CN117574744A - Optimization processing method, device, equipment and medium based on mass spectrometer - Google Patents
Optimization processing method, device, equipment and medium based on mass spectrometer Download PDFInfo
- Publication number
- CN117574744A CN117574744A CN202311651249.4A CN202311651249A CN117574744A CN 117574744 A CN117574744 A CN 117574744A CN 202311651249 A CN202311651249 A CN 202311651249A CN 117574744 A CN117574744 A CN 117574744A
- Authority
- CN
- China
- Prior art keywords
- partition
- grid unit
- mass spectrometer
- parameters
- radius
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/25—Design optimisation, verification or simulation using particle-based methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
本申请提供一种基于质谱仪的优化处理方法、装置、设备及介质,该方法包括:获取待优化质谱仪的场半径,并根据所述场半径,确定所述待优化质谱仪的计算域;利用控制变量法,确定所述计算域的网格单元参数,并根据所述网格单元参数对所述计算域进行划分处理;获取所述计算域中每个网格单元的模拟方程并进行模拟计算,以获取所述待优化质谱仪的离子通过率,并根据所述离子通过率对所述待优化质谱仪的仪器参数进行优化处理。解决了现有技术中的网格可控性弱,计算耗时长,计算精度和稳定性较差的问题,能够更好地对质谱仪进行优化设计。
This application provides an optimization processing method, device, equipment and medium based on a mass spectrometer. The method includes: obtaining the field radius of the mass spectrometer to be optimized, and determining the computational domain of the mass spectrometer to be optimized based on the field radius; Use the control variable method to determine the grid unit parameters of the computational domain, and divide the computational domain according to the grid unit parameters; obtain the simulation equation of each grid unit in the computational domain and perform simulation Calculate to obtain the ion pass rate of the mass spectrometer to be optimized, and optimize the instrument parameters of the mass spectrometer to be optimized according to the ion pass rate. It solves the problems in the existing technology of weak grid controllability, long calculation time, and poor calculation accuracy and stability, and can better optimize the design of the mass spectrometer.
Description
技术领域Technical field
本申请涉及数据处理技术领域,尤其涉及一种基于质谱仪的优化处理方法、装置、设备及介质。The present application relates to the field of data processing technology, and in particular to an optimized processing method, device, equipment and medium based on a mass spectrometer.
背景技术Background technique
质谱分析技术是一种通过测量离子质荷比来进行离子分析的方法,通常用于分析包括同位素的无机元素,有机小分子,或者生物大分子,在生命科学、材料科学、环境科学、药物硏发、食品安全和石油化工等领域发挥着巨大而不可替代的作用。其中,四极杆质谱仪利用四极场中不同质荷比的离子稳定条件不同而使离子分离,具有结构简单、体积小、重量轻、价格便宜和清洗方便等优点,是目前应用最广泛的小型质谱仪之一。Mass spectrometry technology is a method of ion analysis by measuring the mass-to-charge ratio of ions. It is usually used to analyze inorganic elements including isotopes, organic small molecules, or biological macromolecules. It is used in life sciences, materials science, environmental science, and pharmaceuticals. It plays a huge and irreplaceable role in the fields of development, food safety and petrochemical industry. Among them, the quadrupole mass spectrometer uses the different stabilization conditions of ions with different mass-to-charge ratios in the quadrupole field to separate ions. It has the advantages of simple structure, small size, light weight, cheap price and easy cleaning. It is currently the most widely used. One of the small mass spectrometers.
在对四极杆质谱仪进行设计和优化的过程中,需要基于网格单元进行四极场的电场分析以及离子运动轨迹的预测和模拟。现有技术通常采用非结构化网格剖分的方法划分四极场中的网格单元,然而这种划分方法所得到的网格可控性弱,精密计算时网格数量常高达千万以上,计算耗时长,计算精度和稳定性也相对较差。In the process of designing and optimizing a quadrupole mass spectrometer, it is necessary to conduct electric field analysis of the quadrupole field and prediction and simulation of ion motion trajectories based on grid cells. The existing technology usually uses an unstructured meshing method to divide the grid units in the quadrupole field. However, the grid obtained by this division method has weak controllability, and the number of grids often reaches tens of millions in precise calculations. , the calculation takes a long time, and the calculation accuracy and stability are relatively poor.
发明内容Contents of the invention
本申请提供一种基于质谱仪的优化处理方法、装置、设备及介质,用于解决现有技术中的网格可控性弱,计算耗时长,计算精度和稳定性较差的问题。This application provides an optimization processing method, device, equipment and medium based on a mass spectrometer, which is used to solve the problems in the existing technology of weak grid controllability, long calculation time, and poor calculation accuracy and stability.
第一方面,本申请提供一种基于质谱仪的优化处理方法,包括:获取待优化质谱仪的场半径,并根据所述场半径,确定所述待优化质谱仪的计算域;利用控制变量法,确定所述计算域的网格单元参数,并根据所述网格单元参数对所述计算域进行划分处理;获取所述计算域中每个网格单元的模拟方程并进行模拟计算,以获取所述待优化质谱仪的离子通过率,并根据所述离子通过率对所述待优化质谱仪的仪器参数进行优化处理。In a first aspect, this application provides an optimization processing method based on a mass spectrometer, which includes: obtaining the field radius of the mass spectrometer to be optimized, and determining the computational domain of the mass spectrometer to be optimized based on the field radius; using the control variable method , determine the grid unit parameters of the computational domain, and divide the computational domain according to the grid unit parameters; obtain the simulation equation of each grid unit in the computational domain and perform simulation calculations to obtain The ion pass rate of the mass spectrometer to be optimized is determined, and the instrument parameters of the mass spectrometer to be optimized are optimized according to the ion pass rate.
在一种具体实施方式中,所述利用控制变量法,确定所述计算域的网格单元参数,包括:获取多个第一网格单元参数,针对每个所述第一网格单元参数,根据所述第一网格单元参数对所述计算域进行划分处理;获取每个网格单元的模拟方程并进行模拟计算,以获取每个所述第一网格单元参数所对应的离子通过率;获取每个所述第一网格单元参数所对应的离子通过率与预设的离子通过率的差值,并确定多个所述差值中的最小值,将所述最小值对应的第一网格单元参数作为所述计算域的网格单元参数。In a specific implementation, the use of the control variable method to determine the grid unit parameters of the computational domain includes: obtaining a plurality of first grid unit parameters, and for each of the first grid unit parameters, The calculation domain is divided according to the first grid unit parameters; the simulation equation of each grid unit is obtained and simulation calculation is performed to obtain the ion passage rate corresponding to each of the first grid unit parameters. ; Obtain the difference between the ion pass rate corresponding to each of the first grid unit parameters and the preset ion pass rate, and determine the minimum value among the plurality of difference values, and add the minimum value to the first grid unit parameter corresponding to the first grid unit parameter. A grid unit parameter is used as the grid unit parameter of the calculation domain.
在一种具体实施方式中,所述计算域包括第一分区和第二分区;其中,所述第一分区的半径小于所述场半径,所述第二分区的外环半径大于所述场半径,所述第二分区的内环半径为所述第一分区的半径;则所述利用控制变量法,确定所述计算域的网格单元参数,并根据所述网格单元参数对所述计算域进行划分处理,包括:利用控制变量法,分别确定所述第一分区和第二分区的网格单元参数,并分别根据所述第一分区和第二分区的网格单元参数对所述第一分区和第二分区进行划分处理。In a specific implementation, the calculation domain includes a first partition and a second partition; wherein, the radius of the first partition is smaller than the field radius, and the outer ring radius of the second partition is larger than the field radius. , the inner ring radius of the second partition is the radius of the first partition; then the control variable method is used to determine the grid unit parameters of the calculation domain, and the calculation is performed according to the grid unit parameters. The domain division process includes: using the control variable method to determine the grid unit parameters of the first partition and the second partition respectively, and calculating the grid unit parameters of the first partition and the second partition respectively according to the grid unit parameters of the first partition and the second partition. The first partition and the second partition are divided and processed.
在一种具体实施方式中,所述待优化质谱仪的仪器参数包括以下一项或多项的组合:电极杆半径,电极杆长度,直流电压幅值,交流电压幅值,交流电压频率,离子入射半径,以及离子入射角度。In a specific implementation, the instrument parameters of the mass spectrometer to be optimized include one or a combination of the following: electrode rod radius, electrode rod length, DC voltage amplitude, AC voltage amplitude, AC voltage frequency, ion Radius of incidence, and angle of incidence of ions.
第二方面,本申请提供一种基于质谱仪的优化处理装置,包括:获取模块,用于获取待优化质谱仪的场半径,并根据所述场半径,确定所述待优化质谱仪的计算域;处理模块,用于利用控制变量法,确定所述计算域的网格单元参数,并根据所述网格单元参数对所述计算域进行划分处理;所述处理模块,还用于获取所述计算域中每个网格单元的模拟方程并进行模拟计算,以获取所述待优化质谱仪的离子通过率,并根据所述离子通过率对所述待优化质谱仪的仪器参数进行优化处理。In a second aspect, the present application provides an optimization processing device based on a mass spectrometer, including: an acquisition module for acquiring the field radius of the mass spectrometer to be optimized, and determining the computational domain of the mass spectrometer to be optimized based on the field radius. ; The processing module is used to use the control variable method to determine the grid unit parameters of the computational domain, and divide the computational domain according to the grid unit parameters; the processing module is also used to obtain the Calculate the simulation equation of each grid unit in the domain and perform simulation calculations to obtain the ion pass rate of the mass spectrometer to be optimized, and optimize the instrument parameters of the mass spectrometer to be optimized based on the ion pass rate.
在一种具体实施方式中,所述处理模块,具体用于:获取多个第一网格单元参数,针对每个所述第一网格单元参数,根据所述第一网格单元参数对所述计算域进行划分处理;获取每个网格单元的模拟方程并进行模拟计算,以获取每个所述第一网格单元参数所对应的离子通过率;获取每个所述第一网格单元参数所对应的离子通过率与预设的离子通过率的差值,并确定多个所述差值中的最小值,将所述最小值对应的第一网格单元参数作为所述计算域的网格单元参数。In a specific implementation, the processing module is specifically configured to: obtain a plurality of first grid unit parameters, and for each first grid unit parameter, calculate the The calculation domain is divided; the simulation equation of each grid unit is obtained and simulation calculation is performed to obtain the ion passage rate corresponding to the parameters of each first grid unit; and the simulation equation of each first grid unit is obtained. The difference between the ion passage rate corresponding to the parameter and the preset ion passage rate is determined, and the minimum value among the plurality of differences is determined, and the first grid unit parameter corresponding to the minimum value is used as the calculation domain Grid unit parameters.
在一种具体实施方式中,所述计算域包括第一分区和第二分区;其中,所述第一分区的半径小于所述场半径,所述第二分区的外环半径大于所述场半径,所述第二分区的内环半径为所述第一分区的半径;则所述处理模块,具体用于:利用控制变量法,分别确定所述第一分区和第二分区的网格单元参数,并分别根据所述第一分区和第二分区的网格单元参数对所述第一分区和第二分区进行划分处理。In a specific implementation, the calculation domain includes a first partition and a second partition; wherein, the radius of the first partition is smaller than the field radius, and the outer ring radius of the second partition is larger than the field radius. , the inner ring radius of the second partition is the radius of the first partition; then the processing module is specifically used to: use the control variable method to determine the grid unit parameters of the first partition and the second partition respectively. , and divide the first partition and the second partition according to the grid unit parameters of the first partition and the second partition respectively.
在一种具体实施方式中,所述待优化质谱仪的仪器参数包括以下一项或多项的组合:电极杆半径,电极杆长度,直流电压幅值,交流电压幅值,交流电压频率,离子入射半径,以及离子入射角度。In a specific implementation, the instrument parameters of the mass spectrometer to be optimized include one or a combination of the following: electrode rod radius, electrode rod length, DC voltage amplitude, AC voltage amplitude, AC voltage frequency, ion Radius of incidence, and angle of incidence of ions.
第三方面,本申请提供一种电子设备,包括:处理器,存储器,通信接口;所述存储器用于存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行第一方面所述的基于质谱仪的优化处理方法。In a third aspect, the present application provides an electronic device, including: a processor, a memory, and a communication interface; the memory is used to store executable instructions of the processor; wherein the processor is configured to execute the executable instructions via The instructions are executed to perform the mass spectrometer-based optimization processing method described in the first aspect.
第四方面,本申请提供一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述的基于质谱仪的优化处理方法。In a fourth aspect, the present application provides a readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the mass spectrometer-based optimization processing method described in the first aspect is implemented.
本申请提供一种基于质谱仪的优化处理方法、装置、设备及介质,该方法包括:获取待优化质谱仪的场半径,并根据该场半径,确定该待优化质谱仪的计算域;利用控制变量法,确定该计算域的网格单元参数,并根据该网格单元参数对该计算域进行划分处理;获取该计算域中每个网格单元的模拟方程并进行模拟计算,以获取该待优化质谱仪的离子通过率,并根据该离子通过率对该待优化质谱仪的仪器参数进行优化处理。相较于现有技术采用非结构化网格剖分的方法划分四极场中的网格单元,本申请的基于质谱仪的优化处理方法,提供一种更为高效合理的网格划分方法,以通过在网格单元中进行模拟计算,对质谱仪的仪器参数进行优化,解决了现有技术中的网格可控性弱,计算耗时长,计算精度和稳定性较差的问题,能够更好地对质谱仪进行优化设计。This application provides an optimization processing method, device, equipment and medium based on a mass spectrometer. The method includes: obtaining the field radius of the mass spectrometer to be optimized, and determining the computational domain of the mass spectrometer to be optimized based on the field radius; using control Variable method, determine the grid unit parameters of the computational domain, and divide the computational domain according to the grid unit parameters; obtain the simulation equation of each grid unit in the computational domain and perform simulation calculations to obtain the to-be- Optimize the ion pass rate of the mass spectrometer, and optimize the instrument parameters of the mass spectrometer to be optimized based on the ion pass rate. Compared with the existing technology that uses unstructured meshing methods to divide the grid units in the quadrupole field, the mass spectrometer-based optimization processing method of this application provides a more efficient and reasonable meshing method. By optimizing the instrument parameters of the mass spectrometer by performing simulation calculations in the grid unit, it solves the problems in the existing technology of weak grid controllability, long calculation time, and poor calculation accuracy and stability, and can improve Optimize the design of the mass spectrometer.
附图说明Description of the drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly explain the embodiments of the present application or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description These are some embodiments of the present application. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting any creative effort.
图1为本申请提供的一种基于质谱仪的优化处理方法实施例一的流程示意图;Figure 1 is a schematic flow chart of Embodiment 1 of an optimization processing method based on a mass spectrometer provided by this application;
图2为一种四极杆质谱仪的四极场结构示意图;Figure 2 is a schematic diagram of the quadrupole field structure of a quadrupole mass spectrometer;
图3为本申请提供的一种基于质谱仪的优化处理方法实施例二的流程示意图;Figure 3 is a schematic flow chart of Embodiment 2 of an optimization processing method based on a mass spectrometer provided by this application;
图4为本申请提供的一种基于质谱仪的优化处理方法实施例三的流程示意图;Figure 4 is a schematic flow chart of Embodiment 3 of an optimized processing method based on a mass spectrometer provided by this application;
图5为本申请提供的一种四极杆质谱仪的四极场分区示意图;Figure 5 is a schematic diagram of the quadrupole field partition of a quadrupole mass spectrometer provided by this application;
图6为本申请提供的另一种四极杆质谱仪的四极场分区示意图;Figure 6 is a schematic diagram of the quadrupole field partitioning of another quadrupole mass spectrometer provided by this application;
图7为本申请提供的一种基于质谱仪的优化处理装置实施例的结构示意图;Figure 7 is a schematic structural diagram of an embodiment of an optimized processing device based on a mass spectrometer provided by this application;
图8为本申请提供的一种电子设备的结构示意图。Figure 8 is a schematic structural diagram of an electronic device provided by this application.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在根据本实施例的启示下作出的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments These are part of the embodiments of this application, but not all of them. Based on the embodiments in this application, all other embodiments made by those of ordinary skill in the art based on the inspiration of this embodiment fall within the scope of protection of this application.
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。The terms "first", "second", "third", "fourth", etc. (if present) in the description and claims of this application and the above-mentioned drawings are used to distinguish similar objects and are not necessarily used for Describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the application described herein can be practiced in sequences other than those illustrated or described herein. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusions, e.g., a process, method, system, product, or apparatus that encompasses a series of steps or units and need not be limited to those explicitly listed. Those steps or elements may instead include other steps or elements not expressly listed or inherent to the process, method, product or apparatus.
质谱分析技术是一种通过测量离子质荷比来进行离子分析的方法,通常用于分析包括同位素的无机元素,有机小分子,或者生物大分子,在生命科学、材料科学、环境科学、药物硏发、食品安全和石油化工等领域发挥着巨大而不可替代的作用。其中,四极杆质谱仪利用四极场中不同质荷比的离子稳定条件不同而使离子分离,具有结构简单、体积小、重量轻、价格便宜和清洗方便等优点,是目前应用最广泛的小型质谱仪之一。Mass spectrometry technology is a method of ion analysis by measuring the mass-to-charge ratio of ions. It is usually used to analyze inorganic elements including isotopes, organic small molecules, or biological macromolecules. It is used in life sciences, materials science, environmental science, and pharmaceuticals. It plays a huge and irreplaceable role in the fields of development, food safety and petrochemical industry. Among them, the quadrupole mass spectrometer uses the different stabilization conditions of ions with different mass-to-charge ratios in the quadrupole field to separate ions. It has the advantages of simple structure, small size, light weight, cheap price and easy cleaning. It is currently the most widely used. One of the small mass spectrometers.
在对四极杆质谱仪进行设计和优化的过程中,需要基于网格单元进行四极场的电场分析以及离子运动轨迹的预测和模拟。现有技术通常采用非结构化网格剖分的方法划分四极场中的网格单元,然而这种划分方法所得到的网格可控性弱,精密计算时网格数量常高达千万以上,计算耗时长,计算精度和稳定性也相对较差。In the process of designing and optimizing a quadrupole mass spectrometer, it is necessary to conduct electric field analysis of the quadrupole field and prediction and simulation of ion motion trajectories based on grid cells. The existing technology usually uses an unstructured meshing method to divide the grid units in the quadrupole field. However, the grid obtained by this division method has weak controllability, and the number of grids often reaches tens of millions in precise calculations. , the calculation takes a long time, and the calculation accuracy and stability are relatively poor.
基于上述技术问题,本申请的技术构思过程如下:如何提供一种更为高效合理的网格划分方法,解决现有技术网格可控性弱,计算耗时长,计算精度和稳定性较差的问题,以更好地对质谱仪进行优化设计。Based on the above technical problems, the technical conception process of this application is as follows: how to provide a more efficient and reasonable grid division method to solve the existing technical problems of weak grid controllability, long calculation time, and poor calculation accuracy and stability. issues to better optimize the design of mass spectrometers.
下面,通过具体实施例对本申请的技术方案进行详细说明。需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。Below, the technical solution of the present application will be described in detail through specific embodiments. It should be noted that the following specific embodiments can be combined with each other, and the same or similar concepts or processes may not be described again in some embodiments.
图1为本申请提供的一种基于质谱仪的优化处理方法实施例一的流程示意图。参见图1,该基于质谱仪的优化处理方法具体包括以下步骤:Figure 1 is a schematic flow chart of Embodiment 1 of an optimization processing method based on a mass spectrometer provided in this application. Referring to Figure 1, the mass spectrometer-based optimization processing method specifically includes the following steps:
步骤S101:获取待优化质谱仪的场半径,并根据该场半径,确定该待优化质谱仪的计算域。Step S101: Obtain the field radius of the mass spectrometer to be optimized, and determine the computational domain of the mass spectrometer to be optimized based on the field radius.
在本实施例中,可以获取待优化质谱仪的场半径。示例性地,可以基于已知的四极场的几何参数和物理参数,采用非结构化粗糙网格,计算四极场的电场分布,了解四极场的电场分布特性。In this embodiment, the field radius of the mass spectrometer to be optimized can be obtained. For example, based on the known geometric parameters and physical parameters of the quadrupole field, an unstructured rough grid can be used to calculate the electric field distribution of the quadrupole field and understand the electric field distribution characteristics of the quadrupole field.
图2为一种四极杆质谱仪的四极场结构示意图。如图2所示,R1、R2、R3和R4为质谱仪的四根电极杆。建立三维坐标系,R1、R2、R3和R4分别位于以场中心为原点的坐标轴上,电极R1与R2位于x轴,电极R3与R4位于y轴,电极杆的杆长方向为z轴方向。在该待优化质谱仪的四极场中,场半径为r0。Figure 2 is a schematic diagram of the quadrupole field structure of a quadrupole mass spectrometer. As shown in Figure 2, R1, R2, R3 and R4 are the four electrode rods of the mass spectrometer. Establish a three-dimensional coordinate system. R1, R2, R3 and R4 are respectively located on the coordinate axes with the field center as the origin. Electrodes R1 and R2 are located on the x-axis, electrodes R3 and R4 are located on the y-axis. The length direction of the electrode rod is the z-axis direction. . In the quadrupole field of the mass spectrometer to be optimized, the field radius is r 0 .
可以根据该场半径,确定该待优化质谱仪的计算域。计算域为对质谱仪的四极场进行电场分析以及离子运动轨迹的预测和模拟的区域,也即需进行网格划分的区域。根据四极场的场半径确定计算域,与质谱仪的其它参数无关,可以使本申请的基于质谱仪的优化处理方法不限于特定的四极场。示例性地,待优化质谱仪的计算域可以为半径为0.9r0的区域,如图2中的虚线所示;也可以为半径为1.1r0的区域,如图2中的点虚线所示。The computational domain of the mass spectrometer to be optimized can be determined based on the field radius. The computational domain is the area where the electric field analysis of the quadrupole field of the mass spectrometer and the prediction and simulation of ion trajectories are performed, that is, the area that needs to be meshed. The calculation domain is determined according to the field radius of the quadrupole field, regardless of other parameters of the mass spectrometer, so that the optimization processing method based on the mass spectrometer of the present application is not limited to a specific quadrupole field. For example, the computational domain of the mass spectrometer to be optimized can be an area with a radius of 0.9r 0 , as shown by the dotted line in Figure 2; it can also be an area with a radius of 1.1r 0 , as shown by the dotted line in Figure 2 .
步骤S102:利用控制变量法,确定该计算域的网格单元参数,并根据该网格单元参数对该计算域进行划分处理。Step S102: Use the control variable method to determine the grid unit parameters of the computational domain, and divide the computational domain according to the grid unit parameters.
在本实施例中,可以利用控制变量法,确定计算域的网格单元参数。计算域的网格单元参数可以为网格单元尺寸,包括网格单元在x、y、z轴上的大小。例如,网格单元参数可以为0.06mm,也可以为一个数值范围,例如0.01~0.09mm。In this embodiment, the control variable method can be used to determine the grid unit parameters of the calculation domain. The grid unit parameters of the computational domain can be the grid unit size, including the size of the grid unit on the x, y, and z axes. For example, the grid unit parameter can be 0.06mm, or it can be a numerical range, such as 0.01~0.09mm.
示例性地,可以设置多个网格单元参数,根据每个网格单元参数,对计算域进行划分处理。例如,设置多个网格单元参数分别为0.02mm、0.04mm、0.06mm以及0.08mm。分别根据这多个网格单元参数对计算域进行划分。For example, multiple grid unit parameters can be set, and the calculation domain can be divided according to each grid unit parameter. For example, set multiple grid unit parameters to 0.02mm, 0.04mm, 0.06mm and 0.08mm respectively. The calculation domain is divided according to these multiple grid unit parameters.
针对每种划分方式,获取每个网格单元的模拟方程并进行模拟计算,以获取每个网格单元参数所对应的离子通过率。例如,网格单元参数为0.02mm时,离子通过率为95%;网格单元参数为0.04mm时,离子通过率为93%;网格单元参数为0.06mm时,离子通过率为92%;网格单元参数为0.08mm时,离子通过率为90%。For each division method, obtain the simulation equation of each grid unit and perform simulation calculations to obtain the ion passage rate corresponding to each grid unit parameter. For example, when the grid unit parameter is 0.02mm, the ion pass rate is 95%; when the grid unit parameter is 0.04mm, the ion pass rate is 93%; when the grid unit parameter is 0.06mm, the ion pass rate is 92%; When the grid unit parameter is 0.08mm, the ion pass rate is 90%.
获取每个网格单元参数所对应的离子通过率与预设的离子通过率的差值,并确定多个差值中的最小值,将最小值对应的网格单元参数确定为计算域的网格单元参数。如前例所述,预设的离子通过率为96%,则确定网格单元参数为0.02mm时,离子通过率与预设的离子通过率的差值最小,可以将0.02mm确定为计算域的网格单元参数,并根据该网格单元参数对该计算域进行划分处理。Obtain the difference between the ion pass rate corresponding to each grid unit parameter and the preset ion pass rate, determine the minimum value among the multiple differences, and determine the grid unit parameter corresponding to the minimum value as the network of the calculation domain. Cell parameters. As mentioned in the previous example, the preset ion pass rate is 96%. When the grid unit parameter is determined to be 0.02mm, the difference between the ion pass rate and the preset ion pass rate is the smallest. 0.02mm can be determined as the calculation domain. Grid unit parameters, and divide the computational domain according to the grid unit parameters.
步骤S103:获取该计算域中每个网格单元的模拟方程并进行模拟计算,以获取该待优化质谱仪的离子通过率,并根据该离子通过率对该待优化质谱仪的仪器参数进行优化处理。Step S103: Obtain the simulation equation of each grid unit in the calculation domain and perform simulation calculations to obtain the ion pass rate of the mass spectrometer to be optimized, and optimize the instrument parameters of the mass spectrometer to be optimized based on the ion pass rate. deal with.
在本实施例中,对计算域进行划分处理之后,可以获取计算域中每个网格单元的模拟方程并进行模拟计算,获取待优化质谱仪的离子通过率,并根据该离子通过率对该待优化质谱仪的仪器参数进行优化处理。示例性地,可以根据待优化质谱仪的离子通过率与预设的离子通过率的差值,对待优化质谱仪的仪器参数进行调整,以实现对质谱仪的优化。In this embodiment, after dividing the computational domain, the simulation equation of each grid unit in the computational domain can be obtained and simulated calculations can be performed to obtain the ion pass rate of the mass spectrometer to be optimized, and the ion pass rate can be calculated based on the ion pass rate. The instrument parameters of the mass spectrometer to be optimized are optimized. For example, the instrument parameters of the mass spectrometer to be optimized can be adjusted according to the difference between the ion pass rate of the mass spectrometer to be optimized and a preset ion pass rate to achieve optimization of the mass spectrometer.
其中,待优化质谱仪的仪器参数可以包括电极杆半径,电极杆长度,直流电压幅值,交流电压幅值,交流电压频率,离子入射半径,以及离子入射角度。Among them, the instrument parameters of the mass spectrometer to be optimized may include electrode rod radius, electrode rod length, DC voltage amplitude, AC voltage amplitude, AC voltage frequency, ion incident radius, and ion incident angle.
在本实施例中,获取待优化质谱仪的场半径,并根据该场半径,确定该待优化质谱仪的计算域;利用控制变量法,确定该计算域的网格单元参数,并根据该网格单元参数对该计算域进行划分处理;获取该计算域中每个网格单元的模拟方程并进行模拟计算,以获取该待优化质谱仪的离子通过率,并根据该离子通过率对该待优化质谱仪的仪器参数进行优化处理。相较于现有技术采用非结构化网格剖分的方法划分四极场中的网格单元,本申请的基于质谱仪的优化处理方法,提供一种更为高效合理的网格划分方法,以通过在网格单元中进行模拟计算,对质谱仪的仪器参数进行优化,解决了现有技术中的网格可控性弱,计算耗时长,计算精度和稳定性较差的问题,能够更好地对质谱仪进行优化设计。In this embodiment, the field radius of the mass spectrometer to be optimized is obtained, and based on the field radius, the computational domain of the mass spectrometer to be optimized is determined; the control variable method is used to determine the grid unit parameters of the computational domain, and based on the network The grid cell parameters are used to divide the computational domain; the simulation equations of each grid unit in the computational domain are obtained and simulation calculations are performed to obtain the ion pass rate of the mass spectrometer to be optimized, and the ion pass rate to be optimized is calculated based on the ion pass rate. Optimize the instrument parameters of the mass spectrometer for optimization processing. Compared with the existing technology that uses unstructured meshing methods to divide the grid units in the quadrupole field, the mass spectrometer-based optimization processing method of this application provides a more efficient and reasonable meshing method. By optimizing the instrument parameters of the mass spectrometer by performing simulation calculations in the grid unit, it solves the problems in the existing technology of weak grid controllability, long calculation time, and poor calculation accuracy and stability, and can improve Optimize the design of the mass spectrometer.
图3为本申请提供的一种基于质谱仪的优化处理方法实施例二的流程示意图,在上述图1所示实施例的基础上,上述步骤S102具体包括以下步骤:Figure 3 is a schematic flow chart of Embodiment 2 of a mass spectrometer-based optimization processing method provided by this application. Based on the embodiment shown in Figure 1, the above step S102 specifically includes the following steps:
步骤S301:获取多个第一网格单元参数,针对每个第一网格单元参数,根据该第一网格单元参数对计算域进行划分处理。Step S301: Obtain a plurality of first grid unit parameters, and for each first grid unit parameter, divide the computational domain according to the first grid unit parameter.
步骤S302:获取每个网格单元的模拟方程并进行模拟计算,以获取每个第一网格单元参数所对应的离子通过率。Step S302: Obtain the simulation equation of each grid unit and perform simulation calculation to obtain the ion passage rate corresponding to each first grid unit parameter.
步骤S303:获取每个第一网格单元参数所对应的离子通过率与预设的离子通过率的差值,并确定多个差值中的最小值,将最小值对应的第一网格单元参数作为该计算域的网格单元参数。Step S303: Obtain the difference between the ion pass rate corresponding to each first grid unit parameter and the preset ion pass rate, determine the minimum value among the multiple differences, and add the first grid unit corresponding to the minimum value to The parameters serve as the grid cell parameters of this computational domain.
在本实施例中,可以利用控制变量法,确定计算域的网格单元参数。计算域的网格单元参数可以为网格单元尺寸,包括网格单元在x、y、z轴上的大小。例如,网格单元参数可以为0.06mm,也可以为一个数值范围,例如0.01~0.09mm。In this embodiment, the control variable method can be used to determine the grid unit parameters of the calculation domain. The grid unit parameters of the computational domain can be the grid unit size, including the size of the grid unit on the x, y, and z axes. For example, the grid unit parameter can be 0.06mm, or it can be a numerical range, such as 0.01~0.09mm.
具体地,可以获取多个第一网格单元参数,针对每个第一网格单元参数,根据该第一网格单元参数对计算域进行划分处理。示例性地,多个第一网格单元参数分别为0.02mm、0.04mm、0.06mm以及0.08mm。分别根据多个第一网格单元参数对计算域进行划分。Specifically, a plurality of first grid unit parameters can be obtained, and for each first grid unit parameter, the calculation domain is divided according to the first grid unit parameter. For example, the plurality of first grid unit parameters are 0.02mm, 0.04mm, 0.06mm and 0.08mm respectively. The calculation domain is divided according to the plurality of first grid unit parameters respectively.
针对每种划分方式,获取每个网格单元的模拟方程并进行模拟计算,以获取每个第一网格单元参数所对应的离子通过率。例如,第一网格单元参数为0.02mm时,离子通过率为95%;第一网格单元参数为0.04mm时,离子通过率为93%;第一网格单元参数为0.06mm时,离子通过率为92%;第一网格单元参数为0.08mm时,离子通过率为90%。For each division method, obtain the simulation equation of each grid unit and perform simulation calculations to obtain the ion passage rate corresponding to each first grid unit parameter. For example, when the first grid unit parameter is 0.02mm, the ion pass rate is 95%; when the first grid unit parameter is 0.04mm, the ion pass rate is 93%; when the first grid unit parameter is 0.06mm, the ion pass rate is 93%. The pass rate is 92%; when the first grid unit parameter is 0.08mm, the ion pass rate is 90%.
获取每个第一网格单元参数所对应的离子通过率与预设的离子通过率的差值,并确定多个差值中的最小值,将最小值对应的第一网格单元参数确定为计算域的网格单元参数。如前例所述,预设的离子通过率为96%,则确定第一网格单元参数为0.02mm时,离子通过率与预设的离子通过率的差值最小,可以将0.02mm确定为计算域的网格单元参数,并根据该网格单元参数对该计算域进行划分处理。Obtain the difference between the ion pass rate corresponding to each first grid unit parameter and the preset ion pass rate, determine the minimum value among the multiple differences, and determine the first grid unit parameter corresponding to the minimum value as Grid cell parameters of the computational domain. As mentioned in the previous example, the preset ion pass rate is 96%, then when the first grid unit parameter is determined to be 0.02mm, the difference between the ion pass rate and the preset ion pass rate is the smallest, and 0.02mm can be determined as the calculation The grid unit parameters of the domain, and the calculation domain is divided according to the grid unit parameters.
在本实施例中,利用控制变量法,确定计算域的网格单元参数,能够确定一种高效合理的网格划分方法,进一步解决了现有技术网格可控性弱,计算耗时长,计算精度和稳定性也相对较差的问题,能够更好地对质谱仪进行优化设计。In this embodiment, the control variable method is used to determine the grid unit parameters of the calculation domain, and an efficient and reasonable grid division method can be determined, which further solves the problem of weak grid controllability, long calculation time and long calculation time in the existing technology. The accuracy and stability are also relatively poor, which can better optimize the design of the mass spectrometer.
图4为本申请提供的一种基于质谱仪的优化处理方法实施例三的流程示意图,在上述图1至图3所示实施例的基础上,参见图4,该基于质谱仪的优化处理具体包括以下步骤:Figure 4 is a schematic flow chart of Embodiment 3 of a mass spectrometer-based optimization processing method provided by the present application. Based on the above embodiments shown in Figures 1 to 3, see Figure 4 for details of the mass spectrometer-based optimization processing. Includes the following steps:
步骤S401:获取待优化质谱仪的场半径,并根据该场半径,确定该待优化质谱仪的计算域。Step S401: Obtain the field radius of the mass spectrometer to be optimized, and determine the computational domain of the mass spectrometer to be optimized based on the field radius.
在本实施例中,该计算域包括第一分区和第二分区;其中,该第一分区的半径小于该场半径,该第二分区的外环半径大于该场半径,该第二分区的内环半径为该第一分区的半径。In this embodiment, the calculation domain includes a first partition and a second partition; wherein, the radius of the first partition is smaller than the field radius, the outer ring radius of the second partition is larger than the field radius, and the inner radius of the second partition is smaller than the field radius. The ring radius is the radius of the first partition.
在本实施例中,可以将计算域分为第一分区Z1和第二分区Z2。图5为本申请提供的一种四极杆质谱仪的四极场分区示意图。如图5所示,待优化质谱仪的四极场中,场半径为r0。第一分区Z1的半径Rin1可以为0.9r0,第二分区Z2的外环半径Rin2可以为1.1r0,内环半径为第一分区Z1的半径0.9r0。In this embodiment, the calculation domain can be divided into a first partition Z1 and a second partition Z2. Figure 5 is a schematic diagram of the quadrupole field partition of a quadrupole mass spectrometer provided by this application. As shown in Figure 5, in the quadrupole field of the mass spectrometer to be optimized, the field radius is r 0 . The radius R in1 of the first zone Z1 may be 0.9r 0 , the outer ring radius R in2 of the second zone Z2 may be 1.1r 0 , and the inner ring radius may be the radius 0.9r 0 of the first zone Z1.
在本实施例中,计算域还可以包括第三分区Z3和第二分区Z4。示例性地,第三分区Z3的外环半径Rin3可以为2.41r0,内环半径为第二分区Z2的外环半径Rin2。第四分区Z4的外环半径可以为四极场的外壳半径,内环半径为第三分区Z3的外环半径Rin3。In this embodiment, the computing domain may also include a third partition Z3 and a second partition Z4. For example, the outer ring radius R in3 of the third zone Z3 may be 2.41r 0 , and the inner ring radius is the outer ring radius R in2 of the second zone Z2. The outer ring radius of the fourth zone Z4 may be the outer ring radius of the quadrupole field, and the inner ring radius may be the outer ring radius R in3 of the third zone Z3.
依据四极场对离子影响的大小程度,第一分区Z1是四极场中的关键计算区域,也是进行网格划分的重点区域;第二分区Z2是四极场中较为重要的计算区域,也是进行网格划分的重点区域;第三分区Z3是四极场中的过渡区域,进行网格划分时可以适当粗化,减少网格数量;第四分区Z4是四极场中的边缘区域,进行网格划分时粗化,减少网格数量。如此,可以更为合理地对计算域进行网格划分,提高计算精度和稳定性的同时,减少计算量和计算耗时。According to the degree of influence of the quadrupole field on ions, the first partition Z1 is a key calculation area in the quadrupole field and a key area for grid division; the second partition Z2 is a more important calculation area in the quadrupole field and is also The key area for meshing; the third partition Z3 is the transition area in the quadrupole field, which can be appropriately coarsened to reduce the number of meshes; the fourth partition Z4 is the edge area in the quadrupole field, which can be The mesh is coarsened and the number of meshes is reduced. In this way, the computational domain can be meshed more reasonably, improving calculation accuracy and stability while reducing the amount of calculations and time-consuming calculations.
步骤S402:利用控制变量法,分别确定该第一分区和第二分区的网格单元参数,并分别根据该第一分区和第二分区的网格单元参数对该第一分区和第二分区进行划分处理。Step S402: Use the control variable method to determine the grid unit parameters of the first partition and the second partition respectively, and perform the calculation on the first partition and the second partition according to the grid unit parameters of the first partition and the second partition respectively. Division processing.
在本实施例中,可以分别利用控制变量法,确定第一分区的网格单元参数和第二分区的网格单元参数。网格单元参数可以为网格单元尺寸,包括网格单元在x、y、z轴上的大小。例如,网格单元参数可以为0.06mm,也可以为一个数值范围,例如0.01~0.09mm。还可以分别利用控制变量法,确定第三分区的网格单元参数和第四分区的网格单元参数。在对每个分区利用控制变量法确定网格单元参数时,保持其它分区的网格单元参数不变。In this embodiment, the control variable method can be used to determine the grid unit parameters of the first partition and the grid unit parameters of the second partition. The grid unit parameter can be the grid unit size, including the size of the grid unit on the x, y, and z axes. For example, the grid unit parameter can be 0.06mm, or it can be a numerical range, such as 0.01~0.09mm. The control variable method can also be used to determine the grid unit parameters of the third partition and the grid unit parameters of the fourth partition respectively. When determining the grid unit parameters using the control variable method for each partition, the grid unit parameters of other partitions remain unchanged.
示例性地,第一分区、第二分区、第三分区以及第四分区的网格单元参数可以如表1所示。For example, the grid unit parameters of the first partition, the second partition, the third partition and the fourth partition may be as shown in Table 1.
表1网格单元参数表Table 1 Grid unit parameter table
在本实施例中,可以分别根据第一分区、第二分区、第三分区以及第四分区的网格单元参数对第一分区、第二分区、第三分区以及第四分区进行划分处理。In this embodiment, the first partition, the second partition, the third partition and the fourth partition can be divided according to the grid unit parameters of the first partition, the second partition, the third partition and the fourth partition respectively.
示例性地,在进行结构化网格剖分时,为了便于控制每个分区内的网格单元尺寸,提高网格质量,还可以在第一分区的圆形区域采用钱币法进行结构化网格的剖分,第二分区、第三分区和第四分区用x=0、y=0线再切割成4等分,最终形成的x-y平面上结构化网格剖分区域。图6为本申请提供的另一种四极杆质谱仪的四极场分区示意图。如图6所示,第一分区中心正方形边长Lin0可以为1.15r0。For example, when performing structured meshing, in order to facilitate the control of the grid unit size in each partition and improve the mesh quality, the coin method can also be used to perform structured meshing in the circular area of the first partition. The second partition, the third partition and the fourth partition are then cut into 4 equal parts using the x=0, y=0 lines, finally forming a structured grid division area on the xy plane. Figure 6 is a schematic diagram of the quadrupole field partitioning of another quadrupole mass spectrometer provided by this application. As shown in Figure 6, the side length L in0 of the central square of the first partition can be 1.15r 0 .
在本实施例中,还可以利用变量控制法,调整第一分区、第二分区、第三分区和第四分区的分区参数,该分区参数可以为第一分区和第二分区的半径。具体地,可以在设置多个网格单元参数的同时,设置多个分区参数,根据每种分区参数以及网格单元参数的组合,对计算域进行划分处理。例如,针对第一分区,设置多个分区参数:0.7r0、0.9r0、r0以及1.1r0,分别对应多个网格单元参数0.02mm、0.04mm、0.06mm以及0.08mm。分别根据这多个分区参数以及网格单元参数的组合对计算域进行划分。In this embodiment, a variable control method can also be used to adjust the partition parameters of the first partition, the second partition, the third partition, and the fourth partition. The partition parameters can be the radii of the first partition and the second partition. Specifically, multiple partition parameters can be set while setting multiple grid unit parameters, and the calculation domain can be divided according to the combination of each partition parameter and the grid unit parameter. For example, for the first partition, multiple partition parameters are set: 0.7r 0 , 0.9r 0 , r 0 and 1.1r 0 , corresponding to multiple grid unit parameters of 0.02mm, 0.04mm, 0.06mm and 0.08mm respectively. The computational domain is divided according to the combination of these multiple partition parameters and grid unit parameters.
针对每种划分方式,获取每个网格单元的模拟方程并进行模拟计算,以获取每种分区参数和网格单元参数的组合所对应的离子通过率。获取每种组合所对应的离子通过率与预设的离子通过率的差值,并确定多个差值中的最小值,将最小值对应的分区参数和网格单元参数确定为第一分区的分区参数和网格单元参数。For each partitioning method, obtain the simulation equation of each grid unit and perform simulation calculations to obtain the ion passage rate corresponding to each combination of partition parameters and grid unit parameters. Obtain the difference between the ion pass rate corresponding to each combination and the preset ion pass rate, determine the minimum value among the multiple differences, and determine the partition parameters and grid unit parameters corresponding to the minimum value as the first partition Partition parameters and grid cell parameters.
步骤S403:获取该计算域中每个网格单元的模拟方程并进行模拟计算,以获取该待优化质谱仪的离子通过率,并根据该离子通过率对该待优化质谱仪的仪器参数进行优化处理。Step S403: Obtain the simulation equation of each grid unit in the calculation domain and perform simulation calculations to obtain the ion pass rate of the mass spectrometer to be optimized, and optimize the instrument parameters of the mass spectrometer to be optimized based on the ion pass rate. deal with.
在本实施例中,对计算域进行划分处理之后,可以获取计算域中每个网格单元的模拟方程并进行模拟计算,获取待优化质谱仪的离子通过率,并根据该离子通过率对该待优化质谱仪的仪器参数进行优化处理。示例性地,可以根据待优化质谱仪的离子通过率与预设的离子通过率的差值,对待优化质谱仪的仪器参数进行调整,以实现对质谱仪的优化。In this embodiment, after dividing the computational domain, the simulation equation of each grid unit in the computational domain can be obtained and simulated calculations can be performed to obtain the ion pass rate of the mass spectrometer to be optimized, and the ion pass rate can be calculated based on the ion pass rate. The instrument parameters of the mass spectrometer to be optimized are optimized. For example, the instrument parameters of the mass spectrometer to be optimized can be adjusted according to the difference between the ion pass rate of the mass spectrometer to be optimized and a preset ion pass rate to achieve optimization of the mass spectrometer.
其中,待优化质谱仪的仪器参数可以包括电极杆半径,电极杆长度,直流电压幅值,交流电压幅值,交流电压频率,离子入射半径,以及离子入射角度。Among them, the instrument parameters of the mass spectrometer to be optimized may include electrode rod radius, electrode rod length, DC voltage amplitude, AC voltage amplitude, AC voltage frequency, ion incident radius, and ion incident angle.
在本实施例中,计算域包括第一分区和第二分区,利用控制变量法,分别确定第一分区和第二分区的网格单元参数,并分别根据第一分区和第二分区的网格单元参数对第一分区和第二分区进行划分处理。可以依据四极场对离子影响的大小程度,分区对计算域进行网格划分,能够更为合理地对计算域进行网格划分,提高计算精度和稳定性的同时,减少计算量和计算耗时。In this embodiment, the calculation domain includes the first partition and the second partition. The control variable method is used to determine the grid unit parameters of the first partition and the second partition respectively. The unit parameters divide the first partition and the second partition. The computational domain can be meshed by partition according to the degree of influence of the quadrupole field on ions, which can mesh the computational domain more reasonably, improve calculation accuracy and stability, and reduce the amount of calculation and time-consuming calculation. .
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。The following are device embodiments of the present application, which can be used to execute method embodiments of the present application. For details not disclosed in the device embodiments of this application, please refer to the method embodiments of this application.
图7为本申请提供的一种基于质谱仪的优化处理装置实施例的结构示意图;如图7所示,该基于质谱仪的优化处理装置70包括:获取模块71以及处理模块72。其中,获取模块71用于获取待优化质谱仪的场半径,并根据该场半径,确定该待优化质谱仪的计算域;处理模块72用于利用控制变量法,确定该计算域的网格单元参数,并根据该网格单元参数对该计算域进行划分处理;处理模块72还用于获取该计算域中每个网格单元的模拟方程并进行模拟计算,以获取该待优化质谱仪的离子通过率,并根据该离子通过率对该待优化质谱仪的仪器参数进行优化处理。FIG. 7 is a schematic structural diagram of an embodiment of a mass spectrometer-based optimization processing device provided by this application; as shown in FIG. 7 , the mass spectrometer-based optimization processing device 70 includes: an acquisition module 71 and a processing module 72 . Among them, the acquisition module 71 is used to obtain the field radius of the mass spectrometer to be optimized, and determine the computational domain of the mass spectrometer to be optimized based on the field radius; the processing module 72 is used to determine the grid unit of the computational domain using the control variable method. parameters, and divide the calculation domain according to the grid unit parameters; the processing module 72 is also used to obtain the simulation equation of each grid unit in the calculation domain and perform simulation calculations to obtain the ions of the mass spectrometer to be optimized. pass rate, and optimize the instrument parameters of the mass spectrometer to be optimized based on the ion pass rate.
本申请实施例提供的基于质谱仪的优化处理装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。The mass spectrometer-based optimization processing device provided by the embodiments of the present application can execute the technical solutions shown in the above method embodiments. Its implementation principles and beneficial effects are similar and will not be described again here.
在一种可能的实施方案中,处理模块72具体用于获取多个第一网格单元参数,针对每个第一网格单元参数,根据该第一网格单元参数对该计算域进行划分处理;获取每个网格单元的模拟方程并进行模拟计算,以获取每个第一网格单元参数所对应的离子通过率;获取每个第一网格单元参数所对应的离子通过率与预设的离子通过率的差值,并确定多个差值中的最小值,将最小值对应的第一网格单元参数作为该计算域的网格单元参数。In a possible implementation, the processing module 72 is specifically configured to obtain a plurality of first grid unit parameters, and for each first grid unit parameter, divide the computational domain according to the first grid unit parameter. ; Obtain the simulation equation of each grid unit and perform simulation calculations to obtain the ion pass rate corresponding to each first grid unit parameter; Obtain the ion pass rate corresponding to each first grid unit parameter and the preset The difference between the ion passage rates is determined, and the minimum value among the multiple differences is determined, and the first grid cell parameter corresponding to the minimum value is used as the grid cell parameter of the calculation domain.
本申请实施例提供的基于质谱仪的优化处理装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。The mass spectrometer-based optimization processing device provided by the embodiments of the present application can execute the technical solutions shown in the above method embodiments. Its implementation principles and beneficial effects are similar and will not be described again here.
在一种可能的实施方案中,该计算域包括第一分区和第二分区;其中,该第一分区的半径小于该场半径,该第二分区的外环半径大于该场半径,该第二分区的内环半径为该第一分区的半径;则处理模块72具体用于利用控制变量法,分别确定该第一分区和第二分区的网格单元参数,并分别根据该第一分区和第二分区的网格单元参数对该第一分区和第二分区进行划分处理。In a possible implementation, the calculation domain includes a first partition and a second partition; wherein, the radius of the first partition is smaller than the field radius, the outer ring radius of the second partition is larger than the field radius, and the second partition The inner ring radius of the partition is the radius of the first partition; then the processing module 72 is specifically configured to use the control variable method to determine the grid unit parameters of the first partition and the second partition respectively, and according to the first partition and the second partition respectively. The grid unit parameters of the second partition divide the first partition and the second partition.
在一种可能的实施方案中,该待优化质谱仪的仪器参数包括以下一项或多项的组合:电极杆半径,电极杆长度,直流电压幅值,交流电压幅值,交流电压频率,离子入射半径,以及离子入射角度。In a possible implementation, the instrument parameters of the mass spectrometer to be optimized include one or a combination of the following: electrode rod radius, electrode rod length, DC voltage amplitude, AC voltage amplitude, AC voltage frequency, ion Radius of incidence, and angle of incidence of ions.
本申请实施例提供的基于质谱仪的优化处理装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。The mass spectrometer-based optimization processing device provided by the embodiments of the present application can execute the technical solutions shown in the above method embodiments. Its implementation principles and beneficial effects are similar and will not be described again here.
图8为本申请提供的一种电子设备的结构示意图。如图8所示,该电子设备80包括:处理器81,存储器82,以及通信接口83;其中,存储器82用于存储处理器81的可执行指令;处理器81配置为经由执行可执行指令来执行前述任一方法实施例中的技术方案。Figure 8 is a schematic structural diagram of an electronic device provided by this application. As shown in Figure 8, the electronic device 80 includes: a processor 81, a memory 82, and a communication interface 83; the memory 82 is used to store executable instructions of the processor 81; the processor 81 is configured to execute the executable instructions. Implement the technical solution in any of the foregoing method embodiments.
可选的,存储器82既可以是独立的,也可以跟处理器81集成在一起。Optionally, the memory 82 can be independent or integrated with the processor 81 .
可选的,当存储器82是独立于处理器81之外的器件时,电子设备80还可以包括:总线84,用于将上述器件连接起来。Optionally, when the memory 82 is a device independent of the processor 81, the electronic device 80 may also include a bus 84 for connecting the above devices.
该电子设备用于执行前述任一方法实施例中的技术方案,其实现原理和技术效果类似,在此不再赘述。The electronic device is used to execute the technical solutions in any of the foregoing method embodiments. Its implementation principles and technical effects are similar and will not be described again here.
本申请实施例还提供一种可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现前述任一实施例提供的技术方案。Embodiments of the present application also provide a readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the technical solution provided by any of the foregoing embodiments is implemented.
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Persons of ordinary skill in the art can understand that all or part of the steps to implement the above method embodiments can be completed by hardware related to program instructions. The aforementioned program can be stored in a computer-readable storage medium. When the program is executed, the steps including the above-mentioned method embodiments are executed; and the aforementioned storage media include: ROM, RAM, magnetic disks, optical disks and other media that can store program codes.
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或对其中部分或全部技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present application, but not to limit it; although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features can be equivalently replaced; and these modifications or substitutions do not deviate from the essence of the corresponding technical solutions from the technical solutions of the embodiments of the present application. scope.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311651249.4A CN117574744B (en) | 2023-12-04 | 2023-12-04 | A mass spectrometer-based optimization processing method, device, equipment and medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311651249.4A CN117574744B (en) | 2023-12-04 | 2023-12-04 | A mass spectrometer-based optimization processing method, device, equipment and medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN117574744A true CN117574744A (en) | 2024-02-20 |
| CN117574744B CN117574744B (en) | 2024-06-04 |
Family
ID=89889883
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311651249.4A Active CN117574744B (en) | 2023-12-04 | 2023-12-04 | A mass spectrometer-based optimization processing method, device, equipment and medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN117574744B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160181076A1 (en) * | 2014-12-18 | 2016-06-23 | Thermo Finnigan Llc | Tuning a Mass Spectrometer Using Optimization |
| CN113707532A (en) * | 2020-05-21 | 2021-11-26 | 株式会社岛津制作所 | Mass spectrometer, mass spectrometry method and detection system |
| CN115239011A (en) * | 2022-08-03 | 2022-10-25 | 南京品生医疗科技有限公司 | Triple quadrupole mass spectrometer parameter optimization method and device |
-
2023
- 2023-12-04 CN CN202311651249.4A patent/CN117574744B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160181076A1 (en) * | 2014-12-18 | 2016-06-23 | Thermo Finnigan Llc | Tuning a Mass Spectrometer Using Optimization |
| CN113707532A (en) * | 2020-05-21 | 2021-11-26 | 株式会社岛津制作所 | Mass spectrometer, mass spectrometry method and detection system |
| CN115239011A (en) * | 2022-08-03 | 2022-10-25 | 南京品生医疗科技有限公司 | Triple quadrupole mass spectrometer parameter optimization method and device |
Non-Patent Citations (1)
| Title |
|---|
| 陈喜: "利用控制变量法解决复杂的质谱仪类问题", 数理化解题研究, no. 22, 10 August 2021 (2021-08-10) * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN117574744B (en) | 2024-06-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112685928B (en) | A noise prediction method and system based on three-phase reactor sound source model | |
| Bertsch et al. | Odd-even mass differences from self-consistent mean field theory | |
| CN103902785B (en) | One kind is based on polynary probabilistic structural finite element model updating method | |
| Kuś et al. | Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references | |
| JP2023531132A (en) | Methods, apparatus, electronics, storage media and computer programs for training video recognition models | |
| CN106872944A (en) | A kind of sound localization method and device based on microphone array | |
| CN107748915A (en) | Compression method, device, equipment and the medium of deep neural network DNN models | |
| CN109765538A (en) | Method for Determining Scattered Fields of Inhomogeneous Medium Targets | |
| Luk | A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole | |
| CN117436330A (en) | Electromagnetic field calculation method, device and equipment based on physical constraint neural network | |
| CN112818619A (en) | Earphone active noise reduction simulation method and device | |
| CN114118173A (en) | Method, device and computer equipment for peak separation of overlapping peaks in mass spectrum | |
| Nomura et al. | Interplay between pairing and triaxial shape degrees of freedom in Os and Pt nuclei | |
| CN117574744A (en) | Optimization processing method, device, equipment and medium based on mass spectrometer | |
| CN104156604B (en) | Filter boundary frequency band control method and device based on genetic algorithm | |
| CN102495858A (en) | A method and system for obtaining a large value of 95 probability of power quality index | |
| Hamilton et al. | Revisiting implicit finite difference schemes for 3-D room acoustics simulations on GPU | |
| CN111784654A (en) | A method of insulator surface charge inversion based on digital image processing technology | |
| Dupuis et al. | Rare event simulation for rough energy landscapes | |
| CN108197381B (en) | Parameter Identification Method Based on Optimal Spatial Morphological Analysis | |
| Mitsou | Gravitational radiation from radial infall of a particle into a Schwarzschild black hole:<? format?> A numerical study of the spectra, quasinormal modes, and power-law tails | |
| CN111027228B (en) | Numerical analysis method and device for improving resolution of mass spectrometer | |
| CN105138819B (en) | Space computational fields calculate intensity surface generation method | |
| CN110516359A (en) | Structure Optimization Method of Power Transformer Electrostatic Ring Based on APDL and Response Surface Method | |
| CN114186168A (en) | Correlation analysis method and device for smart city network resources |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |