[go: up one dir, main page]

CN117462146A - Human brain abnormal discharge detection method, device, storage medium and electronic equipment - Google Patents

Human brain abnormal discharge detection method, device, storage medium and electronic equipment Download PDF

Info

Publication number
CN117462146A
CN117462146A CN202311630555.XA CN202311630555A CN117462146A CN 117462146 A CN117462146 A CN 117462146A CN 202311630555 A CN202311630555 A CN 202311630555A CN 117462146 A CN117462146 A CN 117462146A
Authority
CN
China
Prior art keywords
data
biomedical
monitoring data
video monitoring
abnormal discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311630555.XA
Other languages
Chinese (zh)
Other versions
CN117462146B (en
Inventor
梁子
林楠
李恋
戴朝约
陈俊晖
卢强
崔丽英
金丽日
高伟芳
张少博
董一粟
贺海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking Union Medical College Hospital Chinese Academy of Medical Sciences
Netease Media Technology Beijing Co Ltd
Original Assignee
Peking Union Medical College Hospital Chinese Academy of Medical Sciences
Netease Media Technology Beijing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking Union Medical College Hospital Chinese Academy of Medical Sciences, Netease Media Technology Beijing Co Ltd filed Critical Peking Union Medical College Hospital Chinese Academy of Medical Sciences
Priority to CN202311630555.XA priority Critical patent/CN117462146B/en
Publication of CN117462146A publication Critical patent/CN117462146A/en
Application granted granted Critical
Publication of CN117462146B publication Critical patent/CN117462146B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analogue processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychology (AREA)
  • Evolutionary Computation (AREA)
  • Power Engineering (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本公开实施方式涉及一种人脑异常放电检测方法、装置、存储介质与电子设备,涉及人工智能与多模态技术领域。该方法包括:获取受测对象的生物医学特征数据;获取所述受测对象的视频监测数据;根据所述视频监测数据检测所述受测对象的动作信息;从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列;利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理,得到所述受测对象的异常放电检测结果。本公开能够实现人脑异常放电的自动化检测并提升检测的准确性。

The disclosed embodiments relate to a human brain abnormal discharge detection method, device, storage medium and electronic equipment, and relate to the fields of artificial intelligence and multi-modal technology. The method includes: obtaining the biomedical characteristic data of the tested object; obtaining the video monitoring data of the tested object; detecting the action information of the tested object according to the video monitoring data; extracting user information from the video monitoring data. For an image sequence of interest that characterizes the action of the subject under test; using a pre-trained abnormal discharge detection model to process the biomedical feature data, the action information, and the image sequence of interest to obtain the Abnormal discharge detection results of the object under test. The present disclosure can realize automated detection of abnormal human brain discharge and improve detection accuracy.

Description

人脑异常放电检测方法、装置、存储介质及电子设备Human brain abnormal discharge detection method, device, storage medium and electronic equipment

技术领域Technical field

本公开的实施方式涉及人工智能与多模态技术领域,更具体地,本公开的实施方式涉及一种人脑异常放电检测方法、人脑异常放电检测装置、计算机可读存储介质及电子设备。Embodiments of the present disclosure relate to the fields of artificial intelligence and multi-modal technologies. More specifically, embodiments of the present disclosure relate to a human brain abnormal discharge detection method, a human brain abnormal discharge detection device, a computer-readable storage medium and an electronic device.

背景技术Background technique

本部分旨在为权利要求中陈述的本公开的实施方式提供背景或上下文,此处的描述不因为包括在本部分中就承认是现有技术。This section is intended to provide background or context for the embodiments of the disclosure set forth in the claims, and the description herein is not an admission of prior art by inclusion in this section.

人脑异常放电由脑细胞的异常活动造成,能够引起癫痫等神经系统疾病。通过脑电图等检查手段检测人脑异常放电,能够帮助医生识别患者疾病。例如,在脑电图中检测到癫痫样放电,是癫痫确诊的重要标准之一。Abnormal discharges in the human brain are caused by abnormal activity of brain cells and can cause neurological diseases such as epilepsy. Detecting abnormal discharges in the human brain through examination methods such as electroencephalography can help doctors identify patients' diseases. For example, the detection of epileptiform discharges in electroencephalogram is one of the important criteria for the diagnosis of epilepsy.

人脑异常放电检测涉及到脑电图等检测数据,数据检测与分析的工作繁重,耗费大量的人力与时间成本。因此,业界对于人脑异常放电的自动化检测需求越来越高。The detection of abnormal human brain discharge involves detection data such as electroencephalogram. The work of data detection and analysis is heavy and consumes a lot of manpower and time costs. Therefore, the industry's demand for automated detection of abnormal human brain discharges is increasing.

发明内容Contents of the invention

然而,目前人脑异常放电检测的准确性有待提高。However, the current accuracy of abnormal human brain discharge detection needs to be improved.

相关技术中,采用人工智能技术进行人脑异常放电检测,例如基于深度学习训练癫痫样放电识别智能网络,以进行人脑的癫痫样放电检测。相关文献报道其准确率仅达到70%,需要专业医生和技术人员对人工智能识读结果进行后处理。In related technologies, artificial intelligence technology is used to detect abnormal discharges in the human brain, such as training an intelligent network for epileptiform discharge recognition based on deep learning to detect epileptiform discharges in the human brain. Relevant literature reports that its accuracy rate only reaches 70%, requiring professional doctors and technicians to post-process the artificial intelligence reading results.

为此,非常需要一种改进的人脑异常放电检测方法,可以实现人脑异常放电的自动化检测并提升检测的准确性。For this reason, there is a great need for an improved method for detecting abnormal human brain discharges, which can realize automated detection of abnormal human brain discharges and improve detection accuracy.

在本上下文中,本公开的实施方式期望提供一种人脑异常放电检测方法、人脑异常放电检测装置、计算机可读存储介质及电子设备。In this context, embodiments of the present disclosure are expected to provide a human brain abnormal discharge detection method, a human brain abnormal discharge detection device, a computer-readable storage medium, and an electronic device.

根据本公开的第一方面,提供一种人脑异常放电检测方法,包括:获取受测对象的生物医学特征数据;获取所述受测对象的视频监测数据;根据所述视频监测数据检测所述受测对象的动作信息;从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列;利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理,得到所述受测对象的异常放电检测结果。According to a first aspect of the present disclosure, a method for detecting abnormal human brain discharge is provided, including: obtaining biomedical characteristic data of a subject; obtaining video monitoring data of the subject; detecting the abnormal discharge according to the video monitoring data Action information of the subject under test; extracting an image sequence of interest for characterizing the action of the subject under test from the video monitoring data; using a pre-trained abnormal discharge detection model to analyze the biomedical feature data, the The action information and the image sequence of interest are processed to obtain the abnormal discharge detection result of the subject under test.

在一种实施方式中,所述获取受测对象的生物医学特征数据,包括:获取由生物医学监测设备采集的所述受测对象的生物医学监测数据;对所述生物医学监测数据进行预处理;根据预处理后的生物医学监测数据得到所述生物医学特征数据。In one embodiment, obtaining the biomedical characteristic data of the subject includes: obtaining the biomedical monitoring data of the subject collected by biomedical monitoring equipment; and preprocessing the biomedical monitoring data. ; Obtain the biomedical characteristic data based on the preprocessed biomedical monitoring data.

在一种实施方式中,所述生物医学监测数据包括:从所述受测对象的头皮的多个部位处采集的多通道脑电监测数据;所述根据预处理后的生物医学监测数据得到所述生物医学特征数据,包括:将预处理后的多通道脑电监测数据计算每个通道与参考电极的电位差,得到脑电信号初始特征数据;根据所述脑电信号初始特征数据提取所述生物医学特征数据。In one embodiment, the biomedical monitoring data includes: multi-channel EEG monitoring data collected from multiple parts of the scalp of the subject; the obtained data are obtained based on the preprocessed biomedical monitoring data. The biomedical characteristic data includes: calculating the potential difference between each channel and the reference electrode from the preprocessed multi-channel EEG monitoring data to obtain initial characteristic data of the EEG signal; extracting the said EEG signal according to the initial characteristic data Biomedical characterization data.

在一种实施方式中,所述生物医学特征数据包括脑电信号波形特征;所述根据所述脑电信号初始特征数据提取所述生物医学特征数据,包括:利用预先训练的波形特征提取模型对所述脑电信号初始特征数据进行处理,以提取所述脑电信号波形特征。In one embodiment, the biomedical feature data includes EEG signal waveform features; and extracting the biomedical feature data based on the EEG initial feature data includes: using a pre-trained waveform feature extraction model to The initial characteristic data of the EEG signal is processed to extract the waveform characteristics of the EEG signal.

在一种实施方式中,所述生物医学特征数据包括脑电信号时频特征;所述根据所述脑电信号初始特征数据提取所述生物医学特征数据,包括:对所述脑电信号初始特征数据进行时频变换,得到所述脑电信号初始特征数据对应的脑电信号时频数据;根据所述脑电信号时频数据提取所述脑电信号时频特征。In one embodiment, the biomedical feature data includes time-frequency features of the EEG signal; and extracting the biomedical feature data based on the initial feature data of the EEG signal includes: analyzing the initial feature data of the EEG signal. The data is subjected to time-frequency transformation to obtain the EEG signal time-frequency data corresponding to the EEG signal initial characteristic data; the EEG signal time-frequency characteristics are extracted according to the EEG signal time-frequency data.

在一种实施方式中,所述对所述生物医学监测数据进行预处理,包括以下至少一种处理:重采样,滤波,剔除噪声数据,数值标准化处理。In one embodiment, the preprocessing of the biomedical monitoring data includes at least one of the following processes: resampling, filtering, removing noise data, and numerical standardization.

在一种实施方式中,所述视频监测数据包括人脸视频监测数据;所述根据所述视频监测数据检测所述受测对象的动作信息,包括:从所述人脸视频监测数据中检测人脸关键点数据;根据所述人脸关键点数据得到所述受测对象的人脸动作信息。In one implementation, the video monitoring data includes face video monitoring data; and detecting the action information of the subject under test based on the video monitoring data includes: detecting people from the face video monitoring data. Face key point data; obtain facial action information of the subject under test based on the face key point data.

在一种实施方式中,所述感兴趣图像序列包括人脸图像序列;所述从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列,包括:根据所述人脸关键点数据,从所述人脸视频监测数据的多帧中裁剪出人脸区域图像,得到人脸图像序列。In one implementation, the image sequence of interest includes a face image sequence; and extracting the image sequence of interest from the video monitoring data for characterizing the movement of the subject under test includes: according to The face key point data is used to cut out face area images from multiple frames of the face video monitoring data to obtain a face image sequence.

在一种实施方式中,所述根据所述人脸关键点数据得到所述受测对象的人脸动作信息,包括:根据所述人脸关键点数据,确定发生运动的人脸关键点及其位移信息,得到所述受测对象的人脸动作信息。In one embodiment, obtaining the facial action information of the subject according to the facial key point data includes: determining the facial key points where movement occurs and their movement based on the facial key point data. Displacement information is used to obtain facial movement information of the subject under test.

在一种实施方式中,所述视频监测数据包括身体视频监测数据;所述根据所述视频监测数据检测所述受测对象的动作信息,包括:从所述身体视频监测数据中检测身体关键点数据;根据所述身体关键点数据得到所述受测对象的身体动作信息。In one embodiment, the video monitoring data includes body video monitoring data; and detecting the action information of the subject according to the video monitoring data includes: detecting body key points from the body video monitoring data. Data; obtain the body movement information of the subject according to the body key point data.

在一种实施方式中,所述感兴趣图像序列包括身体图像序列;所述从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列,包括:根据所述身体关键点数据,从所述身体监测视频数据的多帧中裁剪出身体区域图像,得到身体图像序列。In one embodiment, the image sequence of interest includes a body image sequence; and extracting the image sequence of interest from the video monitoring data for characterizing the movement of the subject under test includes: according to the Using the body key point data, body region images are cut out from multiple frames of the body monitoring video data to obtain a body image sequence.

在一种实施方式中,所述根据所述身体关键点数据得到所述受测对象的身体动作信息,包括:根据所述身体关键点数据,确定发生运动的身体关键点及其位移信息,得到所述受测对象的身体动作信息。In one embodiment, obtaining the body movement information of the subject according to the body key point data includes: determining the body key points where movement occurs and their displacement information based on the body key point data, to obtain The body movement information of the subject under test.

在一种实施方式中,所述异常放电检测模型包括特征处理层,注意力层,分类层;所述利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理,得到所述受测对象的异常放电检测结果,包括:将所述生物医学特征数据、所述动作信息、所述感兴趣图像序列输入所述异常放电检测模型;利用所述特征处理层从所述动作信息中提取动作特征数据,从所述感兴趣图像序列中提取图像特征数据,并融合所述生物医学特征数据、所述动作特征数据、所述图像特征数据,得到融合特征;利用所述注意力层对所述融合特征进行表征,得到嵌入特征;利用所述分类层将所述嵌入特征映射至输出空间,得到所述受测对象的异常放电检测结果。In one embodiment, the abnormal discharge detection model includes a feature processing layer, an attention layer, and a classification layer; the pre-trained abnormal discharge detection model is used to analyze the biomedical feature data, the action information, and the Processing the image sequence of interest to obtain the abnormal discharge detection result of the subject, including: inputting the biomedical feature data, the action information, and the image sequence of interest into the abnormal discharge detection model; using the The feature processing layer extracts action feature data from the action information, extracts image feature data from the image sequence of interest, and fuses the biomedical feature data, the action feature data, and the image feature data to obtain Fusion features; use the attention layer to characterize the fusion features to obtain embedded features; use the classification layer to map the embedded features to the output space to obtain abnormal discharge detection results of the tested object.

在一种实施方式中,在所述利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理之前,所述方法还包括:将所述动作信息和所述感兴趣图像序列中的至少一者,与所述生物医学特征数据进行时间对齐。In one embodiment, before using the pre-trained abnormal discharge detection model to process the biomedical feature data, the action information, and the image sequence of interest, the method further includes: At least one of motion information and the image sequence of interest is time aligned with the biomedical feature data.

在一种实施方式中,所述将所述动作信息和所述感兴趣图像序列中的至少一者,与所述生物医学特征数据进行时间对齐,包括:从所述生物医学特征数据中检测一个或多个疑似异常放电的生物医学特征数据以及对应的一个或多个第一时间点;从所述动作信息中检测一个或多个疑似异常放电的动作数据以及对应的一个或多个第二时间点;将所述疑似异常放电的生物医学特征数据与所述疑似异常放电的动作数据进行匹配,根据匹配结果确定所述第一时间点与所述第二时间点之间的对应关系;基于所述第一时间点与所述第二时间点之间的对应关系,确定时间校准参数,并利用所述时间校准参数将所述动作信息与所述生物医学特征数据进行时间对齐。In one embodiment, time-aligning at least one of the action information and the image sequence of interest with the biomedical feature data includes: detecting a or multiple biomedical characteristic data of suspected abnormal discharge and the corresponding one or more first time points; detect one or more action data of suspected abnormal discharge and the corresponding one or more second time points from the action information point; match the biomedical characteristic data of the suspected abnormal discharge with the action data of the suspected abnormal discharge, and determine the corresponding relationship between the first time point and the second time point according to the matching results; based on the The corresponding relationship between the first time point and the second time point is determined to determine a time calibration parameter, and the action information and the biomedical feature data are time aligned using the time calibration parameter.

在一种实施方式中,所述将所述疑似异常放电的生物医学特征数据与所述疑似异常放电的动作数据进行匹配,包括:确定所述疑似异常放电的生物医学特征数据与其他所述生物医学特征数据之间的第一相对值;确定所述疑似异常放电的动作数据与所述动作信息中的其他动作数据之间的第二相对值;通过比较所述第一相对值与所述第二相对值,得到所述疑似异常放电的生物医学特征数据与所述疑似异常放电的动作数据之间的匹配结果。In one embodiment, matching the biomedical characteristic data of the suspected abnormal discharge with the action data of the suspected abnormal discharge includes: determining whether the biomedical characteristic data of the suspected abnormal discharge is consistent with other biological data. The first relative value between the medical feature data; determining the second relative value between the action data of the suspected abnormal discharge and other action data in the action information; by comparing the first relative value with the third Two relative values are used to obtain a matching result between the biomedical characteristic data of the suspected abnormal discharge and the action data of the suspected abnormal discharge.

根据本公开的第二方面,提供一种人脑异常放电检测装置,包括:第一获取模块,被配置为获取受测对象的生物医学特征数据;第二获取模块,被配置为获取所述受测对象的视频监测数据;动作信息检测模块,被配置为根据所述视频监测数据检测所述受测对象的动作信息;图像序列提取模块,被配置为从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列;模型处理模块,被配置为利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理,得到所述受测对象的异常放电检测结果。According to a second aspect of the present disclosure, a human brain abnormal discharge detection device is provided, including: a first acquisition module configured to acquire biomedical characteristic data of a subject; a second acquisition module configured to acquire the subject video monitoring data of the measured object; an action information detection module configured to detect the action information of the measured object according to the video monitoring data; an image sequence extraction module configured to extract from the video monitoring data for An image sequence of interest that characterizes the movement of the subject under test; a model processing module configured to use a pre-trained abnormal discharge detection model to perform processing on the biomedical feature data, the action information, and the image sequence of interest. Process to obtain the abnormal discharge detection result of the object under test.

在一种实施方式中,所述获取受测对象的生物医学特征数据,包括:获取由生物医学监测设备采集的所述受测对象的生物医学监测数据;对所述生物医学监测数据进行预处理;根据预处理后的生物医学监测数据得到所述生物医学特征数据。In one embodiment, obtaining the biomedical characteristic data of the subject includes: obtaining the biomedical monitoring data of the subject collected by biomedical monitoring equipment; and preprocessing the biomedical monitoring data. ; Obtain the biomedical characteristic data based on the preprocessed biomedical monitoring data.

在一种实施方式中,所述生物医学监测数据包括:从所述受测对象的头皮的多个部位处采集的多通道脑电监测数据;所述根据预处理后的生物医学监测数据得到所述生物医学特征数据,包括:将预处理后的多通道脑电监测数据计算每个通道与参考电极的电位差,得到脑电信号初始特征数据;根据所述脑电信号初始特征数据提取所述生物医学特征数据。In one embodiment, the biomedical monitoring data includes: multi-channel EEG monitoring data collected from multiple parts of the scalp of the subject; the obtained data are obtained based on the preprocessed biomedical monitoring data. The biomedical characteristic data includes: calculating the potential difference between each channel and the reference electrode from the preprocessed multi-channel EEG monitoring data to obtain initial characteristic data of the EEG signal; extracting the said EEG signal according to the initial characteristic data Biomedical characterization data.

在一种实施方式中,所述生物医学特征数据包括脑电信号波形特征;所述根据所述脑电信号初始特征数据提取所述生物医学特征数据,包括:利用预先训练的波形特征提取模型对所述脑电信号初始特征数据进行处理,以提取所述脑电信号波形特征。In one embodiment, the biomedical feature data includes EEG signal waveform features; and extracting the biomedical feature data based on the EEG initial feature data includes: using a pre-trained waveform feature extraction model to The initial characteristic data of the EEG signal is processed to extract the waveform characteristics of the EEG signal.

在一种实施方式中,所述生物医学特征数据包括脑电信号时频特征;所述根据所述脑电信号初始特征数据提取所述生物医学特征数据,包括:对所述脑电信号初始特征数据进行时频变换,得到所述脑电信号初始特征数据对应的脑电信号时频数据;根据所述脑电信号时频数据提取所述脑电信号时频特征。In one embodiment, the biomedical feature data includes time-frequency features of the EEG signal; and extracting the biomedical feature data based on the initial feature data of the EEG signal includes: analyzing the initial feature data of the EEG signal. The data is subjected to time-frequency transformation to obtain the EEG signal time-frequency data corresponding to the EEG signal initial characteristic data; the EEG signal time-frequency characteristics are extracted according to the EEG signal time-frequency data.

在一种实施方式中,所述对所述生物医学监测数据进行预处理,包括以下至少一种处理:重采样,滤波,剔除噪声数据,数值标准化处理。In one embodiment, the preprocessing of the biomedical monitoring data includes at least one of the following processes: resampling, filtering, removing noise data, and numerical standardization.

在一种实施方式中,所述视频监测数据包括人脸视频监测数据;所述根据所述视频监测数据检测所述受测对象的动作信息,包括:从所述人脸视频监测数据中检测人脸关键点数据;根据所述人脸关键点数据得到所述受测对象的人脸动作信息。In one implementation, the video monitoring data includes face video monitoring data; and detecting the action information of the subject under test based on the video monitoring data includes: detecting people from the face video monitoring data. Face key point data; obtain facial action information of the subject under test based on the face key point data.

在一种实施方式中,所述感兴趣图像序列包括人脸图像序列;所述从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列,包括:根据所述人脸关键点数据,从所述人脸视频监测数据的多帧中裁剪出人脸区域图像,得到人脸图像序列。In one implementation, the image sequence of interest includes a face image sequence; and extracting the image sequence of interest from the video monitoring data for characterizing the movement of the subject under test includes: according to The face key point data is used to cut out face area images from multiple frames of the face video monitoring data to obtain a face image sequence.

在一种实施方式中,所述根据所述人脸关键点数据得到所述受测对象的人脸动作信息,包括:根据所述人脸关键点数据,确定发生运动的人脸关键点及其位移信息,得到所述受测对象的人脸动作信息。In one embodiment, obtaining the facial action information of the subject according to the facial key point data includes: determining the facial key points where movement occurs and their movement based on the facial key point data. Displacement information is used to obtain facial movement information of the subject under test.

在一种实施方式中,所述视频监测数据包括身体视频监测数据;所述根据所述视频监测数据检测所述受测对象的动作信息,包括:从所述身体视频监测数据中检测身体关键点数据;根据所述身体关键点数据得到所述受测对象的身体动作信息。In one embodiment, the video monitoring data includes body video monitoring data; and detecting the action information of the subject according to the video monitoring data includes: detecting body key points from the body video monitoring data. Data; obtain the body movement information of the subject according to the body key point data.

在一种实施方式中,所述感兴趣图像序列包括身体图像序列;所述从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列,包括:根据所述身体关键点数据,从所述身体监测视频数据的多帧中裁剪出身体区域图像,得到身体图像序列。In one embodiment, the image sequence of interest includes a body image sequence; and extracting the image sequence of interest from the video monitoring data for characterizing the movement of the subject under test includes: according to the Using the body key point data, body region images are cut out from multiple frames of the body monitoring video data to obtain a body image sequence.

在一种实施方式中,所述根据所述身体关键点数据得到所述受测对象的身体动作信息,包括:根据所述身体关键点数据,确定发生运动的身体关键点及其位移信息,得到所述受测对象的身体动作信息。In one embodiment, obtaining the body movement information of the subject according to the body key point data includes: determining the body key points where movement occurs and their displacement information based on the body key point data, to obtain The body movement information of the subject under test.

在一种实施方式中,所述异常放电检测模型包括特征处理层,注意力层,分类层;所述利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理,得到所述受测对象的异常放电检测结果,包括:将所述生物医学特征数据、所述动作信息、所述感兴趣图像序列输入所述异常放电检测模型;利用所述特征处理层从所述动作信息中提取动作特征数据,从所述感兴趣图像序列中提取图像特征数据,并融合所述生物医学特征数据、所述动作特征数据、所述图像特征数据,得到融合特征;利用所述注意力层对所述融合特征进行表征,得到嵌入特征;利用所述分类层将所述嵌入特征映射至输出空间,得到所述受测对象的异常放电检测结果。In one embodiment, the abnormal discharge detection model includes a feature processing layer, an attention layer, and a classification layer; the pre-trained abnormal discharge detection model is used to analyze the biomedical feature data, the action information, and the Processing the image sequence of interest to obtain the abnormal discharge detection result of the subject, including: inputting the biomedical feature data, the action information, and the image sequence of interest into the abnormal discharge detection model; using the The feature processing layer extracts action feature data from the action information, extracts image feature data from the image sequence of interest, and fuses the biomedical feature data, the action feature data, and the image feature data to obtain Fusion features; use the attention layer to characterize the fusion features to obtain embedded features; use the classification layer to map the embedded features to the output space to obtain abnormal discharge detection results of the tested object.

在一种实施方式中,所述模型处理模块,还被配置为:在所述利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理之前,将所述动作信息和所述感兴趣图像序列中的至少一者,与所述生物医学特征数据进行时间对齐。In one embodiment, the model processing module is further configured to: process the biomedical feature data, the action information, and the image sequence of interest using the pre-trained abnormal discharge detection model. Previously, at least one of the action information and the image sequence of interest is time-aligned with the biomedical feature data.

在一种实施方式中,所述将所述动作信息和所述感兴趣图像序列中的至少一者,与所述生物医学特征数据进行时间对齐,包括:从所述生物医学特征数据中检测一个或多个疑似异常放电的生物医学特征数据以及对应的一个或多个第一时间点;从所述动作信息中检测一个或多个疑似异常放电的动作数据以及对应的一个或多个第二时间点;将所述疑似异常放电的生物医学特征数据与所述疑似异常放电的动作数据进行匹配,根据匹配结果确定所述第一时间点与所述第二时间点之间的对应关系;基于所述第一时间点与所述第二时间点之间的对应关系,确定时间校准参数,并利用所述时间校准参数将所述动作信息与所述生物医学特征数据进行时间对齐。In one embodiment, time-aligning at least one of the action information and the image sequence of interest with the biomedical feature data includes: detecting a or multiple biomedical characteristic data of suspected abnormal discharge and the corresponding one or more first time points; detect one or more action data of suspected abnormal discharge and the corresponding one or more second time points from the action information point; match the biomedical characteristic data of the suspected abnormal discharge with the action data of the suspected abnormal discharge, and determine the corresponding relationship between the first time point and the second time point according to the matching results; based on the The corresponding relationship between the first time point and the second time point is determined to determine a time calibration parameter, and the action information and the biomedical feature data are time aligned using the time calibration parameter.

在一种实施方式中,所述将所述疑似异常放电的生物医学特征数据与所述疑似异常放电的动作数据进行匹配,包括:确定所述疑似异常放电的生物医学特征数据与其他所述生物医学特征数据之间的第一相对值;确定所述疑似异常放电的动作数据与所述动作信息中的其他动作数据之间的第二相对值;通过比较所述第一相对值与所述第二相对值,得到所述疑似异常放电的生物医学特征数据与所述疑似异常放电的动作数据之间的匹配结果。In one embodiment, matching the biomedical characteristic data of the suspected abnormal discharge with the action data of the suspected abnormal discharge includes: determining whether the biomedical characteristic data of the suspected abnormal discharge is consistent with other biological data. The first relative value between the medical feature data; determining the second relative value between the action data of the suspected abnormal discharge and other action data in the action information; by comparing the first relative value with the third Two relative values are used to obtain a matching result between the biomedical characteristic data of the suspected abnormal discharge and the action data of the suspected abnormal discharge.

根据本公开的第三方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面的人脑异常放电检测方法及其可能的实现方式。According to a third aspect of the present disclosure, there is provided a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the human brain abnormal discharge detection method of the first aspect and its possible implementation are implemented. Way.

根据本公开的第四方面,提供一种电子设备,包括:处理器;以及存储器,用于存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行上述第一方面的人脑异常放电检测方法及其可能的实现方式。According to a fourth aspect of the present disclosure, an electronic device is provided, including: a processor; and a memory for storing executable instructions of the processor; wherein the processor is configured to perform the operation via executing the executable instructions. Implement the above-mentioned first aspect of the human brain abnormal discharge detection method and its possible implementation.

本公开的方案中,一方面,获取生物医学特征数据,视频监测数据,对视频监测数据进行处理以得到受测对象的动作信息和感兴趣图像序列,通过结合生物医学特征数据、动作信息、感兴趣图像序列三种数据进行人脑异常放电检测,能够提高检测结果的准确性,不同类型的数据之间可相互弥补信息缺失,例如动作信息或感兴趣图像序列能够弥补生物医学特征数据中不能体现的信息,保证检测结果的稳定性,减少误判的情况,并且全程不需要进行人工识读等人为处理,实现了人脑异常放电的自动化检测。另一方面,通过对视频监测数据的处理,得到了动作信息、感兴趣图像序列这两种不同类型的数据,实现了对视频监测数据的充分挖掘,提升了数据的丰富性与完整性。In the solution of the present disclosure, on the one hand, biomedical feature data and video monitoring data are obtained, and the video monitoring data is processed to obtain the action information of the subject under test and the image sequence of interest. By combining the biomedical feature data, action information, and sensory information, The three types of data of interest image sequence can be used to detect abnormal human brain discharges, which can improve the accuracy of detection results. Different types of data can make up for each other's lack of information. For example, action information or interest image sequence can make up for the lack of information that cannot be reflected in biomedical feature data. The information ensures the stability of the test results, reduces misjudgments, and does not require manual reading and other human processing throughout the process, realizing automated detection of abnormal human brain discharges. On the other hand, through the processing of video monitoring data, two different types of data, namely action information and image sequences of interest, are obtained, which enables full mining of video monitoring data and improves the richness and completeness of the data.

附图说明Description of the drawings

图1A示出本示例性实施方式中一种系统架构的示意图。FIG. 1A shows a schematic diagram of a system architecture in this exemplary embodiment.

图1B示出本示例性实施方式中另一种系统架构的示意图。FIG. 1B shows a schematic diagram of another system architecture in this exemplary embodiment.

图2示出本示例性实施方式中一种人脑异常放电检测方法的流程图。Figure 2 shows a flow chart of a method for detecting abnormal human brain discharge in this exemplary embodiment.

图3示出本示例性实施方式中获取生物医学特征数据的流程图。FIG. 3 shows a flow chart for obtaining biomedical feature data in this exemplary embodiment.

图4示出本示例性实施方式中多通道脑电信号的示意图。Figure 4 shows a schematic diagram of multi-channel EEG signals in this exemplary embodiment.

图5示出本示例性实施方式中对多通道脑电监测数据提取特征的示意图。Figure 5 shows a schematic diagram of feature extraction from multi-channel EEG monitoring data in this exemplary embodiment.

图6示出本示例性实施方式中人脸关键点和身体关键点的示意图。Figure 6 shows a schematic diagram of facial key points and body key points in this exemplary embodiment.

图7示出本示例性实施方式中对视频监测数据进行处理的示意图。FIG. 7 shows a schematic diagram of processing video monitoring data in this exemplary embodiment.

图8示出本示例性实施方式中利用异常放电检测模型得到异常放电检测结果的流程图。FIG. 8 shows a flow chart for obtaining abnormal discharge detection results using an abnormal discharge detection model in this exemplary embodiment.

图9示出本示例性实施方式中获取训练数据集的示意图。Figure 9 shows a schematic diagram of obtaining a training data set in this exemplary embodiment.

图10示出本示例性实施方式中训练异常放电检测模型的示意图。FIG. 10 shows a schematic diagram of training an abnormal discharge detection model in this exemplary embodiment.

图11示出本示例性实施方式中人脑异常放电检测的示意图。FIG. 11 shows a schematic diagram of abnormal discharge detection of the human brain in this exemplary embodiment.

图12示出本示例性实施方式中一种人脑异常放电检测装置的结构示意图。Figure 12 shows a schematic structural diagram of a human brain abnormal discharge detection device in this exemplary embodiment.

图13示出本示例性实施方式中一种电子设备的结构示意图。Figure 13 shows a schematic structural diagram of an electronic device in this exemplary embodiment.

在附图中,相同或对应的标号表示相同或对应的部分。In the drawings, the same or corresponding reference numerals represent the same or corresponding parts.

具体实施方式Detailed ways

下面将参考若干示例性实施方式来描述本公开的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本公开,而并非以任何方式限制本公开的范围。相反,提供这些实施方式是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。The principles and spirit of the present disclosure will be described below with reference to several exemplary embodiments. It should be understood that these embodiments are provided only to enable those skilled in the art to better understand and implement the present disclosure, and are not intended to limit the scope of the present disclosure in any way. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.

本公开的实施方式可以实现为一种系统、装置、设备、方法或计算机程序产品。因此,本公开可以具体实现为以下形式,即:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。Embodiments of the present disclosure may be implemented as a system, apparatus, equipment, method or computer program product. Therefore, the present disclosure can be implemented in the following forms, namely: complete hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.

下面参考本公开的若干代表性实施方式,详细阐述本公开的原理和精神。The principles and spirit of the present disclosure are explained in detail below with reference to several representative embodiments of the present disclosure.

发明概述Summary of the invention

本发明人发现,目前人脑异常放电检测的准确性有待提高。具体地,相关技术中,采用人工智能技术进行人脑异常放电检测,例如基于深度学习训练癫痫样放电识别智能网络,以进行人脑的癫痫样放电检测。相关文献报道其准确率仅达到70%,需要专业医生和技术人员对人工智能识读结果进行后处理。The inventor found that the current accuracy of abnormal human brain discharge detection needs to be improved. Specifically, in related technologies, artificial intelligence technology is used to detect abnormal discharges in the human brain, for example, an intelligent network for epileptiform discharge recognition is trained based on deep learning to detect epileptiform discharges in the human brain. Relevant literature reports that its accuracy rate only reaches 70%, requiring professional doctors and technicians to post-process the artificial intelligence reading results.

鉴于上述内容,本公开提供一种人脑异常放电检测方法、人脑异常放电检测装置、计算机可读存储介质及电子设备,一方面,获取生物医学特征数据,视频监测数据,对视频监测数据进行处理以得到受测对象的动作信息和感兴趣图像序列,通过结合生物医学特征数据、动作信息、感兴趣图像序列三种数据进行人脑异常放电检测,能够提高检测结果的准确性,不同类型的数据之间可相互弥补信息缺失,例如动作信息或感兴趣图像序列能够弥补生物医学特征数据中不能体现的信息,保证检测结果的稳定性,减少误判的情况,并且全程不需要进行人工识读等人为处理,实现了人脑异常放电的自动化检测。另一方面,通过对视频监测数据的处理,得到了动作信息、感兴趣图像序列这两种不同类型的数据,实现了对视频监测数据的充分挖掘,提升了数据的丰富性与完整性。In view of the above, the present disclosure provides a human brain abnormal discharge detection method, a human brain abnormal discharge detection device, a computer-readable storage medium and an electronic device. On the one hand, the biomedical characteristic data and video monitoring data are obtained, and the video monitoring data is processed Process to obtain the action information and image sequence of interest of the subject under test. By combining the three types of data, biomedical feature data, action information, and image sequence of interest, to detect abnormal human brain discharges, the accuracy of the detection results can be improved. Different types of Data can make up for each other's missing information. For example, action information or image sequences of interest can make up for information that cannot be reflected in biomedical feature data, ensuring the stability of detection results, reducing misjudgments, and no manual reading is required throughout the process. Through artificial processing, the automatic detection of abnormal discharges in the human brain was realized. On the other hand, through the processing of video monitoring data, two different types of data, namely action information and image sequences of interest, are obtained, which enables full mining of video monitoring data and improves the richness and completeness of the data.

在介绍了本公开的基本原理之后,下面具体介绍本公开的各种非限制性实施方式。After introducing the basic principles of the present disclosure, various non-limiting implementations of the present disclosure are described in detail below.

应用场景总览Overview of application scenarios

需要注意的是,下述应用场景仅是为了便于理解本公开的精神和原理而示出,本公开的实施方式在此方面不受任何限制。相反,本公开的实施方式可以应用于适用的任何场景。It should be noted that the following application scenarios are only shown to facilitate understanding of the spirit and principles of the present disclosure, and the implementation of the present disclosure is not subject to any limitation in this regard. Rather, embodiments of the present disclosure may be applied to any applicable scenario.

本公开的实施方式可应用于疑似患者的检测与辅助诊疗的相关场景。例如,某用户疑似患有癫痫疾病,在医院治疗过程中,医生需要了解到该用户的脑电状态,尤其是脑部是否有异常放电的状况。可以通过本公开的人脑异常放电检测方法进行检测。下面结合系统架构进行应用场景的具体说明。The embodiments of the present disclosure can be applied to scenarios related to the detection and auxiliary diagnosis and treatment of suspected patients. For example, a user is suspected of suffering from epilepsy. During the treatment in the hospital, the doctor needs to know the user's brain electrical status, especially whether there is any abnormal discharge in the brain. It can be detected by the human brain abnormal discharge detection method of the present disclosure. The following is a detailed description of the application scenarios combined with the system architecture.

图1A示出了一种人脑异常放电检测的系统架构的示意图。该系统架构包括受测对象101,生物医学监测设备102,视频采集设备103,处理设备104。当需要对受测对象101进行人脑异常放电检测时,可以针对受测对象101设置生物医学监测设备102,视频采集设备103,以采集相应的数据,并通过处理设备104进行数据处理。Figure 1A shows a schematic diagram of a system architecture for abnormal human brain discharge detection. The system architecture includes a tested object 101, a biomedical monitoring device 102, a video collection device 103, and a processing device 104. When it is necessary to detect abnormal human brain discharge on the subject 101, a biomedical monitoring device 102 and a video collection device 103 can be set up for the subject 101 to collect corresponding data and process the data through the processing device 104.

生物医学监测设备102可以包括探测电极1021、1022、1023和主设备1024,探测电极1021、1022、1023可以接触受测对象101的不同部位,采集电信号,主设备1024对电信号进行汇总处理,得到生物医学监测数据或生物医学特征数据。示例性的,生物医学监测设备102可以是脑电监测设备(如脑电图机),探测电极1021、1022、1023可以固定到受测对象101的头部各个位置处,以采集多导脑电信号。当然,图1A所示的生物医学监测设备102仅是示例性的,还可以包括头盔、帽子、寝具、封装后的便携探测电极等其他多种组件,本公开对此不做限定。The biomedical monitoring device 102 may include detection electrodes 1021, 1022, 1023 and a main device 1024. The detection electrodes 1021, 1022, 1023 may contact different parts of the subject 101 to collect electrical signals, and the main device 1024 summarizes and processes the electrical signals. Obtain biomedical monitoring data or biomedical characteristic data. For example, the biomedical monitoring device 102 can be an EEG monitoring device (such as an electroencephalograph), and the detection electrodes 1021, 1022, and 1023 can be fixed to various positions on the head of the subject 101 to collect multi-channel EEG. Signal. Of course, the biomedical monitoring device 102 shown in FIG. 1A is only exemplary, and may also include various other components such as helmets, hats, bedding, and packaged portable detection electrodes, which are not limited by this disclosure.

视频采集设备103用于采集受测对象101的视频监测数据,如可以是监控摄像头、带有拍摄功能的手机等,其可以设置于摄像头朝向受测对象101的位置,持续监控并拍摄得到视频监测数据。在一种实施方式中,视频采集设备103可以包括双路摄像头,分别拍摄受测对象的面部和身体,以分别采集人脸视频监测数据和身体视频监测数据。The video collection device 103 is used to collect video monitoring data of the object 101 under test. For example, it can be a surveillance camera, a mobile phone with a shooting function, etc. It can be set at a position where the camera faces the object 101 under test, and continuously monitors and shoots to obtain video monitoring. data. In one implementation, the video collection device 103 may include a dual-channel camera that captures the face and body of the subject to collect face video monitoring data and body video monitoring data respectively.

生物医学监测设备102,视频采集设备103可以与处理设备104进行通信连接,如可以通过有线或无线的通信链路相连接,使得生物医学监测设备102,视频采集设备103将所采集到的数据发送至处理设备104。可以由处理设备104执行本示例性实施方式中的人脑异常放电检测方法,对获取到的多模态数据进行处理,得到受测对象的异常放电检测结果。在一种实施方式中,处理设备104可以包括显示器,可以显示异常放电检测结果,还可以显示生物医学监测数据、视频监测数据中的一者或多者。The biomedical monitoring device 102 and the video collection device 103 can communicate with the processing device 104, for example, through a wired or wireless communication link, so that the biomedical monitoring device 102 and the video collection device 103 send the collected data. to processing device 104. The processing device 104 can execute the human brain abnormal discharge detection method in this exemplary embodiment, process the acquired multi-modal data, and obtain the abnormal discharge detection result of the subject under test. In one embodiment, the processing device 104 may include a display, which may display abnormal discharge detection results, and may also display one or more of biomedical monitoring data and video monitoring data.

生物医学监测设备102,视频采集设备103,处理设备104中的任意两者或两者以上可以集成在同一设备中。示例性的,生物医学监测设备102和处理设备104可以集成在同一设备中,或更具体地,生物医学监测设备102的主设备1024可以作为处理设备104。又或者,视频采集设备103可以集成在生物医学监测设备102或处理设备104中,如生物医学监测设备102可以包括头戴式装置,该头戴式装置内可以设置探测电极1021、1022、1023,当受测对象101穿戴该头戴式装置,头部接触到探测电极1021、1022、1023,该头戴式装置上还可以设置固定支架,固定支架的另一端固定放置视频采集设备103(如可以通过夹具固定放置手机),视频采集设备103朝向受测对象101的面部与身体,能够拍摄得到视频监测数据。Any two or more of the biomedical monitoring device 102, the video collection device 103, and the processing device 104 can be integrated into the same device. Illustratively, the biomedical monitoring device 102 and the processing device 104 may be integrated in the same device, or more specifically, the main device 1024 of the biomedical monitoring device 102 may serve as the processing device 104 . Or, the video collection device 103 can be integrated in the biomedical monitoring device 102 or the processing device 104. For example, the biomedical monitoring device 102 can include a head-mounted device, and detection electrodes 1021, 1022, and 1023 can be provided in the head-mounted device. When the subject 101 wears the head-mounted device, and the head contacts the detection electrodes 1021, 1022, 1023, a fixed bracket can also be provided on the head-mounted device, and the other end of the fixed bracket is fixedly placed with the video collection device 103 (such as The mobile phone is fixedly placed by a clamp), and the video collection device 103 faces the face and body of the subject 101 to capture video monitoring data.

图1B示出了另一种人脑异常放电检测的系统架构的示意图。该系统架构包括受测对象101,生物医学监测设备102,视频采集设备103,数据收发设备105,服务端106。生物医学监测设备102,视频采集设备103可以与数据收发设备105通信连接,数据收发设备105与服务端106通信连接。由此,数据收发设备105获取到生物医学监测数据或生物医学特征数据、人脸视频数据、身体关键点数据后,将其发送至服务端106。服务端106可以包括云服务器、分布式服务器等任何形式的数据处理服务器。服务端106在获取到数据收发设备105发送的多模态数据后,通过执行本示例性实施方式中的人脑异常放电检测方法,得到受测对象的异常放电检测结果。在一种实施方式中,服务端106可以将异常放电检测结果返回给数据收发设备105,以在数据收发设备105或生物医学监测设备102上显示。Figure 1B shows a schematic diagram of another system architecture for abnormal human brain discharge detection. The system architecture includes a tested object 101, a biomedical monitoring device 102, a video collection device 103, a data transceiver device 105, and a server 106. The biomedical monitoring device 102 and the video collection device 103 can be communicatively connected with the data transceiver device 105, and the data transceiver device 105 is communicatively connected with the server 106. As a result, the data transceiving device 105 obtains the biomedical monitoring data or biomedical feature data, face video data, and body key point data, and then sends them to the server 106 . The server 106 may include any form of data processing server such as a cloud server or a distributed server. After acquiring the multi-modal data sent by the data transceiving device 105, the server 106 obtains the abnormal discharge detection result of the subject under test by executing the human brain abnormal discharge detection method in this exemplary embodiment. In one implementation, the server 106 can return the abnormal discharge detection result to the data transceiver device 105 for display on the data transceiver device 105 or the biomedical monitoring device 102 .

图1B所示的系统架构适用于便携式场景中,例如受测对象101可以在家中、办公室等任意场所使用便携式的生物医学监测设备102,视频采集设备103,由数据收发设备105将数据发送至服务端106,以实现人脑异常放电检测。这样用户可以足不出户地了解到人脑异常放电检测结果,当遇到疑似癫痫等问题时,可以将获取到的人脑异常放电检测结果发送给医生,以帮助医生判断病情。The system architecture shown in Figure 1B is suitable for portable scenarios. For example, the subject 101 can use the portable biomedical monitoring device 102 and video collection device 103 in any place such as home or office. The data is sent to the service by the data transceiver device 105. Terminal 106 to realize abnormal discharge detection of human brain. In this way, users can learn the abnormal brain discharge detection results without leaving home. When encountering problems such as suspected epilepsy, the obtained abnormal brain discharge detection results can be sent to doctors to help doctors judge the condition.

在一种实施方式中,图1A或图1B所示的系统架构还可以包括动作捕捉设备,动作捕捉设备可以包括一个或多个传感器,绑定在受测对象101的身体关键部位,来感测每个部位的运动,采集受测对象101的身体关键点数据。例如,传感器可以绑定在受测对象101的手臂关节、手指和掌心(如传感器设置在动作捕捉手套的手指和掌心处,当受测对象101佩戴动作捕捉手套时,传感器位于受测对象101的手指和掌心处),动作捕捉设备可以采集到受测对象101的手臂关节、手指、掌心的实时位置数据,得到身体关键点数据。当然,本公开对传感器的数量以及绑定的身体部位不做限定,除了上述手臂关节、手指、掌心外,可以根据具体需求在受测对象101的其他关键部分绑定动作捕捉设备的传感器,以采集相应的身体关键点数据。In one implementation, the system architecture shown in FIG. 1A or FIG. 1B may also include a motion capture device. The motion capture device may include one or more sensors bound to key parts of the body of the subject 101 to sense. The movement of each part collects body key point data of the subject 101 under test. For example, the sensor can be bound to the arm joints, fingers and palm of the subject 101 (for example, the sensor is arranged on the fingers and palm of the motion capture glove. When the subject 101 wears the motion capture glove, the sensor is located on the subject 101 Fingers and palms), the motion capture device can collect real-time position data of the arm joints, fingers, and palms of the subject 101 to obtain body key point data. Of course, the present disclosure does not limit the number of sensors and the bound body parts. In addition to the above-mentioned arm joints, fingers, and palms, sensors of the motion capture device can be bound to other key parts of the subject 101 according to specific needs. Collect corresponding body key point data.

示例性方法Example methods

本公开的示例性实施方式提供一种人脑异常放电检测方法。参考图2所示,该方法可以包括步骤S210至S250。下面对图2中的每个步骤做具体说明。Exemplary embodiments of the present disclosure provide a human brain abnormal discharge detection method. Referring to FIG. 2 , the method may include steps S210 to S250. Each step in Figure 2 is explained in detail below.

参考图2,在步骤S210中,获取受测对象的生物医学特征数据。Referring to Figure 2, in step S210, the biomedical characteristic data of the subject is obtained.

其中,受测对象是指需要进行人脑异常放电检测的人,如可能的癫痫患者。生物医学信号是由人体生理过程产生的信号,能够反映人的生理状态或体征。生物医学特征数据是从生物医学信号中提取的特征数据。生物医学信号包括但不限于以下任意一种或多种信号:心电信号,脑电信号,肌电信号,眼电信号和胃电信号等电生理信号,还可以包括体温、血压、脉搏、呼吸等非电生理信号。下面对生物医学信号及其采集过程进行示例性说明。Among them, the test subjects refer to people who need to detect abnormal discharges in the human brain, such as possible epilepsy patients. Biomedical signals are signals generated by human physiological processes and can reflect a person's physiological state or physical signs. Biomedical feature data is feature data extracted from biomedical signals. Biomedical signals include but are not limited to any one or more of the following signals: electrocardiographic signals, electroencephalographic signals, electromyographic signals, electroocular signals, gastric electrical signals and other electrophysiological signals, and may also include body temperature, blood pressure, pulse, respiration and other non-electrophysiological signals. The following is an exemplary description of biomedical signals and their acquisition process.

心电信号,可以是通过多导心电图机采集到的心电图,心电图(Electrocardiogram,ECG)指的是心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着心电图生物电的变化,通过心电描记器从体表引出多种形式的电位变化的图形。心电图是心脏兴奋的发生、传播及恢复过程的客观指标。The electrocardiogram signal can be an electrocardiogram collected by a multi-lead electrocardiogram machine. Electrocardiogram (ECG) refers to the sequential excitement of the pacemaker, atria, and ventricles of the heart in each cardiac cycle, accompanied by the electrocardiogram bioelectricity. Changes, various forms of patterns of potential changes are elicited from the body surface through an electrocardiograph. Electrocardiogram is an objective indicator of the occurrence, propagation and recovery process of cardiac excitement.

脑电信号,可以是使用多通道脑电图机采集到的脑电图,脑电图(Electroencephalogram,EEG)是通过精密的仪器从头皮上将脑补的大脑皮层的自发性生物电位加以放大记录而获得的图形,是通过电极记录下来的脑细胞群的自发性、节律性电活动。这种电活动是以电位作为纵轴,时间为横轴,从而记录下来的电位与时间相互关系的平面图。脑电波的频率(周期)、波幅和相位构成了脑电图的基本特征。The electroencephalogram signal can be an electroencephalogram collected using a multi-channel electroencephalogram machine. Electroencephalogram (EEG) uses precise instruments to amplify and record the spontaneous biological potential of the cerebral cortex from the scalp. The pattern obtained is the spontaneous and rhythmic electrical activity of brain cell groups recorded through electrodes. This kind of electrical activity is a plan view of the relationship between potential and time recorded with potential as the vertical axis and time as the horizontal axis. The frequency (period), amplitude and phase of brain waves constitute the basic characteristics of electroencephalography.

肌电信号(Electromyography,EMG)是众多肌纤维中运动单元动作电位在时间和空间上的叠加,可以通过在皮肤上粘贴肌电传感器获得。Electromyography (EMG) is the superposition of action potentials of motor units in many muscle fibers in time and space, and can be obtained by sticking an electromyographic sensor on the skin.

眼电信号(Electrooculogram,EOG)是一种由眼睛的角膜与视网膜之间的电势差引起的生物电信号,采集极为方便,通过少量电极即可完成。Electrooculogram (EOG) is a bioelectric signal caused by the potential difference between the cornea and retina of the eye. It is extremely convenient to collect and can be completed with a small number of electrodes.

胃电信号(Electrogastrogram,EGG)是胃部肌肉收缩产生的电信号,可以使用电极在人体的腹部皮肤表面进行采集。Electrogastrogram (EGG) is an electrical signal generated by the contraction of stomach muscles, which can be collected using electrodes on the surface of the abdominal skin of the human body.

本公开对从生物医学信号中提取特征数据的具体方式不做限定,如可以包括但不限于:预处理,数据统计,通过神经网络提取特征数据等。This disclosure does not limit the specific methods of extracting feature data from biomedical signals, which may include but are not limited to: preprocessing, data statistics, feature data extraction through neural networks, etc.

在一种实施方式中,参考图3所示,上述获取受测对象的生物医学特征数据,可以包括以下步骤S310至S330:In one embodiment, referring to Figure 3, the above-mentioned acquisition of biomedical characteristic data of the subject may include the following steps S310 to S330:

步骤S310,获取由生物医学监测设备采集的受测对象的生物医学监测数据。Step S310: Obtain the biomedical monitoring data of the subject collected by the biomedical monitoring equipment.

其中,生物医学监测数据可以是原始的生物医学信号。例如,生物医学监测设备可以是心电图机、脑电图机,生物医学监测数据可以是通过心电图机采集到的心电信号或心电图,通过脑电图机采集到的脑电信号或脑电图等。心电图、脑电图本质上是由不同时刻的心电信号、脑电信号所绘制出的图线,可认为心电信号等同于心电图,脑电信号等同于脑电图。图4示出了多通道脑电信号的示意图,将原始的脑电监测数据绘制成图线,得到图4所示的波形,即脑电图。脑电图机可以具有23个电极,每个电极对应采集一个通道的信号。当然,本公开对脑电图机的电极数量不做限定,可以根据具体情况进行增减。Among them, the biomedical monitoring data can be original biomedical signals. For example, the biomedical monitoring equipment can be an electrocardiograph or an electroencephalograph, and the biomedical monitoring data can be electrocardiogram signals or electrocardiograms collected by an electrocardiograph, electroencephalogram signals or electroencephalograms collected by an electroencephalograph, etc. . Electrocardiogram and electroencephalogram are essentially graphs drawn from electrocardiogram signals and electroencephalogram signals at different times. It can be considered that electrocardiogram signals are equivalent to electrocardiograms, and electroencephalogram signals are equivalent to electroencephalograms. Figure 4 shows a schematic diagram of a multi-channel EEG signal. The original EEG monitoring data is drawn into a graph to obtain the waveform shown in Figure 4, that is, the EEG. The electroencephalograph can have 23 electrodes, and each electrode collects signals from one channel. Of course, this disclosure does not limit the number of electrodes of the electroencephalograph, and can be increased or decreased according to specific circumstances.

步骤S320,对生物医学监测数据进行预处理。Step S320: Preprocess the biomedical monitoring data.

示例性的,预处理可以包括但不限于以下一种或多种处理方式:By way of example, preprocessing may include but is not limited to one or more of the following processing methods:

①重采样。重采样可以改变信号的采样率,可以将非均匀采样信号转换为均匀采样信号。示例性的,可以将脑电监测数据以500Hz重采样。① Resampling. Resampling can change the sampling rate of a signal and convert a non-uniformly sampled signal into a uniformly sampled signal. For example, the EEG monitoring data can be resampled at 500Hz.

②滤波。示例性的,脑电监测数据、心电监测数据、肌电监测数据共包括29个通道,其中脑电监测数据包括23个通道。可以对全部29个通道进行50Hz陷波滤波,减少交流电信号的干扰,并对23个脑电通道进行带通(如采用0.1~70Hz频段)滤波,减少非脑电信号频段的信号干扰。②Filtering. For example, the EEG monitoring data, ECG monitoring data, and EMG monitoring data include a total of 29 channels, of which the EEG monitoring data includes 23 channels. It can perform 50Hz notch filtering on all 29 channels to reduce the interference of AC signals, and perform bandpass filtering (such as using the 0.1~70Hz frequency band) on 23 EEG channels to reduce signal interference in non-EGG signal frequency bands.

③剔除噪声数据。噪声数据可能由接触不良(如生物医学监测设备与受测对象的部位之间接触不良,设备线缆接触不良等)等因素造成,剔除噪声数据能够提升数据质量与检测结果准确性。示例性的,可以剔除噪声较多的通道数据。③ Eliminate noise data. Noisy data may be caused by factors such as poor contact (such as poor contact between biomedical monitoring equipment and parts of the subject being tested, poor contact of equipment cables, etc.). Removing noise data can improve data quality and accuracy of test results. For example, channel data with more noise can be eliminated.

④数值标准化处理。数值标准化处理能够将不同模态、不同类型的数据映射到相同的合适数值范围内,以便于统一处理。示例性的,可以先对脑电监测数据、心电监测数据、肌电监测数据等不同类型的生物医学监测数据去量纲,再归一化到合适数值范围内,如可通过乘以相应的系数进行数值映射,以完成数值标准化处理。④Numerical standardization processing. Numerical standardization processing can map different modalities and different types of data into the same appropriate numerical range for unified processing. For example, different types of biomedical monitoring data such as EEG monitoring data, ECG monitoring data, and EMG monitoring data can be dimensioned first, and then normalized to a suitable value range. For example, by multiplying the corresponding The coefficients are numerically mapped to complete numerical standardization.

步骤S330,根据预处理后的生物医学监测数据得到生物医学特征数据。Step S330: Obtain biomedical feature data based on the preprocessed biomedical monitoring data.

可以将预处理后的生物医学监测数据作为生物医学特征数据,也可以对预处理后的生物医学监测数据做进一步的特征提取处理,例如可以通过预先训练的特征提取模型对预处理后的生物医学监测数据进行处理,以得到生物医学特征数据。The preprocessed biomedical monitoring data can be used as biomedical feature data, or further feature extraction processing can be performed on the preprocessed biomedical monitoring data. For example, the preprocessed biomedical monitoring data can be extracted through a pretrained feature extraction model. Monitoring data are processed to obtain biomedical characteristic data.

在一种实施方式中,生物医学监测数据可以包括:从受测对象的头皮的多个部位处采集的多通道脑电监测数据。其中,脑电图机可以具有多个电极(如上述探测电极1021、1022、1023,通常称为活动电极),每个电极可以采集得到一个通道的脑电监测数据。受测对象的头皮的每个部位上可以设置一个或多个电极,这样一共使用多个电极,由此采集得到多通道脑电监测数据。相应的,上述根据预处理后的生物医学监测数据得到生物医学特征数据,可以包括以下步骤:In one embodiment, the biomedical monitoring data may include multi-channel EEG monitoring data collected from multiple locations on the subject's scalp. The electroencephalograph may have multiple electrodes (such as the above-mentioned detection electrodes 1021, 1022, and 1023, often referred to as movable electrodes), and each electrode can collect one channel of EEG monitoring data. One or more electrodes can be placed on each part of the subject's scalp, so that a total of multiple electrodes are used to collect multi-channel EEG monitoring data. Correspondingly, the above-mentioned obtaining of biomedical characteristic data based on preprocessed biomedical monitoring data may include the following steps:

将预处理后的多通道脑电监测数据计算每个通道与参考电极的电位差,得到脑电信号初始特征数据;Calculate the potential difference between each channel and the reference electrode from the preprocessed multi-channel EEG monitoring data to obtain the initial characteristic data of the EEG signal;

根据脑电信号初始特征数据提取生物医学特征数据。Extract biomedical feature data based on the initial feature data of the EEG signal.

其中,引入参考电极,以电位差来保证脑电信号,能够降低噪声影响。参考电极的选取包括但不限于以下方式:采用单极导联,在受测对象上设置活动电极和无关电极,无关电极如可以设置在耳垂等位置,相当于以无关电极为参考电极,则采集的多通道脑电监测数据包括每个通道相对于无关电极的电位差,将其预处理后得到脑电信号初始特征数据。采用双极导联方式,在受测对象上不设置无关电极,每个活动电极以其他活动电极为参考电极,则采集的多通道脑电监测数据包括每个通道相对于其他活动电极的电位差,将其预处理后得到脑电信号初始特征数据。平均参考,在受测对象上设置活动电极和接地电极,则采集的多通道脑电监测数据包括每个通道相对于接地端的电位差,可以以多通道脑电监测数据的电极中的一个或多个作为参考电极,将预处理后的多通道脑电监测数据计算每个通道与参考电极的电位差,得到脑电信号初始特征数据。例如,将脑电图机的c个电极设置在受测对象的头皮上,可以在c个电极中选择任意一个作为参考电极,也可以将其中多个电极作为参考电极,将其预处理后的多通道脑电监测数据计算平均值以作为参考值,计算每个通道预处理后的多通道脑电监测数据与该参考值的差值,得到脑电信号初始特征数据。在一种实施方式中,可以选择不同的电极作为参考电极,在不同参考电极下分别计算每个通道的电位差,再计算平均值等,以作为脑电信号初始特征数据。Among them, the reference electrode is introduced to ensure the EEG signal with potential difference, which can reduce the impact of noise. The selection of reference electrodes includes but is not limited to the following methods: using unipolar leads, setting movable electrodes and irrelevant electrodes on the subject under test. If the irrelevant electrodes can be set at positions such as the earlobe, it is equivalent to using the irrelevant electrodes as the reference electrode, and then collecting The multi-channel EEG monitoring data includes the potential difference of each channel relative to irrelevant electrodes, which is preprocessed to obtain the initial characteristic data of the EEG signal. Using the bipolar lead method, no irrelevant electrodes are set on the subject, and each movable electrode uses other movable electrodes as reference electrodes. The collected multi-channel EEG monitoring data includes the potential difference of each channel relative to other movable electrodes. , and obtain the initial characteristic data of the EEG signal after preprocessing. Average reference, set the movable electrode and the ground electrode on the subject, then the collected multi-channel EEG monitoring data includes the potential difference of each channel relative to the ground terminal. One or more of the electrodes of the multi-channel EEG monitoring data can be used as an average reference. As a reference electrode, the preprocessed multi-channel EEG monitoring data is used to calculate the potential difference between each channel and the reference electrode, and the initial characteristic data of the EEG signal is obtained. For example, c electrodes of the electroencephalograph are placed on the scalp of the subject, and any one of the c electrodes can be selected as a reference electrode, or multiple electrodes can be used as reference electrodes, and the preprocessed The average value of the multi-channel EEG monitoring data is calculated as a reference value, and the difference between the preprocessed multi-channel EEG monitoring data of each channel and the reference value is calculated to obtain the initial characteristic data of the EEG signal. In one embodiment, different electrodes can be selected as reference electrodes, and the potential difference of each channel can be calculated under different reference electrodes, and then the average value can be calculated as the initial characteristic data of the EEG signal.

在得到脑电信号初始特征数据,可以将脑电信号初始特征数据作为步骤S210中获取的生物医学特征数据,也可以对脑电信号初始特征数据做进一步的处理,如进一步提取其中的有效信息,得到生物医学特征数据。After obtaining the initial feature data of the EEG signal, the initial feature data of the EEG signal can be used as the biomedical feature data obtained in step S210, or the initial feature data of the EEG signal can be further processed, such as further extracting effective information therein, Obtain biomedical characteristic data.

在一种实施方式中,生物医学特征数据可以包括脑电信号波形特征。上述根据脑电信号初始特征数据提取生物医学特征数据,可以包括以下步骤:In one embodiment, the biomedical characteristic data may include EEG signal waveform characteristics. The above-mentioned extraction of biomedical feature data based on the initial feature data of the EEG signal may include the following steps:

利用预先训练的波形特征提取模型对脑电信号初始特征数据进行处理,以提取脑电信号波形特征。The pre-trained waveform feature extraction model is used to process the initial feature data of the EEG signal to extract the EEG signal waveform features.

其中,波形特征提取模型可以是预先训练的Transformer等结构的模型,其能够提取脑电信号初始特征数据中的时序特征以及其他方面特征。示例性的,可以将脑电信号初始特征数据输入波形特征提取模型,波形特征提取模型对脑电信号初始特征数据进行嵌入(Embedding)等处理,得到脑电信号波形特征。Among them, the waveform feature extraction model can be a model with a structure such as a pre-trained Transformer, which can extract timing features and other features in the initial feature data of the electroencephalogram signal. For example, the initial feature data of the EEG signal can be input into the waveform feature extraction model, and the waveform feature extraction model performs embedding and other processing on the initial feature data of the EEG signal to obtain the EEG signal waveform features.

在一种实施方式中,生物医学特征数据可以包括脑电信号图像特征。可以对经过预处理和/或基于参考电极计算电位差的脑电信号图提取图像特征,如可以将脑电信号图输入预先训练的卷积神经网络等模型,得到脑电信号图像特征。In one embodiment, the biomedical feature data may include EEG signal image features. Image features can be extracted from the EEG signal map that has been preprocessed and/or calculated based on the reference electrode potential difference. For example, the EEG signal map can be input into a pre-trained convolutional neural network and other models to obtain the EEG signal image features.

在一种实施方式中,生物医学特征数据可以包括脑电信号时频特征。上述根据脑电信号初始特征数据提取生物医学特征数据,可以包括以下步骤:In one implementation, the biomedical characteristic data may include time-frequency characteristics of the brain electrical signal. The above-mentioned extraction of biomedical feature data based on the initial feature data of the EEG signal may include the following steps:

对脑电信号初始特征数据进行时频变换,得到脑电信号初始特征数据对应的脑电信号时频数据;Perform time-frequency transformation on the initial characteristic data of the EEG signal to obtain the time-frequency data of the EEG signal corresponding to the initial characteristic data of the EEG signal;

根据脑电信号时频数据提取脑电信号时频特征。Extract the time-frequency characteristics of the EEG signal based on the EEG signal time-frequency data.

其中,脑电信号初始特征数据通常是时域上的数据,表达电信号随时间的变化,相对而言信息较为单一。通过时频变换,可以将脑电信号初始特征数据转换到时频联合域上,得到脑电信号初始特征数据对应的脑电信号时频数据,能够提供信号在时域和频域的联合分布信息。时频变换的方式包括但不限于短时傅里叶变换,小波变换等。本公开对具体采用哪种方式不做限定。进一步的,可以从脑电信号时频数据中提取脑电信号时频特征,如可以从时频图中提取图像特征,也可以对脑电信号时频数据进行统计、特征抽取,得到脑电信号时频特征。Among them, the initial characteristic data of the EEG signal is usually data in the time domain, expressing the changes of the electrical signal over time, and the information is relatively simple. Through time-frequency transformation, the initial characteristic data of the EEG signal can be converted into the joint time-frequency domain, and the time-frequency data of the EEG signal corresponding to the initial characteristic data of the EEG signal can be obtained, which can provide joint distribution information of the signal in the time domain and frequency domain. . Time-frequency transformation methods include but are not limited to short-time Fourier transform, wavelet transform, etc. This disclosure does not limit the specific method used. Furthermore, the time-frequency characteristics of the EEG signal can be extracted from the EEG signal time-frequency data. For example, image features can be extracted from the time-frequency diagram, or statistics and feature extraction can be performed on the EEG signal time-frequency data to obtain the EEG signal. time-frequency characteristics.

图5示出了对多通道脑电监测数据提取特征数据的示意图。示例性的,生物医学监测数据包括多通道脑电监测数据。可以先对多通道脑电监测数据进行预处理,再将预处理后的多通道脑电监测数据计算每个通道与参考电极的电位差,得到脑电信号初始特征数据。接下来,一方面,将脑电信号初始特征数据入至预先训练的波形特征提取模型,如Transformer等,得到脑电信号波形特征。另一方面,对脑电信号初始特征数据进行短时傅里叶变换,得到脑电信号时频数据,再将脑电信号时频数据输入至预先训练的时频特征提取模型,如EfficientNetv2,得到脑电信号时频特征。Figure 5 shows a schematic diagram of feature data extraction from multi-channel EEG monitoring data. By way of example, the biomedical monitoring data includes multi-channel EEG monitoring data. The multi-channel EEG monitoring data can be preprocessed first, and then the potential difference between each channel and the reference electrode can be calculated using the preprocessed multi-channel EEG monitoring data to obtain the initial characteristic data of the EEG signal. Next, on the one hand, the initial feature data of the EEG signal is input into a pre-trained waveform feature extraction model, such as Transformer, etc., to obtain the EEG signal waveform features. On the other hand, perform short-time Fourier transform on the initial feature data of the EEG signal to obtain the EEG signal time-frequency data, and then input the EEG signal time-frequency data into a pre-trained time-frequency feature extraction model, such as EfficientNetv2, to obtain Time-frequency characteristics of EEG signals.

除了上述脑电信号波形特征、脑电信号时频特征外,还可以提取其他方面的脑电特征数据,如脑电统计特征数据等。In addition to the above-mentioned EEG signal waveform characteristics and EEG signal time-frequency characteristics, other aspects of EEG characteristic data can also be extracted, such as EEG statistical characteristic data.

此外,可以采用提取脑电特征数据的方式,针对心电、肌电、眼电、胃电等生物医学监测数据提取生物医学特征数据。In addition, the method of extracting EEG feature data can be used to extract biomedical feature data from biomedical monitoring data such as ECG, EMG, EOG, and GET.

示例性的,生物医学监测数据可以包括多通道心电监测数据。可以将预处理后的多通道心电监测数据计算每个通道与参考电极的电位差,得到心电信号初始特征数据;根据心电信号初始特征数据提取生物医学特征数据。其中,生物医学特征数据包括心电信号波形特征。可以利用预先训练的波形特征提取模型对心电信号初始特征数据进行处理,以提取心电信号波形特征。生物医学特征数据包括心电信号时频特征。可以对心电信号初始特征数据进行时频变换,得到心电信号特征数据对应的心电信号时频数据;根据心电信号时频数据提取心电信号时频特征。By way of example, the biomedical monitoring data may include multi-channel ECG monitoring data. The preprocessed multi-channel ECG monitoring data can be used to calculate the potential difference between each channel and the reference electrode to obtain the initial feature data of the ECG signal; biomedical feature data can be extracted based on the initial feature data of the ECG signal. Among them, the biomedical characteristic data includes ECG signal waveform characteristics. The pre-trained waveform feature extraction model can be used to process the initial feature data of the ECG signal to extract the ECG signal waveform features. Biomedical characteristic data includes time-frequency characteristics of ECG signals. The ECG signal initial characteristic data can be time-frequency transformed to obtain the ECG signal time-frequency data corresponding to the ECG signal characteristic data; the ECG signal time-frequency characteristics can be extracted based on the ECG signal time-frequency data.

示例性的,生物医学监测数据可以包括多通道肌电监测数据。可以将预处理后的多通道肌电监测数据计算每个通道与参考电极的电位差,得到肌电信号初始特征数据;根据肌电信号初始特征数据提取生物医学特征数据。其中,生物医学特征数据包括肌电信号波形特征。可以利用预先训练的波形特征提取模型对肌电信号初始特征数据进行处理,以提取肌电信号波形特征。生物医学特征数据包括肌电信号时频特征。可以对肌电信号初始特征数据进行时频变换,得到肌电信号特征数据对应的肌电信号时频数据;根据肌电信号时频数据提取肌电信号时频特征。By way of example, the biomedical monitoring data may include multi-channel electromyographic monitoring data. The preprocessed multi-channel electromyographic monitoring data can be used to calculate the potential difference between each channel and the reference electrode to obtain the initial characteristic data of the electromyographic signal; biomedical characteristic data can be extracted based on the initial characteristic data of the electromyographic signal. Among them, the biomedical characteristic data includes myoelectric signal waveform characteristics. The pre-trained waveform feature extraction model can be used to process the initial feature data of the electromyographic signal to extract the electromyographic signal waveform features. Biomedical characteristic data includes time-frequency characteristics of electromyographic signals. The time-frequency transformation of the initial characteristic data of the electromyographic signal can be performed to obtain the time-frequency data of the electromyographic signal corresponding to the characteristic data of the electromyographic signal; the time-frequency characteristics of the electromyographic signal can be extracted based on the time-frequency data of the electromyographic signal.

在一种实施方式中,获取原始的生物医学监测数据后,可以以一定的时间长度(如4秒)对生物医学监测数据进行分片,如得到以4秒为单位的生物医学监测数据片段,分别对每个片段的生物医学监测数据进行预处理,对预处理后的生物医学监测数据提取特征,得到每个片段的生物医学特征数据。后续以片段为单位,检测受测对象在每个片段内是否发生异常放电。In one implementation, after obtaining the original biomedical monitoring data, the biomedical monitoring data can be fragmented within a certain length of time (such as 4 seconds). For example, biomedical monitoring data segments in units of 4 seconds can be obtained. The biomedical monitoring data of each segment are preprocessed respectively, and features are extracted from the preprocessed biomedical monitoring data to obtain the biomedical feature data of each segment. Subsequently, on a segment-by-segment basis, it is detected whether abnormal discharge occurs in each segment of the subject under test.

继续参考图2,在步骤S220中,获取受测对象的视频监测数据。Continuing to refer to Figure 2, in step S220, the video monitoring data of the object under test is obtained.

视频监测数据可以通过视频采集设备拍摄得到,可以是一段时间内拍摄的受测对象的视频。在一种实施方式中,视频监测数据可以包括人脸视频监测数据和身体视频监测数据,可以由视频采集设备的双路摄像头分别采集得到,或者,可以由视频采集设备的单路摄像头同时拍摄到受测对象的脸部和身体,得到视频监测数据,再通过画面裁剪等方式从视频监测数据中分离出人脸视频监测数据和身体视频监测数据。Video monitoring data can be captured by video collection equipment, and can be videos of the objects under test taken over a period of time. In one implementation, the video monitoring data may include face video monitoring data and body video monitoring data, which may be collected separately by a dual-channel camera of the video collection device, or may be captured simultaneously by a single-channel camera of the video collection device. Video monitoring data is obtained from the face and body of the subject, and then the face video monitoring data and body video monitoring data are separated from the video monitoring data through screen cropping and other methods.

本示例性实施方式中,在获取受测对象的视频监测数据后,可以进行两方面处理,一方面是检测受测对象的动作信息,另一方面是提取感兴趣图像序列,这两方面处理分别在步骤S230和S240中执行。In this exemplary embodiment, after obtaining the video monitoring data of the subject under test, two aspects of processing can be performed. On the one hand, it is to detect the action information of the subject under test, and on the other hand, it is to extract the image sequence of interest. These two aspects of processing are respectively Executed in steps S230 and S240.

继续参考图2,在步骤S230中,根据视频监测数据检测受测对象的动作信息。Continuing to refer to FIG. 2 , in step S230 , action information of the object under test is detected based on the video monitoring data.

其中,动作信息用于表征受测对象发生运动的部位,或者表征受测对象做出了什么动作。从视频监测数据中可以检测出受测对象的身体部位动态变化,可由此识别出受测对象的动作信息。或者,可以将受测对象的关键点的位置信息或位置变化信息作为受测对象的动作信息。示例性的,受测对象的动作信息可以包括:受测对象的脸部和身体中发生运动的关键点以及关键点的位移信息。Among them, the action information is used to characterize the parts where the subject moves, or what actions the subject made. The dynamic changes of the body parts of the subject can be detected from the video monitoring data, and the action information of the subject can be identified. Alternatively, the position information or position change information of the key points of the object under test can be used as the action information of the object under test. For example, the action information of the subject under test may include: key points that move in the face and body of the subject under test and displacement information of the key points.

继续参考图2,在步骤S240中,从视频监测数据中提取用于对受测对象的动作进行表征的感兴趣图像序列。Continuing to refer to FIG. 2 , in step S240 , an image sequence of interest used to characterize the motion of the subject is extracted from the video monitoring data.

其中,感兴趣图像序列可以是视频监测数据中感兴趣区域(Region Of Interest,ROI)的图像序列,也可以是感兴趣帧的图像序列。示例性的,可以从视频监测数据中识别用户的脸部和身体,裁剪出多帧脸部区域图像和多帧身体区域图像,形成感兴趣图像序列。或者,可以先从视频监测数据中识别出受测对象存在动态变化的感兴趣帧,再从感兴趣帧中识别出受测对象存在动态变化的身体部位区域,即感兴趣区域,并从感兴趣帧中裁剪出感兴趣区域的图像,形成感兴趣图像序列。The image sequence of interest may be an image sequence of a Region of Interest (ROI) in the video monitoring data, or it may be an image sequence of frames of interest. For example, the user's face and body can be identified from video monitoring data, and multi-frame face region images and multi-frame body region images can be cropped out to form an image sequence of interest. Alternatively, the frame of interest in which the subject under test has dynamic changes can be first identified from the video monitoring data, and then the body part area in which the subject under test has dynamic changes, that is, the area of interest, can be identified from the frame of interest. The image of the area of interest is cropped out of the frame to form an image sequence of interest.

在一种实施方式中,视频监测数据包括人脸视频监测数据,如可以是视频采集设备中专门拍摄人脸的一路摄像头所采集得到的视频数据,也可以是从视频监测数据中裁剪出的人脸区域的视频数据。相应的,上述根据视频监测数据检测受测对象的动作信息,可以包括以下步骤:In one implementation, the video monitoring data includes face video monitoring data. For example, it can be video data collected by a camera in the video collection device that is specially used to capture faces, or it can be people cropped from the video monitoring data. Video data of face area. Correspondingly, the above-mentioned detection of motion information of the subject under test based on video monitoring data may include the following steps:

从人脸视频监测数据中检测人脸关键点数据;Detect facial key point data from facial video monitoring data;

根据人脸关键点数据得到受测对象的人脸动作信息。Obtain facial action information of the subject based on facial key point data.

图6示出了人脸关键点和身体关键点的示意图。可以对人脸与身体的33个关键点编号,分别记为关键点0~32。其中,关键点0~10为人脸关键点,关键点11~32为身体关键点。当然,本公开对关键点的数量不做限定,可以根据具体情况进行增减。Figure 6 shows a schematic diagram of face key points and body key points. It is possible to number 33 key points on the face and body, which are recorded as key points 0 to 32 respectively. Among them, key points 0 to 10 are face key points, and key points 11 to 32 are body key points. Of course, this disclosure does not limit the number of key points and can be increased or decreased according to specific circumstances.

人脸关键点数据可以包括不同时刻人脸关键点的位置。可以通过预先训练的人脸检测模型或采用人脸检测算法来检测人脸关键点数据。示例性的,可以从人脸视频监测数据中截取一帧或多帧图像,通过目标检测以及关键点检测算法,对图像进行分析,检测出人脸关键点的位置,如通过检测眼、鼻、嘴、耳等人脸部位的位置来确定人脸关键点的位置,由此得到人脸关键点数据。Facial key point data can include the locations of facial key points at different times. Facial key point data can be detected through a pre-trained face detection model or using a face detection algorithm. For example, one or more frames of images can be intercepted from the face video monitoring data, and the images can be analyzed through target detection and key point detection algorithms to detect the locations of key points on the face, such as by detecting eyes, nose, The positions of facial parts such as mouth and ears are used to determine the positions of facial key points, thereby obtaining facial key point data.

人脸关键点数据表征在一帧或多帧的时刻人脸关键点的静态位置,可以从中分析出人脸关键点的位置变化信息,将其作为受测对象的人脸动作信息,或者进一步识别出人脸做出了哪些动作,如识别出眨眼、摇头、皱眉、张嘴等动作,将识别结果作为受测对象的人脸动作信息。The facial key point data represents the static position of the facial key points in one or more frames. The position change information of the facial key points can be analyzed from it and used as facial action information of the subject under test, or for further identification. It can identify the actions performed by the human face, such as blinking, shaking the head, frowning, opening the mouth, etc., and use the recognition results as facial action information of the subject.

在一种实施方式中,上述根据人脸关键点数据得到受测对象的人脸动作信息,可以包括以下步骤:In one implementation, the above-mentioned method of obtaining facial action information of the subject under test based on facial key point data may include the following steps:

根据人脸关键点数据,确定发生运动的人脸关键点及其位移信息,得到受测对象的人脸动作信息。Based on the face key point data, the key points of the face in motion and their displacement information are determined, and the facial movement information of the subject is obtained.

其中,人脸关键点数据能够表征在不同时刻人脸关键点的位置,可以据此确定一段时间内发生运动的人脸关键点,记录这些人脸关键点的标识(如可以是图6中的关键点编号)及其位移信息,以形成受测对象的人脸动作信息。Among them, the face key point data can represent the positions of the face key points at different times, and based on this, the face key points that have moved within a period of time can be determined, and the identification of these face key points can be recorded (for example, it can be in Figure 6 Key point numbers) and their displacement information to form facial action information of the subject.

在一种实施方式中,可以根据人脸关键点数据确定不同人脸关键点之间的位置关系,以生成待识别人脸动作数据;将待识别人脸动作数据与多个标准人脸动作的人脸动作数据进行匹配,根据匹配结果确定人脸关键点数据对应的人脸动作信息。其中,待识别人脸动作数据可以是人脸关键点的位置关系序列数据。例如,人脸关键点之间的位置关系可以表征为向量,向量的不同维度表示不同关键点之间的距离、方位等,根据每一帧的人脸关键点数据,可以对应生成每一帧的人脸关键点位置关系数据,为向量形式。将单帧的人脸关键点位置关系数据作为待识别人脸动作数据,与预先设置的标准人脸动作的人脸动作数据进行匹配,标准人脸动作的人脸动作数据也可以是人脸关键点位置数据的向量,通过计算向量之间的相似度,得到与待识别人脸动作数据匹配的标准人脸动作的人脸动作数据,若两者的相似度达到相似度阈值,则确定待识别人脸动作数据对应该标准人脸动作,由此得到人脸关键点数据对应的人脸动作信息。或者,将不同帧的人脸关键点位置关系数据形成序列,作为待识别人脸动作数据,标准人脸动作的人脸动作数据也可以是序列,通过序列之间的匹配,识别出人脸关键点数据对应的人脸动作信息。In one implementation, the positional relationship between different face key points can be determined based on the face key point data to generate the face action data to be recognized; the face action data to be recognized is combined with the data of multiple standard face actions. The facial action data is matched, and the facial action information corresponding to the facial key point data is determined based on the matching results. Among them, the facial action data to be recognized can be positional relationship sequence data of facial key points. For example, the positional relationship between facial key points can be represented as a vector. The different dimensions of the vector represent the distance, orientation, etc. between different key points. According to the facial key point data of each frame, each frame can be generated correspondingly. The position relationship data of facial key points is in vector form. The position relationship data of the face key points in a single frame is used as the face action data to be recognized, and is matched with the face action data of the preset standard face action. The face action data of the standard face action can also be the face key point. By calculating the similarity between the vectors of the point position data, the face action data of the standard facial action that matches the face action data to be recognized is obtained. If the similarity between the two reaches the similarity threshold, the face action data to be identified is determined. The facial action data corresponds to the standard facial action, thereby obtaining the facial action information corresponding to the facial key point data. Or, the position relationship data of facial key points in different frames is formed into a sequence as the facial action data to be recognized. The facial action data of standard facial actions can also be a sequence. Through matching between sequences, the key points of the face are identified. Facial action information corresponding to point data.

在一种实施方式中,感兴趣图像序列包括人脸图像序列。上述从视频监测数据中提取用于对受测对象的动作进行表征的感兴趣图像序列,可以包括以下步骤:In one embodiment, the sequence of images of interest includes a sequence of human face images. The above-mentioned extraction of the image sequence of interest from the video monitoring data used to characterize the movement of the subject under test may include the following steps:

根据人脸关键点数据,从人脸视频监测数据的多帧中裁剪出人脸区域图像,得到人脸部位图像序列。According to the face key point data, the face area image is cropped from multiple frames of the face video monitoring data to obtain the face part image sequence.

其中,人脸区域图像是包含整张人脸的图像。人脸视频监测数据可能包含人脸以外的画面内容,如包含受测对象周围的环境画面等。在得到人脸关键点数据后,可以确定人脸区域的位置,从人脸视频监测数据的多帧中裁剪出人脸区域图像。不同帧的人脸区域图像形成人脸图像序列。Among them, the face area image is an image containing the entire face. Face video monitoring data may include content other than the face, such as images of the environment around the subject being tested. After obtaining the face key point data, the position of the face area can be determined, and the face area image can be cropped from multiple frames of the face video monitoring data. The face area images of different frames form a face image sequence.

通过裁剪人脸区域图像,得到人脸图像序列,可以剔除人脸视频监测数据中与人脸无关的信息,并且裁剪处理过程简单,有利于降低计算量,提高后续检测结果的准确性。By cropping the face area image to obtain the face image sequence, the information irrelevant to the face in the face video monitoring data can be eliminated, and the cropping process is simple, which is beneficial to reducing the amount of calculation and improving the accuracy of subsequent detection results.

在一种实施方式中,在获取人脸视频监测数据后,可以以一定的时间长度(如4秒,该时间长度与生物医学监测数据分片的时间长度可以相同)对人脸视频监测数据进行分片,如得到以4秒为单位的人脸视频监测数据片段。在每个片段的人脸视频监测数据中,确定一帧或多帧关键帧,如可以是第一帧、中点帧、最后一帧等,在关键帧中检测人脸关键点,得到人脸关键点的位移信息,由此形成受测对象的人脸动作信息。并根据检测到的人脸关键点确定人脸区域的位置,从人脸视频监测数据中截取人脸区域图像,形成人脸图像序列。后续以片段为单位,将人脸动作信息和人脸图像序列与其他信息输入异常放电检测模型,以检测受测对象在每个片段内是否发生异常放电。In one implementation, after obtaining the face video monitoring data, the face video monitoring data can be processed within a certain length of time (such as 4 seconds, which time length can be the same as the time length of biomedical monitoring data fragmentation). Segmentation, such as obtaining face video monitoring data segments in units of 4 seconds. In the face video monitoring data of each segment, determine one or more key frames, such as the first frame, the midpoint frame, the last frame, etc., detect the key points of the face in the key frames, and obtain the face The displacement information of key points forms the facial action information of the subject under test. The location of the face area is determined based on the detected face key points, and the face area image is intercepted from the face video monitoring data to form a face image sequence. Subsequently, facial action information, facial image sequence and other information are input into the abnormal discharge detection model in units of segments to detect whether abnormal discharge occurs in the subject under test in each segment.

在一种实施方式中,感兴趣图像序列包括人脸部位图像序列。上述从视频监测数据中提取用于对受测对象的动作进行表征的感兴趣图像序列,可以包括以下步骤:In one embodiment, the image sequence of interest includes a sequence of facial part images. The above-mentioned extraction of the image sequence of interest from the video monitoring data used to characterize the movement of the subject under test may include the following steps:

根据人脸关键点数据,从人脸视频监测数据的多帧中裁剪出人脸部位区域图像,得到人脸部位图像序列。According to the face key point data, the face part area images are cut out from multiple frames of the face video monitoring data, and the face part image sequence is obtained.

其中,人脸部位区域图像是包含一种或多种人脸部位的图像。人脸视频监测数据可能包含整张人脸,还可能包含人脸以外的画面内容,如包含受测对象周围的环境画面等。在得到人脸关键点数据后,可以确定人脸部位的位置,如眼、鼻、嘴、耳等部位的位置,可以确定包含全部人脸部位的区域(如可以是整个面部区域,不包含头发等),也可以确定每个人脸关键部位的区域(如眼区域、鼻区域、嘴区域、耳区域),裁剪出人脸部位区域图像。不同帧的人脸部位区域图像形成人脸部位图像序列。The face part area image is an image containing one or more types of face parts. Face video monitoring data may include the entire face, and may also include image content other than the face, such as images of the environment around the subject under test. After obtaining the face key point data, the positions of the face parts, such as the eyes, nose, mouth, ears, etc., can be determined, and the area containing all the face parts can be determined (for example, it can be the entire facial area, not Including hair, etc.), you can also determine the area of each key part of the face (such as the eye area, nose area, mouth area, ear area), and crop out the face part area image. The face part area images of different frames form a face part image sequence.

通过裁剪人脸部位区域图像,得到人脸部位图像序列,可以剔除人脸视频监测数据中与人脸无关或者与人脸动作无关的信息,有利于降低计算量,提高后续检测结果的准确性。By cropping the face part area image to obtain the face part image sequence, the information irrelevant to the face or facial movements in the face video monitoring data can be eliminated, which is beneficial to reducing the amount of calculation and improving the accuracy of subsequent detection results. sex.

在一种实施方式中,上述根据人脸关键点数据,从人脸视频监测数据的多帧中裁剪出人脸部位区域图像,可以包括以下步骤:In one implementation, the above-mentioned cropping of face part region images from multiple frames of face video monitoring data based on face key point data may include the following steps:

根据人脸关键点数据,确定发生运动的人脸部位,从人脸视频监测数据的多帧中裁剪出发生运动的人脸部位的区域图像。Based on the face key point data, the facial parts that are moving are determined, and regional images of the moving facial parts are cropped from multiple frames of the face video monitoring data.

由于人脸关键点数据表征在一帧或多帧的时刻人脸关键点的静态位置,结合不同帧的人脸关键点数据,可以确定出哪些人脸部位发生了运动(即存在位置的动态变化),由此从人脸视频监测数据中截取发生运动的人脸部位的区域图像,即得到上述人脸部位区域图像。例如,根据人脸关键点数据可以确定眼、鼻部位的关键点发生动态变化(一般是位置变化),而嘴、耳等其他部位的关键点未发生动态变化,说明眼、鼻部位发生运动,可以根据人脸关键点数据中眼、鼻部位的关键点位置信息,从人脸视频监测数据中生成眼、鼻部位的包围框(可以是同时包含眼、鼻的一个包围框,也可以是包含眼的包围框和包含耳的包围框),并裁剪出包围框内的图像,也可以将包围框适当放大(如将包围框的宽和高乘以大于1的比例系数,该比例系数可以是1.1、1.2等,可根据经验或具体需求确定),截取放大后的包围框内的图像,得到人脸部位区域图像。Since the facial key point data represents the static position of the facial key points in one or more frames, combined with the facial key point data of different frames, it is possible to determine which facial parts have moved (i.e., there is a dynamic position). changes), thereby intercepting the regional image of the moving facial part from the facial video monitoring data, thereby obtaining the above facial part regional image. For example, based on the face key point data, it can be determined that the key points of the eyes and nose have dynamic changes (usually position changes), but the key points of other parts such as the mouth and ears have not changed dynamically, indicating that the eyes and nose parts have moved. According to the key point position information of the eyes and nose in the face key point data, the bounding box of the eyes and nose parts can be generated from the face video monitoring data (it can be a bounding box that contains both eyes and nose, or it can be a bounding box that contains The bounding box of the eye and the bounding box containing the ear), and crop out the image within the bounding box, or the bounding box can be appropriately enlarged (such as multiplying the width and height of the bounding box by a proportional factor greater than 1, which can be 1.1, 1.2, etc., which can be determined based on experience or specific needs), intercept the image within the enlarged bounding box, and obtain the face region image.

应当理解,可以对人脸视频监测数据中的每一帧进行上述裁剪处理,如根据每一帧的人脸关键点数据,确定每一帧中发生运动的人脸部位,进而裁剪出相应的人脸部位区域图像。或者,可以仅针对人脸视频监测数据中的部分帧进行上述裁剪处理,而无需处理每一帧,由此减少人脸部位区域图像的数量与处理量。示例性的,在获取人脸视频监测数据后,可以提取关键帧图像,如每间隔一定的帧数提取一帧,或者检测相邻帧之间的差值,当差值达到预定值时,将相邻帧中的后一帧提取为关键帧图像。针对关键帧图像进行人脸关键点检测,得到人脸关键点数据,根据人脸关键点数据确定关键帧图像中发生运动的人脸部位,并裁剪出人脸部位区域图像。或者,针对一段时间内(通常是单位检测时长,如可以根据异常放电检测模型所能处理的图像数量确定时长)的人脸视频监测数据,根据每一帧的人脸关键点数据,确定其中发生运动的人脸部位,再对每一帧或关键帧裁剪发生运动的人脸部位的区域图像,得到人脸部位区域图像。It should be understood that the above-mentioned cropping process can be performed on each frame in the face video monitoring data. For example, based on the facial key point data of each frame, the facial parts that move in each frame are determined, and then the corresponding parts are cropped. Face region image. Alternatively, the above-mentioned cropping process can be performed only on some frames in the face video monitoring data without processing each frame, thereby reducing the number and processing volume of face part area images. For example, after obtaining face video monitoring data, key frame images can be extracted, such as extracting one frame every certain number of frames, or detecting the difference between adjacent frames. When the difference reaches a predetermined value, the The next frame among adjacent frames is extracted as a key frame image. Perform facial key point detection on the key frame image to obtain facial key point data, determine the moving facial parts in the key frame image based on the facial key point data, and crop out the facial part region image. Or, for the face video monitoring data within a period of time (usually the unit detection duration, for example, the duration can be determined based on the number of images that the abnormal discharge detection model can process), based on the facial key point data of each frame, determine what happened The moving facial part is then cropped for each frame or key frame to obtain the facial part regional image.

由于人脸动作主要体现为发生运动的人脸部位上,从人脸视频监测数据中提取出发生运动的人脸部位的区域图像,能够将后续处理的重点放在发生运动的人脸部位上。特别是在人脑异常放电的情况下,人脸动作通常是较为细微的表情,通过对发生运动的人脸部位的区域图像进行检测,更容易检测出其中的细节信息,进一步提高后续检测结果的准确性,并降低计算量。Since facial movements are mainly reflected in the moving parts of the face, extracting the regional images of the moving parts of the face from the face video monitoring data can focus subsequent processing on the moving parts of the face. Position. Especially in the case of abnormal discharge of the human brain, facial movements are usually relatively subtle expressions. By detecting the regional images of the moving parts of the face, it is easier to detect the detailed information and further improve the subsequent detection results. accuracy and reduce the amount of calculation.

在一种实施方式中,视频监测数据包括身体视频监测数据,如可以是视频采集设备中专门拍摄身体的一路摄像头所采集得到的视频数据,也可以是从视频监测数据中裁剪出的身体区域(不包含人脸)的视频数据。相应的,上述根据视频监测数据检测受测对象的动作信息,可以包括以下步骤:In one implementation, the video monitoring data includes body video monitoring data. For example, it can be video data collected by a camera in the video collection device that specifically shoots the body, or it can be a body area cropped from the video monitoring data ( (excluding human faces) video data. Correspondingly, the above-mentioned detection of motion information of the subject under test based on video monitoring data may include the following steps:

从身体视频监测数据中检测身体关键点数据;Detect body key point data from body video monitoring data;

根据身体关键点数据得到受测对象的身体动作信息。The body movement information of the subject is obtained based on the body key point data.

其中,身体关键点可以参考图6所示。身体关键点数据可以包括不同时刻身体关键点的位置。可以通过预先训练的身体检测模型或采用肢体检测算法来检测身体关键点数据。示例性的,可以从身体视频监测数据中截取一帧或多帧图像,通过目标检测以及关键点检测算法,对图像进行分析,检测出身体关键点的位置,如通过检测颈部、胸部、四肢等身体部位的位置来确定身体关键点的位置,由此得到身体关键点数据。Among them, the key points of the body can be seen in Figure 6. Body key point data may include the positions of body key points at different times. Body key point data can be detected through a pre-trained body detection model or using a limb detection algorithm. For example, one or more frames of images can be intercepted from body video monitoring data, and the images can be analyzed through target detection and key point detection algorithms to detect the positions of key points of the body, such as by detecting the neck, chest, and limbs. Wait for the position of the body parts to determine the position of the key points of the body, thereby obtaining the key point data of the body.

身体关键点数据表征在一帧或多帧的时刻身体关键点的静态位置,可以从中分析出身体关键点的位置变化信息,将其作为受测对象的身体动作信息,或者进一步识别出身体做出了哪些动作,如识别出抬手、拍手、抖动等动作,将识别结果作为受测对象的身体动作信息。The body key point data represents the static position of the body key points at the moment of one or more frames. The position change information of the body key points can be analyzed from it and used as the body action information of the subject, or the body's actions can be further identified. Which actions are recognized, such as raising hands, clapping, shaking and other actions, and using the recognition results as the body action information of the subject.

在一种实施方式中,上述根据身体关键点数据得到受测对象的身体动作信息,可以包括以下步骤:In one embodiment, obtaining the body movement information of the subject based on body key point data may include the following steps:

根据身体关键点数据,确定发生运动的身体关键点及其位移信息,得到受测对象的身体动作信息。According to the key point data of the body, the key points of the body in motion and their displacement information are determined, and the body movement information of the subject is obtained.

其中,身体关键点数据能够表征在不同时刻身体关键点的位置,可以据此确定一段时间内发生运动的身体关键点,记录这些身体关键点的标识(如可以是图6中的关键点编号)及其位移信息,以形成受测对象的身体动作信息。Among them, the body key point data can represent the positions of the body key points at different times. Based on this, the body key points that have moved within a period of time can be determined, and the identification of these body key points can be recorded (for example, it can be the key point number in Figure 6). and its displacement information to form body movement information of the subject under test.

在一种实施方式中,可以根据身体关键点数据确定不同身体关键点之间的位置关系,以生成待识别身体动作数据;将待识别身体动作数据与多个标准身体动作的身体动作数据进行匹配,根据匹配结果确定身体关键点数据对应的身体动作信息。其中,待识别身体动作数据可以是身体关键点的位置关系序列数据。例如,身体关键点之间的位置关系可以表征为向量,向量的不同维度表示不同关键点之间的距离、方位等,根据每一帧的身体关键点数据,可以对应生成每一帧的身体关键点位置关系数据,为向量形式。将单帧的身体关键点位置关系数据作为待识别身体动作数据,与预先设置的标准身体动作的身体动作数据进行匹配,标准身体动作的身体动作数据也可以是身体关键点位置数据的向量,通过计算向量之间的相似度,得到与待识别身体动作数据匹配的标准身体动作的身体动作数据,若两者的相似度达到相似度阈值,则确定待识别身体动作数据对应该标准身体动作,由此得到身体关键点数据对应的身体动作信息。或者,将不同帧的身体关键点位置关系数据形成序列,作为待识别身体动作数据,标准身体动作的身体动作数据也可以是序列,通过序列之间的匹配,识别出身体关键点数据对应的身体动作信息。In one implementation, the positional relationship between different body key points can be determined based on body key point data to generate body action data to be identified; the body action data to be identified is matched with body action data of multiple standard body actions. , determine the body action information corresponding to the body key point data based on the matching results. Among them, the body action data to be recognized can be positional relationship sequence data of key points of the body. For example, the positional relationship between body key points can be represented as a vector. The different dimensions of the vector represent the distance, orientation, etc. between different key points. According to the body key point data of each frame, the body key points of each frame can be generated correspondingly. Point position relationship data, in vector form. The body key point position relationship data of a single frame is used as the body action data to be recognized, and is matched with the body action data of the preset standard body action. The body action data of the standard body action can also be a vector of body key point position data, through Calculate the similarity between vectors to obtain the body action data of the standard body action that matches the body action data to be identified. If the similarity between the two reaches the similarity threshold, it is determined that the body action data to be identified corresponds to the standard body action, as follows This obtains the body action information corresponding to the body key point data. Alternatively, the body key point position relationship data of different frames can be formed into a sequence as the body action data to be identified. The body action data of standard body actions can also be a sequence. Through matching between sequences, the body corresponding to the body key point data can be identified. action information.

在一种实施方式中,感兴趣图像序列包括身体图像序列。上述从视频监测数据中提取用于对受测对象的动作进行表征的感兴趣图像序列,可以包括以下步骤:In one embodiment, the sequence of images of interest includes a sequence of body images. The above-mentioned extraction of the image sequence of interest from the video monitoring data used to characterize the movement of the subject under test may include the following steps:

根据身体关键点数据,从身体视频监测数据的多帧中裁剪出身体区域图像,得到身体部位图像序列。According to the body key point data, body region images are cropped from multiple frames of body video monitoring data to obtain a body part image sequence.

其中,身体区域图像是包含整张身体的图像。身体视频监测数据可能包含身体以外的画面内容,如包含受测对象周围的环境画面等。在得到身体关键点数据后,可以确定身体区域的位置,从身体视频监测数据的多帧中裁剪出身体区域图像。不同帧的身体区域图像形成身体图像序列。Among them, the body region image is an image containing the entire body. Body video monitoring data may include images other than the body, such as images of the environment around the subject under test. After obtaining the body key point data, the position of the body region can be determined, and the body region image can be cropped from multiple frames of body video monitoring data. The body region images of different frames form a body image sequence.

通过裁剪身体区域图像,得到身体图像序列,可以剔除身体视频监测数据中与身体无关的信息,并且裁剪处理过程简单,有利于降低计算量,提高后续检测结果的准确性。By cropping the body region image to obtain the body image sequence, information irrelevant to the body in the body video monitoring data can be eliminated, and the cropping process is simple, which is beneficial to reducing the amount of calculation and improving the accuracy of subsequent detection results.

在一种实施方式中,在获取身体视频监测数据后,可以以一定的时间长度(如4秒,该时间长度与生物医学监测数据分片的时间长度可以相同)对身体视频监测数据进行分片,如得到以4秒为单位的身体视频监测数据片段。在每个片段的身体视频监测数据中,确定一帧或多帧关键帧,如可以是第一帧、中点帧、最后一帧等,在关键帧中检测身体关键点,得到身体关键点的位移信息,由此形成受测对象的身体动作信息。并根据检测到的身体关键点确定身体区域的位置,从身体视频监测数据中截取身体区域图像,形成身体图像序列。后续以片段为单位,将身体动作信息和身体图像序列与其他信息输入异常放电检测模型,以检测受测对象在每个片段内是否发生异常放电。In one implementation, after acquiring the body video monitoring data, the body video monitoring data can be fragmented with a certain length of time (such as 4 seconds, which time length can be the same as the length of time for fragmenting biomedical monitoring data). , such as obtaining body video monitoring data segments in units of 4 seconds. In the body video monitoring data of each segment, determine one or more key frames, such as the first frame, the midpoint frame, the last frame, etc., detect the body key points in the key frames, and obtain the body key points. Displacement information, thus forming body movement information of the subject under test. The position of the body region is determined based on the detected body key points, and the body region image is intercepted from the body video monitoring data to form a body image sequence. Subsequently, body action information, body image sequences and other information are input into the abnormal discharge detection model on a segment basis to detect whether abnormal discharge occurs in the subject under test in each segment.

在一种实施方式中,感兴趣图像序列包括身体部位图像序列。上述从视频监测数据中提取用于对受测对象的动作进行表征的感兴趣图像序列,可以包括以下步骤:In one embodiment, the sequence of images of interest includes a sequence of body part images. The above-mentioned extraction of the image sequence of interest from the video monitoring data used to characterize the movement of the subject under test may include the following steps:

根据身体关键点数据,从身体监测视频数据的多帧中裁剪出身体部位区域图像,得到身体部位图像序列。According to the body key point data, body part area images are cropped from multiple frames of body monitoring video data to obtain a body part image sequence.

其中,身体部位区域图像是包含一种或多种身体部位的图像。身体视频监测数据可能包含整个身体,还可能包含身体以外的画面内容,如包含受测对象周围的环境画面等。在得到身体关键点数据后,可以确定身体部位的位置,如颈部、胸部、左臂、左手、右手、右臂、左腿、左脚、右腿、右脚等部位的位置,可以确定包含全部身体部位的区域,也可以确定每个身体关键部位的区域(如颈部区域、左臂区域、左手区域),裁剪出身体部位区域图像。不同帧的身体部位区域图像形成身体部位图像序列。The body part region image is an image containing one or more body parts. Body video monitoring data may include the entire body, and may also include image content outside the body, such as images of the environment around the subject under test. After obtaining the key point data of the body, the position of the body parts, such as the neck, chest, left arm, left hand, right hand, right arm, left leg, left foot, right leg, right foot, etc., can be determined. The areas of all body parts can also be determined for each key body part (such as the neck area, left arm area, and left hand area), and the body part area image can be cropped. The body part region images of different frames form a body part image sequence.

通过裁剪身体部位区域图像,得到身体部位图像序列,可以剔除身体视频监测数据中与身体无关或者与身体动作无关的信息,有利于降低计算量,提高后续检测结果的准确性。By cropping body part region images to obtain body part image sequences, information irrelevant to the body or body movements in the body video monitoring data can be eliminated, which is beneficial to reducing the amount of calculation and improving the accuracy of subsequent detection results.

在一种实施方式中,上述根据身体关键点数据,从身体监测视频数据的多帧中裁剪出身体部位区域图像,可以包括以下步骤:In one implementation, the above-mentioned cropping of body part region images from multiple frames of body monitoring video data based on body key point data may include the following steps:

根据身体关键点数据,确定发生运动的身体部位,从身体监测视频数据的多帧中裁剪出发生运动的身体部位的区域图像。Based on the body key point data, the body parts where movement occurs are determined, and regional images of the body parts where movement occurs are cropped from multiple frames of body monitoring video data.

由于身体关键点数据表征在一帧或多帧的时刻身体关键点的静态位置,结合不同帧的身体关键点数据,可以确定出哪些身体部位发生了运动(即存在位置的动态变化),由此从身体视频监测数据中截取发生运动的身体部位的区域图像,即得到上述身体部位区域图像。例如,根据身体关键点数据可以确定眼、鼻部位的关键点发生动态变化(一般是位置变化),而嘴、耳等其他部位的关键点未发生动态变化,说明眼、鼻部位发生运动,可以根据身体关键点数据中眼、鼻部位的关键点位置信息,从身体视频监测数据中生成眼、鼻部位的包围框(可以是同时包含眼、鼻的一个包围框,也可以是包含眼的包围框和包含耳的包围框),并裁剪出包围框内的图像,也可以将包围框适当放大(如将包围框的宽和高乘以大于1的比例系数,该比例系数可以是1.1、1.2等,可根据经验或具体需求确定),截取放大后的包围框内的图像,得到身体部位区域图像。Since the body key point data represents the static position of the body key point at one or more frames, combining the body key point data of different frames can determine which body parts have moved (that is, there is a dynamic change in position). Therefore, The regional image of the body part that is in motion is intercepted from the body video monitoring data to obtain the above-mentioned body part regional image. For example, based on the body key point data, it can be determined that the key points of the eyes and nose have undergone dynamic changes (usually position changes), while the key points of other parts such as the mouth and ears have not changed dynamically. This means that the eyes and nose have moved, and the key points of the eyes and nose have moved. According to the key point position information of the eyes and nose in the body key point data, the bounding box of the eyes and nose is generated from the body video monitoring data (it can be a bounding box that contains both eyes and nose, or it can be a bounding box that contains the eyes. frame and a bounding box containing ears), and crop out the image within the bounding box, or you can appropriately enlarge the bounding box (such as multiplying the width and height of the bounding box by a proportional factor greater than 1, which can be 1.1, 1.2 etc., can be determined based on experience or specific needs), intercept the image within the enlarged bounding box, and obtain the body part area image.

应当理解,可以对身体视频监测数据中的每一帧进行上述裁剪处理,如根据每一帧的身体关键点数据,确定每一帧中发生运动的身体部位,进而裁剪出相应的身体部位区域图像。或者,可以仅针对身体视频监测数据中的部分帧进行上述裁剪处理,而无需处理每一帧,由此减少身体部位区域图像的数量与处理量。示例性的,在获取身体视频监测数据后,可以提取关键帧图像,如每间隔一定的帧数提取一帧,或者检测相邻帧之间的差值,当差值达到预定值时,将相邻帧中的后一帧提取为关键帧图像。针对关键帧图像进行身体关键点检测,得到身体关键点数据,根据身体关键点数据确定关键帧图像中发生运动的身体部位,并裁剪出身体部位区域图像。或者,针对一段时间内(通常是单位检测时长,如可以根据异常放电检测模型所能处理的图像数量确定时长)的身体视频监测数据,根据每一帧的身体关键点数据,确定其中发生运动的身体部位,再对每一帧或关键帧裁剪发生运动的身体部位的区域图像,得到身体部位区域图像。It should be understood that the above-mentioned cropping process can be performed on each frame in the body video monitoring data. For example, based on the body key point data of each frame, the body parts that move in each frame are determined, and then the corresponding body part area images are cropped. . Alternatively, the above-mentioned cropping process can be performed only on some frames in the body video monitoring data without processing each frame, thereby reducing the number and processing volume of body part region images. For example, after obtaining the body video monitoring data, key frame images can be extracted, such as extracting one frame every certain number of frames, or detecting the difference between adjacent frames. When the difference reaches a predetermined value, the corresponding The next frame among adjacent frames is extracted as a key frame image. Perform body key point detection on the key frame image to obtain body key point data, determine the body parts that are moving in the key frame image based on the body key point data, and crop out the body part region image. Or, for the body video monitoring data within a period of time (usually the unit detection duration, for example, the duration can be determined based on the number of images that the abnormal discharge detection model can process), based on the body key point data of each frame, determine where the movement occurs body part, and then crop the regional image of the moving body part for each frame or key frame to obtain the body part regional image.

由于身体动作主要体现为发生运动的身体部位上,从身体视频监测数据中提取出发生运动的身体部位的区域图像,能够将后续处理的重点放在发生运动的身体部位上。特别是在人脑异常放电的情况下,身体动作通常较为细微,通过对发生运动的身体部位的区域图像进行检测,更容易检测出其中的细节信息,进一步提高后续检测结果的准确性,并降低计算量。Since body movements are mainly reflected in the moving body parts, extracting the regional images of the moving body parts from the body video monitoring data can focus subsequent processing on the moving body parts. Especially in the case of abnormal discharge of the human brain, the body movements are usually subtle. By detecting the regional images of the moving body parts, it is easier to detect the detailed information, further improve the accuracy of subsequent detection results, and reduce the amount of calculation.

图7示出了对视频监测数据进行处理的示意图。在获取视频监测数据后,分离出人脸视频监测数据和身体视频监测数据。将人脸视频监测数据输入预先训练的人脸检测模型,得到人脸关键点数据;根据人脸关键点数据得到人脸动作信息;根据人脸关键点数据从人脸视频监测数据中裁剪出人脸图像序列。将身体视频监测数据输入预先训练的身体检测模型,得到身体关键点数据;根据身体关键点数据得到身体动作信息;根据身体关键点数据从身体视频监测数据中裁剪出身体图像序列。Figure 7 shows a schematic diagram of processing video monitoring data. After obtaining the video monitoring data, the face video monitoring data and body video monitoring data are separated. Input the face video monitoring data into the pre-trained face detection model to obtain the face key point data; obtain the face action information based on the face key point data; crop the person from the face video monitoring data based on the face key point data face image sequence. Input the body video monitoring data into the pre-trained body detection model to obtain body key point data; obtain body action information based on the body key point data; crop the body image sequence from the body video monitoring data based on the body key point data.

继续参考图2,在步骤S250中,利用预先训练的异常放电检测模型对生物医学特征数据、动作信息、感兴趣图像序列进行处理,得到受测对象的异常放电检测结果。Continuing to refer to Figure 2, in step S250, the pre-trained abnormal discharge detection model is used to process the biomedical feature data, action information, and the image sequence of interest to obtain the abnormal discharge detection result of the subject under test.

生物医学特征数据、动作信息、感兴趣图像序列为不同模态的数据,异常放电检测模型可以对三种数据进行综合处理,得到最终的异常放电检测结果。不同类型的数据之间可相互弥补信息缺失,例如,受测对象做出眨眼、说话等一些动作时,可能会影响脑电等生物医学特征数据,造成误判,通过动作信息或感兴趣图像序列弥补生物医学特征数据中不能体现的信息,能够减少误判的情况。Biomedical feature data, action information, and image sequences of interest are data in different modalities. The abnormal discharge detection model can comprehensively process the three types of data to obtain the final abnormal discharge detection result. Different types of data can make up for each other's missing information. For example, when the subject makes some actions such as blinking or speaking, it may affect biomedical feature data such as EEG, causing misjudgment. Through action information or image sequences of interest, Compensating for information that cannot be reflected in biomedical feature data can reduce misjudgments.

在一种实施方式中,异常放电检测模型包括特征处理层,注意力层,分类层。特征处理层、注意力层、分类层是异常放电检测模型的三个主要部分,每一部分都可以包括一个或多个中间层。In one implementation, the abnormal discharge detection model includes a feature processing layer, an attention layer, and a classification layer. The feature processing layer, attention layer, and classification layer are the three main parts of the abnormal discharge detection model, and each part can include one or more intermediate layers.

参考图8所示,上述利用预先训练的异常放电检测模型对生物医学特征数据、动作信息、感兴趣图像序列进行处理,得到受测对象的异常放电检测结果,可以包括以下步骤S810至S840:Referring to Figure 8, the above-mentioned process of using the pre-trained abnormal discharge detection model to process biomedical feature data, action information, and image sequences of interest to obtain abnormal discharge detection results of the subject under test may include the following steps S810 to S840:

步骤S810,将生物医学特征数据、动作信息、感兴趣图像序列输入异常放电检测模型;Step S810, input biomedical feature data, action information, and image sequences of interest into the abnormal discharge detection model;

步骤S820,利用特征处理层从动作信息中提取动作特征数据,从感兴趣图像序列中提取图像特征数据,并融合生物医学特征数据、动作特征数据、图像特征数据,得到融合特征;Step S820, use the feature processing layer to extract action feature data from action information, extract image feature data from the image sequence of interest, and fuse biomedical feature data, action feature data, and image feature data to obtain fusion features;

步骤S830,利用注意力层对融合特征进行表征,得到嵌入特征;Step S830, use the attention layer to characterize the fused features to obtain embedded features;

步骤S840,利用分类层将嵌入特征映射至输出空间,得到受测对象的异常放电检测结果。Step S840: Use the classification layer to map the embedded features to the output space to obtain the abnormal discharge detection result of the object under test.

其中,特征处理层可以将动作信息直接作为动作特征数据,如动作信息和动作特征数据均可以为动作识别结果,或者,动作信息包括人脸关键点和/或身体关键点的位置信息,特征处理层可以通过全连接、注意力等方式对动作信息进一步处理,提取动作特征数据。特征处理层可以对感兴趣图像序列进行卷积等处理,以提取图像特征数据。示例性的,特征处理层可以包括LSTM(Long Short-Term Memory,长短时记忆网络)、GRU(GatedRecurrent Unit,门控循环单元)、CNN(Convolutional Neural Network,卷积神经网络)等结构的神经网络单元,能够对感兴趣图像序列进行处理,提取图像特征数据。特征处理层还可以采用MLP(多层感知机)、拼接等方式进行特征融合。示例性的,特征处理层可以包括一个或多个全连接层和拼接层,通过全连接层将生物医学特征数据、动作特征数据、图像特征数据进行特征维度对齐,再通过拼接层进行拼接操作,得到融合特征。Among them, the feature processing layer can directly use action information as action feature data. For example, both action information and action feature data can be action recognition results, or the action information includes position information of facial key points and/or body key points. Feature processing The layer can further process the action information through full connection, attention, etc., and extract action feature data. The feature processing layer can perform convolution and other processing on the image sequence of interest to extract image feature data. For example, the feature processing layer may include neural networks with structures such as LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit), and CNN (Convolutional Neural Network). The unit can process the image sequence of interest and extract image feature data. The feature processing layer can also use MLP (multi-layer perceptron), splicing and other methods for feature fusion. For example, the feature processing layer may include one or more fully connected layers and splicing layers. Biomedical feature data, action feature data, and image feature data are aligned in feature dimensions through the fully connected layer, and then the splicing operation is performed through the splicing layer. Get fused features.

在注意力层,可以对融合特征进行选择,如通过注意力权重对融合特征进行重新表征,得到嵌入特征。嵌入特征可以是稠密特征,其每个维度可以融合不同模态的信息。In the attention layer, fusion features can be selected, such as re-characterizing the fusion features through attention weights to obtain embedded features. Embedded features can be dense features, each dimension of which can incorporate information from different modalities.

分类层可以包括全连接层等,通过对嵌入特征进行全连接操作,将其逐步映射至输入空间,还可以通过sigmoid(S型函数)、softmax(归一化指数函数)等激活函数得到异常放电检测的概率值,该概率值可作为最终的异常放电检测结果,或者根据概率值判断是否存在异常放电,从而得到最终的异常放电检测结果。The classification layer can include a fully connected layer, etc., which can be gradually mapped to the input space by performing a fully connected operation on the embedded features. Abnormal discharges can also be obtained through activation functions such as sigmoid (S-shaped function) and softmax (normalized exponential function). The probability value of detection can be used as the final abnormal discharge detection result, or the probability value can be used to determine whether there is abnormal discharge, thereby obtaining the final abnormal discharge detection result.

图9示出了获取训练数据集的示意图。示例性的,获取生物医学监测样本数据,如可以通过脑电图机采集脑电信号,得到多通道的脑电监测样本数据。进行预处理,然后进行异常放电标注,可以按照固定时长将连续数据进行切割,如切割为4秒时长的片段,分类为正、负样本,并记录各样本在原连续数据上的所处时间段,提取其中含有异常放电标注的片段作为正样本,无异常放电标注的片段作为负样本,舍弃标注为发作期或可疑(医生不确认是否为异常放电)的样本。进一步提取得到医学特征训练数据。将标注的是否异常放电的结果作为标注数据。获取与生物医学监测样本数据相同时间段的视频监测样本数据,可以包括人脸和身体的视频监测样本数据。对视频监测样本数据进行人脸与肢体的分析,检测人脸关键点和身体关键点,进而得到动作样本信息和感兴趣图像样本序列。相同时间段的生物医学特征训练数据、动作样本信息、感兴趣图像样本序列和对应的标注数据形成一组有监督数据,大量的有监督数据形成训练数据集。Figure 9 shows a schematic diagram of obtaining the training data set. For example, to obtain biomedical monitoring sample data, for example, EEG signals can be collected through an EEG machine to obtain multi-channel EEG monitoring sample data. Perform preprocessing, and then mark abnormal discharges. The continuous data can be cut according to a fixed duration, such as cutting into 4-second segments, classified into positive and negative samples, and the time period of each sample on the original continuous data is recorded. Extract fragments containing abnormal discharge annotations as positive samples, fragments without abnormal discharge annotations as negative samples, and discard samples marked as ictal or suspicious (doctors are not sure whether they are abnormal discharges). Further extract the medical feature training data. The marked result of abnormal discharge is used as marked data. Obtain video monitoring sample data in the same time period as the biomedical monitoring sample data, which can include video monitoring sample data of faces and bodies. Analyze faces and limbs on video monitoring sample data, detect facial key points and body key points, and then obtain action sample information and image sample sequences of interest. Biomedical feature training data, action sample information, image sample sequences of interest and corresponding annotation data in the same time period form a set of supervised data, and a large amount of supervised data forms a training data set.

图10示出了训练异常放电检测模型的示意图。将训练数据集中的生物医学特征训练数据、动作样本信息、感兴趣图像样本序列输入待训练的异常放电检测模型,得到对应的异常放电检测样本数据,基于异常放电检测样本数据和标注数据计算损失函数值,根据损失函数值更新异常放电检测模型的参数。迭代执行更新过程,直到异常放电检测模型达到预定的训练完成条件,如在验证集或测试集上的准确率达到标准,得到训练好的异常放电检测模型。Figure 10 shows a schematic diagram of training an abnormal discharge detection model. Input the biomedical feature training data, action sample information, and image sample sequence of interest in the training data set into the abnormal discharge detection model to be trained, and obtain the corresponding abnormal discharge detection sample data. Calculate the loss function based on the abnormal discharge detection sample data and annotation data. value, and update the parameters of the abnormal discharge detection model according to the loss function value. The update process is iteratively executed until the abnormal discharge detection model reaches the predetermined training completion conditions. For example, the accuracy on the verification set or test set reaches the standard, and the trained abnormal discharge detection model is obtained.

在一种实施方式中,在利用预先训练的异常放电检测模型对生物医学特征数据、动作信息、感兴趣图像序列进行处理之前,人脑异常放电检测方法还可以包括以下步骤:In one embodiment, before using the pre-trained abnormal discharge detection model to process biomedical feature data, action information, and image sequences of interest, the human brain abnormal discharge detection method may also include the following steps:

将动作信息和感兴趣图像序列中的至少一者,与生物医学特征数据进行时间对齐。Time-aligning at least one of the action information and the image sequence of interest with the biomedical feature data.

其中,生物医学特征数据、动作信息、感兴趣图像序列来自于不同的设备,而不同的设备可能存在时间差,导致生物医学特征数据、动作信息、感兴趣图像序列之间存在时间不同步,影响人脑异常放电检测结果。例如,生物医学特征数据的时间信息来自于生物医学监测设备的时间,动作信息和感兴趣图像序列的时间信息来自于视频采集设备的时间。因此,可以认为动作信息和感兴趣图像序列的时间信息一致,将为动作信息和感兴趣图像序列中的至少一者,与生物医学特征数据进行时间对齐,从而实现三种数据的时间一致。Among them, biomedical feature data, action information, and image sequences of interest come from different devices, and different devices may have time differences, resulting in time asymchronization between biomedical feature data, action information, and image sequences of interest, affecting people. Abnormal brain discharge test results. For example, the time information of biomedical feature data comes from the time of biomedical monitoring equipment, and the time information of action information and image sequences of interest comes from the time of video acquisition equipment. Therefore, it can be considered that the time information of the action information and the image sequence of interest is consistent, and at least one of the action information and the image sequence of interest will be time aligned with the biomedical feature data, thereby achieving time consistency of the three types of data.

下面以对齐动作信息与生物医学特征数据的时间为例进行说明。The following takes the time of aligning action information and biomedical feature data as an example to illustrate.

在一种实施方式中,上述将动作信息和感兴趣图像序列中的至少一者,与生物医学特征数据进行时间对齐,可以包括以下步骤:In one embodiment, the above-mentioned time alignment of at least one of the action information and the image sequence of interest with the biomedical feature data may include the following steps:

从生物医学特征数据中检测一个或多个疑似异常放电的生物医学特征数据以及对应的一个或多个第一时间点;Detect one or more biomedical feature data suspected of abnormal discharge and the corresponding one or more first time points from the biomedical feature data;

从动作信息中检测一个或多个疑似异常放电的动作数据以及对应的一个或多个第二时间点;Detect one or more action data suspected of abnormal discharge and the corresponding one or more second time points from the action information;

将疑似异常放电的生物医学特征数据与疑似异常放电的动作数据进行匹配,根据匹配结果确定第一时间点与第二时间点之间的对应关系;Match the biomedical characteristic data of the suspected abnormal discharge with the action data of the suspected abnormal discharge, and determine the correspondence between the first time point and the second time point based on the matching results;

基于第一时间点与第二时间点之间的对应关系,确定时间校准参数,并利用时间校准参数将动作信息与生物医学特征数据进行时间对齐。Based on the correspondence between the first time point and the second time point, the time calibration parameter is determined, and the time calibration parameter is used to time align the action information and the biomedical feature data.

其中,疑似异常放电可能发生在一个或多个时间点,则这些时间为上述第一时间点或第二时间点。或者,疑似异常放电也可能发生在一个或多个时间段,可以将这些时间段的起始时间点、结束时间点作为上述第一时间点或第二时间点。例如,在生物医学特征数据中检测到信号值异常升高的时间段,可以将该时间段内的生物医学特征数据作为疑似异常放电的生物医学特征数据,将该时间点的起始时间点和结束时间点作为第一时间点。基于类似的方式,可以确定疑似异常放电的动作数据与第二时间点。Among them, suspected abnormal discharge may occur at one or more time points, and these times are the above-mentioned first time point or second time point. Alternatively, the suspected abnormal discharge may also occur in one or more time periods, and the starting time point and end time point of these time periods can be used as the first time point or the second time point. For example, if a time period in which the signal value is abnormally increased is detected in the biomedical feature data, the biomedical feature data in this time period can be used as the biomedical feature data of suspected abnormal discharge, and the starting time point of this time point and The end time point is taken as the first time point. Based on a similar method, the action data and the second time point of the suspected abnormal discharge can be determined.

将疑似异常放电的生物医学特征数据、疑似异常放电的动作数据进行匹配,进而计算出具有对应关系的第一时间点与第二时间点之间的时间差,得到时间校准参数。例如,可以获取每个第一时间点的疑似异常放电的生物医学特征数据,将该第一时间点以及与之最近的第二时间点匹配到同一组时间校准数据内。The biomedical characteristic data of the suspected abnormal discharge and the action data of the suspected abnormal discharge are matched, and then the time difference between the first time point and the second time point with the corresponding relationship is calculated to obtain the time calibration parameters. For example, the biomedical characteristic data of the suspected abnormal discharge at each first time point can be obtained, and the first time point and the nearest second time point can be matched into the same set of time calibration data.

在一种实施方式中,上述将疑似异常放电的生物医学特征数据与疑似异常放电的动作数据进行匹配,可以包括以下步骤:In one embodiment, matching the biomedical characteristic data of suspected abnormal discharge with the action data of suspected abnormal discharge may include the following steps:

确定疑似异常放电的生物医学特征数据与其他生物医学特征数据之间的第一相对值;Determine the first relative value between the biomedical characteristic data of the suspected abnormal discharge and other biomedical characteristic data;

确定疑似异常放电的动作数据与动作信息中的其他动作数据之间的第二相对值;Determine the second relative value between the action data suspected of abnormal discharge and other action data in the action information;

通过比较第一相对值与第二相对值,得到疑似异常放电的生物医学特征数据与疑似异常放电的动作数据之间的匹配结果。By comparing the first relative value and the second relative value, a matching result between the biomedical characteristic data of suspected abnormal discharge and the action data of suspected abnormal discharge is obtained.

其中,第一相对值表示疑似异常放电的生物医学特征数据与正常状态下的生物医学特征数据之间的相对差异大小,如可以是百分数的形式。第二相对值表示疑似异常放电的动作数据与正常状态下的动作数据之间的相对差异大小。可以将最为接近的第一相对值、第二相对值匹配到一起,得到疑似异常放电的生物医学特征数据与疑似异常放电的动作数据之间的匹配结果,从而将对应的第一时间点、第二时间点形成一组时间校准数据。这样能够提高匹配的准确性。The first relative value represents the relative difference between the biomedical characteristic data of the suspected abnormal discharge and the biomedical characteristic data in the normal state, and may be in the form of a percentage, for example. The second relative value represents the relative difference between the action data suspected of abnormal discharge and the action data under normal conditions. The closest first relative value and second relative value can be matched together to obtain a matching result between the biomedical characteristic data of suspected abnormal discharge and the action data of suspected abnormal discharge, thereby matching the corresponding first time point and second relative value. Two time points form a set of time calibration data. This can improve the accuracy of matching.

对每一组时间校准数据内的第一时间点、第二时间点计算时间差,得到时间校准参数。可以将每一组的时间校准参数计算平均值,得到最终的时间校准参数。示例性的,可以以第一时间点为基准,时间校准参数包括第二时间点与第一时间点的时间差。根据第二时间点与第一时间点的时间差,对动作信息的时间戳进行调整,还可以对感兴趣图像序列的时间戳进行调整。由此实现生物医学特征数据、动作信息、感兴趣图像序列三者的时间对齐。Calculate the time difference between the first time point and the second time point in each set of time calibration data to obtain the time calibration parameters. The time calibration parameters of each group can be averaged to obtain the final time calibration parameters. For example, the first time point may be used as a reference, and the time calibration parameter includes the time difference between the second time point and the first time point. According to the time difference between the second time point and the first time point, the time stamp of the action information is adjusted, and the time stamp of the image sequence of interest can also be adjusted. This achieves time alignment of biomedical feature data, action information, and image sequences of interest.

图11示出了人脑异常放电检测的示意图。由脑电图机采集多通道的脑电监测数据,经过预处理与特征提取,得到生物医学特征数据;由视频采集设备采集人脸视频监测数据和身体视频监测数据,对人脸视频监测数据进行人脸关键点检测,并经过进一步处理,得到人脸动作信息和人脸图像序列,对身体视频监测数据进行身体关键点检测,并经过进一步处理,得到身体动作信息和身体图像序列。将生物医学特征数据、人脸动作信息、人脸图像序列、身体动作信息、身体图像序列输入经过训练的异常放电检测模型,输出异常放电检测结果。Figure 11 shows a schematic diagram of abnormal discharge detection in the human brain. The EEG machine collects multi-channel EEG monitoring data, and after preprocessing and feature extraction, biomedical feature data is obtained; the video acquisition equipment collects face video monitoring data and body video monitoring data, and the face video monitoring data is processed Face key points are detected, and after further processing, facial action information and face image sequences are obtained. Body video monitoring data are subjected to body key point detection, and after further processing, body action information and body image sequences are obtained. Input biomedical feature data, face action information, face image sequence, body action information, and body image sequence into the trained abnormal discharge detection model, and output the abnormal discharge detection results.

示例性装置Exemplary device

本公开的示例性实施方式还提供一种人脑异常放电检测装置。参考图12所示,人脑异常放电检测装置1200可以包括以下程序模块:第一获取模块1210,被配置为获取受测对象的生物医学特征数据;第二获取模块1220,被配置为获取受测对象的视频监测数据;动作信息检测模块1230,被配置为根据视频监测数据检测受测对象的动作信息;图像序列提取模块1240,被配置为从视频监测数据中提取用于对受测对象的动作进行表征的感兴趣图像序列;模型处理模块1250,被配置为利用预先训练的异常放电检测模型对生物医学特征数据、动作信息、感兴趣图像序列进行处理,得到受测对象的异常放电检测结果。Exemplary embodiments of the present disclosure also provide a human brain abnormal discharge detection device. Referring to Figure 12, the human brain abnormal discharge detection device 1200 may include the following program modules: a first acquisition module 1210, configured to acquire the biomedical characteristic data of the subject; a second acquisition module 1220, configured to acquire the biomedical characteristic data of the subject; Video monitoring data of the object; the action information detection module 1230 is configured to detect the action information of the object under test according to the video monitoring data; the image sequence extraction module 1240 is configured to extract actions for the object under test from the video monitoring data Characterized image sequence of interest; the model processing module 1250 is configured to use a pre-trained abnormal discharge detection model to process biomedical feature data, action information, and image sequences of interest to obtain abnormal discharge detection results of the subject.

在一种实施方式中,获取受测对象的生物医学特征数据,包括:获取由生物医学监测设备采集的受测对象的生物医学监测数据;对生物医学监测数据进行预处理;根据预处理后的生物医学监测数据得到生物医学特征数据。In one embodiment, obtaining the biomedical characteristic data of the subject includes: obtaining the biomedical monitoring data of the subject collected by the biomedical monitoring equipment; preprocessing the biomedical monitoring data; and based on the preprocessed Biomedical monitoring data yields biomedical characteristic data.

在一种实施方式中,生物医学监测数据包括:从受测对象的头皮的多个部位处采集的多通道脑电监测数据;根据预处理后的生物医学监测数据得到生物医学特征数据,包括:将预处理后的多通道脑电监测数据计算每个通道与参考电极的电位差,得到脑电信号初始特征数据;根据脑电信号初始特征数据提取生物医学特征数据。In one embodiment, the biomedical monitoring data includes: multi-channel EEG monitoring data collected from multiple parts of the subject's scalp; biomedical feature data is obtained based on the preprocessed biomedical monitoring data, including: Calculate the potential difference between each channel and the reference electrode from the preprocessed multi-channel EEG monitoring data to obtain the initial feature data of the EEG signal; extract biomedical feature data based on the initial feature data of the EEG signal.

在一种实施方式中,生物医学特征数据包括脑电信号波形特征;根据脑电信号初始特征数据提取生物医学特征数据,包括:利用预先训练的波形特征提取模型对脑电信号初始特征数据进行处理,以提取脑电信号波形特征。In one embodiment, the biomedical feature data includes EEG signal waveform features; extracting biomedical feature data based on the EEG signal initial feature data includes: using a pre-trained waveform feature extraction model to process the EEG signal initial feature data , to extract EEG signal waveform features.

在一种实施方式中,生物医学特征数据包括脑电信号时频特征;根据脑电信号初始特征数据提取生物医学特征数据,包括:对脑电信号初始特征数据进行时频变换,得到脑电信号初始特征数据对应的脑电信号时频数据;根据脑电信号时频数据提取脑电信号时频特征。In one embodiment, the biomedical feature data includes time-frequency features of the EEG signal; extracting the biomedical feature data based on the initial feature data of the EEG signal includes: performing time-frequency transformation on the initial feature data of the EEG signal to obtain the EEG signal. The time-frequency data of the EEG signal corresponding to the initial feature data; the time-frequency characteristics of the EEG signal are extracted based on the EEG signal time-frequency data.

在一种实施方式中,对生物医学监测数据进行预处理,包括以下至少一种处理:重采样,滤波,剔除噪声数据,数值标准化处理。In one embodiment, preprocessing the biomedical monitoring data includes at least one of the following processes: resampling, filtering, removing noise data, and numerical standardization.

在一种实施方式中,视频监测数据包括人脸视频监测数据;根据视频监测数据检测受测对象的动作信息,包括:从人脸视频监测数据中检测人脸关键点数据;根据人脸关键点数据得到受测对象的人脸动作信息。In one implementation, the video monitoring data includes face video monitoring data; detecting the action information of the subject under test based on the video monitoring data includes: detecting face key point data from the face video monitoring data; based on the face key points The data obtains facial movement information of the subject.

在一种实施方式中,感兴趣图像序列包括人脸图像序列;从视频监测数据中提取用于对受测对象的动作进行表征的感兴趣图像序列,包括:根据人脸关键点数据,从人脸视频监测数据的多帧中裁剪出人脸区域图像,得到人脸图像序列。In one embodiment, the image sequence of interest includes a face image sequence; extracting the image sequence of interest for characterizing the actions of the subject from the video monitoring data includes: extracting the image sequence from the face according to the face key point data. Face area images are cropped from multiple frames of face video monitoring data to obtain a face image sequence.

在一种实施方式中,根据人脸关键点数据得到受测对象的人脸动作信息,包括:根据人脸关键点数据,确定发生运动的人脸关键点及其位移信息,得到受测对象的人脸动作信息。In one implementation, obtaining the facial action information of the subject under test based on the facial key point data includes: determining the facial key points in motion and their displacement information based on the facial key point data, and obtaining the facial movement information of the subject under test. Facial action information.

在一种实施方式中,视频监测数据包括身体视频监测数据;根据视频监测数据检测受测对象的动作信息,包括:从身体视频监测数据中检测身体关键点数据;根据身体关键点数据得到受测对象的身体动作信息。In one embodiment, the video monitoring data includes body video monitoring data; detecting the action information of the subject under test based on the video monitoring data includes: detecting body key point data from the body video monitoring data; obtaining the subject under test based on the body key point data. The object's body movement information.

在一种实施方式中,感兴趣图像序列包括身体图像序列;从视频监测数据中提取用于对受测对象的动作进行表征的感兴趣图像序列,包括:根据身体关键点数据,从身体监测视频数据的多帧中裁剪出身体区域图像,得到身体图像序列。In one embodiment, the image sequence of interest includes a body image sequence; extracting the image sequence of interest for characterizing the movement of the subject from the video monitoring data includes: based on the body key point data, extracting the image sequence of interest from the body monitoring video Body region images are cropped from multiple frames of data to obtain a body image sequence.

在一种实施方式中,根据身体关键点数据得到受测对象的身体动作信息,包括:根据身体关键点数据,确定发生运动的身体关键点及其位移信息,得到受测对象的身体动作信息。In one implementation, obtaining the body movement information of the subject under test based on the body key point data includes: determining the body key points where movement occurs and their displacement information based on the body key point data, and obtaining the body movement information of the subject under test.

在一种实施方式中,异常放电检测模型包括特征处理层,注意力层,分类层;利用预先训练的异常放电检测模型对生物医学特征数据、动作信息、感兴趣图像序列进行处理,得到受测对象的异常放电检测结果,包括:将生物医学特征数据、动作信息、感兴趣图像序列输入异常放电检测模型;利用特征处理层从动作信息中提取动作特征数据,从感兴趣图像序列中提取图像特征数据,并融合生物医学特征数据、动作特征数据、图像特征数据,得到融合特征;利用注意力层对融合特征进行表征,得到嵌入特征;利用分类层将嵌入特征映射至输出空间,得到受测对象的异常放电检测结果。In one implementation, the abnormal discharge detection model includes a feature processing layer, an attention layer, and a classification layer; the pre-trained abnormal discharge detection model is used to process biomedical feature data, action information, and image sequences of interest to obtain the measured The abnormal discharge detection results of objects include: inputting biomedical feature data, action information, and image sequences of interest into the abnormal discharge detection model; using the feature processing layer to extract action feature data from action information, and extract image features from the image sequence of interest data, and fuse biomedical feature data, action feature data, and image feature data to obtain fused features; use the attention layer to characterize the fused features to obtain embedded features; use the classification layer to map the embedded features to the output space to obtain the test object Abnormal discharge detection results.

在一种实施方式中,模型处理模块1250,还被配置为:在利用预先训练的异常放电检测模型对生物医学特征数据、动作信息、感兴趣图像序列进行处理之前,将动作信息和感兴趣图像序列中的至少一者,与生物医学特征数据进行时间对齐。In one embodiment, the model processing module 1250 is also configured to: before using the pre-trained abnormal discharge detection model to process the biomedical feature data, action information, and the image sequence of interest, combine the action information and the image of interest. At least one of the sequences is time aligned with the biomedical characteristic data.

在一种实施方式中,将动作信息和感兴趣图像序列中的至少一者,与生物医学特征数据进行时间对齐,包括:从生物医学特征数据中检测一个或多个疑似异常放电的生物医学特征数据以及对应的一个或多个第一时间点;从动作信息中检测一个或多个疑似异常放电的动作数据以及对应的一个或多个第二时间点;将疑似异常放电的生物医学特征数据与疑似异常放电的动作数据进行匹配,根据匹配结果确定第一时间点与第二时间点之间的对应关系;基于第一时间点与第二时间点之间的对应关系,确定时间校准参数,并利用时间校准参数将动作信息与生物医学特征数据进行时间对齐。In one embodiment, time-aligning at least one of the action information and the image sequence of interest with the biomedical feature data includes: detecting one or more biomedical features suspected of abnormal discharge from the biomedical feature data. data and one or more corresponding first time points; detect one or more action data of suspected abnormal discharge and one or more corresponding second time points from the action information; compare the biomedical characteristic data of suspected abnormal discharge with Match the action data of suspected abnormal discharge, determine the correspondence between the first time point and the second time point based on the matching results; determine the time calibration parameters based on the correspondence between the first time point and the second time point, and Time alignment parameters are used to time-align motion information with biomedical feature data.

在一种实施方式中,将疑似异常放电的生物医学特征数据与疑似异常放电的动作数据进行匹配,包括:确定疑似异常放电的生物医学特征数据与其他生物医学特征数据之间的第一相对值;确定疑似异常放电的动作数据与动作信息中的其他动作数据之间的第二相对值;通过比较第一相对值与第二相对值,得到疑似异常放电的生物医学特征数据与疑似异常放电的动作数据之间的匹配结果。In one embodiment, matching the biomedical feature data of the suspected abnormal discharge with the action data of the suspected abnormal discharge includes: determining a first relative value between the biomedical feature data of the suspected abnormal discharge and other biomedical feature data. ; Determine the second relative value between the action data of the suspected abnormal discharge and other action data in the action information; by comparing the first relative value and the second relative value, obtain the biomedical characteristic data of the suspected abnormal discharge and the data of the suspected abnormal discharge Matching results between action data.

此外,本公开实施方式的其他具体细节在上述方法的实施方式中已经详细说明,在此不再赘述。In addition, other specific details of the implementation of the present disclosure have been described in detail in the implementation of the above method and will not be described again here.

示例性存储介质Example storage media

本公开的示例性实施方式还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开的上述方法。可以通过程序产品实现上述方法,如可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。Exemplary embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the above method of the present disclosure is implemented. The above method can be implemented by a program product, such as a portable compact disk read-only memory (CD-ROM) and containing program code, and can be run on a device, such as a personal computer. However, the program product of the present disclosure is not limited thereto. In this document, a readable storage medium may be any tangible medium containing or storing a program that may be used by or in conjunction with an instruction execution system, apparatus, or device.

该程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。The Program Product may take form in any combination of one or more readable media. The readable medium may be a readable signal medium or a readable storage medium. The readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.

计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. A readable signal medium may also be any readable medium other than a readable storage medium that can send, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.

可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RE等等,或者上述的任意合适的组合。Program code embodied on a readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wired, optical cable, RE, etc., or any suitable combination of the above.

可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,程序设计语言包括面向对象的程序设计语言-诸如Java、C++等,还包括常规的过程式程序设计语言-诸如"C"语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。Program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., as well as conventional procedural programming. Language - such as "C" or a similar programming language. The program code may execute entirely on the user's computing device, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server. In situations involving remote computing devices, the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., provided by an Internet service). (business comes via Internet connection).

示例性电子设备Example electronic device

本公开的示例性实施方式还提供一种电子设备,可以是图1A或图1B中的任意设备。该电子设备包括处理器和存储器,存储器用于存储处理器的可执行指令。处理器配置为经由执行可执行指令来执行本公开的上述方法。Exemplary embodiments of the present disclosure also provide an electronic device, which may be any device in FIG. 1A or FIG. 1B. The electronic device includes a processor and a memory, and the memory is used to store executable instructions of the processor. The processor is configured to perform the above-described methods of the present disclosure via executing executable instructions.

参考图13对本公开示例性实施方式的电子设备进行说明。图13显示的电子设备1300仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。An electronic device according to an exemplary embodiment of the present disclosure will be described with reference to FIG. 13 . The electronic device 1300 shown in FIG. 13 is only an example and should not bring any limitations to the functions and usage scope of the embodiments of the present disclosure.

如图13所示,电子设备1300以通用计算设备的形式表现。电子设备1300的组件可以包括但不限于:至少一个处理单元1310、至少一个存储单元1320、连接不同系统组件(包括存储单元1320和处理单元1310)的总线1330。As shown in Figure 13, electronic device 1300 is embodied in the form of a general computing device. The components of the electronic device 1300 may include, but are not limited to: at least one processing unit 1310, at least one storage unit 1320, and a bus 1330 connecting different system components (including the storage unit 1320 and the processing unit 1310).

其中,存储单元存储有程序代码,程序代码可以被处理单元1310执行,使得处理单元1310执行本说明书上述"示例性方法"部分中描述的根据本公开各种示例性实施方式的步骤。例如,处理单元1310可以执行如图2所示的方法步骤等。Wherein, the storage unit stores program code, and the program code can be executed by the processing unit 1310, so that the processing unit 1310 performs the steps according to various exemplary embodiments of the present disclosure described in the "Example Method" section of this specification. For example, the processing unit 1310 may perform the method steps shown in FIG. 2 and the like.

存储单元1320可以包括易失性存储单元,例如随机存取存储单元(RAM)1321和/或高速缓存存储单元1322,还可以进一步包括只读存储单元(ROM)1323。The storage unit 1320 may include a volatile storage unit, such as a random access storage unit (RAM) 1321 and/or a cache storage unit 1322, and may further include a read-only storage unit (ROM) 1323.

存储单元1320还可以包括具有一组(至少一个)程序模块1325的程序/实用工具1324,这样的程序模块1325包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。Storage unit 1320 may also include a program/utility 1324 having a set of (at least one) program modules 1325 including, but not limited to: an operating system, one or more application programs, other program modules, and program data, Each of these examples, or some combination, may include the implementation of a network environment.

总线1330可以包括数据总线、地址总线和控制总线。Bus 1330 may include a data bus, an address bus, and a control bus.

电子设备1300也可以与一个或多个外部设备1400(例如键盘、指向设备、蓝牙设备等)通信,这种通信可以通过输入/输出(I/O)接口1340进行。电子设备1300还可以通过网络适配器1350与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器1350通过总线1330与电子设备1300的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备1300使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。Electronic device 1300 may also communicate with one or more external devices 1400 (eg, keyboard, pointing device, Bluetooth device, etc.), which communication may occur through an input/output (I/O) interface 1340. Electronic device 1300 may also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through a network adapter 1350. As shown, network adapter 1350 communicates with other modules of electronic device 1300 via bus 1330. It should be understood that, although not shown in the figures, other hardware and/or software modules may be used in conjunction with electronic device 1300, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.

应当注意,尽管在上文详细描述中提及了装置的若干模块或子模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。It should be noted that although several modules or sub-modules of the device are mentioned in the above detailed description, this division is only exemplary and not mandatory. Indeed, according to embodiments of the present disclosure, the features and functions of two or more units/modules described above may be embodied in one unit/module. Conversely, the features and functions of one unit/module described above may be further divided to be embodied by multiple units/modules.

此外,尽管在附图中以特定顺序描述了本公开方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。Furthermore, although the operations of the disclosed methods are depicted in a particular order in the drawings, this does not require or imply that the operations must be performed in that particular order, or that all illustrated operations must be performed to achieve desired results. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be broken down into multiple steps for execution.

虽然已经参考若干具体实施方式描述了本公开的精神和原理,但是应该理解,本公开并不限于所公开的具体实施方式,对各方面的划分也不意味着这些方面中的特征不能组合以进行受益,这种划分仅是为了表述的方便。本公开旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。Although the spirit and principles of the present disclosure have been described with reference to a number of specific embodiments, it should be understood that the disclosure is not limited to the specific embodiments disclosed, nor does the delineation of aspects mean that features in these aspects cannot be combined. Benefit, this division is only for convenience of expression. The present disclosure is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (10)

1.一种人脑异常放电检测方法,其特征在于,包括:1. A method for detecting abnormal human brain discharge, which is characterized by including: 获取受测对象的生物医学特征数据;Obtain biomedical characteristic data of the subject; 获取所述受测对象的视频监测数据;Obtain video monitoring data of the subject under test; 根据所述视频监测数据检测所述受测对象的动作信息;Detect the action information of the subject under test based on the video monitoring data; 从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列;Extract an image sequence of interest for characterizing the movement of the subject from the video monitoring data; 利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理,得到所述受测对象的异常放电检测结果。The biomedical feature data, the action information, and the image sequence of interest are processed using a pre-trained abnormal discharge detection model to obtain the abnormal discharge detection result of the tested object. 2.根据权利要求1所述的方法,其特征在于,所述获取受测对象的生物医学特征数据,包括:2. The method according to claim 1, characterized in that said obtaining the biomedical characteristic data of the subject includes: 获取由生物医学监测设备采集的所述受测对象的生物医学监测数据;Obtain the biomedical monitoring data of the subject collected by the biomedical monitoring equipment; 对所述生物医学监测数据进行预处理;Preprocess the biomedical monitoring data; 根据预处理后的生物医学监测数据得到所述生物医学特征数据。The biomedical characteristic data is obtained according to the preprocessed biomedical monitoring data. 3.根据权利要求2所述的方法,其特征在于,所述生物医学监测数据包括:从所述受测对象的头皮的多个部位处采集的多通道脑电监测数据;所述根据预处理后的生物医学监测数据得到所述生物医学特征数据,包括:3. The method according to claim 2, wherein the biomedical monitoring data includes: multi-channel EEG monitoring data collected from multiple parts of the scalp of the subject; The biomedical characteristic data is obtained from the subsequent biomedical monitoring data, including: 将预处理后的多通道脑电监测数据计算每个通道与参考电极的电位差,得到脑电信号初始特征数据;Calculate the potential difference between each channel and the reference electrode from the preprocessed multi-channel EEG monitoring data to obtain the initial characteristic data of the EEG signal; 根据所述脑电信号初始特征数据提取所述生物医学特征数据。The biomedical feature data is extracted according to the initial feature data of the EEG signal. 4.根据权利要求3所述的方法,其特征在于,所述生物医学特征数据包括脑电信号波形特征;所述根据所述脑电信号初始特征数据提取所述生物医学特征数据,包括:4. The method according to claim 3, wherein the biomedical feature data includes EEG signal waveform features; and extracting the biomedical feature data according to the EEG signal initial feature data includes: 利用预先训练的波形特征提取模型对所述脑电信号初始特征数据进行处理,以提取所述脑电信号波形特征。The initial feature data of the EEG signal is processed using a pre-trained waveform feature extraction model to extract the EEG signal waveform features. 5.根据权利要求3所述的方法,其特征在于,所述生物医学特征数据包括脑电信号时频特征;所述根据所述脑电信号初始特征数据提取所述生物医学特征数据,包括:5. The method according to claim 3, wherein the biomedical feature data includes time-frequency features of the EEG signal; and extracting the biomedical feature data according to the initial feature data of the EEG signal includes: 对所述脑电信号初始特征数据进行时频变换,得到所述脑电信号初始特征数据对应的脑电信号时频数据;Perform time-frequency transformation on the initial characteristic data of the EEG signal to obtain EEG signal time-frequency data corresponding to the initial characteristic data of the EEG signal; 根据所述脑电信号时频数据提取所述脑电信号时频特征。The time-frequency characteristics of the EEG signal are extracted according to the EEG signal time-frequency data. 6.根据权利要求2所述的方法,其特征在于,所述对所述生物医学监测数据进行预处理,包括以下至少一种处理:重采样,滤波,剔除噪声数据,数值标准化处理。6. The method according to claim 2, wherein the preprocessing of the biomedical monitoring data includes at least one of the following processes: resampling, filtering, eliminating noise data, and numerical standardization. 7.根据权利要求1所述的方法,其特征在于,所述视频监测数据包括人脸视频监测数据;所述根据所述视频监测数据检测所述受测对象的动作信息,包括:7. The method according to claim 1, wherein the video monitoring data includes face video monitoring data; and detecting the action information of the subject under test according to the video monitoring data includes: 从所述人脸视频监测数据中检测人脸关键点数据;Detect facial key point data from the facial video monitoring data; 根据所述人脸关键点数据得到所述受测对象的人脸动作信息。The facial action information of the subject is obtained according to the facial key point data. 8.一种人脑异常放电检测装置,其特征在于,包括:8. A human brain abnormal discharge detection device, characterized in that it includes: 第一获取模块,被配置为获取受测对象的生物医学特征数据;The first acquisition module is configured to acquire biomedical characteristic data of the subject; 第二获取模块,被配置为获取所述受测对象的视频监测数据;The second acquisition module is configured to acquire the video monitoring data of the object under test; 动作信息检测模块,被配置为根据所述视频监测数据检测所述受测对象的动作信息;An action information detection module configured to detect action information of the subject under test based on the video monitoring data; 图像序列提取模块,被配置为从所述视频监测数据中提取用于对所述受测对象的动作进行表征的感兴趣图像序列;An image sequence extraction module configured to extract an image sequence of interest for characterizing the action of the subject from the video monitoring data; 模型处理模块,被配置为利用预先训练的异常放电检测模型对所述生物医学特征数据、所述动作信息、所述感兴趣图像序列进行处理,得到所述受测对象的异常放电检测结果。The model processing module is configured to use a pre-trained abnormal discharge detection model to process the biomedical feature data, the action information, and the image sequence of interest to obtain the abnormal discharge detection result of the tested object. 9.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7任一项所述的方法。9. A computer-readable storage medium with a computer program stored thereon, characterized in that when the computer program is executed by a processor, the method of any one of claims 1 to 7 is implemented. 10.一种电子设备,其特征在于,包括:10. An electronic device, characterized in that it includes: 处理器;以及processor; and 存储器,用于存储所述处理器的可执行指令;memory for storing executable instructions for the processor; 其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1至7任一项所述的方法。wherein the processor is configured to perform the method of any one of claims 1 to 7 via execution of the executable instructions.
CN202311630555.XA 2023-11-30 2023-11-30 Human brain abnormal discharge detection method, device, storage medium and electronic equipment Active CN117462146B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311630555.XA CN117462146B (en) 2023-11-30 2023-11-30 Human brain abnormal discharge detection method, device, storage medium and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311630555.XA CN117462146B (en) 2023-11-30 2023-11-30 Human brain abnormal discharge detection method, device, storage medium and electronic equipment

Publications (2)

Publication Number Publication Date
CN117462146A true CN117462146A (en) 2024-01-30
CN117462146B CN117462146B (en) 2025-06-13

Family

ID=89623978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311630555.XA Active CN117462146B (en) 2023-11-30 2023-11-30 Human brain abnormal discharge detection method, device, storage medium and electronic equipment

Country Status (1)

Country Link
CN (1) CN117462146B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117503163A (en) * 2023-11-30 2024-02-06 中国医学科学院北京协和医院 Human brain abnormal discharge detection method, device, storage medium and electronic equipment
CN118787371A (en) * 2024-09-11 2024-10-18 杭州网之易创新科技有限公司 Abnormal brain discharge detection method, model training method, device, medium and equipment
CN118787372A (en) * 2024-09-12 2024-10-18 杭州网之易创新科技有限公司 Method, device, electronic device and computer storage medium for determining epileptic discharge
CN119033384A (en) * 2024-08-22 2024-11-29 中国医学科学院北京协和医院 Brain abnormal discharge detection method, device, equipment and computer program product
CN119033382A (en) * 2024-08-22 2024-11-29 网易传媒科技(北京)有限公司 Multi-mode brain discharge abnormality detection method, device, electronic equipment and readable medium
CN119097325A (en) * 2024-08-23 2024-12-10 中国医学科学院北京协和医院 Abnormal discharge detection method, model training method, device, medium and equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177241A (en) * 2010-02-26 2011-09-15 Tokyo Univ Of Science Medical image display controller and program
CN112784157A (en) * 2021-01-20 2021-05-11 网易传媒科技(北京)有限公司 Training method of behavior prediction model, behavior prediction method, device and equipment
CN114093501A (en) * 2021-10-19 2022-02-25 杭州电子科技大学 Intelligent auxiliary analysis method for children's motor epilepsy based on synchronous video and electroencephalogram
US20220180512A1 (en) * 2020-12-04 2022-06-09 Vuno Inc. Method for predicting disease based on medical image
CN115607158A (en) * 2022-11-10 2023-01-17 武汉东湖学院 A learning fatigue state monitoring method and computer equipment
US20230181094A1 (en) * 2010-10-01 2023-06-15 Flint Hills Scientific, L.L.C Classifying seizures as epileptic or non-epileptic using extra-cerebral body data
CN116439725A (en) * 2023-03-07 2023-07-18 中国医学科学院北京协和医院 Abnormal discharge detection method, model training method, device, medium and equipment
CN116844234A (en) * 2023-07-10 2023-10-03 重庆大学 A moving target detection method based on visual brain network background modeling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177241A (en) * 2010-02-26 2011-09-15 Tokyo Univ Of Science Medical image display controller and program
US20230181094A1 (en) * 2010-10-01 2023-06-15 Flint Hills Scientific, L.L.C Classifying seizures as epileptic or non-epileptic using extra-cerebral body data
US20220180512A1 (en) * 2020-12-04 2022-06-09 Vuno Inc. Method for predicting disease based on medical image
CN112784157A (en) * 2021-01-20 2021-05-11 网易传媒科技(北京)有限公司 Training method of behavior prediction model, behavior prediction method, device and equipment
CN114093501A (en) * 2021-10-19 2022-02-25 杭州电子科技大学 Intelligent auxiliary analysis method for children's motor epilepsy based on synchronous video and electroencephalogram
CN115607158A (en) * 2022-11-10 2023-01-17 武汉东湖学院 A learning fatigue state monitoring method and computer equipment
CN116439725A (en) * 2023-03-07 2023-07-18 中国医学科学院北京协和医院 Abnormal discharge detection method, model training method, device, medium and equipment
CN116844234A (en) * 2023-07-10 2023-10-03 重庆大学 A moving target detection method based on visual brain network background modeling

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117503163A (en) * 2023-11-30 2024-02-06 中国医学科学院北京协和医院 Human brain abnormal discharge detection method, device, storage medium and electronic equipment
CN117503163B (en) * 2023-11-30 2025-03-11 中国医学科学院北京协和医院 Method and device for detecting abnormal discharge of human brain, storage medium and electronic equipment
CN119033384A (en) * 2024-08-22 2024-11-29 中国医学科学院北京协和医院 Brain abnormal discharge detection method, device, equipment and computer program product
CN119033382A (en) * 2024-08-22 2024-11-29 网易传媒科技(北京)有限公司 Multi-mode brain discharge abnormality detection method, device, electronic equipment and readable medium
CN119097325A (en) * 2024-08-23 2024-12-10 中国医学科学院北京协和医院 Abnormal discharge detection method, model training method, device, medium and equipment
CN118787371A (en) * 2024-09-11 2024-10-18 杭州网之易创新科技有限公司 Abnormal brain discharge detection method, model training method, device, medium and equipment
CN118787372A (en) * 2024-09-12 2024-10-18 杭州网之易创新科技有限公司 Method, device, electronic device and computer storage medium for determining epileptic discharge

Also Published As

Publication number Publication date
CN117462146B (en) 2025-06-13

Similar Documents

Publication Publication Date Title
CN117503163B (en) Method and device for detecting abnormal discharge of human brain, storage medium and electronic equipment
CN117462146B (en) Human brain abnormal discharge detection method, device, storage medium and electronic equipment
US11517212B2 (en) Electrocardiogram information dynamic monitoring method and dynamic monitoring system
CN116439725A (en) Abnormal discharge detection method, model training method, device, medium and equipment
Hadjem et al. An ECG monitoring system for prediction of cardiac anomalies using WBAN
CN111222464B (en) Emotion analysis method and system
CN117598712A (en) Abnormal discharge detection method, device, medium and equipment for epileptic seizure interval
CN117838146B (en) Method and device for positioning epilepsy induction range, electronic equipment and computer readable storage medium
CN115337018B (en) Electrocardiogram signal classification method and system based on overall dynamic characteristics
CN119033384A (en) Brain abnormal discharge detection method, device, equipment and computer program product
CN118787371A (en) Abnormal brain discharge detection method, model training method, device, medium and equipment
CN118822947A (en) Breathing pattern detection method, device and controller based on deep learning neural network
WO2025130992A1 (en) Real-time artifact processing and feature extraction method and system for electroencephalogram signal
CN111584032A (en) Novel brain-controlled intelligent rehabilitation method based on capsule network and application
CN116010901A (en) A method and system for identifying depression based on a multimodal data fusion model
CN119055250B (en) Abnormal discharge detection method, model training method, device, medium and equipment
CN119908725A (en) A method and device for detecting depression disorders based on sleep monitoring
CN120036792A (en) Electrocardiogram monitoring and data analysis system based on artificial intelligence
CN119097325A (en) Abnormal discharge detection method, model training method, device, medium and equipment
CN118787372A (en) Method, device, electronic device and computer storage medium for determining epileptic discharge
RU2661756C2 (en) Brain computer interface device for remote control of exoskeleton
Khriji et al. New adaptive thresholding-based ECG R-peak detection technique
Deotale et al. Identification of arrhythmia using ECG signal patterns
CN119732689B (en) Epileptiform discharge detection method, epileptiform discharge detection device, program product and electronic equipment
CN119700135B (en) Human brain discharge channel detection method, device, program product and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant