFID-UHFFFAOYSA-N gelred Chemical compound [I-].[I-].C=1C(N)=CC=C(C2=CC=C(N)C=C2[N+]=2CCCCCC(=O)NCCCOCCOCCOCCCNC(=O)CCCCC[N+]=3C4=CC(N)=CC=C4C4=CC=C(N)C=C4C=3C=3C=CC=CC=3)C=1C=2C1=CC=CC=C1 JGBUYEVOKHLFID-UHFFFAOYSA-N 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 108091053410 let-7 family Proteins 0.000 description 2
- 238000012576 optical tweezer Methods 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 102000054765 polymorphisms of proteins Human genes 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- VUFNRPJNRFOTGK-UHFFFAOYSA-M sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 VUFNRPJNRFOTGK-UHFFFAOYSA-M 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- OBULAGGRIVAQEG-DFGXMLLCSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid;[[(2r,3s,4r,5r)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21.O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 OBULAGGRIVAQEG-DFGXMLLCSA-N 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- 108010061994 Coronavirus Spike Glycoprotein Proteins 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101000945318 Homo sapiens Calponin-1 Proteins 0.000 description 1
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 102100031013 Transgelin Human genes 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000011330 nucleic acid test Methods 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical group C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 230000005029 transcription elongation Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/178—Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及一种分子检测方法,使用多通道单分子力学技术同时操纵多种分子探针以检测待测物;分子探针的两端通过标记的偶联官能团连接到载体;载体用于对分子探针施加拉力。检测过程包含结合力和检测力:在结合力下,分子探针结合待测物;在检测力下,以有无待测物的分子探针长度差别或长度变化曲线差别为信号强度,检测是否存在待测物、待测物浓度、待测物与特异结构的结合速度与结合强度。本发明适合用于检测以下待测物,如蛋白、药物、小分子、DNA、RNA及其复合物等。
The invention relates to a molecular detection method that uses multi-channel single molecule mechanics technology to simultaneously manipulate multiple molecular probes to detect analytes; both ends of the molecular probes are connected to a carrier through labeled coupling functional groups; the carrier is used to detect molecules The probe exerts pulling force. The detection process includes binding force and detection force: under the binding force, the molecular probe binds to the analyte; under the detection force, the difference in length or length change curve of the molecular probe with or without the analyte is used as the signal intensity to detect whether There is the analyte, the analyte concentration, the binding speed and binding strength of the analyte to the specific structure. The invention is suitable for detecting the following analytes, such as proteins, drugs, small molecules, DNA, RNA and their complexes, etc.
Description
技术领域Technical field
本发明属于生物与新医疗技术领域,尤其涉及一种分子检测方法。The invention belongs to the field of biology and new medical technology, and in particular relates to a molecular detection method.
背景技术Background technique
核酸探针是一类由核酸分子或者类核酸分子组成的分子探针,能够通过特定的分子识别机制特异性地感知待测组分中的待测物,并通过特定的信号转导方法将分子识别事件转化为荧光信号或其他电化学信号报告出来。Nucleic acid probes are a type of molecular probe composed of nucleic acid molecules or nucleic acid-like molecules. They can specifically sense the analyte in the component to be measured through a specific molecular recognition mechanism, and transfer the molecules to the analyte through a specific signal transduction method. Recognition events are converted into fluorescent signals or other electrochemical signals and reported.
单分子力学操纵技术是一种用于研究蛋白质、核酸等生物分子结构和相互作用的技术,可用于分子检测。与传统方法相比,基于单分子操纵的技术,如光镊、声镊、磁镊、液流操纵等,一方面可借助施加的拉力大小或探针分子的延伸长度作为识别信号,因而无需使用荧光定量等信号转导方法,这既避免了探针设计时信号输出结构域的需求,也大大降低了探针设计的复杂度。另一方面,针对单个分子的测量在理论上可实现单个待测物的检测,是解决经典核酸探针灵敏度不足的终极方案。Single-molecule mechanical manipulation technology is a technology used to study the structure and interactions of biomolecules such as proteins and nucleic acids, and can be used for molecular detection. Compared with traditional methods, technologies based on single molecule manipulation, such as optical tweezers, acoustic tweezers, magnetic tweezers, liquid flow manipulation, etc., can use the applied pulling force or the extension length of the probe molecules as identification signals, so there is no need to use Signal transduction methods such as fluorescence quantification not only avoid the need for a signal output domain during probe design, but also greatly reduce the complexity of probe design. On the other hand, measurement of a single molecule can theoretically detect a single analyte, which is the ultimate solution to solve the sensitivity deficiency of classic nucleic acid probes.
然而,由于分子扩散速度的限制,待测物与单分子探针的结合速度受到限制,导致对于浓度非常低的待测物,需要耗费相当长的检测时间,极大降低了检测灵敏度。此外,怎样提高检测分辨率、区分多种与核酸探针结合的待测物、同时检测多种待测物、检测待测物的结合速度强度与浓度、在生物或临床样本的背景信号中正确检测待测物、避免假阳性、检测待测物核酸的突变特别是单碱基突变,都是需要解决的技术难题。However, due to the limitation of molecular diffusion speed, the binding speed of the analyte to the single-molecule probe is limited, which results in a very long detection time for the analyte with a very low concentration, which greatly reduces the detection sensitivity. In addition, how to improve detection resolution, distinguish multiple analytes that bind to nucleic acid probes, detect multiple analytes simultaneously, detect the binding speed, intensity and concentration of analytes, and correctly detect background signals in biological or clinical samples. Detecting the analyte, avoiding false positives, and detecting mutations in the nucleic acid of the analyte, especially single-base mutations, are all technical problems that need to be solved.
发明内容Contents of the invention
为了解决上述技术难题,本发明提供一种分子检测方法,该方法使用多通道单分子力学技术同时操纵多种分子探针以检测待测物,能够同时检测复杂样品中多个待测物。In order to solve the above technical problems, the present invention provides a molecular detection method that uses multi-channel single molecule mechanics technology to simultaneously manipulate multiple molecular probes to detect analytes, and can simultaneously detect multiple analytes in complex samples.
本发明提供的分子检测方法,使用多通道单分子力学技术同时操纵多种分子探针以检测待测物;分子探针的两端通过标记的偶联官能团连接到载体;载体用于对分子探针施加拉力。The molecular detection method provided by the invention uses multi-channel single molecule mechanics technology to simultaneously manipulate multiple molecular probes to detect the analyte; both ends of the molecular probe are connected to a carrier through labeled coupling functional groups; the carrier is used to detect the molecular probe. The needle exerts pulling force.
在上述技术方案的基础上,分子探针为串联核酸探针,串联核酸探针的单体含有靶点序列;在一定范围的拉力下,靶点序列可以形成结合待测物的特异结构;串联核酸探针通过滚环扩增或滚环转录制备而成。该方法可以通过检测有无待测物的分子探针长度差别或长度变化曲线差别为信号强度,检测是否存在待测物、待测物浓度、待测物与特异结构的结合速度与结合强度。串联核酸探针由于增加了特异结构的数量,从而提高了检测灵敏度。On the basis of the above technical solution, the molecular probe is a tandem nucleic acid probe, and the monomer of the tandem nucleic acid probe contains a target sequence; under a certain range of pulling force, the target sequence can form a specific structure that binds the analyte; tandem Nucleic acid probes are prepared by rolling circle amplification or rolling circle transcription. This method can detect the presence or absence of the analyte, the concentration of the analyte, the binding speed and binding strength of the analyte to the specific structure by detecting the length difference of the molecular probe or the difference in length change curve of the analyte as signal intensity. Tandem nucleic acid probes increase detection sensitivity by increasing the number of specific structures.
在上述技术方案的基础上,滚环扩增包括以下步骤:Based on the above technical solution, rolling circle amplification includes the following steps:
滚环扩增的起始:需要滚环扩增引物、DNA聚合酶和滚环扩增模版;滚环扩增模版含有启动序列和靶点序列互补序列;启动序列可结合滚环扩增引物;The initiation of rolling circle amplification: rolling circle amplification primers, DNA polymerase and rolling circle amplification template are required; the rolling circle amplification template contains the starting sequence and the complementary sequence of the target sequence; the starting sequence can be combined with the rolling circle amplification primer;
滚环扩增的延伸:以所有必需的核苷酸为底物并根据串联核酸探针所需的聚合度持续扩增一段时间。Extension of rolling circle amplification: All necessary nucleotides are used as substrates and amplification is continued for a period of time based on the desired degree of polymerization of the tandem nucleic acid probes.
在上述技术方案的基础上,滚环转录包括以下步骤:Based on the above technical solution, rolling circle transcription includes the following steps:
滚环转录的起始:需要RNA聚合酶和滚环转录模版;滚环转录模版含有启动序列和靶点序列互补序列;启动序列是结合RNA聚合酶的序列;此步骤中,新生成的RNA转录本标记有偶联官能团;Initiation of rolling circle transcription: RNA polymerase and rolling circle transcription template are required; the rolling circle transcription template contains the promoter sequence and the complementary sequence of the target sequence; the promoter sequence is a sequence that binds RNA polymerase; in this step, the newly generated RNA is transcribed This marker has coupling functional groups;
滚环转录的延伸:以所有必需的核苷酸为底物并根据串联核酸探针所需的聚合度持续转录一段时间。Elongation of rolling circle transcription: Transcription takes all necessary nucleotides as substrates and continues for a period of time depending on the desired degree of polymerization of the tandem nucleic acid probe.
在上述技术方案的基础上,延伸步骤是固定在载体上进行的。Based on the above technical solution, the extension step is performed by fixing on the carrier.
在上述技术方案的基础上,滚环扩增或滚环转录包含暂停后重启的过程。Based on the above technical solutions, rolling circle amplification or rolling circle transcription involves a process of pausing and then restarting.
在上述技术方案的基础上,滚环扩增或滚环转录反应试剂中缺少必要核苷酸底物中的至少一种,聚合酶工作到需使用缺少的核苷酸底物时暂停。On the basis of the above technical solution, the rolling circle amplification or rolling circle transcription reaction reagent lacks at least one of the necessary nucleotide substrates, and the polymerase pauses when the missing nucleotide substrate needs to be used.
在上述技术方案的基础上,使用多通道单分子力学技术进行检测的过程包含结合力和检测力:在结合力下,靶点序列形成特异结构,可结合待测物;在检测力下检测待测物;On the basis of the above technical solutions, the detection process using multi-channel single molecule mechanics technology includes binding force and detection force: under the binding force, the target sequence forms a specific structure and can bind to the analyte; under the detection force, the analyte is detected test object;
检测力为恒定力时,记录没有待测物时串联核酸探针的长度作为基准长度,从结合力改变到检测力后,计算串联核酸探针的长度与基准长度之间的差别作为信号强度。When the detection force is a constant force, record the length of the tandem nucleic acid probe when there is no analyte as the reference length. After changing from the binding force to the detection force, calculate the difference between the length of the tandem nucleic acid probe and the reference length as the signal intensity.
检测力为渐变力时,记录没有待测物时串联核酸探针的长度变化曲线作为基准曲线。在样品检测过程中,在检测力下计算串联核酸探针的长度变化曲线与基准曲线的差别作为信号强度;When the detection force is a gradient force, record the length change curve of the tandem nucleic acid probe when there is no analyte as the reference curve. During the sample detection process, the difference between the length change curve of the tandem nucleic acid probe and the reference curve is calculated as the signal intensity under the detection force;
根据信号强度来检测样品中是否存在待测物、待测物浓度、待测物与特异结构的结合强度及结合速度。According to the signal intensity, the presence of the analyte in the sample, the concentration of the analyte, the binding strength and binding speed of the analyte to the specific structure are detected.
在上述技术方案的基础上,所述多个串联核酸探针的聚合度具有均一性;均一性标准为聚合度的均方差小于平均聚合度的20%。On the basis of the above technical solution, the degree of polymerization of the multiple tandem nucleic acid probes is uniform; the uniformity standard is that the mean square error of the degree of polymerization is less than 20% of the average degree of polymerization.
在上述技术方案的基础上,该分子检测包括:同时操纵成组的多种串联核酸探针,组内各种串联核酸探针的靶点序列为鉴别序列多态性的序列。Based on the above technical solution, the molecular detection includes: simultaneously manipulating a group of multiple tandem nucleic acid probes, and the target sequences of various tandem nucleic acid probes in the group are sequences that identify sequence polymorphisms.
特异结构是由其结合待测物的能力来限定的,包括但不限定于单链DNA或单链RNA、发夹结构、双链结构、纳米折纸、适配体、G4、i-motif、核酸三链结构等。特异结构可能是在较大拉力下靶点序列形成的去折叠的结构,也可能是在较小拉力下靶点序列折叠成的结构。Specific structures are defined by their ability to bind to the test substance, including but not limited to single-stranded DNA or single-stranded RNA, hairpin structure, double-stranded structure, nano-origami, aptamer, G4, i-motif, nucleic acid Three-chain structure, etc. The specific structure may be an unfolded structure formed by the target sequence under a larger pulling force, or it may be a folded structure formed by the target sequence under a smaller pulling force.
本发明将串联核酸探针与多通道单分子力学技术结合,同时操纵多个串联核酸探针,利用串联核酸探针在与待测物不同结合条件下的长度差别或长度变化曲线差别获得如下检测结果:(i)是否存在待测物;(ii)待测物的浓度;(iii)待测物与核酸探针的结合强度;(iv)待测物与核酸探针的结合速度;(v)提高待测物的检测分辨率;(vi)区分多种与核酸探针结合的待测物;(vii)同时检测多种待测物;(viii)在生物或临床样本的背景信号中正确检测待测物;(ix)通过多种探针做对照避免假阳性;(x)检测核酸待测物的突变特别是单碱基突变。The present invention combines tandem nucleic acid probes with multi-channel single molecule mechanics technology, simultaneously manipulates multiple tandem nucleic acid probes, and uses the length difference or length change curve difference of the tandem nucleic acid probes under different binding conditions with the test substance to obtain the following detection Results: (i) Whether there is a analyte; (ii) The concentration of the analyte; (iii) The binding strength of the analyte to the nucleic acid probe; (iv) The binding speed of the analyte to the nucleic acid probe; (v) ) Improve the detection resolution of analytes; (vi) Distinguish multiple analytes bound to nucleic acid probes; (vii) Detect multiple analytes simultaneously; (viii) Correctly detect background signals in biological or clinical samples Detect the analyte; (ix) use multiple probes as controls to avoid false positives; (x) detect mutations in the nucleic acid analyte, especially single base mutations.
本发明合成多个串联核酸探针的方法如下:The method for synthesizing multiple tandem nucleic acid probes of the present invention is as follows:
串联核酸探针可以是通过滚环扩增合成,也可以是通过滚环转录合成。探针两端分别偶联到载体上。载体的作用是对探针施加拉力。Tandem nucleic acid probes can be synthesized by rolling circle amplification or rolling circle transcription. Both ends of the probe are coupled to the carrier respectively. The function of the carrier is to exert pulling force on the probe.
优选的,所述载体可以是流通池或微球。Preferably, the carrier can be a flow cell or microspheres.
使用多通道单分子力学技术同时操纵多个探针。Simultaneously manipulate multiple probes using multichannel single-molecule mechanics techniques.
优选的,所述多通道单分子力学技术为磁镊。Preferably, the multi-channel single molecule mechanics technology is magnetic tweezers.
并行测量的多个串联核酸探针的聚合度具有均一性。The degree of polymerization of multiple tandem nucleic acid probes measured in parallel is uniform.
优选地,所述均一性的标准是聚合度的均方差小于平均聚合度的20%。Preferably, the criterion for uniformity is that the mean square error of the degree of polymerization is less than 20% of the average degree of polymerization.
所述串联核酸探针的聚合度大于500。The degree of polymerization of the tandem nucleic acid probe is greater than 500.
可以通过起始后,暂停再重启的过程,提高串联核酸探针聚合度的均一性。其中起始后暂停再重启可以采用低温下组装滚环扩增或滚环转录复合体的方法,这时聚合酶的活性极低,从而使得反应体系恢复到反应温度后同时启动。也可以采用聚合酶抑制剂的方法,在滚环扩增或滚环转录起始后抑制扩增或转录活性,从而使得去除抑制剂后同时启动。本发明的实施例方案中,具体采用了在环扩增或滚环转录起始步骤的反应底物中缺少至少一种必要核苷酸的方法来实现暂停再重启的过程。The uniformity of polymerization of tandem nucleic acid probes can be improved by starting, pausing and restarting the process. Among them, pausing and then restarting after starting can use the method of assembling rolling circle amplification or rolling circle transcription complexes at low temperature. At this time, the activity of the polymerase is extremely low, so that the reaction system can be started simultaneously after returning to the reaction temperature. Polymerase inhibitors can also be used to inhibit amplification or transcription activity after rolling circle amplification or rolling circle transcription is initiated, so that it can be started simultaneously after the inhibitor is removed. In the embodiments of the present invention, the method of lacking at least one necessary nucleotide in the reaction substrate of the circle amplification or rolling circle transcription initiation step is specifically adopted to realize the process of pausing and restarting.
所述串联核酸探针的单体包含形成发夹结构的序列,靶点序列位于发卡结构的茎区。在结合力下发夹结构打开成为单链并暴露靶点序列。单链状态的靶点序列可结合待测物。The monomer of the tandem nucleic acid probe includes a sequence forming a hairpin structure, and the target sequence is located in the stem region of the hairpin structure. Under binding force, the hairpin structure opens into a single strand and exposes the target sequence. The target sequence in the single-stranded state can bind to the test substance.
串联核酸探针的具体制备方法如下:The specific preparation method of tandem nucleic acid probes is as follows:
1.通过滚环扩增合成串联核酸探针1. Synthesis of tandem nucleic acid probes through rolling circle amplification
通过滚环扩增合成串联核酸探针时,其滚环扩增过程可以是在载体上原位进行,也可以是在溶液中进行。相对于在溶液中合成的方法,原位合成优势在于:其一,便于更换反应试剂;其二,由于在合成过程中,滚环扩增复合物之间没有相互干扰,一方面可以防止新合成探针分子间的纠缠,影响探针分子的结构完整性,另一方面有助于合成聚合度更高的探针。When synthesizing tandem nucleic acid probes through rolling circle amplification, the rolling circle amplification process can be performed in situ on a carrier or in a solution. Compared with the method of synthesis in solution, the advantages of in-situ synthesis are: first, it is convenient to replace reaction reagents; second, since there is no mutual interference between rolling circle amplification complexes during the synthesis process, on the one hand, new synthesis can be prevented The entanglement between probe molecules affects the structural integrity of the probe molecules. On the other hand, it helps to synthesize probes with a higher degree of polymerization.
滚环扩增原位合成串联核酸探针的技术细节在于:The technical details of rolling circle amplification in situ synthesis of tandem nucleic acid probes are:
技术细节一,通过偶联反应,将滚环扩增引物通过偶联官能团1偶联到载体上。Technical details 1: Through a coupling reaction, the rolling circle amplification primer is coupled to the carrier through the coupling functional group 1.
优选地,所述载体为流通池或微球。Preferably, the carrier is a flow cell or microspheres.
滚环扩增引物与流通池或微球的偶联可以是共价结合,也可以是亲和连接。The coupling between rolling circle amplification primers and flow cells or microspheres can be covalent binding or affinity connection.
优选地,所述滚环扩增引物修饰的偶联官能团1为巯基,修饰位于引物序列5’末端,可连接到SMCC修饰的流通池或微球。Preferably, the coupling functional group 1 modified by the rolling circle amplification primer is a sulfhydryl group, and the modification is located at the 5' end of the primer sequence and can be connected to an SMCC-modified flow cell or microsphere.
优选地,滚环扩增引物连接到SMCC修饰的流通池表面上。Preferably, the rolling circle amplification primers are attached to the SMCC modified flow cell surface.
滚环扩增引物可以根据探针序列进行设计,可结合滚环扩增的模版中的启动序列。Rolling circle amplification primers can be designed based on the probe sequence and can be combined with the promoter sequence in the rolling circle amplification template.
优选地,实施例中所使用的滚环扩增引物均为SH_hp。Preferably, the rolling circle amplification primers used in the examples are all SH_hp.
技术细节二,通过酶连反应,制作闭合结构的环状滚环扩增模板。Technical detail two: Make a closed-structure circular rolling circle amplification template through enzyme ligation reaction.
闭合结构的环状扩增模板含有启动序列和靶点序列互补序列。所述启动序列是可以与滚环扩增引物结合的序列;所述靶点序列可以形成结合待测物的特异结构。The closed structure circular amplification template contains the complementary sequence of the promoter sequence and the target sequence. The initiating sequence is a sequence that can be combined with a rolling circle amplification primer; the target sequence can form a specific structure that binds the test substance.
优选地,所述靶点序列位于探针发卡结构的茎区。Preferably, the target sequence is located in the stem region of the probe hairpin structure.
闭合结构的环状滚环扩增模板可以是由两条带有粘性末端的发卡结构单链核酸通过连接酶连接而成;也可以是在搭桥DNA存在的情况下,由一条单链核酸通过连接酶首尾相连而成。The closed-structure circular rolling circle amplification template can be composed of two hairpin-structured single-stranded nucleic acids with sticky ends connected by ligase; it can also be connected by a single-stranded nucleic acid in the presence of bridge DNA. Enzymes are linked end to end.
优选地,实施例中的滚环扩增模板都是由两条带有粘性末端的发卡结构单链DNA通过连接酶连接而成。Preferably, the rolling circle amplification templates in the embodiments are composed of two hairpin-structured single-stranded DNAs with sticky ends connected by ligase.
优选地,连接酶为商品化的T4DNA连接酶。Preferably, the ligase is commercial T4 DNA ligase.
优选地,所述粘性末端长度为6个碱基。Preferably, the length of the sticky end is 6 bases.
优选地,所述粘性末端5’末端都带有磷酸化修饰。5’末端的磷酸化修饰可以在人工合成时添加,也可以使用多核苷酸磷酸化酶添加。Preferably, the 5' end of the sticky end is phosphorylated. The phosphorylation modification at the 5' end can be added during artificial synthesis or using polynucleotide phosphorylase.
优选地,所述5’末端的磷酸化修饰都是在人工合成时添加的。Preferably, the phosphorylation modifications at the 5' end are added during artificial synthesis.
滚环扩增模板的序列可以依据待测物进行设计。The sequence of the rolling circle amplification template can be designed based on the analyte.
优选地,实施例中使用的两条发卡结构分别为T1和T2。发卡结构T1包含启动序列,发卡结构T2包含有靶点序列互补序列。Preferably, the two hairpin structures used in the embodiment are T1 and T2 respectively. The hairpin structure T1 contains the initiating sequence, and the hairpin structure T2 contains the complementary sequence of the target sequence.
技术细节三,通过滚环扩增,合成串联核酸探针。Technical detail three: Synthesize tandem nucleic acid probes through rolling circle amplification.
优选地,所述滚环扩增过程的DNA聚合酶为等温聚合酶。Preferably, the DNA polymerase used in the rolling circle amplification process is an isothermal polymerase.
优选地,等所述温聚合酶为商品化的phi29DNA聚合酶。Preferably, the warm polymerase is commercial phi29 DNA polymerase.
优选地,所述滚环扩增时的反应温度为30oC。Preferably, the reaction temperature during rolling circle amplification is 30°C.
滚环扩增延伸步骤中使用的核苷酸底物可以为带有修饰核苷酸底物,如甲基化修饰的dATP或dCTP,也可以是不带有修饰的核苷酸底物。The nucleotide substrate used in the extension step of rolling circle amplification can be a modified nucleotide substrate, such as methylation-modified dATP or dCTP, or it can be an unmodified nucleotide substrate.
优选地,所述滚环扩增延伸步骤中使用的核苷酸底物为不带有修饰的dNTP。Preferably, the nucleotide substrate used in the rolling circle amplification extension step is dNTP without modification.
本发明中,滚环扩增合成的串联核酸探针,其3’端含有偶联官能团2,所述偶联官能团2的标记可以通过DNA聚合酶或者末端转移酶来实现。In the present invention, the tandem nucleic acid probe synthesized by rolling circle amplification contains a coupling functional group 2 at its 3' end, and the labeling of the coupling functional group 2 can be achieved by DNA polymerase or terminal transferase.
优选的,所述3’端偶联官能团2的标记是在滚环扩增延伸后,通过掺入一定比例的带有偶联官能团2修饰的一种dNTP来实现的。Preferably, the labeling of the coupling functional group 2 at the 3' end is achieved by incorporating a certain proportion of a dNTP modified with the coupling functional group 2 after rolling circle amplification and extension.
优选地,所述带有偶联官能团2修饰的一种dNTP为生物素标记的dUTP。Preferably, the dNTP modified with coupling functional group 2 is biotin-labeled dUTP.
优选地,所述生物素标记dUTP的掺入比例为生物素标记的dUTP比上未标记的dTTP等于1:9。Preferably, the incorporation ratio of the biotin-labeled dUTP is that the ratio of biotin-labeled dUTP to unlabeled dTTP is equal to 1:9.
探针的3’端通过偶联官能团2连接到载体上。The 3’ end of the probe is connected to the carrier through the coupling functional group 2.
优选地,所述载体为流通池或者微球。因此,探针的两端分别连接到流通池或微球。Preferably, the carrier is a flow cell or microspheres. Therefore, both ends of the probe are connected to the flow cell or microspheres, respectively.
技术细节四,可通过同步化滚环扩增过程,使合成的多个串联核酸探针的聚合度相对均一。Technical detail four: The rolling circle amplification process can be synchronized to make the degree of polymerization of multiple synthesized tandem nucleic acid probes relatively uniform.
滚环扩增时还包括滚环扩增起始后,经过扩增暂停再重启的过程。Rolling circle amplification also includes the process of starting rolling circle amplification, pausing and then restarting the amplification.
本发明中,通过在滚环扩增起始步骤的反应试剂中加入缺陷底物来同步化滚环扩增过程。所述缺陷底物中缺少滚环扩增所必需的核苷酸底物中的至少一种,因此,DNA聚合酶工作到需使用缺少的核苷酸底物时暂停。In the present invention, the rolling circle amplification process is synchronized by adding a defective substrate to the reaction reagent in the initial step of rolling circle amplification. The defective substrate lacks at least one of the nucleotide substrates necessary for rolling circle amplification. Therefore, the DNA polymerase pauses when the missing nucleotide substrate needs to be used.
优选地,所述缺陷底物中缺少一种dNTP核苷酸底物。Preferably, the defective substrate lacks a dNTP nucleotide substrate.
优选地,所述一种dNTP核苷酸底物为dTTP。Preferably, the one dNTP nucleotide substrate is dTTP.
通过滚环扩增合成串联核酸探针时,其滚环扩增过程也可以是在溶液中进行。相较于在载体表面上原位进行的滚环扩增过程,其技术细节的不同点在于:When synthesizing tandem nucleic acid probes through rolling circle amplification, the rolling circle amplification process can also be performed in solution. Compared with the rolling circle amplification process performed in situ on the surface of the carrier, the technical details are different:
技术细节的不同点之一,滚环扩增延伸不是在载体上进行的。One of the differences in technical details is that rolling circle amplification extension is not performed on a vector.
技术细节的不同点之二,在同步化滚环扩增过程时,DNA聚合酶暂停扩增后需要对滚环扩增复合物进行回收。The second difference in technical details is that when synchronizing the rolling circle amplification process, the rolling circle amplification complex needs to be recovered after the DNA polymerase pauses amplification.
2.通过滚环转录合成串联核酸探针2. Synthesis of tandem nucleic acid probes through rolling circle transcription
通过滚环转录合成串联核酸探针时,其滚环转录过程可以是在载体上原位进行,也可以是在溶液中进行。相对于在溶液中合成的方法,原位合成优势在于:其一,便于更换反应试剂;其二,由于在合成过程中,滚环转录复合物之间没有相互干扰,一方面可以防止新合成探针分子间的纠缠,影响探针分子的结构完整性,另一方面有助于合成聚合度更高的探针。When synthesizing tandem nucleic acid probes through rolling circle transcription, the rolling circle transcription process can be performed in situ on the carrier or in solution. Compared with the method of synthesis in solution, the advantages of in-situ synthesis are: first, it is convenient to replace reaction reagents; second, since there is no mutual interference between rolling circle transcription complexes during the synthesis process, on the one hand, it can prevent new synthetic probes from The entanglement between needle molecules affects the structural integrity of the probe molecules. On the other hand, it helps to synthesize probes with a higher degree of polymerization.
滚环转录原位合成串联核酸探针的技术细节在于:The technical details of rolling circle transcription in situ synthesis of tandem nucleic acid probes are:
技术细节一,通过酶连反应和退火反应,合成闭合结构的环状滚环转录模板。闭合结构的环状滚环转录模板含有启动序列和靶点序列互补序列。其中,启动序列为双链结构,可以和RNA聚合酶结合。Technical details one: synthesize a closed-structure circular rolling circle transcription template through enzyme ligation reaction and annealing reaction. The closed structure circular rolling circle transcription template contains the promoter sequence and the complementary sequence of the target sequence. Among them, the initiation sequence has a double-stranded structure and can bind to RNA polymerase.
所述酶连反应可以是由两条带有粘性末端的发卡结构单链核酸通过连接酶连接而成,也可以是在搭桥DNA存在的情况下,由一条单链核酸通过连接酶首尾相连而成。The enzyme ligation reaction can be formed by connecting two single-stranded nucleic acids with a hairpin structure with sticky ends through a ligase, or it can be formed by connecting a single-stranded nucleic acid end-to-end through a ligase in the presence of bridging DNA. .
优选地,实施例中,所述滚环转录模板的酶连反应是在搭桥DNA存在的情况下,由一条单链核酸通过连接酶首尾相连而成。Preferably, in the embodiment, the enzymatic ligation reaction of the rolling circle transcription template is formed by ligating a single-stranded nucleic acid end-to-end through a ligase in the presence of bridging DNA.
优选地,所述搭桥DNA为Bridge1,所述连接酶为商品化的T4DNA连接酶。Preferably, the bridging DNA is Bridge1, and the ligase is commercial T4 DNA ligase.
所述退火反应是在酶连后的环状单链模板上退火启动序列互补序列,形成局部双链结构的环状滚环转录模板。The annealing reaction is to anneal the complementary sequence of the initiation sequence on the enzyme-linked circular single-stranded template to form a circular rolling circle transcription template with a local double-stranded structure.
优选地,所述启动序列互补序列为T7_C。Preferably, the complementary sequence of the promoter sequence is T7_C.
闭合结构环状滚环转录模板的序列可以依据RNA聚合酶的类型和待测物进行设计。The sequence of the closed structure circular rolling circle transcription template can be designed according to the type of RNA polymerase and the analyte.
优选地,实施例中,所述滚环转录模板的启动序列为T7启动子序列,RNA聚合酶为T7RNA聚合酶。Preferably, in the embodiment, the starting sequence of the rolling circle transcription template is a T7 promoter sequence, and the RNA polymerase is T7 RNA polymerase.
闭合结构环状滚环转录模板的靶点序列是可以折叠成为发卡结构的序列,或者是可以折叠成G四联体结构、适配体结构、纳米折纸结构、药物靶点特异结构等的序列。The target sequence of the closed-structure circular rolling circle transcription template is a sequence that can be folded into a hairpin structure, or a sequence that can be folded into a G-quadruplex structure, an aptamer structure, a nano-origami structure, a drug target-specific structure, etc.
所述单链核酸为T3。The single-stranded nucleic acid is T3.
优选地,所述T3为T3_G4。所述T3_G4的5’末端带有磷酸化修饰。所述5’末端的磷酸化修饰可以在人工合成时添加或者使用多核苷酸磷酸化酶修饰。Preferably, the T3 is T3_G4. The 5' end of T3_G4 is phosphorylated. The phosphorylation modification of the 5' end can be added during artificial synthesis or modified using polynucleotide phosphorylase.
优选地,所述5’末端的磷酸化修饰是在人工合成时添加的。Preferably, the phosphorylation modification of the 5' end is added during artificial synthesis.
技术细节二,通过载体上的原位滚环转录,合成具有一定聚合度的多个串联核酸探针,所述串联核酸探针5’端带有偶联官能团3,3’端带有偶联官能团4。Technical detail two: through in-situ rolling circle transcription on the vector, multiple tandem nucleic acid probes with a certain degree of polymerization are synthesized. The tandem nucleic acid probes have a coupling functional group 3 at the 5' end and a coupling functional group at the 3' end. Functional group 4.
本发明中,通过滚环转录合成的串联核酸探针,所述5’端偶联官能团3是在滚环转录的起始步骤中,通过引入偶联官能团3修饰的底物进行标记的。In the present invention, for the tandem nucleic acid probe synthesized by rolling circle transcription, the 5' end coupling functional group 3 is labeled by introducing a substrate modified by the coupling functional group 3 in the initial step of rolling circle transcription.
优选地,所述偶联官能团3为地高辛,所述偶联官能团3修饰的底物为地高辛标记的UTP,在滚环转录的起始步骤被引入到新生转录本中,使串联核酸探针的5’端标记上地高辛。Preferably, the coupling functional group 3 is digoxigenin, and the substrate modified by the coupling functional group 3 is digoxigenin-labeled UTP, which is introduced into the nascent transcript at the initial step of rolling circle transcription, so that the tandem The 5' end of the nucleic acid probe is labeled with digoxigenin.
滚环转录起始后,纯化标记了地高辛的新生RNA转录本和滚环转录复合体形成的复合物。通过偶联反应,将纯化后的复合物偶联到载体上。After the initiation of rolling circle transcription, the complex formed by the digoxigenin-labeled nascent RNA transcript and the rolling circle transcription complex is purified. The purified complex is coupled to the carrier through a coupling reaction.
优选地,所述载体为流通池,所述流通池上修饰了地高辛抗体。Preferably, the carrier is a flow cell, and the digoxigenin antibody is modified on the flow cell.
加入滚环转录所必需的各种核苷酸底物,使滚环转录反应继续进行,并根据串联核酸探针所需聚合度持续转录一段时间。滚环转录的延伸步骤所必需的各种核苷酸底物可以是带有修饰的核苷酸,如甲基化修饰的ATP或者甲基化修饰的CTP,也可以是不带有修饰的核苷酸。Various nucleotide substrates necessary for rolling circle transcription are added to allow the rolling circle transcription reaction to continue, and transcription continues for a period of time based on the required degree of polymerization of the tandem nucleic acid probe. The various nucleotide substrates necessary for the elongation step of rolling circle transcription can be modified nucleotides, such as methylated ATP or methylated CTP, or they can be unmodified nuclei. glycosides.
优选地,所述滚环转录的延伸步骤所必需的各种核苷酸底物是不带有修饰的核苷酸。Preferably, the various nucleotide substrates necessary for the elongation step of rolling circle transcription are nucleotides without modifications.
本发明中,通过滚环转录合成的串联核酸探针,其3’端偶联官能团4的修饰可以通过RNA聚合酶或末端转移酶来实现。In the present invention, the modification of the 3' end coupling functional group 4 of the tandem nucleic acid probe synthesized by rolling circle transcription can be achieved by RNA polymerase or terminal transferase.
优选地,所述3’端偶联官能团4是在滚环转录延伸后,通过掺入一定比例的带有偶联官能团4修饰的一种核苷酸底物来实现的。Preferably, the 3' end coupling functional group 4 is achieved by incorporating a certain proportion of a nucleotide substrate modified with the coupling functional group 4 after rolling circle transcription elongation.
优选地,所述带有偶联官能团4修饰的一种核苷酸底物为生物素标记的UTP。Preferably, the nucleotide substrate modified with coupling functional group 4 is biotin-labeled UTP.
优选地,所述生物素标记UTP的掺入比例为生物素标记的UTP比上未标记的UTP等于1:9。Preferably, the incorporation ratio of the biotin-labeled UTP is that the ratio of biotin-labeled UTP to unlabeled UTP is equal to 1:9.
技术细节三,通过同步化滚环转录过程,使合成的多个串联核探针的聚合度相对均一。Technical detail three: By synchronizing the rolling circle transcription process, the degree of polymerization of multiple synthesized tandem nuclear probes is relatively uniform.
优选地,聚合度相对均一指的是聚合度的均方差小于平均聚合度的20%。Preferably, the relative homogeneity of the degree of polymerization means that the mean square error of the degree of polymerization is less than 20% of the average degree of polymerization.
本发明中,通过在滚环转录起始步骤的反应试剂中加入缺陷底物来同步化滚环转录过程。所述缺陷底物中缺少滚环转录所必需的核苷酸底物中的至少一种,因此,RNA聚合酶工作到需使用缺少的核苷酸底物时暂停。In the present invention, the rolling circle transcription process is synchronized by adding a defective substrate to the reaction reagent in the initial step of rolling circle transcription. The defective substrate lacks at least one of the nucleotide substrates necessary for rolling circle transcription. Therefore, the RNA polymerase pauses when the missing nucleotide substrate needs to be used.
优选地,所述缺陷底物中缺少一种NTP核苷酸底物。Preferably, the defective substrate lacks an NTP nucleotide substrate.
优选地,所述缺少的一种NTP核苷酸底物为GTP。Preferably, the missing NTP nucleotide substrate is GTP.
通过滚环转录合成串联核酸探针时,其滚环转录过程的所有步骤也可以都在溶液中进行。相较于在载体上原位进行的滚环转录过程,其技术细节的不同点在于:在滚环转录的延伸步骤之前,新生RNA转录本和滚环转录复合体形成的复合物经纯化后,不需要预先偶联到载体上。When tandem nucleic acid probes are synthesized by rolling circle transcription, all steps of the rolling circle transcription process can also be performed in solution. Compared with the rolling circle transcription process performed in situ on the vector, the technical details differ in that before the elongation step of rolling circle transcription, the complex formed by the nascent RNA transcript and the rolling circle transcription complex is purified. No prior coupling to a support is required.
第二方面,单分子力学检测。The second aspect is single molecule mechanics detection.
本发明使用制备的多个串联核酸探针,结合多通道单分子力学技术,实施分子检测。可使用的多通道单分子力学技术可以是单分子磁镊技术、多通道光镊技术、单分子声镊技术、流体力技术等。The present invention uses multiple tandem nucleic acid probes prepared and combines multi-channel single molecule mechanics technology to implement molecular detection. The multi-channel single molecule mechanics technology that can be used can be single molecule magnetic tweezers technology, multi-channel optical tweezers technology, single molecule acoustic tweezers technology, fluid force technology, etc.
优选地,所使用的多通道单分子力学技术为单分子磁镊技术。其技术细节在于:Preferably, the multi-channel single molecule mechanics technology used is single molecule magnetic tweezers technology. The technical details are:
技术细节一,通过偶联反应,将串联核酸探针的两端分别偶联到流通池和微球上。Technical details 1: Through a coupling reaction, the two ends of the tandem nucleic acid probe are coupled to the flow cell and microspheres respectively.
优选地,所述偶联反应是指,经滚环扩增合成的串联核酸探针3’端的偶联官能团2或者经滚环转录合成的串联核酸探针3’端的偶联官能团4偶联到流通池或微球上。Preferably, the coupling reaction refers to coupling the coupling functional group 2 at the 3' end of the tandem nucleic acid probe synthesized through rolling circle amplification or the coupling functional group 4 at the 3' end of the tandem nucleic acid probe synthesized through rolling circle transcription. On flow cells or microspheres.
优选地,将串联核酸探针的3’端连接到磁性微球。Preferably, the 3' end of the tandem nucleic acid probe is connected to the magnetic microsphere.
优选地,所述磁性微球为商品化的超顺磁球M-270(Dynabeads),直径为2.8微米,磁球的表面修饰为链霉亲和素修饰。采用该种超顺磁球M-270的有益效果在于,该种磁球具有均一的饱和磁矩,因此同时操纵时,能够对连接的探针施加均一的拉力。Preferably, the magnetic microspheres are commercial superparamagnetic spheres M-270 (Dynabeads) with a diameter of 2.8 microns, and the surface modification of the magnetic spheres is streptavidin modification. The beneficial effect of using this kind of superparamagnetic ball M-270 is that this kind of magnetic ball has a uniform saturation magnetic moment, so when it is manipulated at the same time, it can exert a uniform pulling force on the connected probes.
技术细节二,通过退火与间隔序列互补配对的单链,将串联核酸探针中非功能性间隔序列由单链变成双链。所述非功能性间隔序列为不参与待测物检测的序列。有益效果在于增加探针分子的整体硬度,减小检测过程中的布朗运动噪声。Technical detail two: By annealing the single strand complementary to the spacer sequence, the non-functional spacer sequence in the tandem nucleic acid probe is changed from a single strand to a double strand. The non-functional spacer sequence is a sequence that does not participate in the detection of the analyte. The beneficial effect is to increase the overall hardness of the probe molecules and reduce Brownian motion noise during the detection process.
优选的,通过滚环扩增合成的串联核酸探针,其间隔序列互补配对的单链为Flank1;通过滚环转录合成的串联核酸探针,其间隔序列互补配对的单链为Flank2。Preferably, for tandem nucleic acid probes synthesized through rolling circle amplification, the single strand with complementary spacer sequences is Flank1; for tandem nucleic acid probes synthesized through rolling circle transcription, the single strand with complementary spacer sequences is Flank2.
技术细节三,设置检测实施过程中的力学拉伸模式。力学拉伸模式中含有检测力和结合力。Technical details three: Set the mechanical stretching mode during the detection implementation process. Mechanical stretching mode contains detection force and bonding force.
检测力可以为恒力。在检测力下,记录没有待测物时探针的长度作为基准长度。在样品检测过程中,从结合力改变到检测力后,计算探针的长度与基准长度之间的差别作为信号强度。根据信号强度来检测样品中是否存在待测物、待测物浓度、待测物与特异结构的结合速度与结合强度。The detection force can be constant force. Under the detection force, record the length of the probe without the object to be measured as the reference length. During the sample detection process, after changing from binding force to detection force, the difference between the length of the probe and the reference length is calculated as the signal intensity. According to the signal intensity, the presence of the analyte in the sample, the concentration of the analyte, the binding speed and binding strength of the analyte to the specific structure are detected.
优选的,当信号强度大于背景噪声均方差的3倍时,判断为存在待测物。Preferably, when the signal intensity is greater than 3 times the mean square error of the background noise, it is determined that the object to be measured is present.
在上述技术方案的基础上,通过预先测量待测物浓度与信号强度的标准曲线,根据检测中的信号强度和标准曲线来计算待测物浓度。On the basis of the above technical solution, the concentration of the analyte is calculated based on the signal intensity and the standard curve during detection by pre-measurement of the standard curve of the concentration of the analyte and the signal intensity.
在上述技术方案的基础上,使用不同的检测力,可以得到不同的信号强度。当检测力小于结合力时,在信号强度减小到大于背景噪声均方差的3倍时的检测力越小,说明结合越强;当检测力大于结合力时,在信号强度减小到大于背景噪声均方差的3倍时的检测力越大,说明结合越强。On the basis of the above technical solution, using different detection powers, different signal strengths can be obtained. When the detection force is less than the binding force, the smaller the detection force when the signal intensity is reduced to greater than 3 times the mean square error of the background noise, the stronger the binding; when the detection force is greater than the binding force, when the signal intensity is reduced to greater than the background The greater the detection power when 3 times the noise mean square error, the stronger the binding.
检测力可以为渐变力。在检测力下,记录没有待测物时探针的长度变化曲线作为基准曲线。在样品检测过程中,在检测力下计算探针的长度变化曲线与基准曲线的差别作为信号强度。根据信号强度来检测样品中是否存在待测物、待测物浓度、待测物与特异结构的结合速度与结合强度。The detection force can be a gradient force. Under the detection force, record the length change curve of the probe when there is no object to be measured as the reference curve. During the sample detection process, the difference between the length change curve of the probe and the reference curve is calculated as the signal intensity under the detection force. According to the signal intensity, the presence of the analyte in the sample, the concentration of the analyte, the binding speed and binding strength of the analyte to the specific structure are detected.
优选的,当信号强度大于背景噪声均方差的3倍时,判断为存在待测物。Preferably, when the signal intensity is greater than 3 times the mean square error of the background noise, it is determined that the object to be measured is present.
在上述技术方案的基础上,通过预先测量待测物浓度与信号强度的标准曲线,根据检测中的信号强度和标准曲线来计算待测物浓度。On the basis of the above technical solution, the concentration of the analyte is calculated based on the signal intensity and the standard curve during detection by pre-measurement of the standard curve of the concentration of the analyte and the signal intensity.
在上述技术方案的基础上,当检测力小于结合力时,检测力逐渐变小,在信号强度减小到大于背景噪声均方差的3倍时的检测力越小说明结合越强;当检测力大于结合力时,检测力逐渐变大,在信号强度减小到大于背景噪声均方差的3倍时的检测力越大,说明结合越强。On the basis of the above technical solution, when the detection force is less than the binding force, the detection force gradually becomes smaller. When the signal intensity decreases to greater than 3 times the mean square error of the background noise, the smaller the detection force, the stronger the binding; when the detection force When it is greater than the binding force, the detection force gradually becomes larger. When the signal intensity decreases to greater than 3 times the mean square error of the background noise, the greater the detection force is, indicating the stronger the binding.
在上述技术方案的基础上,可以改变维持结合力的时间,即结合时间。根据信号强度与结合时间的关系,在已知待测物浓度的条件下,测量待测物与特异结构的结合速度。On the basis of the above technical solution, the time to maintain the binding force, that is, the binding time, can be changed. According to the relationship between signal intensity and binding time, under the condition of known concentration of the analyte, the binding speed of the analyte to the specific structure is measured.
在上述技术方案的基础上,当使用多种探针,所述探针含有不同的特异结构时,可以同时检测待测物与不同特异结构的结合强度和结合速度。On the basis of the above technical solution, when multiple probes are used, and the probes contain different specific structures, the binding strength and binding speed of the test substance to different specific structures can be detected simultaneously.
在一轮检测完成后,可以增加一个探针重生步骤。在该步骤中,核酸探针可以恢复成没有结合待测物的基准状态,以便进行下一轮检测。After a round of detection is completed, a probe regeneration step can be added. In this step, the nucleic acid probe can be restored to its baseline state without binding to the analyte for the next round of detection.
优选地,所述重生步骤中探针所受拉力为重生力。Preferably, the pulling force exerted on the probe during the regeneration step is the regeneration force.
实施例中检测过程的施力步骤依次为:检测力,记录没有待测物时探针的长度或长度曲线作为基准长度或基准长度曲线;结合力,探针上的靶点序列形成特异结构,识别并结合待测物,结合力下停留的时间越长,待测物与探针结合的数量就越多,结合信号也越强;检测力,记录待测物结合后探针的长度或长度曲线并计算该长度或长度曲线与基准长度或基准长度曲线之间的差别作为信号强度;重生力,结合在探针上的待测物完全解离,探针回到初始未结合待测物的状态。The force application steps in the detection process in the embodiment are as follows: detection force, recording the length or length curve of the probe when there is no object to be measured as the reference length or reference length curve; binding force, the target sequence on the probe forms a specific structure, Identify and bind the analyte. The longer it stays under the binding force, the more the analyte is bound to the probe and the stronger the binding signal. Detection force records the length or length of the probe after the analyte is bound. curve and calculate the difference between the length or length curve and the reference length or reference length curve as the signal intensity; with renewed force, the analyte bound to the probe is completely dissociated, and the probe returns to the original unbound analyte. state.
三、同时测量多个串联核酸探针3. Measure multiple tandem nucleic acid probes simultaneously
多个串联核酸探针可以序列相同,用于检测相同的待测物。有益效果是一次测量相当于多次测量,节省了检测时间和试剂,减少了假阳性和假阴性。避免了多次检测之间的平行误差。有益效果还有,增加了特异结构的数量。如聚合度为1000时,同时检测100个探针,那么相当于将特异结构数量增加了100,000倍。Multiple tandem nucleic acid probes can have the same sequence and be used to detect the same analyte. The beneficial effect is that one measurement is equivalent to multiple measurements, saving detection time and reagents, and reducing false positives and false negatives. Parallel errors between multiple inspections are avoided. The beneficial effect is also to increase the number of specific structures. For example, when the degree of polymerization is 1000 and 100 probes are detected simultaneously, it is equivalent to increasing the number of specific structures by 100,000 times.
多个串联核酸探针可以序列不同。因此可以同时检测多种待测物。Multiple tandem nucleic acid probes can differ in sequence. Therefore, multiple analytes can be detected simultaneously.
优选的,所述多种串联核酸探针可以同时检测引起发热的多种病原体的核酸。Preferably, the plurality of tandem nucleic acid probes can simultaneously detect nucleic acids of multiple pathogens that cause fever.
多个串联核酸探针可以序列不同。因此可以检测同一种待测物对于不同特异结构的结合强度和结合速度。Multiple tandem nucleic acid probes can differ in sequence. Therefore, the binding strength and binding speed of the same analyte to different specific structures can be detected.
多个串联核酸探针也可以序列不同。因此,检测过程中可以用不含有靶点序列的探针作为阴性对照。有益效果在于,检测生物或临床样本时,利用阴性对照探针去除样本中无关分子带来的背景噪声。Multiple tandem nucleic acid probes can also differ in sequence. Therefore, a probe that does not contain the target sequence can be used as a negative control during the detection process. The beneficial effect is that when detecting biological or clinical samples, negative control probes are used to remove background noise caused by irrelevant molecules in the sample.
可以同时操纵成组的多种核酸探针。组内的各种核酸探针的靶点序列为鉴别序列多态性的序列,所述靶点序列的长度12-26个碱基。其有益效果在于可以用于核酸类待测物的碱基突变检测。该突变可以是单碱基突变,也可以是多碱基突变,可以是碱基转换或碱基颠换突变,也可以是碱基缺失或者碱基插入突变。Groups of multiple nucleic acid probes can be manipulated simultaneously. The target sequences of various nucleic acid probes in the group are sequences for identifying sequence polymorphisms, and the length of the target sequences is 12-26 bases. Its beneficial effect is that it can be used for base mutation detection of nucleic acid test substances. The mutation may be a single base mutation or a multiple base mutation, a base conversion or base transversion mutation, or a base deletion or base insertion mutation.
优选地,所述待测物的碱基突变数量为1-2个。所述待测物上突变碱基的位置对应于探针靶点序列的中间部位。Preferably, the number of base mutations in the test substance is 1-2. The position of the mutated base on the test substance corresponds to the middle part of the probe target sequence.
附图说明Description of the drawings
图1示意图展示使用两条带有粘性末端的发卡结构单链DNA,通过连接反应构建环状滚环扩增模板。模板上带有启动序列和靶点序列互补序列。Figure 1 is a schematic diagram showing the use of two hairpin-structured single-stranded DNA with sticky ends to construct a circular rolling circle amplification template through a ligation reaction. The template contains complementary sequences of the priming sequence and the target sequence.
图2示意图展示流通池表面原位同步化滚环扩增合成聚合度均一的串联核酸探针。①将含有偶联官能团1的滚环扩增引物偶联到流通池表面;②将滚环扩增模板退火到引物上;③加入DNA聚合酶和缺陷底物,组装滚环扩增复合体,起始滚环扩增然后暂停;④加入滚环扩增必需的4种核苷酸底物dNTP mix,重新启动滚环扩增并根据串联核酸探针所需聚合度持续扩增一段时间;⑤加入掺有偶联官能团2标记的核苷酸底物生物素-dUTP,继续扩增,使串联核酸探针的3’端标记上生物素;⑥通过退火与间隔序列互补配对的单链Flank1,将串联核酸探针的非功能性间隔序列由单链变成双链;⑦通过生物素标记将串联核酸探针的3’端连接到磁性微球M-270上。Figure 2 is a schematic diagram showing the synthesis of tandem nucleic acid probes with uniform polymerization degree by in-situ synchronized rolling circle amplification on the flow cell surface. ① Couple the rolling circle amplification primer containing coupling functional group 1 to the surface of the flow cell; ② Anneal the rolling circle amplification template to the primer; ③ Add DNA polymerase and defective substrate to assemble the rolling circle amplification complex. Start rolling circle amplification and then pause; ④ Add the four nucleotide substrates dNTP mix necessary for rolling circle amplification, restart rolling circle amplification and continue amplification for a period of time according to the required degree of polymerization of the tandem nucleic acid probe; ⑤ Add the nucleotide substrate biotin-dUTP labeled with the coupling functional group 2, and continue amplification so that the 3' end of the tandem nucleic acid probe is labeled with biotin; ⑥ Single-stranded Flank1 that is complementary to the spacer sequence through annealing, Change the non-functional spacer sequence of the tandem nucleic acid probe from single-stranded to double-stranded; ⑦ Connect the 3' end of the tandem nucleic acid probe to the magnetic microsphere M-270 through biotin labeling.
图3在12pN的恒定拉力下,检测串联核酸探针聚合度的大小及其均一性,其聚合度为1470±154。Figure 3. Under a constant pulling force of 12 pN, the polymerization degree and uniformity of the tandem nucleic acid probes are detected. The polymerization degree is 1470±154.
图4通过重复使用待测物N_20特异的串联核酸探针,分别在测量溶液、100pM浓度的待测物N_20和10nM浓度的Flank1中,测量串联核酸探针在结合力下的实时长度变化曲线。Figure 4 By repeatedly using tandem nucleic acid probes specific to the analyte N_20, the real-time length change curves of the tandem nucleic acid probes under binding force were measured in the measurement solution, the analyte N_20 at a concentration of 100 pM, and Flank1 at a concentration of 10 nM.
图5以完美配对的核酸待测物和具有单碱基突变的核酸待测物为例,验证了可以利用逐渐减小的渐变力为检测力,测量待测物与串联核酸探针的结合强度。待测物N-16相对于N-16-G9C具有更强的结合强度。Figure 5 takes a perfectly matched nucleic acid analyte and a nucleic acid analyte with a single base mutation as an example to verify that the gradually decreasing gradient force can be used as the detection force to measure the binding strength of the analyte to the tandem nucleic acid probe. . The test substance N-16 has stronger binding strength than N-16-G9C.
图6使用标准曲线方法确定肝癌与癌旁组织中待测物miR-122的浓度。图A为待测物miR-122与特异探针的结合信号强度与浓度关系;图B为样品中待测物miR-122的定量结果。Figure 6 uses the standard curve method to determine the concentration of the analyte miR-122 in liver cancer and adjacent tissues. Figure A shows the relationship between the binding signal intensity and concentration of the analyte miR-122 and the specific probe; Figure B shows the quantitative results of the analyte miR-122 in the sample.
图7示意图展示了使用已知的待测物标准品依次确定具有均一聚合度的串联核酸探针组中每个探针的种类。Figure 7 is a schematic diagram showing the use of known analyte standards to sequentially determine the species of each probe in a tandem nucleic acid probe set with a uniform degree of polymerization.
图8示意图展示了使用均一聚合度的多种串联核酸探针进行待测物碱基突变检测的原理。Figure 8 is a schematic diagram showing the principle of using multiple tandem nucleic acid probes with uniform polymerization degrees to detect base mutations in the analyte.
图9均一聚合度的多种串联核酸探针检测并区分血清中序列相差仅有1-2个碱基的let-7家族成员:let-7a,let-7b,let-7c和let-7d。Figure 9 Multiple tandem nucleic acid probes with uniform polymerization degree detect and distinguish let-7 family members in serum whose sequences differ only by 1-2 bases: let-7a, let-7b, let-7c and let-7d.
图10以let-7b,let-7c为例,说明使用串联核酸探针和多通道单分子力学技术可检测突变概率低至万分之一的稀有突变。Figure 10 takes let-7b and let-7c as examples to illustrate that the use of tandem nucleic acid probes and multi-channel single molecule mechanics technology can detect rare mutations with mutation probability as low as 1 in 10,000.
图11均一聚合度的多种串联核酸探针检测唾液中的新型冠状病毒核酸片段,并识别病毒亚型。Figure 11 Multiple tandem nucleic acid probes with uniform polymerization degrees detect novel coronavirus nucleic acid fragments in saliva and identify virus subtypes.
图12示意图展示了使用搭桥DNA和连接反应,使单链线性DNA模板首尾相连并构建环状滚环转录模板的过程。Figure 12 is a schematic diagram showing the process of using bridge DNA and ligation reactions to connect single-stranded linear DNA templates end-to-end and construct a circular rolling circle transcription template.
图13示意图展示流通池表面原位同步化滚环转录合成聚合度均一的多种串联核酸探针。①制备标记有偶联官能团3且可同步延伸的滚环转录复合物;②通过偶联官能团3将滚环转录复合物连接到流通池表面;③加入滚环转录扩增必要的4种核苷酸底物NTPmix,重新启动滚环转录并根据串联核酸探针所需聚合度持续转录一段时间;④加入掺有偶联官能团4标记的核苷酸底物生物素-UTP,继续转录,使串联核酸探针的3’端标记上生物素;⑤通过退火与间隔序列互补配对的单链Flank2,将串联核酸探针中非功能性间隔序列由单链变成双链;⑥通过生物素标记将串联核酸探针的3’端连接到磁性微球M-270上。Figure 13 is a schematic diagram showing the synthesis of multiple tandem nucleic acid probes with uniform polymerization degrees by in-situ synchronized rolling circle transcription on the surface of the flow cell. ① Prepare the rolling circle transcription complex labeled with the coupling functional group 3 and can be extended synchronously; ② Connect the rolling circle transcription complex to the surface of the flow cell through the coupling functional group 3; ③ Add the four nucleosides necessary for rolling circle transcription amplification Acid substrate NTPmix, restart rolling circle transcription and continue transcription for a period of time according to the required degree of polymerization of the tandem nucleic acid probe; ④ Add biotin-UTP, a nucleotide substrate labeled with coupling functional group 4, and continue transcription to make the tandem nucleic acid probe The 3' end of the nucleic acid probe is labeled with biotin; ⑤ By annealing the single-stranded Flank2 complementary to the spacer sequence, the non-functional spacer sequence in the tandem nucleic acid probe is changed from single-stranded to double-stranded; ⑥ By biotin labeling, the single-stranded Flank2 is complementary to the spacer sequence. The 3' end of the tandem nucleic acid probe is connected to the magnetic microsphere M-270.
图14示意图展示使用均一聚合度的多个串联核酸探针测量小分子待测物影响G四联体结构稳定性。Figure 14 is a schematic diagram showing the use of multiple tandem nucleic acid probes with uniform polymerization degrees to measure the impact of small molecule analytes on the stability of the G-quadruplex structure.
图15均一聚合度串联核酸探针检测了小分子配体PDS可显著增加人源端粒重复序列形成的RNAG四联体结构的稳定性。Figure 15 Uniform polymerization tandem nucleic acid probe detects that the small molecule ligand PDS can significantly increase the stability of the RNAG quadruplex structure formed by human telomeric repeat sequences.
具体实施方式Detailed ways
本发明利用一种能同时合成多个串联核酸探针的方法,获得了多个聚合度均一的串联核酸探针,并利用这些串联核酸探针结合多通道单分子力学技术设计了一种核酸检测装置,利用该核酸检测装置可同时进行多分子检测。The present invention utilizes a method that can simultaneously synthesize multiple tandem nucleic acid probes to obtain multiple tandem nucleic acid probes with uniform polymerization degrees, and uses these tandem nucleic acid probes combined with multi-channel single molecule mechanics technology to design a nucleic acid detection method. Device, using this nucleic acid detection device, multiple molecules can be detected simultaneously.
下面将通过以下实施例的详细说明并结合附图来进一步理解本发明的特点和优点。所提供的实施例仅是对本发明方法的部分说明,而不以任何方式限制本发明揭示的其余内容。在实施例中未对具体实验条件进行明确说明的实验方案,均按照相应产品说明书中的操作步骤进行操作。在实施例中用到的试剂、耗材和仪器,如未特别指出,均可从商业公司购买。The features and advantages of the present invention will be further understood through the detailed description of the following embodiments in conjunction with the accompanying drawings. The provided embodiments are only partial illustrations of the method of the present invention and do not limit the remaining contents disclosed in the present invention in any way. In the examples where the specific experimental conditions are not clearly stated in the experimental protocols, all operations should be carried out in accordance with the operating steps in the corresponding product instructions. The reagents, consumables and instruments used in the examples can be purchased from commercial companies unless otherwise specified.
实施例1:利用两条带有粘性末端的发卡结构单链DNA,通过连接反应构建环状滚环扩增模板。Example 1: Using two hairpin-structured single-stranded DNAs with sticky ends, a circular rolling circle amplification template was constructed through a ligation reaction.
具体步骤如下:Specific steps are as follows:
步骤一,设计并合成发卡结构模板T1和T2_1,其结构如图1所示。Step 1: Design and synthesize card issuance structure templates T1 and T2_1, whose structures are shown in Figure 1.
模板T1的序列为SEQ ID NO:1:The sequence of template T1 is SEQ ID NO:1:
5’-CTGGACGTCGATCGTTCGTGAAGTCAACATCGAACTCTCTTGCCAATCCTGGTCGTGATTCCATTCTATCGATGTTGACTTCACGAACGATCGAC-3’;5’-CTGGACGTCGATCGTTCGTGAAGTCAACATCGAACTCTCTTGCCAATCCTGGTCGTGATTCCATTCTATCGATGTTGACTTCACGAACGATCGAC-3’;
其折叠成发卡结构后的环状部分包含有启动序列。The loop portion after folding into a hairpin structure contains the initiation sequence.
模板T2_1的序列为SEQ ID NO:2:The sequence of template T2_1 is SEQ ID NO:2:
5’-GTCCAGATGCATCTCAAGGTCTAGTGCTGCTTTTGCAGCACTAGACCTTGAGATGCAT-3’;5’-GTCCAGATGCATCTCAAGGTCTAGTGCTGCTTTTGCAGCACTAGACCTTGAGATGCAT-3’;
其折叠成发卡结构后的双链部分包含有靶点序列互补序列。The double-stranded part after folding into a hairpin structure contains the complementary sequence of the target sequence.
步骤二,模板T1和T2_1发卡结构的折叠。浓度为2μM的模板T1和T2_1分别经95℃孵育10分钟后置于冰上迅速冷却。Step 2: Folding of template T1 and T2_1 hairpin structures. Templates T1 and T2_1 with a concentration of 2 μM were incubated at 95°C for 10 minutes and then quickly cooled on ice.
步骤三,酶连反应合成闭合结构的单链环状DNA。形成发卡结构的模板T1和T2_1以等物质的量混合,经T4DNA连接酶在4℃反应12小时进行酶连反应,然后65℃反应10分钟灭活T4DNA连接酶。Step three: Enzyme ligation reaction to synthesize closed-structured single-stranded circular DNA. The templates T1 and T2_1 that form the hairpin structure are mixed in equal amounts, reacted with T4 DNA ligase at 4°C for 12 hours for enzyme ligation reaction, and then reacted at 65°C for 10 minutes to inactivate the T4 DNA ligase.
步骤四,纯化和回收闭合结构的单链环状DNA。步骤三的连接产物经超滤管回收和依次经DNA外切酶III和DNA外切酶I处理,消解掉所有线性或包含切刻(nick)的副产物,获得较高纯度的闭合结构的单链环状DNA作为滚环扩增模板T_1。Step 4: Purify and recover closed-structured single-stranded circular DNA. The ligation product in step three is recovered through an ultrafiltration tube and treated with DNA exonuclease III and DNA exonuclease I in sequence to digest all linear or nick-containing by-products to obtain a higher purity single unit with a closed structure. Stranded circular DNA is used as rolling circle amplification template T_1.
步骤五,聚丙烯酰胺凝胶电泳分别检测步骤二、步骤三和步骤四的产物。凝胶浓度为8%,100V电压下电泳40分钟,而后经核酸染料Gel-Red浸泡染色,由Bio-Rad凝胶成像系统成像。Step 5: Polyacrylamide gel electrophoresis detects the products of steps 2, 3 and 4 respectively. The gel concentration was 8%, and the gel was electrophoresed at 100V for 40 minutes, then soaked and stained with the nucleic acid dye Gel-Red, and imaged by the Bio-Rad gel imaging system.
实施例2:流通池表面原位同步化滚环扩增合成聚合度均一的串联核酸探针,如图2所示。具体步骤如下:Example 2: In-situ synchronized rolling circle amplification on the flow cell surface was used to synthesize tandem nucleic acid probes with uniform polymerization degrees, as shown in Figure 2. Specific steps are as follows:
步骤一,通过巯基标记将滚环扩增引物偶联到流通池表面。流通池的制备和流通池表面的氨基化过程按照单分子实验的经典实验步骤进行。然后加入胺-巯基交联剂Sulfo-SMCC(Thermo ScientificTM),在标准条件下反应30分钟。去掉游离的胺-巯基交联剂Sulfo-SMCC,加入浓度为0.1pM,溶于PBS缓冲液中的滚环扩增引物SH_hp,室温反应1小时。滚环扩增引物SH_hp的序列为SEQ ID NO:3:Step 1: Couple the rolling circle amplification primer to the surface of the flow cell through sulfhydryl labeling. The preparation of the flow cell and the amination process of the flow cell surface were carried out according to the classic experimental procedures for single-molecule experiments. Then the amine-thiol cross-linker Sulfo-SMCC (Thermo Scientific TM ) was added and reacted under standard conditions for 30 minutes. Remove the free amine-sulfhydryl cross-linking agent Sulfo-SMCC, add rolling circle amplification primer SH_hp with a concentration of 0.1pM dissolved in PBS buffer, and react at room temperature for 1 hour. The sequence of rolling circle amplification primer SH_hp is SEQ ID NO:3:
5’-GCATTAGGAAGCAGCCCAGTAGTAGGATCACGACCAGGATTG-3’。加入BSA钝化液封闭流通池表面未成功偶联滚环扩增引物的活性官能团。5’-GCATTAGGAAGCAGCCCAGTAGTAGGATCACGACCAGGATTG-3’. Add BSA passivation solution to seal the active functional group of the rolling circle amplification primer that has not been successfully coupled to the surface of the flow cell.
步骤二,流通池表面原位同步化滚环扩增合成多个3’端带有生物素标记,且聚合度均一的串联核酸探针。1)用3×PBS缓冲液将滚环扩增模板T_1稀释至浓度为1ng/μL,加入偶联有滚环扩增引物的流通池中,37℃孵育30分钟,使滚环扩增模板上的启动序列充分退火至滚环扩增引物上并形成引物模板接头。2)冲掉游离的滚环扩增模板,加入含有缺陷底物(dATP,dCTP和dGTP)和phi29 DNA聚合酶的反应缓冲液,30℃孵育5分钟,使phi29 DNA聚合酶充分识别引物模板接头,形成滚环扩增复合物,起始滚环扩增并在首次遇到模板上的碱基A处暂停。3)冲掉游离的phi29 DNA聚合酶,加入含有完整反应底物dNTP mix的反应缓冲液,重启滚环扩增过程,30℃继续孵育15分钟。4)加入掺有生物素标记dUTP的反应底物,30℃继续孵育1分钟,使串联核酸探针的3’端添加上生物素标记。生物素标记dUTP比上dTTP等于1:9。5)加入30mM EDTA,终止滚环扩增反应。6)加入浓度为100nM的间隔序列互补序列Flank1,其序列为SEQ ID NO:4:Step 2: In-situ synchronized rolling circle amplification on the surface of the flow cell synthesizes multiple tandem nucleic acid probes with biotin labeling at the 3' end and uniform polymerization. 1) Dilute the rolling circle amplification template T_1 with 3×PBS buffer to a concentration of 1ng/μL, add it to the flow cell coupled with the rolling circle amplification primer, and incubate at 37°C for 30 minutes to allow the rolling circle amplification template to The priming sequence fully anneals to the rolling circle amplification primer and forms a primer template linker. 2) Rinse away the free rolling circle amplification template, add reaction buffer containing defective substrates (dATP, dCTP and dGTP) and phi29 DNA polymerase, and incubate at 30°C for 5 minutes to allow phi29 DNA polymerase to fully recognize the primer template adapter. , forming a rolling circle amplification complex, initiating rolling circle amplification and pausing at the first encounter with base A on the template. 3) Rinse away the free phi29 DNA polymerase, add the reaction buffer containing the complete reaction substrate dNTP mix, restart the rolling circle amplification process, and continue incubating at 30°C for 15 minutes. 4) Add the reaction substrate mixed with biotin-labeled dUTP and continue incubating at 30°C for 1 minute to add biotin label to the 3' end of the tandem nucleic acid probe. The ratio of biotin-labeled dUTP to dTTP is equal to 1:9. 5) Add 30mM EDTA to terminate the rolling circle amplification reaction. 6) Add the spacer complementary sequence Flank1 at a concentration of 100 nM, whose sequence is SEQ ID NO: 4:
5’-CTCTCTTGCCAATCCTGGTCGTGATTCCATTCT-3’。将具有均一聚合度的串联核酸探针中连接相邻发卡结构的间隔序列由单链变成双链。5’-CTCTTCTTGCCAATCCTGGTCGTGATTCCATTCT-3’. The spacer sequence connecting adjacent hairpin structures in a tandem nucleic acid probe with a uniform degree of polymerization is changed from a single strand to a double strand.
步骤三,新合成均一聚合度的串联核酸探针与磁性微球的连接。磁性微球M-270经3×PBS缓冲液稀释100倍后加入流通池中,磁性微球M-270表面修饰为链霉亲和素,可以与串联核酸探针3’端标记的生物素进行偶联。Step 3: Connect newly synthesized tandem nucleic acid probes with uniform polymerization degree to magnetic microspheres. The magnetic microsphere M-270 is diluted 100 times with 3×PBS buffer and then added to the flow cell. The surface of the magnetic microsphere M-270 is modified with streptavidin, which can be used with the biotin labeled at the 3' end of the tandem nucleic acid probe. coupling.
步骤四,在12pN的恒定拉力下,通过测量偶联有串联核酸探针的磁性微球与流通池表面的距离来确定串联核酸探针的分子长度。根据探针分子在测量溶液和测量条件下的弹性参数进一步计算了串联核酸探针的聚合度为1470±154,如图3所示。Step 4: Under a constant pulling force of 12pN, determine the molecular length of the tandem nucleic acid probe by measuring the distance between the magnetic microspheres coupled with the tandem nucleic acid probe and the surface of the flow cell. Based on the elastic parameters of the probe molecules in the measurement solution and measurement conditions, the degree of polymerization of the tandem nucleic acid probe was further calculated to be 1470±154, as shown in Figure 3.
实施例3:均一聚合度的串联核酸探针检测人工序列N_20。具体步骤如下:Example 3: Detection of artificial sequence N_20 by tandem nucleic acid probes with uniform polymerization degree. Specific steps are as follows:
步骤一,根据实施例1,利用发卡序列T1和T2_1合成可靶向人工序列N_20的环状滚环扩增模板T_1。N_20的序列为SEQ ID NO:5:5’-ATGCATCTCAAGGTCTAGTG-3’。Step 1: According to Example 1, the hairpin sequences T1 and T2_1 are used to synthesize a circular rolling circle amplification template T_1 that can target the artificial sequence N_20. The sequence of N_20 is SEQ ID NO: 5: 5'-ATGCATCTCAAGGTCTAGTG-3'.
步骤二,根据实施例2所述步骤原位同步化滚环扩增合成可特异性识别N_20的具有均一聚合度的串联核酸探针。Step 2: Synchronize in-situ rolling circle amplification according to the steps described in Example 2 to synthesize a tandem nucleic acid probe with a uniform degree of polymerization that can specifically recognize N_20.
步骤三,将具有均一聚合度的串联核酸探针连接磁性微球后置于单分子磁镊设备中,设置检测过程的力学拉伸模式为:检测力(F1=10pN)停留5秒,确定结合待测物前,探针在检测力下的分子延伸长度,并记录为基准长度;结合力(F2=20pN)停留20秒,结合力下暴露探针分子上的靶点序列,识别并结合待测物;检测力(F1=10pN)停留5秒,记录结合待测物后,探针在检测力下相较于基准长度的探针分子延伸长度变化,记为LB,作为待测物的结合信号强度;重生力(F3=1pN)停留10秒,使探针上结合的待测物全部解离,探针重新回到未结合待测物的初始状态。Step 3: Connect the tandem nucleic acid probes with a uniform degree of polymerization to the magnetic microspheres and place them in the single-molecule magnetic tweezers device. Set the mechanical stretching mode of the detection process to: the detection force (F1=10pN) stays for 5 seconds to determine the binding. In front of the analyte, the molecular extension length of the probe under the detection force is recorded as the reference length; the binding force (F2=20pN) stays for 20 seconds, and the target sequence on the probe molecule is exposed under the binding force, and the target sequence is recognized and bound. Test object; the detection force (F1=10pN) is held for 5 seconds, and after binding to the test object, the change in the extension length of the probe molecule under the detection force compared to the reference length is recorded, recorded as LB, as the binding of the test object Signal intensity; the regeneration force (F3=1pN) stays for 10 seconds to dissociate all the analytes bound to the probe, and the probe returns to the initial state of unbound analytes.
步骤四,重复步骤三中的力学拉伸模式,分别以测量溶液作为阴性对照,以100pM浓度的人工序列N_20作为实验组,以10nM浓度的Flank1作为阴性对照,记录具有均一聚合度的串联核酸探针在各组样品的结合力下的实时长度变化曲线。结果显示,只有在存在待测物时,探针分子才表现出明显的结合信号,如图4所示。Step 4: Repeat the mechanical stretching mode in Step 3, using the measurement solution as a negative control, the artificial sequence N_20 at a concentration of 100pM as the experimental group, and Flank1 at a concentration of 10nM as the negative control, and record the tandem nucleic acid probes with uniform polymerization degrees. The real-time length change curve of the needle under the binding force of each group of samples. The results showed that the probe molecules showed obvious binding signals only in the presence of the analyte, as shown in Figure 4.
实施例4:以逐渐减小的渐变力为检测力,测量待测物与串联核酸探针的结合强度。具体步骤如下:Example 4: Using the gradually decreasing gradient force as the detection force, measure the binding strength between the test substance and the tandem nucleic acid probe. Specific steps are as follows:
步骤一,根据实施例1和实施例2所示步骤,利用发卡结构模板T1和T2_1以及原位同步化滚环扩增合成聚合度均一的串联核酸探针。该探针可以特异性识别完美配对的待测物N_16和具有单碱基突变的待测物N_16_G9C。N_16的序列为SEQ ID NO:6:5’-ATCTCAAGGTCTAGTG-3’;N_16_G9C的序列为SEQ ID NO:7:5’-ATCTCAAGCTCTAGTG-3’。Step 1: According to the steps shown in Example 1 and Example 2, use hairpin structure templates T1 and T2_1 and in-situ synchronized rolling circle amplification to synthesize tandem nucleic acid probes with a uniform degree of polymerization. This probe can specifically identify the perfectly paired analyte N_16 and the analyte N_16_G9C with a single base mutation. The sequence of N_16 is SEQ ID NO: 6: 5'-ATCTCAAGGTCTAGTG-3'; the sequence of N_16_G9C is SEQ ID NO: 7: 5'-ATCTCAAGCTCTAGTG-3'.
步骤二,将具有均一聚合度的串联核酸探针连接磁性微球后置于单分子磁镊设备中,设置检测过程的力学拉伸模式为:检测力(F1)从13pN逐渐减小至3pN,确定结合待测物前,探针分子在检测力下的分子长度变化曲线,并作为基准曲线;结合力(F2=20pN)停留20秒;结合力下暴露探针分子上的靶点序列,识别并结合待测物;检测力(F1)从13pN逐渐减小至3pN,记录结合待测物后,探针分子在检测力下的分子长度变化曲线与基准曲线之差,作为待测物结合的信号强度LB;重生力(F3=1pN)停留10秒,使探针上结合的待测物全部解离,探针重新回到未结合待测物的初始状态。Step 2: Connect the tandem nucleic acid probes with a uniform degree of polymerization to magnetic microspheres and place them in the single-molecule magnetic tweezers device. Set the mechanical stretching mode of the detection process to: the detection force (F1) gradually decreases from 13pN to 3pN. Determine the molecular length change curve of the probe molecule under the detection force before binding to the analyte, and use it as the benchmark curve; the binding force (F2 = 20pN) stays for 20 seconds; the target sequence on the probe molecule is exposed under the binding force, and the target sequence is identified And bind the analyte; the detection force (F1) gradually decreases from 13pN to 3pN. After binding the analyte, record the difference between the molecular length change curve of the probe molecule under the detection force and the reference curve, as the binding value of the analyte. Signal intensity LB; the regeneration force (F3=1pN) stays for 10 seconds to dissociate all the analytes bound to the probe, and the probe returns to the initial state of unbound analytes.
步骤三,重复步骤二中的力学拉伸模式,以测量溶液作为阴性对照,分别测量完美配对的待测物N_16和具有单碱基突变的待测物N_16_G9C与串联核酸探针的结合强度。结果显示,待测物中单个碱基的突变显著降低了待测物与串联核酸探针靶点序列的结合强度,如图5所示。Step 3: Repeat the mechanical stretching mode in Step 2, use the measurement solution as a negative control, and measure the binding strength of the perfectly matched test substance N_16 and the test substance N_16_G9C with a single base mutation to the tandem nucleic acid probe. The results showed that the mutation of a single base in the analyte significantly reduced the binding strength of the analyte to the target sequence of the tandem nucleic acid probe, as shown in Figure 5.
实施例5:均一聚合度的串联核酸探针检测肝癌组织和癌旁组织中microRNA(miR-122)的表达量变化。具体步骤如下:Example 5: Tandem nucleic acid probes with uniform polymerization degree were used to detect the expression changes of microRNA (miR-122) in liver cancer tissues and adjacent tissues. Specific steps are as follows:
步骤一,根据实施例1,利用发卡序列T1和T2_2合成可靶向miR-122的环状滚环扩增模板T_2。Step 1: According to Example 1, hairpin sequences T1 and T2_2 are used to synthesize a circular rolling circle amplification template T_2 that can target miR-122.
T2_2的序列为SEQ ID NO:8:The sequence of T2_2 is SEQ ID NO:8:
5’-GTCCAGAGTGTGACAATGGTGTTTGCTGCTTTTGCAGCAAACACCATTGTCACAC T-3’;5’-GTCCAGAGTGTGACAATGGTGTTTGCTGCTTTTGCAGCAAACACCATTGTCACAC T-3’;
miR-122的序列为SEQ ID NO:9:5’-UGGAGUGUGACAAUGGUGUUUG-3’(RNA)。The sequence of miR-122 is SEQ ID NO:9: 5'-UGGAGUGUGACAAUGGUGUUUG-3' (RNA).
步骤二,根据实施例2所述步骤原位同步化合成可特异性识别miR-122的具有均一聚合度的串联核酸探针。Step 2: Synchronize in situ and synthesize a tandem nucleic acid probe with a uniform degree of polymerization that can specifically recognize miR-122 according to the steps described in Example 2.
步骤三,将具有均一聚合度的串联核酸探针连接磁性微球后置于单分子磁镊设备中,设置检测过程的力学拉伸模式为:检测力(F1=9pN)停留5秒,确定结合miR-122前,探针在检测力下的分子延伸长度,并记录为基准长度;结合力(F2=20pN)停留3分钟,结合力下暴露探针分子上的靶点序列,识别并结合待测样品中的待测物miR-122;检测力(F1=9pN)停留5秒,记录结合miR-122后,探针在检测力下相较于基准长度的探针分子延伸长度变化,记为LB,作为miR-122的结合信号强度;重生力(F3=1pN)停留10秒,使探针上结合的待测物miR-122全部解离,探针上重新回到未结合待测物的初始状态。Step 3: Connect the tandem nucleic acid probes with a uniform degree of polymerization to the magnetic microspheres and place them in the single-molecule magnetic tweezers device. Set the mechanical stretching mode of the detection process to: the detection force (F1=9pN) stays for 5 seconds to determine the binding. Before miR-122, the molecular extension length of the probe under the detection force is recorded as the reference length; the binding force (F2=20pN) stays for 3 minutes, and the target sequence on the probe molecule is exposed under the binding force, and the target sequence is recognized and bound. Detect the analyte miR-122 in the sample; the detection force (F1=9pN) is held for 5 seconds, and after binding to miR-122, the change in the extension length of the probe molecule compared to the reference length under the detection force is recorded, recorded as LB, as the binding signal intensity of miR-122; the regeneration force (F3=1pN) stays for 10 seconds to completely dissociate the analyte miR-122 bound to the probe, and the probe returns to the level of unbound analyte. initial state.
步骤四,重复步骤三中的力学拉伸模式,分别测量病人肝癌组织和癌旁组织两个样本中miR-122与探针分子结合的信号强度。Step 4: Repeat the mechanical stretching mode in Step 3 to measure the signal intensity of the binding of miR-122 to the probe molecule in two samples of the patient's liver cancer tissue and adjacent tissue.
步骤五,使用标准曲线方法确定样品中待测物miR-122的浓度。图6A的标准曲线显示了在特定的浓度范围内,结合信号强度与样品中miR-122分子的浓度成正比。将步骤四所测量的信号强度对应到标准曲线上,得到样本中miR-122的定量结果,如图6B所示。Step 5: Use the standard curve method to determine the concentration of the analyte miR-122 in the sample. The standard curve in Figure 6A shows that within a specific concentration range, the binding signal intensity is proportional to the concentration of miR-122 molecules in the sample. Correspond the signal intensity measured in step 4 to the standard curve to obtain the quantitative result of miR-122 in the sample, as shown in Figure 6B.
实施例6:均一聚合度的串联核酸探针检测并区分血清中序列相差仅有1-2个碱基的let-7家族成员:let-7a,let-7b,let-7c和let-7d。Example 6: Tandem nucleic acid probes with uniform polymerization degree detect and distinguish let-7 family members in serum whose sequences differ only by 1-2 bases: let-7a, let-7b, let-7c and let-7d.
let-7a的序列为SEQ ID NO:10:5’-UGAGGUAGUAGGUUGUAUAGUU-3’(RNA);The sequence of let-7a is SEQ ID NO: 10: 5’-UGAGGUAGUAGGUUGUAUAGUU-3’ (RNA);
let-7b的序列为SEQ ID NO:11:5’-UGAGGUAGUAGGUUGUGUGGUU-3’(RNA);The sequence of let-7b is SEQ ID NO: 11: 5’-UGAGGUAGUAGGUUGUGUGGUU-3’ (RNA);
let-7c的序列为SEQ ID NO:12:5’-UGAGGUAGUAGGUUGUAUGGUU-3’(RNA);The sequence of let-7c is SEQ ID NO: 12: 5’-UGAGGUAGUAGGUUGUAUGGUU-3’ (RNA);
let-7d的序列为SEQ ID NO:13:5’-AGAGGUAGUAGGUUGCAUAGUU-3’(RNA)。The sequence of let-7d is SEQ ID NO: 13: 5'-AGAGGGUAGUAGGUUGCAUAGUU-3' (RNA).
具体步骤如下:Specific steps are as follows:
步骤一,根据实施例1,利用发卡序列T1分别和T2_3、T2_4、T2_5、T2_6合成四种靶向let-7a,let-7b,let-7c和let-7d的环状滚环扩增模板。Step 1: According to Example 1, use the hairpin sequence T1 and T2_3, T2_4, T2_5, and T2_6 to synthesize four circular rolling circle amplification templates targeting let-7a, let-7b, let-7c, and let-7d.
T2_3序列为SEQ ID NO:14:The T2_3 sequence is SEQ ID NO:14:
5’-GTCCAGTGCAAGTAGGTTGTATAGTTCTGCTTTTGCAGAACTATACAACCTACTTG CA-3’;5’-GTCCAGTGCAAGTAGGTTGTATAGTTCTGCTTTTGCAGAACTATACAACCTACTTG CA-3’;
T2_4序列为SEQ ID NO:15:The T2_4 sequence is SEQ ID NO:15:
5’-GTCCAGTGCAAGTAGGTTGTGTGGTTCTGCTTTTGCAGAACCACACAACCTACTTGCA-3’;5’-GTCCAGTGCAAGTAGGTTGTGTGGTTCTGCTTTTGCAGAACCACACAACCTACTTGCA-3’;
T2_5序列为SEQ ID NO:16:The T2_5 sequence is SEQ ID NO:16:
5’-GTCCAGTGCAAGTAGGTTGTATGGTTCTGCTTTTGCAGAACCATACAACCTACTTGCA-3’;5’-GTCCAGTGCAAGTAGGTTGTATGGTTCTGCTTTTGCAGAACCATACAACCTACTTGCA-3’;
T2_6序列为SEQ ID NO:17:5’-GTCCAGTGCAAGTAGGTTGCATAGTTCTGCTTTTGCAGAACTATGCAACCTACTTGCA-3’。The T2_6 sequence is SEQ ID NO: 17: 5'-GTCCAGTGCAAGTAGGTTGCATAGTTCTGCTTTTGCAGAACTATGCAACCTACTTGCA-3'.
步骤二,等物质的量混合四种环状滚环扩增模板,并用3×PBS缓冲液稀释至总浓度为1ng/μL。根据实施例2所述步骤原位同步化合成可同时靶向let-7a,let-7b,let-7c和let-7d且具有均一聚合度的串联核酸探针组。Step 2: Mix the four circular rolling circle amplification templates in equal amounts and dilute them with 3×PBS buffer to a total concentration of 1ng/μL. According to the steps described in Example 2, a tandem nucleic acid probe set that can simultaneously target let-7a, let-7b, let-7c and let-7d and has a uniform degree of polymerization is synthesized in situ.
步骤三,将具有均一聚合度的串联核酸探针组连接磁性微球后置于单分子磁镊设备中,按照图7所示方法,使用已知的待测物标准品依次确定具有均一聚合度的串联核酸探针组中每个探针的种类。Step 3: Connect the tandem nucleic acid probe set with a uniform degree of polymerization to magnetic microspheres and place it in a single-molecule magnetic tweezers device. According to the method shown in Figure 7, use known standards of the analyte to sequentially determine the uniform degree of polymerization. The type of each probe in the tandem nucleic acid probe set.
步骤四,设置检测过程的力学拉伸模式为:检测力(F1=6.5pN)停留5秒,确定结合待测物前,每个探针分子在检测力下的分子延伸长度,并记录为其基准长度;结合力(F2=20pN)停留3分钟,结合力下暴露探针分子上的靶点序列,识别并结合待测样品中的待测物;检测力(F1=6.5pN)停留5秒,记录结合待测物后,探针在检测力下相较于基准长度的每个探针分子延伸长度变化,记为LB,作为待测物的结合信号强度。由于待测物与非特异性探针分子结合的稳定性要远小于和特异性探针分子结合的稳定性,因此在该检测力下,非特异性结合的待测物会迅速解离,只留下特异性结合的待测物,这一过程的选择极大的增加了该方法的检测特异性,如图8所示。重生力(F3=1pN)停留10秒,使探针上结合的待测物全部解离,探针上重新回到未结合待测物的初始状态。Step 4: Set the mechanical stretching mode of the detection process to: the detection force (F1=6.5pN) is held for 5 seconds, determine the molecular extension length of each probe molecule under the detection force before binding to the test substance, and record it Reference length; the binding force (F2=20pN) stays for 3 minutes, and the target sequence on the probe molecule is exposed under the binding force, identifying and binding the analyte in the sample to be tested; the detection force (F1=6.5pN) stays for 5 seconds , record the change in the extension length of each probe molecule compared to the reference length under the detection force after binding to the analyte, recorded as LB, as the binding signal intensity of the analyte. Since the stability of the analyte binding to non-specific probe molecules is much lower than that of binding to specific probe molecules, under this detection power, the non-specifically bound analyte will dissociate rapidly, leaving only The selection of specifically bound analytes greatly increases the detection specificity of the method, as shown in Figure 8. Renew the force (F3=1pN) and stay for 10 seconds to dissociate all the analytes bound to the probe, and return the probe to the initial state of unbound analytes.
步骤五,重复步骤四中的力学拉伸模式,依次更换不同的待测样品,并完成所有待测样品的检测,检测结果如图9所示,特异性探针产生的信号强度要远大于非特异性探针产生的信号强度。Step 5: Repeat the mechanical stretching mode in Step 4, replace different samples to be tested in sequence, and complete the detection of all samples to be tested. The detection results are shown in Figure 9. The signal intensity generated by the specific probe is much greater than that of the non-specific probe. The signal intensity generated by the opposite sex probe.
步骤六,分别在存在0pM和10pM的let-7b的样品中依次添加0pM、1pM、10pM、100pM、1nM和10nM的let-7c,然后重复步骤三中的力学拉伸模式,验证let-7c的存在对let-7b的特异性检测产生的影响。检测结果如图10所示,只有一个碱基差别的let-7c的存在不影响let-7b的检测特异性,但是当let-7c的浓度比let-7b高100倍以上时,会在一定程度上影响let-7b的检测灵敏度。Step six: Add 0pM, 1pM, 10pM, 100pM, 1nM and 10nM let-7c to the samples containing 0pM and 10pM let-7b respectively, and then repeat the mechanical stretching mode in step three to verify the strength of let-7c. There is an impact on the specific detection of let-7b. The detection results are shown in Figure 10. The presence of let-7c, which has only one base difference, does not affect the detection specificity of let-7b. However, when the concentration of let-7c is more than 100 times higher than let-7b, it will be affected to a certain extent. affects the detection sensitivity of let-7b.
实施例7:均一聚合度的串联核酸探针检测唾液中的新型冠状病毒核酸片段,并识别病毒亚型。具体步骤如下:Example 7: Tandem nucleic acid probes with uniform polymerization degree detect novel coronavirus nucleic acid fragments in saliva and identify virus subtypes. Specific steps are as follows:
步骤一,根据实施例1,利用发卡结构T1分别和T2_7、T2_8、T2_9、T2_10、T2_11合成五种可靶向新型冠状病毒spike基因614D,614G,679N/681P,679N/681R和679K/681H位点的环状单链滚环扩增模板。Step 1, according to Example 1, use the hairpin structure T1 and T2_7, T2_8, T2_9, T2_10, T2_11 to synthesize five types of novel coronavirus spike genes 614D, 614G, 679N/681P, 679N/681R and 679K/681H. Dotted circular single-stranded rolling circle amplification template.
T2_7的序列为SEQ ID NO:18:The sequence of T2_7 is SEQ ID NO:18:
5’-GTCCAGATGCTATCAGGATGTTAACTCTGGTTTTCCAGAGTTAACATCCTGATAGCAT-3’;5’-GTCCAGATGCTATCAGGATGTTAACTCTGGTTTTCCAGAGTTAACATCCTGATAGCAT-3’;
T2_8的序列为SEQ ID NO:19:The sequence of T2_8 is SEQ ID NO:19:
5’-GTCCAGATGCTATCAGGGTGTTAACTCTGGTTTTCCAGAGTTAACACCCTGATAGCAT-3’;5’-GTCCAGATGCTATCAGGGTGTTAACTCTGGTTTTTCCAGAGTTAACACCCTGATAGCAT-3’;
T2_9的序列为SEQ ID NO:20:The sequence of T2_9 is SEQ ID NO:20:
5’-GTCCAGATGCACTAATTCTCCTCGGTCTGTTTTCAGACCGAGGAGAATTAGTGCAT-3’;5’-GTCCAGATGCACTAATTCTCCTCGGTCTGTTTTTCAGACCGAGGAGAATTAGTGCAT-3’;
T2_10的序列为SEQ ID NO:21:The sequence of T2_10 is SEQ ID NO:21:
5’-GTCCAGATGCACTAATTCTCGTCGGTCTGTTTTCAGACCGACGAGAATTAGTGCAT-3’;5’-GTCCAGATGCACTAATTCTCGTCGGTCTGTTTTTCAGACCGACGAGAATTAGTGCAT-3’;
T2_11的序列为SEQ ID NO:22:The sequence of T2_11 is SEQ ID NO:22:
5’-GTCCAGATGCACTAAGTCTCATCGGTCTGTTTTCAGACCGATGAGACTTAGTGCAT-3’。5’-GTCCAGATGCACTAAGTCTCATCGGTCTGTTTTCAGACCGATGAGACTTAGTGCAT-3’.
步骤二,等浓度混合四条环状单链滚环扩增模板,并用3×PBS缓冲液稀释至1ng/μL。按照实施例2所描述的步骤合成可同时靶向614D,614G,679N/681P,679N/681R和679K/681H五个位点且具有均一聚合度的串联核酸探针组。Step 2: Mix four circular single-stranded rolling circle amplification templates at equal concentrations and dilute to 1ng/μL with 3×PBS buffer. According to the steps described in Example 2, a tandem nucleic acid probe set that can simultaneously target the five sites of 614D, 614G, 679N/681P, 679N/681R and 679K/681H and has a uniform degree of polymerization is synthesized.
步骤三,新型冠状病毒的RNA样品经片段化缓冲液(New England Biolabs)在95℃下反应10分钟进行片段化处理,然后用含有5%唾液的测量溶液稀释至浓度为5pg/μL。Step 3: The RNA sample of the new coronavirus is fragmented by reacting with fragmentation buffer (New England Biolabs) at 95°C for 10 minutes, and then diluted to a concentration of 5pg/μL with a measurement solution containing 5% saliva.
步骤四,将具有均一聚合度的串联核酸探针组连接磁性微球后置于单分子磁镊设备中,按照图7所示方法,使用已知的待测物标准品依次确定具有均一聚合度的串联核酸探针组中每个探针的种类。Step 4: Connect the tandem nucleic acid probe set with a uniform degree of polymerization to magnetic microspheres and place it in a single-molecule magnetic tweezers device. According to the method shown in Figure 7, use known standards of the analyte to sequentially determine the uniform degree of polymerization. The type of each probe in the tandem nucleic acid probe set.
步骤五,设置检测过程的力学拉伸模式为:检测力(F1=6pN)停留5秒,确定结合待测物前,每个探针分子在检测力下的分子延伸长度,并记录为其基准长度;结合力(F2=20pN)停留3分钟,结合力下暴露探针分子上的靶点序列,识别并结合样品中的待测物;检测力(F1=6pN)停留5秒,记录结合待测物后,探针在检测力下相较于基准长度的每个探针分子延伸长度变化,记为LB,作为待测物的结合信号强度。由于待测物与非特异性探针分子结合的稳定性要远小于和特异性探针分子结合的稳定性,因此在该检测力下,非特异性结合的待测物会迅速解离,只留下特异性结合的待测物,这一过程的选择极大的增加了该方法的检测特异性。重生力(F3=1pN)停留10秒,使探针上结合的待测物全部解离,探针上重新回到未结合待测物的初始状态。Step 5: Set the mechanical stretching mode of the detection process to: the detection force (F1 = 6pN) is held for 5 seconds, determine the molecular extension length of each probe molecule under the detection force before binding to the test substance, and record it as a benchmark Length; the binding force (F2=20pN) stays for 3 minutes, and the target sequence on the probe molecule is exposed under the binding force, identifying and binding the analyte in the sample; the detection force (F1=6pN) stays for 5 seconds, and the binding time is recorded After detecting the substance, the change in the extension length of each probe molecule compared to the reference length under the detection force is recorded as LB and is used as the binding signal intensity of the substance to be tested. Since the stability of the analyte binding to non-specific probe molecules is much lower than that of binding to specific probe molecules, under this detection power, the non-specifically bound analyte will dissociate rapidly, leaving only The selection of specifically bound analytes greatly increases the detection specificity of the method. Renew the force (F3=1pN) and stay for 10 seconds to dissociate all the analytes bound to the probe, and return the probe to the initial state of unbound analytes.
步骤六,按照步骤三依次测量所有待测样品:只含有测量溶液的阴性对照、含有野生型病毒RNA片段的样品、含有B.1.617.2亚型RNA片段的样品和含有BA.1亚型RNA片段的样品,记录检测结果如图11所示。Step 6: Follow step 3 to measure all the samples to be tested in sequence: negative controls containing only the measurement solution, samples containing wild-type viral RNA fragments, samples containing B.1.617.2 subtype RNA fragments, and samples containing BA.1 subtype RNA. Fragment the sample and record the test results as shown in Figure 11.
实施例8:经搭桥DNA和T4 DNA连接酶,将单链线性DNA模板T3首尾相连,构建单链环状滚环转录模板,如图12所示。具体步骤如下:Example 8: Connect the single-stranded linear DNA template T3 end-to-end via bridging DNA and T4 DNA ligase to construct a single-stranded circular rolling circle transcription template, as shown in Figure 12. Specific steps are as follows:
步骤一,设计并合成单链线性DNA模板T3和搭桥DNABridge1。Step 1: Design and synthesize single-stranded linear DNA template T3 and bridge DNABridge1.
T3的序列为SEQ ID NO:23:The sequence of T3 is SEQ ID NO:23:
5’-GTGAGTCGTATTAAGTCAAGTTAACCCTAACCCTAACCCTAACCCTAATCGAGCACGGCTCTACTCTACTCTACTCTACTCTCCTATA-3’;5’-GTGAGTCGTATTAAGTCAAGTTAACCCTAACCCTAACCCTAACCCTAATCGAGCACGGCTCTACTCTACTCTACTCTACTCTCCTATA-3’;
Bridge1的序列为SEQ ID NO:24:5’-TAATACGACTCACTATAGGAGAG-3’。The sequence of Bridge1 is SEQ ID NO: 24: 5'-TAATACGACTCACTATAGGAGAG-3'.
其中单链线性DNA模板5’端带有磷酸化修饰,其序列中包含有启动序列和靶点序列。启动序列为T7启动子序列的互补序列,靶点序列为人源端粒G四联体序列的互补序列。搭桥DNA的3’端序列与模板T3的5’端部分互补配对;搭桥DNA的5’端序列与模板T3的3’端部分互补配对。The 5' end of the single-stranded linear DNA template is phosphorylated, and its sequence contains a promoter sequence and a target sequence. The promoter sequence is the complementary sequence of the T7 promoter sequence, and the target sequence is the complementary sequence of the human telomeric G-quadruplex sequence. The 3’ end sequence of the bridge DNA is complementary to the 5’ end part of the template T3; the 5’ end sequence of the bridge DNA is complementary to the 3’ end part of the template T3.
步骤二,模板T3和搭桥DNA退火,形成含有切口的环形结构。浓度为2μM的模板T3和2μM的搭桥DNA Bridge1在含有10mM Tris-HCl缓冲液中经75℃孵育10分钟后,按每分钟降温一度的速率降至20℃,进行退火反应。Step 2: Template T3 and bridging DNA anneal to form a circular structure containing a nick. Template T3 with a concentration of 2 μM and bridge DNA Bridge1 with a concentration of 2 μM were incubated at 75°C for 10 minutes in a buffer containing 10mM Tris-HCl, and then lowered to 20°C at a rate of one degree per minute to perform an annealing reaction.
步骤三,酶连反应合成闭合结构的环状滚环转录模板。在步骤二中的退火产物中加入T4DNA连接酶和反应缓冲液,4℃孵育12小时进行酶连反应,然后65℃反应10分钟灭活T4DNA连接酶。Step three: Enzyme ligation reaction to synthesize a closed-structure circular rolling circle transcription template. Add T4 DNA ligase and reaction buffer to the annealed product in step 2, incubate at 4°C for 12 hours to perform the enzyme ligation reaction, and then react at 65°C for 10 minutes to inactivate T4 DNA ligase.
步骤四,纯化和回收闭合结构的环状滚环转录模板。步骤三的连接产物经超滤管回收,然后依次经DNA外切酶III和DNA外切酶I处理,消解掉所有线性或包含切刻(nick)的副产物,获得较高纯度的闭合结构的环状状滚转录模板。Step 4: Purify and recover the closed structure circular rolling circle transcription template. The ligation product in step three is recovered through an ultrafiltration tube, and then treated with DNA exonuclease III and DNA exonuclease I in sequence to digest all linear or nick-containing by-products to obtain a higher purity closed structure. Circular roll transcription template.
步骤五,聚丙烯酰胺凝胶电泳分别检测步骤二、步骤三和步骤四的产物。凝胶浓度为8%,100V电压下电泳40分钟,而后经核酸染料Gel-Red浸泡染色,由Bio-Rad凝胶成像系统成像。Step 5: Polyacrylamide gel electrophoresis detects the products of steps 2, 3 and 4 respectively. The gel concentration was 8%, and the gel was electrophoresed at 100V for 40 minutes, then soaked and stained with the nucleic acid dye Gel-Red, and imaged by the Bio-Rad gel imaging system.
实施例9:流通池表面原位同步化滚环转录合成聚合度均一的串联核酸探针,如图13所示。具体步骤如下:Example 9: Synchronized rolling circle transcription in situ on the flow cell surface to synthesize tandem nucleic acid probes with uniform polymerization degrees, as shown in Figure 13. Specific steps are as follows:
步骤一,内表面偶联有地高辛抗体的流通池的制备。流通池的制备和内表面地高辛抗体的修饰过程按照单分子实验的经典实验步骤进行。Step 1: Preparation of the flow cell with digoxigenin antibody coupled to the inner surface. The preparation of the flow cell and the modification of the digoxigenin antibody on the inner surface were carried out according to the classic experimental procedures for single-molecule experiments.
步骤二,退火启动序列互补序列T7_C到环状单链滚环转录模板上,形成启动序列部分为双链结构,其他部分为单链结构的环状滚环转录模板。Step 2: anneal the complementary sequence T7_C of the promoter sequence to the circular single-stranded rolling circle transcription template to form a circular rolling circle transcription template in which part of the promoter sequence is a double-stranded structure and the other part is a single-stranded structure.
启动序列互补序列T7_C的序列为SEQ ID NO:25:5’-TAATACGACTCACTATAGG-3’。The sequence of the complementary sequence T7_C of the initiating sequence is SEQ ID NO: 25: 5'-TAATACGACTCACTATAGG-3'.
步骤三,形成可同步起始的滚环转录复合物。配置含有缺陷底物(UTP、ATP和CTP)的转录体系,其中缺陷底物中的UTP为地高辛修饰UTP。转录体系中环状滚环转录模板的浓度为1ng/μL。37℃下孵育5分钟,使T7RNA聚合酶充分识别双链结构的启动序列,形成滚环转录复合物,起始转录,然后运行到首次遇到模板上的碱基C位点处时暂停。利用超滤管回收暂停后的滚环转录复合物。Step 3: Form a rolling circle transcription complex that can initiate synchronously. Configure a transcription system containing defective substrates (UTP, ATP and CTP), where the UTP in the defective substrate is digoxin-modified UTP. The concentration of the rolling circle transcription template in the transcription system is 1ng/μL. Incubate at 37°C for 5 minutes to allow T7 RNA polymerase to fully recognize the initiation sequence of the double-stranded structure, form a rolling circle transcription complex, initiate transcription, and then pause when it first encounters the base C site on the template. Use an ultrafiltration tube to recover the paused rolling circle transcription complex.
步骤四,将步骤三中的回收后的滚环转录复合物加入内表面偶联有地高辛抗体的流通池中,室温条件下反应10分钟,使带有地高辛标记的新生转录本利用地高辛和地高辛抗体的亲和相互作用偶联到流通池内表面。Step 4: Add the recovered rolling circle transcription complex in Step 3 to a flow cell with digoxigenin antibody coupled to the inner surface, and react at room temperature for 10 minutes to utilize the digoxigenin-labeled nascent transcripts. Affinity interactions of digoxin and digoxin antibodies are coupled to the inner surface of the flow cell.
步骤五,加入完整的反应底物NTPmix,重启转录过程,37℃继续孵育10分钟。Step 5: Add complete reaction substrate NTPmix, restart the transcription process, and continue incubating at 37°C for 10 minutes.
步骤六,配制掺有生物素标记UTP的反应底物,生物素标记UTP比上UTP等于1:9,加入流通池中,37℃继续孵育1分钟,使滚环转录合成的具有均一聚合度的串联核酸探针的3’端添加上生物素标记。Step 6: Prepare a reaction substrate mixed with biotin-labeled UTP. The ratio of biotin-labeled UTP to upper UTP is equal to 1:9. Add it to the flow cell and continue to incubate at 37°C for 1 minute so that rolling circle transcription synthesizes polymers with a uniform degree of polymerization. The 3' end of the tandem nucleic acid probe is labeled with biotin.
步骤七,加入30mMEDTA,终止转录反应。Step 7: Add 30mMEDTA to terminate the transcription reaction.
步骤八,退火间隔序列互补序列2:Flank2。Step 8: Anneal spacer sequence complementary sequence 2: Flank2.
Flank2的序列为SEQ ID NO:26:The sequence of Flank2 is SEQ ID NO:26:
5’-CTTGACTTAATACGACTCACTATAGGAGAGTAGAGTAGAGTAGAGTAGAGCCGTG CTCG-3’。5’-CTTGACTTAATACGACTCACTATAGGAGAGTAGAGTAGAGTAGAGTAGAGCCGTG CTCG-3’.
加入浓度为100nM的Flank2,使具有均一聚合度的串联核酸探针中非功能性间隔序列形成双链结构。Adding Flank2 at a concentration of 100nM makes the non-functional spacer sequence in the tandem nucleic acid probe with a uniform degree of polymerization form a double-stranded structure.
步骤九,新合成具有均一聚合度的串联核酸探针与磁性微球的连接。磁性微球M-270经3×PBS缓冲液稀释100倍后加入流通池中,磁性微球M-270表面修饰为链霉亲和素,可以与串联核酸探针3’端标记的生物素相互作用。Step 9: Connect newly synthesized tandem nucleic acid probes with uniform polymerization degree to magnetic microspheres. The magnetic microsphere M-270 is diluted 100 times with 3×PBS buffer and then added to the flow cell. The surface of the magnetic microsphere M-270 is modified with streptavidin, which can interact with the biotin labeled at the 3' end of the tandem nucleic acid probe. effect.
实施例10:滚环转录制备的均一聚合度串联核酸探针检测小分子配体PDS对RNAG四联体结构稳定性的影响。具体步骤如下:Example 10: Uniform polymerization tandem nucleic acid probes prepared by rolling circle transcription were used to detect the effect of small molecule ligand PDS on the structural stability of RNAG quadruplex. Specific steps are as follows:
步骤一,根据实施例8所述步骤,利用线性单链DNA模板T3和搭桥DNABridge1合成包含G四联体特异结构序列互补序列的环状滚环转录模板。Step 1: According to the steps described in Example 8, linear single-stranded DNA template T3 and bridging DNABridge1 are used to synthesize a circular rolling circle transcription template containing the complementary sequence of the G-quadruplex specific structure sequence.
步骤二,根据实施例9所述步骤原位同步化合成可形成RNAG四联体特异结构,且具有均一聚合度的串联核酸探针。Step 2: Synchronize in-situ synthesis of tandem nucleic acid probes that can form a specific RNAG quadruplex structure and have a uniform degree of polymerization according to the steps described in Example 9.
步骤三,将具有均一聚合度的串联核酸探针连接磁性微球后置于单分子磁镊设备中,设置检测过程的力学拉伸模式,如图14所示:重生力(F3=50pN)停留20秒,使探针上的G四联体特异结构全部去折叠;检测力(F1=20pN)停留10秒,确定G四联体结构形成之前,探针在检测力下的分子延伸长度,并记录为基准长度;结合力(F2=2pN)停留60秒,结合力下探针分子上所有的靶点序列都折叠成G四联体特异结构,同时识别并结合待测样品中的待测物,如小分子配体PDS;检测力(F1=20pN)停留60秒,记录结合待测物后,探针在检测力下相较于基准长度的探针分子延伸长度变化,记为LB,作为G四联体特异结构的去折叠概率并确定待测物的结合信号强度;重生力(F3=50pN)停留20秒,使探针上的G四联体特异结构全部去折叠。Step 3: Connect the tandem nucleic acid probes with a uniform degree of polymerization to magnetic microspheres and place them in the single-molecule magnetic tweezers device. Set the mechanical stretching mode of the detection process, as shown in Figure 14: Regeneration force (F3=50pN) stays 20 seconds to unfold all the G-quadruplex specific structures on the probe; the detection force (F1=20pN) stays for 10 seconds to determine the molecular extension length of the probe under the detection force before the G-quadruplex structure is formed, and Record as the reference length; the binding force (F2=2pN) stays for 60 seconds. Under the binding force, all target sequences on the probe molecule are folded into a G-quadruplex specific structure, and the analyte in the sample to be tested is recognized and combined at the same time. , such as small molecule ligand PDS; the detection force (F1=20pN) is stayed for 60 seconds, and the change in the extension length of the probe molecule compared to the reference length under the detection force after binding to the analyte is recorded, recorded as LB, as Determine the unfolding probability of the G-quadruplex specific structure and determine the binding signal intensity of the test substance; stay with the regeneration force (F3=50pN) for 20 seconds to fully unfold the G-quadruplex-specific structure on the probe.
步骤四,重复步骤三中的力学拉伸模式,以测量溶液(100mM氯化钾)作为对照组,测定了小分子配体PDS可以显著增加人源端粒重复序列形成的RNAG四联体结构的稳定性,如图15所示。Step 4: Repeat the mechanical stretching mode in step 3, and use the measurement solution (100mM potassium chloride) as the control group to determine that the small molecule ligand PDS can significantly increase the RNAG quadruplex structure formed by human telomeric repeat sequences. Stability, as shown in Figure 15.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310992413.1A CN117126923A (en) | 2023-08-08 | 2023-08-08 | Molecular detection method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202310992413.1A CN117126923A (en) | 2023-08-08 | 2023-08-08 | Molecular detection method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN117126923A true CN117126923A (en) | 2023-11-28 |
Family
ID=88861936
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202310992413.1A Pending CN117126923A (en) | 2023-08-08 | 2023-08-08 | Molecular detection method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN117126923A (en) |
-
2023
- 2023-08-08 CN CN202310992413.1A patent/CN117126923A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1255861B1 (en) | Methods and kits for proximity probing | |
| US7306904B2 (en) | Methods and kits for proximity probing | |
| JP2846018B2 (en) | Amplification and detection of nucleic acid sequences | |
| US20250304614A1 (en) | Nucleic acid nanoswitch construction methods | |
| JP2005521409A (en) | Single primer isothermal nucleic acid amplification-enhanced analyte detection and quantification | |
| JPH09505464A (en) | Autonomous sequence replication electrochemiluminescence nucleic acid assay | |
| Zhang et al. | A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test | |
| JP2017012171A (en) | Method for determining dna sequence by hybridization | |
| EP4256081A1 (en) | Method of detection of a target nucleic acid sequence | |
| JP2023519366A (en) | Controls for proximity detection assays | |
| CN114994324A (en) | Composition for immunodetection, kit, detection method and application | |
| CN111808928B (en) | SNP typing detection method | |
| WO2025087194A1 (en) | Testing method and kit | |
| CN102257160A (en) | Methods and reagents for reducing incubation time in hybridization assays | |
| FI102084B (en) | Process for Preparation of Modified Nucleic Acids and Methods for Detecting Them and Reagent Packaging | |
| CN113702641A (en) | One-pot nucleic acid-antibody co-detection method and application | |
| CN110468182B (en) | Homogeneous phase biological analysis method for detecting platelet-derived growth factor BB and application thereof | |
| CN110603446A (en) | Methods for determining the presence or absence of a target analyte comprising the use of a polynucleotide reporter molecule and a transmembrane pore | |
| CN117126923A (en) | Molecular detection method | |
| CN112424371B (en) | Detection assays for protein-polynucleotide conjugates | |
| KR102177672B1 (en) | Multiplex PCR method using Aptamer | |
| CN116162538B (en) | A microfluidic chip and kit for simultaneous detection of protein and RNA | |
| WO2024067478A1 (en) | Method for measuring single-molecule rna force spectrum and use thereof | |
| CN108179176A (en) | A method for bidirectional extension of two non-overlapping amplification primers based on miRNA bridging to detect miRNA | |
| JPH10179198A (en) | Analysis using signal amplification |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |