[go: up one dir, main page]

CN117597016A - Variable resistance memory device and electronic apparatus including the same - Google Patents

Variable resistance memory device and electronic apparatus including the same Download PDF

Info

Publication number
CN117597016A
CN117597016A CN202311052282.5A CN202311052282A CN117597016A CN 117597016 A CN117597016 A CN 117597016A CN 202311052282 A CN202311052282 A CN 202311052282A CN 117597016 A CN117597016 A CN 117597016A
Authority
CN
China
Prior art keywords
resistance change
memory device
change layer
layer
variable resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311052282.5A
Other languages
Chinese (zh)
Inventor
金世润
姜周宪
金宣浩
金裕珉
朴可篮
宋伣在
安东浩
杨承烈
禹明勋
李镇宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220153995A external-priority patent/KR20240026063A/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN117597016A publication Critical patent/CN117597016A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A variable resistance memory device and/or an electronic apparatus including the same are provided. The variable resistance memory device includes: a resistance-changing layer comprising a metal oxide having an oxygen deficiency of greater than or equal to about 9%; a semiconductor layer on the resistance change layer; a gate insulating layer on the semiconductor layer; and a plurality of gate electrodes spaced apart from each other on the gate insulating layer.

Description

可变电阻存储器件和包括其的电子设备Variable resistance memory device and electronic equipment including the same

对相关申请的交叉引用Cross-references to related applications

本申请基于2022年8月19日在韩国知识产权局提交的韩国专利申请No.10-2022-0104269和2022年11月16日在韩国知识产权局提交的韩国专利申请No.10-2022-0153995,并且要求其优先权,将其各自的公开内容全部通过引用引入本文中。This application is based on Korean Patent Application No. 10-2022-0104269 filed with the Korean Intellectual Property Office on August 19, 2022 and Korean Patent Application No. 10-2022-0153995 filed with the Korean Intellectual Property Office on November 16, 2022. , and claims the right of priority, the entire disclosure content of which is incorporated herein by reference.

技术领域Technical field

多种实例实施方式涉及包括可变电阻材料的存储器件和/或包括所述存储器件的电子设备。Various example embodiments relate to memory devices including variable resistance materials and/or electronic devices including the memory devices.

背景技术Background technique

非易失性存储器件包括多个存储单元,所述多个存储单元即使在电力被阻断或停止时也保持数据,且因此,能够在电力被供应时再次使用存储的数据。非易失性存储器件可用在如下的一种或多种中:手机、数码相机、便携式数字助理(PDA)、移动计算机设备、固定计算机设备、和其它设备。The nonvolatile memory device includes a plurality of memory cells that retain data even when power is interrupted or stopped, and therefore, the stored data can be used again when power is supplied. Non-volatile memory devices may be used in one or more of: cell phones, digital cameras, portable digital assistants (PDAs), mobile computing devices, stationary computing devices, and other devices.

近来,已经进行了对于在用于形成下一代神经形态计算平台或神经网络的芯片中使用三维(或竖直)NAND(或VNAND)结构的研究。Recently, research has been conducted on the use of three-dimensional (or vertical) NAND (or VNAND) structures in chips used to form next-generation neuromorphic computing platforms or neural networks.

发明内容Contents of the invention

提供包括可包含许多氧空位的电阻变化层的可变电阻存储器件和/或包括所述可变电阻存储器件的电子设备。A variable resistance memory device including a resistance change layer that may include a plurality of oxygen vacancies and/or an electronic device including the variable resistance memory device is provided.

额外的方面将部分地在随后的描述中阐明,且部分地将由所述描述明晰,或者可通过多方面地描述的实例实施方式的实践获悉。Additional aspects will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the variously described example embodiments.

根据多种实例实施方式,可变电阻存储器件包括:电阻变化层,其包括金属氧化物,所述金属氧化物包括第一金属元素和任选地第二金属元素,所述金属氧化物具有大于或等于约9%的缺氧率(氧缺乏比);在所述电阻变化层上的半导体层;在所述半导体层上的栅极绝缘层(栅绝缘层);和在所述栅极绝缘层上并且彼此间隔开的多个栅电极。According to various example embodiments, a variable resistance memory device includes a resistance change layer including a metal oxide including a first metal element and optionally a second metal element, the metal oxide having a thickness greater than or an oxygen deficiency rate (oxygen deficiency ratio) equal to about 9%; a semiconductor layer on the resistance change layer; a gate insulating layer (gate insulating layer) on the semiconductor layer; and on the gate insulating layer A plurality of gate electrodes on the layer and spaced apart from each other.

相对于所述电阻变化层的全部金属,所述第一金属元素的含量可大于或等于约50原子%。The content of the first metal element may be greater than or equal to about 50 atomic % relative to the total metal of the resistance change layer.

相对于所述电阻变化层的全部金属,所述第二金属元素的含量可小于或等于约35原子%。The content of the second metal element may be less than or equal to about 35 atomic % relative to the total metal of the resistance change layer.

所述第一金属元素可包括Ta、Ti、Sn、Cr、和Mn的至少一种。The first metal element may include at least one of Ta, Ti, Sn, Cr, and Mn.

所述第二金属元素可包括Hf、Al、Nb、La、Zr、Sc、W、V、和Mo的至少一种。The second metal element may include at least one of Hf, Al, Nb, La, Zr, Sc, W, V, and Mo.

所述可变电阻变化层可进一步包括Si。The variable resistance change layer may further include Si.

所述半导体层可配置成接收施加至其的具有小于或等于约4V的绝对值的写入电压。The semiconductor layer may be configured to receive a write voltage applied thereto having an absolute value less than or equal to about 4V.

所述可变电阻存储器件可进一步包括在所述半导体层和所述电阻变化层之间的氧化物层。The variable resistance memory device may further include an oxide layer between the semiconductor layer and the resistance change layer.

所述氧化物层的厚度可小于所述电阻变化层的厚度。The thickness of the oxide layer may be smaller than the thickness of the resistance change layer.

所述可变电阻变化层可包括在远离所述半导体层的方向上顺序地布置的第一电阻变化层和第二电阻变化层,且所述第一电阻变化层的缺氧率可大于所述第二电阻变化层的缺氧率。The variable resistance change layer may include a first resistance change layer and a second resistance change layer sequentially arranged in a direction away from the semiconductor layer, and the oxygen deficiency rate of the first resistance change layer may be greater than the Oxygen deficiency rate of the second resistance change layer.

所述多个栅电极的至少三个可周期性地布置,并且所述多个栅电极的所述至少三个的节距可小于或等于约20nm。At least three of the plurality of gate electrodes may be periodically arranged, and a pitch of the at least three of the plurality of gate electrodes may be less than or equal to about 20 nm.

所述可变电阻存储器件可进一步包括柱,其中所述电阻变化层、半导体层、和栅极绝缘层可以壳形状顺序地围绕所述柱,且所述多个栅电极和绝缘元件可以壳形状围绕所述栅极绝缘层。The variable resistance memory device may further include a pillar, wherein the resistance change layer, the semiconductor layer, and the gate insulating layer may sequentially surround the pillar in a shell shape, and the plurality of gate electrodes and the insulating elements may be in a shell shape. surrounding the gate insulating layer.

所述柱可包括绝缘材料。The posts may include insulating material.

所述柱可包括导电材料。The pillars may include electrically conductive material.

所述柱可配置成接收大于或等于施加至所述半导体层的电压的电压。The pillar may be configured to receive a voltage greater than or equal to the voltage applied to the semiconductor layer.

根据多种实例实施方式,可变电阻存储器件包括:电阻变化层,其包括具有大于或等于约9%的缺氧率且包含硅的金属氧化物;在所述电阻变化层上的半导体层;在所述半导体层上的栅极绝缘层;和在所述栅极绝缘层上彼此隔开的多个栅电极。According to various example embodiments, a variable resistance memory device includes: a resistance change layer including a metal oxide including silicon having an oxygen deficiency rate greater than or equal to about 9%; a semiconductor layer on the resistance change layer; a gate insulating layer on the semiconductor layer; and a plurality of gate electrodes spaced apart from each other on the gate insulating layer.

所述可变电阻变化层可包括Ta、Ti、Sn、Cr、和Mn的至少一种。The variable resistance change layer may include at least one of Ta, Ti, Sn, Cr, and Mn.

相对于所述电阻变化层的金属与硅之和,硅的含量可小于或等于约35原子%。The content of silicon may be less than or equal to about 35 atomic % relative to the sum of metal and silicon of the resistance change layer.

根据多种实例实施方式,可变电阻存储器件包括:电阻变化层,且包括具有大于或等于约9%的缺氧率的第一金属氧化物和具有小于9%的缺氧率的第二金属氧化物,其中所述第一金属氧化物的含量大于所述第二金属氧化物的含量;布置在所述电阻变化层上的半导体层;布置在所述半导体层上的栅极绝缘层;和在所述栅极绝缘层上布置成彼此隔开的多个栅电极。According to various example embodiments, a variable resistance memory device includes a resistance change layer and includes a first metal oxide having an oxygen deficiency rate greater than or equal to about 9% and a second metal having an oxygen deficiency rate less than 9%. an oxide, wherein the content of the first metal oxide is greater than the content of the second metal oxide; a semiconductor layer disposed on the resistance change layer; a gate insulating layer disposed on the semiconductor layer; and A plurality of gate electrodes are arranged spaced apart from each other on the gate insulating layer.

相对于所述电阻变化层中包括的全部金属,所述第二金属氧化物中包括的金属的含量可小于或等于约35原子%。The content of the metal included in the second metal oxide may be less than or equal to about 35 atomic % relative to the total metal included in the resistance change layer.

附图说明Description of drawings

由结合附图考虑的多种实例实施方式的以下描述,这些和/或其它方面将变得明晰和更容易理解,其中:These and/or other aspects will become apparent and better understood from the following description of various example embodiments, considered in conjunction with the accompanying drawings, in which:

图1为显示根据多种实例实施方式的可变电阻存储器件的示意性结构的图;1 is a diagram showing a schematic structure of a variable resistance memory device according to various example embodiments;

图2为图1的可变电阻存储器件的电路图例如等效电路图;Figure 2 is a circuit diagram such as an equivalent circuit diagram of the variable resistance memory device of Figure 1;

图3为图1的可变电阻存储器件的操作(运行)的实例概念图;FIG. 3 is a conceptual diagram of an example of operation of the variable resistance memory device of FIG. 1;

图4为显示根据多种实例实施方式的金属氧化物的缺氧率和形成电压之间的关系的图;4 is a graph showing the relationship between oxygen deficiency rate and formation voltage of metal oxides according to various example embodiments;

图5为显示根据多种实例实施方式的金属氧化物的缺氧率和形成电压之间的关系的图;5 is a graph showing the relationship between oxygen deficiency rate and formation voltage of metal oxides according to various example embodiments;

图6为显示根据多种实例实施方式的金属氧化物的氧形成能和缺氧率之间的关系的图;6 is a graph showing the relationship between oxygen formation energy and oxygen deficiency rate of metal oxides according to various example embodiments;

图7为显示根据多种实例实施方式的多种金属氧化物之间的氧形成能的差的图;7 is a graph showing differences in oxygen formation energies between various metal oxides according to various example embodiments;

图8A为显示使用铪氧化物作为电阻变化层的可变电阻存储器件的特征IV的图;8A is a diagram showing characteristic IV of a variable resistance memory device using hafnium oxide as a resistance change layer;

图8B为显示使用钽氧化物作为电阻变化层的可变电阻存储器件的特征IV的图;8B is a diagram showing characteristic IV of a variable resistance memory device using tantalum oxide as a resistance change layer;

图9为根据多种实例实施方式的可变电阻存储器件的结构图;9 is a structural diagram of a variable resistance memory device according to various example embodiments;

图10为图9的可变电阻存储器件的电路图例如等效电路图;Figure 10 is a circuit diagram such as an equivalent circuit diagram of the variable resistance memory device of Figure 9;

图11为显示根据多种实例实施方式的包括多个电阻变化层的可变电阻存储器件的一部分的图;11 is a diagram showing a portion of a variable resistance memory device including a plurality of resistance change layers in accordance with various example embodiments;

图12为显示根据多种实例实施方式的进一步包括氧化物层的可变电阻存储器件的一部分的图;12 is a diagram showing a portion of a variable resistance memory device further including an oxide layer, in accordance with various example embodiments;

图13为根据多种实例实施方式的包括导电柱的可变电阻存储器件的图;13 is a diagram of a variable resistance memory device including conductive pillars, according to various example embodiments;

图14为根据多种实例实施方式的包括可变电阻存储器件的电子设备的示意性框图;14 is a schematic block diagram of an electronic device including a variable resistance memory device according to various example embodiments;

图15为根据多种实例实施方式的包括可变电阻存储器件的存储系统的示意性框图;和15 is a schematic block diagram of a memory system including a variable resistance memory device, according to various example embodiments; and

图16为根据多种实例实施方式的包括存储器件的神经形态装置的示意图。Figure 16 is a schematic diagram of a neuromorphic device including a memory device, according to various example embodiments.

具体实施方式Detailed ways

现在将对多种实施方式详细地进行介绍,其实例说明于附图中,其中相同的附图标记始终指的是相同的元件。在这点上,本实施方式可具有不同的形式且不应被解释为限于本文中阐明的描述。因此,下面仅通过参考附图描述实例实施方式以说明方面。如本文中使用的,术语“和/或”包括相关列举项目的一个或多个的任何和全部组合。表述诸如“的至少一个(种)”当在要素列表之前或之后时,修饰整个要素列表且不修饰所述列表的单独要素。Various embodiments will now be described in detail, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. In this regard, the present embodiments may have different forms and should not be construed as limited to the description set forth herein. Accordingly, example embodiments are described below merely to illustrate aspects, by referring to the drawings. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Expressions such as "at least one of" when preceding or following a list of elements, modify the entire list of elements and do not modify the individual elements of the list.

在本说明书的多个部分中描述的表述诸如“在一些实施方式中”、“根据多种实例实施方式”等不一定指的是彼此相同的要素。Phrases such as “in some embodiments,” “according to various example embodiments,” etc., described in various sections of this specification do not necessarily refer to the same elements as each other.

一种或多种实例实施方式可作为功能块组件和多种处理操作描述。这样的功能块的全部或部分可通过配置成执行所说明的功能的任何数量的硬件和/或软件组件实现。例如,公开内容的功能块可以一个或多个微处理器或以用于一定功能的电路结构实施。此外,例如,公开内容的功能块可以多种编程或脚本语言实施。功能块可以通过一个或多个处理器执行的算法实施。此外,公开内容可采用用于电子器件配置、信号处理和/或数据控制的常规技术。术语诸如“机构”、“元件”、“组件”等不限于机械和物理组件。One or more example implementations may be described as functional block components and various processing operations. All or part of such functional blocks may be implemented by any number of hardware and/or software components configured to perform the illustrated functions. For example, the functional blocks of the disclosure may be implemented in one or more microprocessors or in a circuit structure for certain functions. Additionally, for example, the functional blocks of the disclosure may be implemented in a variety of programming or scripting languages. Functional blocks may be implemented by algorithms executed by one or more processors. Additionally, the disclosure may employ conventional techniques for electronic device configuration, signal processing, and/or data control. Terms such as "mechanism," "element," "component," etc. are not limited to mechanical and physical components.

此外,附图中所示的连接线或连接体意图代表各元件之间的实例功能关系和/或物理或逻辑耦合。应注意,许多替代性的或额外的功能关系、物理连接或逻辑连接可存在于实际器件中。Furthermore, the connecting lines or connections shown in the figures are intended to represent example functional relationships and/or physical or logical couplings between various elements. It should be noted that many alternative or additional functional relationships, physical connections, or logical connections may exist in an actual device.

在本说明书中使用的术语诸如“包含”或“包括”不应被解释为使得必须包括说明书中描述的多种组件或多种操作的全部。相反,将理解,可不包括组件的一些或操作的一些,或者可进一步包括额外的组件或操作。Terms such as "comprises" or "includes" used in this specification should not be construed as requiring that all of the various components or various operations described in the specification are included. Rather, it will be understood that some components or operations may be excluded, or additional components or operations may be further included.

下文中,将理解,当一个元件被称为“在”另外的元件“上”或“上方”时,所述元件可直接在所述另外的元件上方或下面或右侧或左侧,或者其间还可存在中间元件。下文中,将参照附图详细地描述多种实例实施方式。In the following text, it will be understood that when an element is referred to as being "on" or "above" another element, it can be directly above or below or to the right or left side of the further element, or between Intermediate elements may also be present. Hereinafter, various example implementations will be described in detail with reference to the accompanying drawings.

尽管术语诸如“第一”、“第二”等可在本文中用于描述多种元件,但是这些术语不限制所述元件。这些术语仅用于使一个元件区别于另一个。Although terms such as "first," "second," etc. may be used herein to describe various elements, these terms do not limit the elements. These terms are only used to distinguish one element from another.

下文中,将参照附图详细地描述实例实施方式。Hereinafter, example embodiments will be described in detail with reference to the accompanying drawings.

图1为显示根据多种实例实施方式的可变电阻存储器件100的示意性结构的图,图2为图1的可变电阻存储器件100的电路图,且图3为显示图1的可变电阻存储器件100的操作的实例概念图。FIG. 1 is a diagram showing a schematic structure of a variable resistance memory device 100 according to various example embodiments, FIG. 2 is a circuit diagram of the variable resistance memory device 100 of FIG. 1 , and FIG. 3 is a diagram showing the variable resistance memory device 100 of FIG. 1 An example conceptual diagram of the operation of memory device 100.

参考图1,可变电阻存储器件100可包括电阻变化层122、布置在电阻变化层122上的半导体层123、布置在半导体层123上的栅极绝缘层124、和布置在栅极绝缘层124上的多个栅电极131。用于使彼此相邻的多个栅电极131绝缘的绝缘元件132可进一步布置在多个栅电极131之间。然而,其仅为实例,且可省略绝缘元件132。Referring to FIG. 1 , the variable resistance memory device 100 may include a resistance change layer 122 , a semiconductor layer 123 disposed on the resistance change layer 122 , a gate insulating layer 124 disposed on the semiconductor layer 123 , and a gate insulating layer 124 disposed on the semiconductor layer 123 . a plurality of gate electrodes 131 on. An insulating element 132 for insulating the plurality of gate electrodes 131 adjacent to each other may be further disposed between the plurality of gate electrodes 131 . However, this is only an example, and the insulating element 132 may be omitted.

电阻变化层122可包括具有根据施加的电压而改变的电阻的材料。电阻变化层122可根据施加至栅电极131的一个或多个电压而从高电阻状态变化到低电阻状态或者从低电阻状态变化到高电阻状态。The resistance change layer 122 may include a material having resistance that changes according to applied voltage. The resistance change layer 122 may change from a high resistance state to a low resistance state or from a low resistance state to a high resistance state according to one or more voltages applied to the gate electrode 131 .

电阻变化层122可以比使用相变材料的其它可变电阻存储器件和/或另外的基于电荷俘获的可变电阻存储器件小的厚度实现期望的变化范围。电阻变化层122的厚度可小于或等于100nm或小于或等于5nm。电阻变化层122的厚度可大于或等于1nm。The resistance change layer 122 may have a smaller thickness to achieve a desired variation range than other variable resistance memory devices using phase change materials and/or additional charge trapping based variable resistance memory devices. The thickness of the resistance change layer 122 may be less than or equal to 100 nm or less than or equal to 5 nm. The thickness of the resistance change layer 122 may be greater than or equal to 1 nm.

电阻变化层122可包括具有滞后特性(磁滞特性,hysteresis characteristic)的材料。例如,电阻变化层122可包括金属氧化物。电阻变化层122可包括如下的至少两种:TaOx、TiOx、SnOx、CrOx、MnOx、HfOx、AlOx、SiOx、NbOx、LaOx、ZrOx、ScOx、WOx、VOx、和MoOx。The resistance change layer 122 may include a material having hysteresis characteristics. For example, the resistance change layer 122 may include metal oxide. The resistance change layer 122 may include at least two of the following: TaOx, TiOx, SnOx, CrOx, MnOx, HfOx, AlOx, SiOx, NbOx, LaOx, ZrOx, ScOx, WOx, VOx, and MoOx.

在一些实例实施方式中,电阻变化层122的电阻变化可为由于氧空位所致的现象。当在电阻变化层122中存在许多氧空位时,可形成,例如,可容易地形成导电丝。所述导电丝可使电阻变化层122变化至低电阻状态,使得电流可流动通过电阻变化层122,且因此,可变电阻存储器件100可操作,例如以存储逻辑数据诸如逻辑“0”或逻辑“1”。当电阻变化层122包括其中可容易地形成氧空位的材料时,可变电阻存储器件100可良好地操作,例如即使当施加至电阻变化层122或半导体层123的电压的绝对值降低时也是如此。下面将描述其中可更容易地形成氧空位的电阻变化层122的材料。In some example implementations, the resistance change of resistance change layer 122 may be a phenomenon due to oxygen vacancies. When there are many oxygen vacancies in the resistance change layer 122, for example, conductive threads can be easily formed. The conductive filaments can cause the resistance change layer 122 to change to a low resistance state such that current can flow through the resistance change layer 122 and, therefore, the variable resistance memory device 100 can operate, for example, to store logic data such as logic "0" or logic "1". When the resistance change layer 122 includes a material in which oxygen vacancies can be easily formed, the variable resistance memory device 100 can operate well, for example, even when the absolute value of the voltage applied to the resistance change layer 122 or the semiconductor layer 123 decreases. . Materials of the resistance change layer 122 in which oxygen vacancies can be formed more easily will be described below.

半导体层123可包括多晶Si或多晶硅诸如掺杂的或未掺杂的多晶硅。半导体层123的材料不限于多晶Si。例如,多种半导体材料诸如Ge、IGZO(铟镓锌氧化物)、GaAs等的一种或多种可替代性地或额外地包括在半导体层123中。The semiconductor layer 123 may include polycrystalline Si or polycrystalline silicon such as doped or undoped polycrystalline silicon. The material of the semiconductor layer 123 is not limited to polycrystalline Si. For example, one or more of various semiconductor materials such as Ge, IGZO (Indium Gallium Zinc Oxide), GaAs, etc. may alternatively or additionally be included in the semiconductor layer 123 .

源电极S和漏电极D可分别连接至半导体层123的两端。The source electrode S and the drain electrode D may be connected to both ends of the semiconductor layer 123 respectively.

栅极绝缘层124可包括多种类型的绝缘材料。例如,在栅极绝缘层124中可包括氧化硅、氮化硅、或氧氮化硅。Gate insulating layer 124 may include various types of insulating materials. For example, silicon oxide, silicon nitride, or silicon oxynitride may be included in the gate insulating layer 124 .

可向多个栅电极131各自选择性地施加用于导通/关断半导体层123的电压、例如相同或不同的电压。A voltage for turning on/off the semiconductor layer 123 , for example, the same or different voltages, may be selectively applied to each of the plurality of gate electrodes 131 .

如所示的可变电阻存储器件100可具有其中多个存储单元MC成阵列的结构,其中存储单元MC各自可具有其中晶体管和可变电阻并联连接的形式,如图2的等效或对应电路中所示。The variable resistance memory device 100 as shown may have a structure in which a plurality of memory cells MC are arrayed, wherein each of the memory cells MC may have a form in which a transistor and a variable resistance are connected in parallel, as in the equivalent or corresponding circuit of FIG. 2 shown in .

参照图3描述可变电阻存储器件100的操作。The operation of the variable resistance memory device 100 is described with reference to FIG. 3 .

为了选择存储单元,例如选择用于读取的存储单元,控制逻辑(未示出)可执行控制操作以向特定的存储单元MC2的栅电极131施加关断电压OFF和向剩余的存储单元MC1和MC3的栅电极131施加导通电压ON。关断电压OFF可配置成关断晶体管和控制电流不流动通过所选择的存储单元MC2中包括的晶体管的半导体层123。导通电压ON可配置成导通晶体管和控制电流流动通过未选择的存储单元MC1和MC3中包括的晶体管的半导体层123。因此,与所选择的存储单元MC2对应的半导体层123可具有绝缘性质,且与未选择的存储单元MC1和MC3对应的半导体层123可具有导电性质。In order to select a memory cell, for example, to select a memory cell for reading, the control logic (not shown) may perform a control operation to apply the turn-off voltage OFF to the gate electrode 131 of the specific memory cell MC2 and to the remaining memory cells MC1 and On-voltage ON is applied to the gate electrode 131 of MC3. The turn-off voltage OFF may be configured to turn off the transistor and control current not to flow through the semiconductor layer 123 of the transistor included in the selected memory cell MC2. The turn-on voltage ON may be configured to turn on the transistors and control the flow of current through the semiconductor layer 123 of the transistors included in the unselected memory cells MC1 and MC3. Therefore, the semiconductor layer 123 corresponding to the selected memory cell MC2 may have insulating properties, and the semiconductor layer 123 corresponding to the unselected memory cells MC1 and MC3 may have conductive properties.

关断电压OFF和导通电压ON可根据电阻变化层122、半导体层123、栅极绝缘层124、和栅电极131中包括的材料的类型、厚度等的一种或多种而改变。例如,当关断电压OFF为负电压时,关断电压OFF可大于或等于约-10V且小于或等于约-2V。当导通电压ON为正电压时,导通电压ON可大于约0V且小于或等于约10V。可向未选择的存储单元MC1和MC3施加相同值的导通电压ON,或者可向未选择的存储单元MC1和MC3施加不同值的导通电压ON。The turn-off voltage OFF and the turn-on voltage ON may change according to one or more types, thicknesses, and the like of materials included in the resistance change layer 122 , the semiconductor layer 123 , the gate insulating layer 124 , and the gate electrode 131 . For example, when the turn-off voltage OFF is a negative voltage, the turn-off voltage OFF may be greater than or equal to about -10V and less than or equal to about -2V. When the turn-on voltage ON is a positive voltage, the turn-on voltage ON may be greater than about 0V and less than or equal to about 10V. The same value of on-voltage ON may be applied to unselected memory cells MC1 and MC3, or different values of on-voltage ON may be applied to unselected memory cells MC1 and MC3.

在写入操作中,当在源电极S和漏电极D之间施加写入电压时,可如由箭头A所示地形成电流路径(通路),使得电阻变化层122的电阻可变化。通过使用该原理,信息可被存储在电阻变化层122中。电阻变化层122的电阻变化的原因可为因为当电流在电阻变化层122中流动时,可形成氧空位Vo和/或填隙氧离子,且氧空位可聚集以形成导电丝。由氧空位形成的导电丝可具有低的电阻,且因此,电阻变化层122的电阻可变化。In the writing operation, when a writing voltage is applied between the source electrode S and the drain electrode D, a current path (path) may be formed as shown by arrow A, so that the resistance of the resistance change layer 122 may be changed. By using this principle, information can be stored in the resistance change layer 122 . The reason for the change in resistance of the resistance change layer 122 may be that when current flows in the resistance change layer 122, oxygen vacancies Vo and/or interstitial oxygen ions may be formed, and the oxygen vacancies may aggregate to form conductive filaments. The conductive filaments formed by oxygen vacancies may have low resistance, and therefore, the resistance of the resistance change layer 122 may vary.

为了使用可变电阻存储器件100,可期望在电阻变化层122的高电阻状态的电阻和低电阻状态的电阻之间存在大的差,且为此,可期望可在电阻变化层122中容易地形成氧空位。特别地,合乎期望地,氧空位可在电阻变化层122中更容易地形成,以通过降低可施加至可变电阻存储器件100的操作电压例如写入电压或擦除电压的绝对值而防止或减小半导体层123的恶化。In order to use the variable resistance memory device 100, it is expected that a large difference exists between the resistance in the high resistance state and the resistance in the low resistance state of the resistance change layer 122, and for this reason, it is expected that the resistance change layer 122 can easily Oxygen vacancies are formed. In particular, it is desirable that oxygen vacancies may be formed more easily in the resistance change layer 122 to prevent or Deterioration of the semiconductor layer 123 is reduced.

根据多种实例实施方式的电阻变化层122可包括具有高的缺氧率的金属氧化物。例如,电阻变化层122可为或者可包括具有大于或等于9原子%的缺氧率的金属氧化物。在实施方式中,所述缺氧率可小于或等于25原子%、小于或等于20原子%、小于或等于18原子%、或者小于或等于16.5原子%。缺氧率可通过以下方程1定义。The resistance change layer 122 according to various example embodiments may include a metal oxide having a high oxygen deficiency rate. For example, the resistance change layer 122 may be or may include a metal oxide having an oxygen deficiency rate greater than or equal to 9 atomic %. In embodiments, the oxygen deficiency rate may be less than or equal to 25 atomic %, less than or equal to 20 atomic %, less than or equal to 18 atomic %, or less than or equal to 16.5 atomic %. The hypoxia rate can be defined by Equation 1 below.

[方程1][Equation 1]

这里,M1、M2、M3、M4、M5和O分别表示单价金属元素含量、二价金属元素含量、三价金属元素含量、四价金属元素含量、五价金属元素含量、和氧含量。Here, M1, M2, M3, M4, M5 and O respectively represent monovalent metal element content, divalent metal element content, trivalent metal element content, tetravalent metal element content, pentavalent metal element content and oxygen content.

高的缺氧率可表示,与金属正离子相比,存在相对较少的氧离子,且因此,具有高的缺氧率的金属氧化物可具有增加的氧空位含量。当在电阻变化层122中存在许多氧空位时,所述电阻变化层的电阻状态可容易地变化,且因此,可变电阻存储器件100的特性可改善。替代地或额外地,当存在许多氧空位时,当施加电压时可更容易形成导电丝,且因此,形成电压可降低以使可变电阻存储器件100的操作电压降低。A high oxygen deficiency rate may indicate that relatively few oxygen ions are present compared to metal cations, and therefore, a metal oxide with a high oxygen deficiency rate may have an increased oxygen vacancy content. When there are many oxygen vacancies in the resistance change layer 122, the resistance state of the resistance change layer can be easily changed, and therefore, the characteristics of the variable resistance memory device 100 can be improved. Alternatively or additionally, when many oxygen vacancies are present, the conductive filaments may be formed more easily when a voltage is applied, and therefore, the formation voltage may be reduced so that the operating voltage of the variable resistance memory device 100 is reduced.

根据多种实例实施方式的电阻变化层122可包括具有大于或等于9%的缺氧率的二元金属氧化物或具有大于或等于9%的缺氧率的三元金属氧化物。The resistance change layer 122 according to various example embodiments may include a binary metal oxide having an oxygen deficiency rate greater than or equal to 9% or a ternary metal oxide having an oxygen deficiency rate greater than or equal to 9%.

电阻变化层122中包括的二元金属氧化物可包括TaOx、TiOx、SnOx、CrOx、和MnOx的至少一种。The binary metal oxide included in the resistance change layer 122 may include at least one of TaOx, TiOx, SnOx, CrOx, and MnOx.

电阻变化层122可为或包括三元金属氧化物,并且可包括彼此不同的第一金属元素和第二金属元素、以及氧元素。在所述金属氧化物中,所述第一金属元素的含量可大于所述第二金属元素的含量。例如,相对于电阻变化层122中的全部金属,所述第一金属元素的含量可大于或等于50原子%,且相对于电阻变化层122中的全部金属,所述第二金属元素的含量可小于或等于35原子%。所述第一金属元素可包括Ta、Ti、Sn、Cr、和Mn之一,且所述第二金属元素可包括Hf、Al、Nb、La、Zr、Sc、W、V、和Mo的一种或至少一种。The resistance change layer 122 may be or include a ternary metal oxide, and may include first and second metal elements that are different from each other, and an oxygen element. In the metal oxide, the content of the first metal element may be greater than the content of the second metal element. For example, the content of the first metal element may be greater than or equal to 50 atomic % relative to the total metal in the resistance change layer 122 , and the content of the second metal element may be greater than or equal to 50 atomic % relative to the total metal in the resistance change layer 122 . Less than or equal to 35 atomic%. The first metal element may include one of Ta, Ti, Sn, Cr, and Mn, and the second metal element may include one of Hf, Al, Nb, La, Zr, Sc, W, V, and Mo. species or at least one.

替代地或额外地,电阻变化层122可为或者可包括三元金属氧化物,并且可包括金属元素、硅元素、和氧元素。在电阻变化层122中,所述金属元素的含量可大于硅元素的含量。相对于电阻变化层122中的所述金属元素与硅元素之和,所述金属元素的含量可大于或等于50原子%,并且相对于电阻变化层122中的所述金属元素与硅元素之和,所述硅元素的含量可小于或等于35原子%。所述金属元素可包括Ta、Ti、Sn、Cr、和Mn的一种或至少一种。Alternatively or additionally, the resistance change layer 122 may be or may include a ternary metal oxide, and may include a metal element, a silicon element, and an oxygen element. In the resistance change layer 122, the content of the metal element may be greater than the content of the silicon element. The content of the metal element may be greater than or equal to 50 atomic % relative to the sum of the metal element and the silicon element in the resistance change layer 122 , and relative to the sum of the metal element and the silicon element in the resistance change layer 122 , the content of the silicon element may be less than or equal to 35 atomic %. The metal element may include one or at least one of Ta, Ti, Sn, Cr, and Mn.

替代地或额外地,电阻变化层122可包括具有大于或等于9%的缺氧率的第一金属氧化物和具有小于9%的缺氧率的第二金属氧化物。所述第一金属氧化物的含量可大于所述第二金属氧化物的含量。相对于电阻变化层122的全部金属含量,所述第一金属氧化物的金属含量可大于或等于50原子%,并且相对于电阻变化层122的全部金属含量,所述第二金属氧化物的金属含量可小于或等于35原子%。所述第一金属氧化物可包括TaOx、TiOx、SnOx、CrOx、和MnOx的至少一种。所述第二金属氧化物可包括HfOx、AlOx、SiOx、NbOx、LaOx、ZrOx、ScOx、WOx、VOx、和MoOx的至少一种。Alternatively or additionally, the resistance change layer 122 may include a first metal oxide having an oxygen deficiency rate greater than or equal to 9% and a second metal oxide having an oxygen deficiency rate less than 9%. The content of the first metal oxide may be greater than the content of the second metal oxide. The metal content of the first metal oxide may be greater than or equal to 50 atomic % with respect to the total metal content of the resistance change layer 122 , and the metal content of the second metal oxide may be greater than or equal to 50 atomic % with respect to the total metal content of the resistance change layer 122 . The content may be less than or equal to 35 atomic %. The first metal oxide may include at least one of TaOx, TiOx, SnOx, CrOx, and MnOx. The second metal oxide may include at least one of HfOx, AlOx, SiOx, NbOx, LaOx, ZrOx, ScOx, WOx, VOx, and MoOx.

图4为显示根据多种实例实施方式的金属氧化物的缺氧率和形成电压之间的关系的图。参考图4,作为二元氧化物的铪氧化物(HfOx)可具有低至约2.1%的缺氧率,并且可具有高至约7.4V的形成电压V形成。HfOx是代表性的可变电阻材料,但是具有高的形成电压,且因此,当HfOx应用于可变电阻存储器件100时,可变电阻存储器件100的半导体层123可恶化。4 is a graph showing the relationship between oxygen deficiency rate and formation voltage of metal oxides according to various example embodiments. Referring to Figure 4, hafnium oxide (HfOx), which is a binary oxide, can have an oxygen deficiency rate as low as about 2.1% and can have a formation voltage V as high as about 7.4V. HfOx is a representative variable resistance material, but has a high formation voltage, and therefore, when HfOx is applied to the variable resistance memory device 100, the semiconductor layer 123 of the variable resistance memory device 100 may deteriorate.

钽氧化物(TaOx)可具有高达约16.5%的缺氧率和低至约1.65V的形成电压V形成。可预期,当TaOx用作根据多种实例实施方式的电阻变化层122的材料时,可实现可变电阻存储器件100具有低的操作电压。Tantalum oxide (TaOx) can form with an oxygen deficiency rate as high as about 16.5% and a formation voltage V as low as about 1.65V. It is expected that when TaOx is used as a material of the resistance change layer 122 according to various example embodiments, the variable resistance memory device 100 can be realized to have a low operating voltage.

尽管HfOx可由于其低的缺氧率而不单独地用作电阻变化层122的材料,但是HfOx可与具有高的缺氧率的TaOx一起用作电阻变化层122的材料。如图4中所示,缺氧率和形成电压可根据金属氧化物中包括的材料的类型而改变。例如,虽然具有12原子%的硅含量的TaSiO的缺氧率可为约12.13%且TaSiO的形成电压可为约1.55V,但是具有12原子%的铝含量的TaAlO的缺氧率可为约13.92%且TaAlO的形成电压可为约0.95V。当TaOx包括比硅多的铝时,可确定缺氧率可增加,且形成电压可降低。通常,随着缺氧率增加,形成电压可降低。Although HfOx may not be used alone as a material of the resistance change layer 122 due to its low oxygen deficiency rate, HfOx may be used as a material of the resistance change layer 122 together with TaOx having a high oxygen deficiency rate. As shown in Figure 4, the oxygen deficiency rate and formation voltage may vary depending on the type of material included in the metal oxide. For example, while TaSiO having a silicon content of 12 atomic % may have an oxygen deficiency rate of about 12.13% and the formation voltage of TaSiO may be about 1.55 V, TaAlO having an aluminum content of 12 atomic % may have an oxygen deficiency rate of about 13.92 % and the formation voltage of TaAlO may be about 0.95V. When TaOx includes more aluminum than silicon, it is determined that the oxygen deficiency rate may increase and the formation voltage may decrease. Generally, as the oxygen starvation rate increases, the formation voltage can decrease.

当电阻变化层122包括包含多种不同的金属的金属氧化物时,形成电压可根据金属的含量比率而改变。例如,当相对于TaAlO的全部金属,铝含量为5原子%时,TaAlO的形成电压可为约1.3V,和当相对于TaAlO的全部金属,铝含量为12原子%时,TaAlO的形成电压可为约0.95V。可确定,当铝含量增加时,形成电压可降低。然而,具有35原子%的铝含量的TaAlO的形成电压为约3.5V,且因此,确定当铝含量太高时,形成电压可增加。When the resistance change layer 122 includes a metal oxide including a plurality of different metals, the formation voltage may change according to the content ratio of the metals. For example, when the aluminum content is 5 atomic % relative to the total metal of TaAlO, the formation voltage of TaAlO may be about 1.3 V, and when the aluminum content is 12 atomic % relative to the total metal of TaAlO, the formation voltage may be is about 0.95V. It was determined that when the aluminum content is increased, the formation voltage can be reduced. However, the formation voltage of TaAlO with an aluminum content of 35 atomic % was about 3.5 V, and therefore, it was determined that the formation voltage could increase when the aluminum content was too high.

根据多种实例实施方式的电阻变化层122可包括彼此不同的第一金属元素和第二金属元素,并且可包括大于或等于9%的缺氧率。在金属氧化物中,所述第一金属元素的含量可大于所述第二金属元素的含量。替代地,相对于电阻变化层122的全部金属,所述第一金属元素的含量可大于或等于50原子%,且相对于电阻变化层122中的全部金属,所述第二金属元素的含量可小于或等于35原子%。所述第一金属元素可包括Ta、Ti、Sn、Cr、和Mn的一种或至少一种,并且所述第二金属元素可包括Hf、Al、Nb、La、Zr、Sc、W、V、和Mo的一种或至少一种。The resistance change layer 122 according to various example embodiments may include a first metal element and a second metal element that are different from each other, and may include an oxygen deficiency rate greater than or equal to 9%. In the metal oxide, the content of the first metal element may be greater than the content of the second metal element. Alternatively, the content of the first metal element may be greater than or equal to 50 atomic % with respect to the entire metal of the resistance change layer 122 , and the content of the second metal element may be 50 atomic % with respect to the entire metal of the resistance change layer 122 . Less than or equal to 35 atomic%. The first metal element may include one or at least one of Ta, Ti, Sn, Cr, and Mn, and the second metal element may include Hf, Al, Nb, La, Zr, Sc, W, V One or at least one of , and Mo.

从另一角度,电阻变化层122可具有拥有高的缺氧率的金属氧化物作为基体,并且可掺杂有具有低的缺氧率的金属或金属氧化物,以降低形成电压。然而,当掺杂的金属或金属氧化物的含量太高时,形成电压可反而增加,且因此,相对于电阻变化层122中的全部金属,掺杂的金属的含量可小于或等于约35原子%。From another perspective, the resistance change layer 122 may have a metal oxide with a high oxygen deficiency rate as a base, and may be doped with a metal or metal oxide with a low oxygen deficiency rate to reduce the formation voltage. However, when the content of the doped metal or metal oxide is too high, the formation voltage may increase instead, and therefore, the content of the doped metal may be less than or equal to about 35 atoms relative to the total metal in the resistance change layer 122 %.

根据多种实例实施方式的可变电阻存储器件100的操作电压例如写入电压或擦除电压的绝对值可小于或等于约4V。替代地,根据多种实例实施方式的可变电阻存储器件100的写入电压或擦除电压的绝对值可小于或等于约2V。The absolute value of an operating voltage, such as a write voltage or an erase voltage, of the variable resistance memory device 100 according to various example embodiments may be less than or equal to about 4V. Alternatively, the absolute value of the write voltage or erase voltage of the variable resistance memory device 100 according to various example embodiments may be less than or equal to about 2V.

图5为显示根据多种实例实施方式的金属氧化物的缺氧率和形成电压之间的关系的图。参考图5,可确定随着缺氧率增加,形成电压可降低。然而,缺氧率和形成电压之间的关系可为大致成反比的并且可不为完全成反比的。可适当地调节电阻变化层122的金属氧化物的类型和/或含量以降低形成电压。5 is a graph showing the relationship between oxygen deficiency rate and formation voltage of metal oxides according to various example embodiments. Referring to Figure 5, it can be determined that as the oxygen starvation rate increases, the formation voltage can decrease. However, the relationship between oxygen deficiency rate and formation voltage may be approximately inversely proportional and may not be completely inversely proportional. The type and/or content of the metal oxide of the resistance change layer 122 may be appropriately adjusted to reduce the formation voltage.

所述金属氧化物的缺氧率可与相同金属的具有不同原子价的多种金属氧化物之间的氧形成能的差有关。The oxygen deficiency rate of the metal oxide may be related to the difference in oxygen formation energy between multiple metal oxides of the same metal with different valences.

图6为显示根据多种实例实施方式的金属氧化物的氧形成能和缺氧率之间的关系的图。参考图6,具有不同原子价的多种钽氧化物例如Ta2O5和TaO2之间的氧形成能的差可为约4.42kJ/mol,其为相对小的。然而,所述多种钽氧化物的缺氧率可为约16.5%,其为相对大的。然而,虽然铝氧化物之间的氧形成能的差为约123.79kJ/mol,其为相对大的,但是所述铝氧化物的缺氧率可为约2.1%,其为相对小的。可确定,金属氧化物之间的氧形成能的差可与缺氧率成反比。6 is a graph showing the relationship between oxygen formation energy and oxygen deficiency rate of metal oxides according to various example embodiments. Referring to FIG. 6 , the difference in oxygen formation energy between multiple tantalum oxides with different atomic valences, such as Ta 2 O 5 and TaO 2 , may be about 4.42 kJ/mol, which is relatively small. However, the oxygen deficiency rate of the various tantalum oxides may be about 16.5%, which is relatively large. However, although the difference in oxygen formation energy between aluminum oxides is about 123.79 kJ/mol, which is relatively large, the oxygen deficiency rate of the aluminum oxides may be about 2.1%, which is relatively small. It can be determined that the difference in oxygen formation energy between metal oxides can be inversely proportional to the oxygen deficiency rate.

尽管AlOx的缺氧率和HfOx的缺氧率同为约2.1%,但是关于AlOx的氧形成能的差为约123.79kJ/mol,其大于关于HfOx的氧形成能的差(其为34.38kJ/mol)。例如,即使当缺氧率可彼此相同时,氧形成能的差也可彼此不同。因此,根据多种实例实施方式,具有大于或等于约10kJ/mol的氧形成能的差的金属氧化物可用作电阻变化层122的基体,并且具有小于约10kJ/mol的氧形成能的差的金属氧化物或金属可用作电阻变化层122的掺杂剂。Although the oxygen deficiency rate of AlOx and that of HfOx are both about 2.1%, the difference in the oxygen formation energy with respect to AlOx is about 123.79 kJ/mol, which is larger than the difference with respect to the oxygen formation energy of HfOx, which is 34.38 kJ/mol. mol). For example, even when the oxygen deficiency rates may be the same as each other, the differences in oxygen formation energies may be different from each other. Accordingly, according to various example embodiments, a metal oxide having a difference in oxygen formation energy greater than or equal to about 10 kJ/mol may be used as the matrix of the resistance change layer 122 and having a difference in oxygen formation energy less than about 10 kJ/mol. The metal oxide or metal may be used as a dopant of the resistance change layer 122 .

图7为显示根据多种实例实施方式的关于多种金属氧化物的氧形成能的差的图。参考图7,关于MnOx、TiOx、SnOx、和CrOx的氧形成能的差可小于10kJ/mol。MnOx、TiOx、SnOx、和CrOx可用作根据多种实例实施方式的电阻变化层122的掺杂剂。7 is a graph showing differences in oxygen formation energies for various metal oxides, according to various example embodiments. Referring to Figure 7, the difference in oxygen formation energies for MnOx, TiOx, SnOx, and CrOx may be less than 10 kJ/mol. MnOx, TiOx, SnOx, and CrOx may be used as dopants of the resistance change layer 122 according to various example embodiments.

关于MoOx、VOx、ScOx、WOx、NbOx、LaOx、和ZrOx的氧形成能的差可大于或等于10kJ/mol。MoOx、VOx、ScOx、WOx、NbOx、LaOx、和ZrOx可用作根据多种实例实施方式的电阻变化层122的基体。The difference in oxygen formation energies for MoOx, VOx, ScOx, WOx, NbOx, LaOx, and ZrOx may be greater than or equal to 10 kJ/mol. MoOx, VOx, ScOx, WOx, NbOx, LaOx, and ZrOx may be used as the matrix of the resistance change layer 122 according to various example embodiments.

图8A为显示使用HfOx作为电阻变化层的可变电阻存储器件的电流-电压(IV)特性的图,且图8B为显示使用TaOx作为电阻变化层的可变电阻存储器件的IV特性的图。包括HfOx的可变电阻存储器件可具有约7V至约8V的形成电压的绝对值,如图8A中所示。如上所述,HfOx的缺氧率可为相对低的,约2.1%。8A is a graph showing the current-voltage (IV) characteristics of the variable resistance memory device using HfOx as the resistance change layer, and FIG. 8B is a graph showing the IV characteristics of the variable resistance memory device using TaOx as the resistance change layer. The variable resistance memory device including HfOx may have an absolute value of a forming voltage of about 7V to about 8V, as shown in FIG. 8A. As mentioned above, the oxygen deficiency rate of HfOx can be relatively low, about 2.1%.

包括TaOx的可变电阻存储器件可具有小于约2V的形成电压的绝对值,如图8B中所示。如上所述,TaOx的缺氧率可为相对高的,约16.5%。这可表明,随着缺氧率增加,在电阻变化层122中可形成更多的氧空位,且因此,可在低的操作电压下容易地形成导电丝。The variable resistance memory device including TaOx may have an absolute value of the formation voltage less than about 2V, as shown in FIG. 8B. As mentioned above, the oxygen deficiency rate of TaOx can be relatively high, about 16.5%. This may indicate that as the oxygen deficiency rate increases, more oxygen vacancies may be formed in the resistance change layer 122, and therefore, the conductive filaments may be easily formed at a low operating voltage.

图9为根据多种实例实施方式的可变电阻存储器件100a的结构图,且图10为图9的可变电阻存储器件100a的电路图。FIG. 9 is a structural diagram of a variable resistance memory device 100a according to various example embodiments, and FIG. 10 is a circuit diagram of the variable resistance memory device 100a of FIG. 9 .

根据多种实例实施方式的可变电阻存储器件100a可对应于其中包括可变电阻材料的多个存储单元MC竖直成阵列的竖直NAND(VNAND)存储器。The variable resistance memory device 100a according to various example embodiments may correspond to a vertical NAND (VNAND) memory in which a plurality of memory cells MC including a variable resistance material are vertically arrayed.

参考图9,多个单元串CS可形成于基底101上。Referring to FIG. 9 , a plurality of cell strings CS may be formed on a substrate 101 .

基底101可包括掺杂有第一类型杂质的硅材料。例如,基底101可包括掺杂有p型杂质的硅材料。例如,基底101可包括p型阱(例如,袋状p阱)。下文中,假设基底101包括p型硅。然而,基底101不限于p型硅。The substrate 101 may include silicon material doped with first type impurities. For example, the substrate 101 may include silicon material doped with p-type impurities. For example, substrate 101 may include a p-type well (eg, a pocket p-well). Hereinafter, it is assumed that the substrate 101 includes p-type silicon. However, the substrate 101 is not limited to p-type silicon.

作为源区域的掺杂区域110可提供在基底101上。掺杂区域110可包括与基底101不同的n型区域。下文中,假设掺杂区域110包括n型区域。然而,掺杂区域110不限于n型区域。掺杂区域110可连接至公共源极线CSL。A doped region 110 as a source region may be provided on the substrate 101 . The doped region 110 may include a different n-type region than the substrate 101 . Hereinafter, it is assumed that the doped region 110 includes an n-type region. However, the doped region 110 is not limited to n-type regions. The doped region 110 may be connected to the common source line CSL.

对于k和n整数,k*n个单元串CS可如图10的等效电路图中所示地提供并且可以矩阵形式布置。根据列和行的位置,单元串CS可称为CSij(1≤i≤k,1≤j≤n)。各单元串CSij可连接至位线BL、串选择线SSL、字线WL、和公共源极线CSL。For k and n integers, k*n cell strings CS may be provided as shown in the equivalent circuit diagram of FIG. 10 and may be arranged in a matrix form. According to the positions of columns and rows, the cell string CS can be called CSij (1≤i≤k, 1≤j≤n). Each cell string CSij may be connected to a bit line BL, a string select line SSL, a word line WL, and a common source line CSL.

各单元串CSij可包括存储单元MC和串选择晶体管SST。各单元串CSij的存储单元MC和串选择晶体管SST可在高度方向上堆叠。Each cell string CSij may include a memory cell MC and a string selection transistor SST. The memory cells MC and the string selection transistors SST of each cell string CSij can be stacked in the height direction.

多个单元串CS的行可分别连接至不同的串选择线SSL1至SSLk。例如,单元串CS11至CS1n的串选择晶体管SST可共同连接至串选择线SSL1。单元串CSk1至CSkn的串选择晶体管SST可共同连接至串选择线SSLk。Rows of multiple cell strings CS may be respectively connected to different string selection lines SSL1 to SSLk. For example, the string selection transistors SST of the cell strings CS11 to CS1n may be commonly connected to the string selection line SSL1. The string selection transistors SST of the cell strings CSk1 to CSkn may be commonly connected to the string selection line SSLk.

多个单元串CS的列可分别连接至不同的位线BL1至BLn。例如,单元串CS11至CSk1的存储单元MC和串选择晶体管SST可共同连接至位线BL1,且单元串CS1n至CSkn的存储单元MC和串选择晶体管SST可共同连接至位线BLn。The columns of the plurality of cell strings CS may be connected to different bit lines BL1 to BLn respectively. For example, the memory cells MC and the string selection transistor SST of the cell strings CS11 to CSk1 may be commonly connected to the bit line BL1, and the memory cells MC and the string selection transistor SST of the cell strings CS1n to CSkn may be commonly connected to the bit line BLn.

多个单元串CS的行可分别连接至不同的公共源极线CSL1至CSLk。例如,单元串CS11至CS1n的串选择晶体管SST可共同连接至公共源极线CSL1,且单元串CSk1至CSkn的串选择晶体管SST可共同连接至公共源极线CSLk。Rows of multiple cell strings CS may be respectively connected to different common source lines CSL1 to CSLk. For example, the string selection transistors SST of the cell strings CS11 to CS1n may be commonly connected to the common source line CSL1, and the string selection transistors SST of the cell strings CSk1 to CSkn may be commonly connected to the common source line CSLk.

以距离基底101或串选择晶体管SST相同的高度安置的存储单元MC的栅电极131可共同连接至一条字线WL。此外,以距离基底101或串选择晶体管SST不同的高度安置的存储单元MC的栅电极131可分别连接至不同的字线WL1至WLn。The gate electrodes 131 of the memory cells MC disposed at the same height from the substrate 101 or the string selection transistor SST may be commonly connected to one word line WL. In addition, the gate electrodes 131 of the memory cells MC arranged at different heights from the substrate 101 or the string selection transistor SST may be connected to different word lines WL1 to WLn respectively.

图示的电路结构为实例。例如,单元串CS的行的数量可增加或减少。当单元串CS的行的数量改变时,连接至单元串CS的行的串选择线的数量和连接至一条位线的单元串CS的数量也可改变。当单元串CS的行的数量改变时,连接至单元串CS的行的公共源极线的数量也可改变。The circuit structure shown is an example. For example, the number of rows of cell strings CS may be increased or decreased. When the number of rows of cell strings CS is changed, the number of string selection lines connected to the rows of cell strings CS and the number of cell strings CS connected to one bit line may also be changed. When the number of rows of cell strings CS changes, the number of common source lines connected to the rows of cell strings CS may also change.

单元串CS的列的数量也可增加或减少且不限于图9。当单元串CS的列的数量改变时,连接至单元串CS的列的位线的数量和连接至一条串选择线的单元串CS的数量也可改变。The number of columns of the cell string CS may also be increased or decreased and is not limited to FIG. 9 . When the number of columns of cell strings CS is changed, the number of bit lines connected to the columns of cell strings CS and the number of cell strings CS connected to one string selection line may also be changed.

单元串CS的高度也可增加或降低且不限于图9。例如,堆叠在单元串CS各自中的存储单元MC的数量可增加或减少。当堆叠在各单元串CS中的存储单元MC的数量改变时,字线WL的数量也可改变。例如,各单元串CS中包括的存储单元MC的数量可增加。当各单元串CS中包括的串选择晶体管的数量改变时,串选择线或公共源极线的数量也可改变。当串选择晶体管SST的数量增加时,串选择晶体管SST可以与存储单元MC堆叠的形状相同的形状堆叠。The height of the cell string CS may also be increased or decreased and is not limited to FIG. 9 . For example, the number of memory cells MC stacked in each of the cell strings CS may be increased or decreased. When the number of memory cells MC stacked in each cell string CS changes, the number of word lines WL may also change. For example, the number of memory cells MC included in each cell string CS may be increased. When the number of string selection transistors included in each cell string CS changes, the number of string selection lines or common source lines may also change. When the number of string selection transistors SST is increased, the string selection transistors SST may be stacked in the same shape as that of the memory cells MC.

例如,可对于单元串CS的各行执行写入操作和读取操作。可通过公共源极线CSL对于各行选择单元串CS,并且可通过串选择线SSL对于各行选择单元串CS。此外,电压可按至少两条公共源极线的单位施加至公共源极线CSL。电压可按全部公共源极线CSL的单位施加至公共源极线CSL。For example, a write operation and a read operation can be performed on each row of the cell string CS. The cell string CS can be selected for each row through the common source line CSL, and the cell string CS can be selected for each row through the string selection line SSL. In addition, the voltage may be applied to the common source line CSL in units of at least two common source lines. The voltage may be applied to the common source line CSL in units of all the common source lines CSL.

可对单元串CS的所选择的行中的各页进行写入操作和读取操作。一页可对应于连接至一条字线WL的存储单元的一行。在单元串CS的所选择的行中,可通过字线WL对于各页选择存储单元。Write operations and read operations can be performed on each page in the selected row of the cell string CS. One page may correspond to one row of memory cells connected to one word line WL. In the selected row of cell string CS, memory cells can be selected for each page via word line WL.

如图9中所示,单元串CS可包括具有圆柱形状的沟道孔CH以及以环形状围绕沟道孔CH的多个栅电极131和多个绝缘元件132。可提供多个绝缘元件132以在多个栅电极131之间绝缘。多个栅电极131和多个绝缘元件132可在竖直方向(z方向)上交替地堆叠。具有圆柱形状的沟道孔CH可包括具有在竖直方向上延伸的圆柱形状的绝缘柱121以及具有以圆柱壳形状顺序地围绕绝缘柱121的形状的电阻变化层122、半导体层123和栅极绝缘层124。As shown in FIG. 9 , the cell string CS may include a channel hole CH having a cylindrical shape and a plurality of gate electrodes 131 and a plurality of insulating elements 132 surrounding the channel hole CH in a ring shape. A plurality of insulating elements 132 may be provided to insulate between the plurality of gate electrodes 131 . The plurality of gate electrodes 131 and the plurality of insulating elements 132 may be alternately stacked in the vertical direction (z direction). The channel hole CH having a cylindrical shape may include an insulating pillar 121 having a cylindrical shape extending in a vertical direction and a resistance change layer 122 having a shape sequentially surrounding the insulating pillar 121 in a cylindrical shell shape, a semiconductor layer 123 and a gate electrode. Insulating layer 124.

栅电极131可包括金属材料、和/或以高的浓度掺杂的硅材料。各栅电极131可连接至字线WL和串选择线SSL的任一者。The gate electrode 131 may include a metal material, and/or a silicon material doped with a high concentration. Each gate electrode 131 may be connected to any one of the word line WL and the string selection line SSL.

绝缘元件132可包括多种绝缘材料诸如氧化硅、氮化硅等的一种或多种。Insulating element 132 may include one or more of a variety of insulating materials such as silicon oxide, silicon nitride, and the like.

沟道孔CH可包括多个层。沟道孔CH的最外层可为栅极绝缘层124。例如,栅极绝缘层124可包括多种绝缘材料诸如氧化硅、氮化硅、氧氮化硅等的一种或多种。栅极绝缘层124可共形地沉积在沟道孔CH上。The channel hole CH may include a plurality of layers. The outermost layer of the channel hole CH may be the gate insulating layer 124 . For example, the gate insulating layer 124 may include one or more of a variety of insulating materials such as silicon oxide, silicon nitride, silicon oxynitride, and the like. The gate insulation layer 124 may be conformally deposited on the channel hole CH.

半导体层123可沿着栅极绝缘层124的内表面共形地沉积。半导体层123可包括掺杂有第一类型材料的半导体材料。半导体层123可包括掺杂有与基底101相同类型的材料的硅材料。例如,当基底101包括p型掺杂的硅材料时,半导体层123也可包括p型掺杂的硅材料。替代地或额外地,半导体层123可包括诸如Ge、IGZO、GaAs等的一种或多种的材料。Semiconductor layer 123 may be conformally deposited along the inner surface of gate insulating layer 124 . The semiconductor layer 123 may include a semiconductor material doped with a first type material. Semiconductor layer 123 may include silicon material doped with the same type of material as substrate 101 . For example, when the substrate 101 includes p-type doped silicon material, the semiconductor layer 123 may also include p-type doped silicon material. Alternatively or additionally, the semiconductor layer 123 may include one or more materials such as Ge, IGZO, GaAs, and the like.

电阻变化层122可沿着半导体层123的内表面布置。电阻变化层122可布置成接触半导体层123并且可共形地沉积在半导体层123上。The resistance change layer 122 may be arranged along the inner surface of the semiconductor layer 123 . The resistance change layer 122 may be disposed in contact with the semiconductor layer 123 and may be conformally deposited on the semiconductor layer 123 .

电阻变化层122可根据施加的电压而变化至高电阻状态或低电阻状态,并且可包括具有高的缺氧率的金属氧化物。The resistance change layer 122 may change to a high resistance state or a low resistance state according to an applied voltage, and may include a metal oxide having a high oxygen deficiency rate.

电阻变化层122可具有与以上描述的电阻变化层122基本上相同的材料和特性。电阻变化层122可包括具有大于或等于9%的缺氧率的二元金属氧化物或具有大于或等于9%的缺氧率的三元金属氧化物。The resistance change layer 122 may have substantially the same materials and characteristics as the resistance change layer 122 described above. The resistance change layer 122 may include a binary metal oxide having an oxygen deficiency rate greater than or equal to 9% or a ternary metal oxide having an oxygen deficiency rate greater than or equal to 9%.

电阻变化层122中包括的二元金属氧化物可为或者包括TaOx、TiOx、SnOx、CrOx、和MnOx的至少一种。The binary metal oxide included in the resistance change layer 122 may be or include at least one of TaOx, TiOx, SnOx, CrOx, and MnOx.

电阻变化层122中包括的三元金属氧化物可包括彼此不同的第一金属元素和第二金属元素、以及氧元素。在所述金属氧化物中,所述第一金属元素的含量可大于所述第二金属元素的含量。例如,相对于电阻变化层122中的全部金属,所述第一金属元素的含量可大于或等于50原子%,并且相对于电阻变化层122中的全部金属,所述第二金属元素的含量可小于或等于35原子%。所述第一金属元素可包括Ta、Ti、Sn、Cr、和Mn的一种或至少一种,并且所述第二金属元素可包括Hf、Al、Nb、La、Zr、Sc、W、V、和Mo的一种或至少一种。The ternary metal oxide included in the resistance change layer 122 may include a first metal element and a second metal element that are different from each other, and an oxygen element. In the metal oxide, the content of the first metal element may be greater than the content of the second metal element. For example, the content of the first metal element may be greater than or equal to 50 atomic % relative to the total metal in the resistance change layer 122 , and the content of the second metal element may be greater than or equal to 50 atomic % relative to the total metal in the resistance change layer 122 . Less than or equal to 35 atomic%. The first metal element may include one or at least one of Ta, Ti, Sn, Cr, and Mn, and the second metal element may include Hf, Al, Nb, La, Zr, Sc, W, V One or at least one of , and Mo.

在电阻变化层122中,所述金属元素的含量可大于硅元素的含量。相对于电阻变化层122中的所述金属元素与硅元素之和,所述金属元素的含量可大于或等于50原子%,并且相对于电阻变化层122中的所述金属元素和硅元素之和,硅元素的含量可小于或等于35原子%。所述金属元素可包括Ta、Ti、Sn、Cr、和Mn的一种或至少一种。In the resistance change layer 122, the content of the metal element may be greater than the content of the silicon element. The content of the metal element may be greater than or equal to 50 atomic % relative to the sum of the metal element and the silicon element in the resistance change layer 122 , and relative to the sum of the metal element and the silicon element in the resistance change layer 122 , the content of silicon element may be less than or equal to 35 atomic %. The metal element may include one or at least one of Ta, Ti, Sn, Cr, and Mn.

替代地,电阻变化层122可包括具有大于或等于9%的缺氧率的第一金属氧化物和具有小于9%的缺氧率的第二金属氧化物。所述第一金属氧化物的含量可大于所述第二金属氧化物的含量。相对于电阻变化层122的全部金属含量,所述第一金属氧化物的金属含量可大于或等于50原子%,并且相对于电阻变化层122的全部金属含量,所述第二金属氧化物的金属含量可小于或等于35原子%。所述第一金属氧化物可为或者包括TaOx、TiOx、SnOx、CrOx、和MnOx的至少一种。所述第二金属氧化物可为或者包括HfOx、AlOx、SiOx、NbOx、LaOx、ZrOx、ScOx、WOx、VOx、和MoOx的至少一种。Alternatively, the resistance change layer 122 may include a first metal oxide having an oxygen deficiency rate greater than or equal to 9% and a second metal oxide having an oxygen deficiency rate less than 9%. The content of the first metal oxide may be greater than the content of the second metal oxide. The metal content of the first metal oxide may be greater than or equal to 50 atomic % with respect to the total metal content of the resistance change layer 122 , and the metal content of the second metal oxide may be greater than or equal to 50 atomic % with respect to the total metal content of the resistance change layer 122 . The content may be less than or equal to 35 atomic %. The first metal oxide may be or include at least one of TaOx, TiOx, SnOx, CrOx, and MnOx. The second metal oxide may be or include at least one of HfOx, AlOx, SiOx, NbOx, LaOx, ZrOx, ScOx, WOx, VOx, and MoOx.

可变电阻存储器件100a可包括其中可容易地形成氧空位的电阻变化层122,且因此,在高电阻状态的电阻值和低电阻状态的电阻值之间的差可增加,并且可实现低的设置电压和低的复位电压的特性。The variable resistance memory device 100a may include the resistance change layer 122 in which oxygen vacancies may be easily formed, and therefore, the difference between the resistance value in the high resistance state and the resistance value in the low resistance state may be increased, and low resistance may be achieved. setting voltage and low reset voltage characteristics.

绝缘柱121可沿着电阻变化层122的内表面沉积。绝缘柱121可填充沟道孔CH的最内部的空间。Insulating pillars 121 may be deposited along the inner surface of resistance change layer 122 . The insulating pillar 121 may fill the innermost space of the channel hole CH.

电阻变化层122和半导体层123可接触掺杂区域110,即,公共源区域。The resistance change layer 122 and the semiconductor layer 123 may contact the doped region 110, that is, the common source region.

漏区域140可布置在单元串CS的沟道孔CH中。漏区域140可包括第二类型掺杂的硅材料。例如,漏区域140可包括掺杂有n型材料的硅材料。The drain region 140 may be disposed in the channel hole CH of the cell string CS. Drain region 140 may include a second type doped silicon material. For example, drain region 140 may include silicon material doped with n-type material.

位线150可提供在漏区域140上。漏区域140和位线150可经由接触插塞彼此连接。Bit line 150 may be provided on drain region 140. The drain region 140 and the bit line 150 may be connected to each other via contact plugs.

各栅电极131以及在水平方向(x方向)上面对栅电极131的栅极绝缘层124、半导体层123、和电阻变化层122可形成存储单元MC。例如,存储单元MC可具有如下电路结构:其中包括栅电极131、栅极绝缘层124、和半导体层123的晶体管由于电阻变化层122以可变电阻并联连接。Each gate electrode 131 and the gate insulating layer 124, the semiconductor layer 123, and the resistance change layer 122 facing the gate electrode 131 in the horizontal direction (x direction) may form a memory cell MC. For example, the memory cell MC may have a circuit structure in which transistors including the gate electrode 131, the gate insulating layer 124, and the semiconductor layer 123 are connected in parallel with variable resistance due to the resistance change layer 122.

并联连接结构可在竖直方向(z方向)上连续地布置以形成单元串CS。此外,单元串CS的两端可连接至公共源极线CSL和位线BL,如图10的电路图中所示。通过向公共源极线CSL和位线BL施加电压,可对多个存储单元MC执行编程、读取、和擦除。The parallel connection structures may be continuously arranged in the vertical direction (z direction) to form the cell string CS. In addition, both ends of the cell string CS may be connected to the common source line CSL and the bit line BL, as shown in the circuit diagram of FIG. 10 . By applying voltages to the common source line CSL and the bit line BL, programming, reading, and erasing can be performed on the plurality of memory cells MC.

例如,当将对其执行编程操作的存储单元MC被选择时,可调节所选择的单元的栅电压值,使得所选择的单元为沟道关断状态,并且可调节未选择的单元的栅电压值,使得未选择的单元为沟道导通状态。因此,由于施加至公共源极线CSL和位线BL的电压所致的电流路径可通过所选择的存储单元MC的电阻变化层122的区域。这里,施加的电压可设置为V设置或V复位以如所需地在所选择的存储单元MC中形成LRS(低电阻状态)或HRS(高电阻状态)和写入逻辑“1”或逻辑“0”的数据。For example, when the memory cell MC for which the programming operation is to be performed is selected, the gate voltage value of the selected cell may be adjusted so that the selected cell is in the channel off state, and the gate voltage of the unselected cell may be adjusted value, so that the unselected cells are in the channel conduction state. Therefore, a current path due to the voltage applied to the common source line CSL and the bit line BL may pass through the region of the resistance change layer 122 of the selected memory cell MC. Here, the applied voltage can be set to VSET or VRESET to form LRS (low resistance state) or HRS (high resistance state) in the selected memory cell MC as desired and write logic "1" or logic " 0" data.

关于读取操作,可根据类似的方法对所选择的单元执行读取。例如,可调节施加至各栅电极131的栅电压,使得所选择的存储单元MC为沟道关断状态且未选择的存储单元MC为沟道导通状态。然后,可测量由于在公共源极线CSL和位线BL之间的施加电压V读取所致的流动通过相应单元MC的电流以确定单元状态,例如逻辑“1”或逻辑“0”。Regarding the read operation, the read can be performed on the selected unit according to a similar method. For example, the gate voltage applied to each gate electrode 131 may be adjusted so that the selected memory cell MC is in a channel-off state and the unselected memory cell MC is in a channel-on state. Then, the current flowing through the corresponding cell MC due to the applied voltage V read between the common source line CSL and the bit line BL may be measured to determine the cell state, such as logic "1" or logic "0".

如上所述,根据按照多种实例实施方式的可变电阻存储器件100a,存储单元MC可通过使用包括用于容易地形成基于氧空位的导电丝的材料的电阻变化层122形成,并且存储单元MC可成阵列以形成所述存储器件。因此,与其它结构例如基于相变材料的存储器件或基于电荷俘获的存储器件相比,电阻变化层122可形成为具有减小的厚度,并且可变电阻存储器件100a可具有低的操作电压。例如,可变电阻存储器件100a可具有其绝对值小于或等于约4V的操作电压、例如写入电压或擦除电压。替代地,可变电阻存储器件100a可具有其绝对值小于或等于约2V的操作电压、例如写入电压或擦除电压。As described above, according to the variable resistance memory device 100a according to various example embodiments, the memory cell MC may be formed by using the resistance change layer 122 including a material for easily forming an oxygen vacancy-based conductive filament, and the memory cell MC The memory devices may be formed in arrays. Therefore, the resistance change layer 122 may be formed to have a reduced thickness and the variable resistance memory device 100 a may have a low operating voltage compared to other structures such as a phase change material-based memory device or a charge trapping-based memory device. For example, the variable resistance memory device 100a may have an operating voltage, such as a write voltage or an erase voltage, whose absolute value is less than or equal to about 4V. Alternatively, the variable resistance memory device 100a may have an operating voltage, such as a write voltage or an erase voltage, whose absolute value is less than or equal to about 2V.

在VNAND结构中,由于根据单元串CS的高度的包装特征或限制,对于增加单元串CS中包括的栅电极131的数量存在限制。而且,在基于电荷俘获的存储器件的情况中,由于干涉而对于减小相邻栅电极131之间的距离可存在限制。例如,可难以将在竖直方向(z方向)上彼此相邻的栅电极的节距减小至小于或等于约38nm,且因此,存在存储容量的限制。In the VNAND structure, due to packaging characteristics or restrictions according to the height of the cell string CS, there is a limit on increasing the number of gate electrodes 131 included in the cell string CS. Furthermore, in the case of a charge trapping based memory device, there may be a limitation on reducing the distance between adjacent gate electrodes 131 due to interference. For example, it may be difficult to reduce the pitch of gate electrodes adjacent to each other in the vertical direction (z direction) to less than or equal to about 38 nm, and therefore, there is a limit on storage capacity.

根据多种实例实施方式的可变电阻存储器件100a可使用以上描述的电阻变化层122,且因此,可减小或最小化在栅电极131之间的节距、例如可以周期性方式布置的栅电极131的至少三个的节距。根据多种实例实施方式,所述节距可减小至小于或等于20nm、例如为约15nm,且在此情况下,存储容量可增加两倍或更多。The variable resistance memory device 100a according to various example embodiments may use the above-described resistance change layer 122, and therefore, the pitch between the gate electrodes 131, such as gate electrodes 131 that may be arranged in a periodic manner, may be reduced or minimized. The electrodes 131 have a pitch of at least three. According to various example embodiments, the pitch may be reduced to less than or equal to 20 nm, such as about 15 nm, and in this case, the storage capacity may be increased by a factor of two or more.

基于该结构,可变电阻存储器件100a可解决或至少部分地解决在下一代VNAND存储器中的存储单元之间缩放(微缩,scaling)的问题,以提高密度和/或实现低的功耗。Based on this structure, the variable resistance memory device 100a can solve or at least partially solve the problem of scaling between memory cells in next-generation VNAND memory to increase density and/or achieve low power consumption.

图11为根据多种实例实施方式的包括多个电阻变化层122a的可变电阻存储器件100b的一部分的图。参考图9和11,图11的可变电阻存储器件100b可包括多个电阻变化层122a。例如,电阻变化层122a可包括在远离半导体层123的方向上顺序地布置的第一电阻变化层RS1和第二电阻变化层RS2。11 is a diagram of a portion of a variable resistance memory device 100b including a plurality of resistance change layers 122a, according to various example embodiments. Referring to FIGS. 9 and 11, the variable resistance memory device 100b of FIG. 11 may include a plurality of resistance change layers 122a. For example, the resistance change layer 122a may include a first resistance change layer RS1 and a second resistance change layer RS2 sequentially arranged in a direction away from the semiconductor layer 123.

第一和第二电阻变化层RS1和RS2的至少一个可包括具有大于或等于9%的缺氧率的金属氧化物。例如,第一电阻变化层RS1可包括具有大于或等于9%的缺氧率的第一金属氧化物作为基体并且可掺杂有具有小于9%的缺氧率的第二金属氧化物。第一电阻变化层RS1中包括的所述第一金属氧化物的缺氧率可大于第二电阻变化层RS2中包括的第一金属氧化物的缺氧率。氧空位可在与半导体层123相邻的第一电阻变化层RS1中容易地或更容易地形成,且因此,可变电阻存储器件100的操作电压可降低。At least one of the first and second resistance change layers RS1 and RS2 may include a metal oxide having an oxygen deficiency rate greater than or equal to 9%. For example, the first resistance change layer RS1 may include a first metal oxide having an oxygen deficiency rate greater than or equal to 9% as a base and may be doped with a second metal oxide having an oxygen deficiency rate less than 9%. The oxygen deficiency rate of the first metal oxide included in the first resistance change layer RS1 may be greater than the oxygen deficiency rate of the first metal oxide included in the second resistance change layer RS2. Oxygen vacancies may be easily or more easily formed in the first resistance change layer RS1 adjacent to the semiconductor layer 123, and therefore, the operating voltage of the variable resistance memory device 100 may be reduced.

图12为根据多种实例实施方式的进一步包括氧化物层125的可变电阻存储器件100c的一部分的图。参考图9和12,图12的可变电阻存储器件100c可进一步包括在半导体层123和电阻变化层122之间的氧化物层125。氧化物层125可包括氧化硅,但不限于此。在实施可变电阻存储器件100c的器件中,氧化物层125可包括接触氧化物层125的材料的氧化物,例如,半导体层123中包括的材料的氧化物。氧化物层125的厚度可小于电阻变化层122的厚度。例如,氧化物层125的厚度可小于或等于约5nm。12 is a diagram of a portion of a variable resistance memory device 100c further including an oxide layer 125, according to various example embodiments. Referring to FIGS. 9 and 12 , the variable resistance memory device 100 c of FIG. 12 may further include an oxide layer 125 between the semiconductor layer 123 and the resistance change layer 122 . The oxide layer 125 may include silicon oxide, but is not limited thereto. In a device implementing the variable resistance memory device 100c, the oxide layer 125 may include an oxide of a material contacting the oxide layer 125, for example, an oxide of a material included in the semiconductor layer 123. The thickness of the oxide layer 125 may be smaller than the thickness of the resistance change layer 122 . For example, the thickness of oxide layer 125 may be less than or equal to about 5 nm.

图13为根据多种实例实施方式的包括导电柱126的可变电阻存储器件100d的图。为了比较图9与图13,图13的可变电阻存储器件100d可包括导电柱126,而非绝缘柱。13 is a diagram of a variable resistance memory device 100d including conductive pillars 126, according to various example embodiments. To compare FIG. 9 with FIG. 13, the variable resistance memory device 100d of FIG. 13 may include conductive pillars 126 instead of insulating pillars.

导电柱126可接触电阻变化层122。导电柱126可共形地沉积在电阻变化层122上。导电柱126可包括具有改善的或优异的电传导性质的材料。例如,导电柱126可包括W、Ti、TiN、Ru、RuO2、Ta、和TaN的至少一种。导电柱126可包括与栅电极131相同的材料。The conductive pillars 126 may contact the resistance change layer 122 . Conductive pillars 126 may be conformally deposited on resistance change layer 122 . Conductive pillars 126 may include materials with improved or superior electrical conductivity properties. For example, the conductive pillar 126 may include at least one of W, Ti, TiN, Ru, RuO 2 , Ta, and TaN. The conductive pillar 126 may include the same material as the gate electrode 131 .

导电柱126的全部区域可成为通过电阻变化层122与半导体层123的全部区域在空间上分开。由于导电柱126与半导体层123电绝缘,因此可向导电柱126和半导体层123分开地施加电压。The entire area of the conductive pillar 126 may be spatially separated from the entire area of the semiconductor layer 123 by the resistance change layer 122 . Since the conductive pillar 126 is electrically insulated from the semiconductor layer 123, a voltage can be applied separately to the conductive pillar 126 and the semiconductor layer 123.

可变电阻存储器件100d可进一步包括电连接至导电柱126并且向导电柱126提供电压的第一位线(未示出)以及与所述第一位线电绝缘并且电连接至半导体层123和向半导体层123提供电压的第二位线(未示出)。The variable resistance memory device 100d may further include a first bit line (not shown) electrically connected to the conductive pillar 126 and providing a voltage to the conductive pillar 126 and electrically insulated from the first bit line and electrically connected to the semiconductor layer 123 and A second bit line (not shown) provides voltage to the semiconductor layer 123 .

当可变电阻存储器件100d操作时,电压也可被施加至导电柱126。施加至导电柱126的电压可大于所选择的存储单元的栅电压(其为关断电压),并且可大于或等于施加至半导体层123的电压。因此,在与所选择的存储单元对应的电阻变化层122中可形成朝着半导体层123的水平电场。与所选择的存储单元对应的电阻变化层122中的氧空位可集中在与半导体层123相邻的电阻变化层122的区域中,且因此,可相对更容易地形成导电丝。When variable resistance memory device 100d is operating, voltage may also be applied to conductive pillars 126. The voltage applied to the conductive pillar 126 may be greater than the gate voltage of the selected memory cell (which is the turn-off voltage), and may be greater than or equal to the voltage applied to the semiconductor layer 123 . Therefore, a horizontal electric field toward the semiconductor layer 123 may be formed in the resistance change layer 122 corresponding to the selected memory cell. Oxygen vacancies in the resistance change layer 122 corresponding to the selected memory cell may be concentrated in a region of the resistance change layer 122 adjacent to the semiconductor layer 123, and therefore, conductive threads may be formed relatively easily.

图14为根据多种实例实施方式的包括可变电阻存储器件的电子设备200的示意性框图。14 is a schematic block diagram of an electronic device 200 including a variable resistance memory device, according to various example implementations.

参考图14,根据多种实例实施方式的电子设备200可为如下之一:个人数字助理(PDA)、膝上型计算机、便携式计算机、网络平板电脑、无线电话、手机、数字音乐播放器、有线或无线电子设备、或包括其至少两种的复合电子设备。电子设备200可包括通过总线210彼此连接的控制器220,输入和输出设备230诸如小键盘、键盘和显示器的一种或多种,存储器240,和无线接口250。Referring to FIG. 14 , an electronic device 200 according to various example embodiments may be one of the following: a personal digital assistant (PDA), a laptop computer, a portable computer, a web tablet, a wireless phone, a mobile phone, a digital music player, a wired Or wireless electronic equipment, or composite electronic equipment including at least two of them. Electronic device 200 may include a controller 220 connected to each other via bus 210 , input and output devices 230 such as one or more of a keypad, a keyboard, and a display, memory 240 , and a wireless interface 250 .

控制器220可包括,例如,微处理器、数字信号处理器、微控制器、或与其类似的组件的一个或多个。存储器240可用于例如存储通过控制器220执行的指令。Controller 220 may include, for example, one or more of a microprocessor, digital signal processor, microcontroller, or similar components. Memory 240 may be used, for example, to store instructions for execution by controller 220.

存储器240可用于存储用户数据。存储器240可包括根据多种实例实施方式的可变电阻存储器件的至少一种。Memory 240 may be used to store user data. Memory 240 may include at least one variable resistance memory device according to various example implementations.

电子设备200可使用无线接口250来向经由射频(RF)信号执行通信的无线通信网络传输数据或从其接收数据。例如,无线接口250可包括天线、无线收发器等。电子设备200可用在通信接口协议诸如第三代(3G)通信系统诸如CDMA、GSM、NADC、E-TDMA、WCDMA、和CDMA2000的一种或多种中。Electronic device 200 may use wireless interface 250 to transmit data to or receive data from a wireless communication network that performs communication via radio frequency (RF) signals. For example, wireless interface 250 may include an antenna, a wireless transceiver, or the like. Electronic device 200 may be used in one or more of communication interface protocols such as third generation (3G) communication systems such as CDMA, GSM, NADC, E-TDMA, WCDMA, and CDMA2000.

图15为根据多种实例实施方式的包括可变电阻存储器件的存储系统300的示意性框图。15 is a schematic block diagram of a memory system 300 including a variable resistance memory device, according to various example implementations.

参考图15,根据多种实例实施方式的可变电阻存储器件可用于实现存储系统300。存储系统300可包括存储大容量的数据的存储器310和存储器控制器320。存储器控制器320可控制存储器310,使得存储在存储器310中的数据可响应于主机330的读取/写入请求而被读取或写入。存储器控制器320可向主机330配置例如用于将从移动设备或计算机系统提供的地址映射到存储器310的物理地址中的地址映射表。存储器310可包括根据多种实例实施方式的半导体存储器件的至少一种。Referring to FIG. 15 , variable resistance memory devices according to various example embodiments may be used to implement memory system 300 . The storage system 300 may include a memory 310 that stores a large amount of data and a memory controller 320. The memory controller 320 may control the memory 310 so that data stored in the memory 310 may be read or written in response to a read/write request from the host 330 . Memory controller 320 may configure host 330 with an address mapping table, for example, for mapping addresses provided from a mobile device or computer system into physical addresses of memory 310 . Memory 310 may include at least one semiconductor memory device according to various example implementations.

根据以上描述的多种实例实施方式的可变电阻存储器件可以芯片的形式实现并且可用作神经形态计算平台。Variable resistance memory devices according to various example embodiments described above may be implemented in the form of chips and may be used as neuromorphic computing platforms.

图16为根据多种实例实施方式的包括存储器件的神经形态装置400的示意图。参考图16,神经形态装置400可包括处理电路系统410和/或存储器420。神经形态装置400的存储器420可包括根据多种实例实施方式的存储系统。Figure 16 is a schematic diagram of a neuromorphic device 400 including a memory device, according to various example implementations. Referring to Figure 16, neuromorphic device 400 may include processing circuitry 410 and/or memory 420. Memory 420 of neuromorphic device 400 may include a storage system according to various example implementations.

处理电路系统410可配置成控制用于驱动神经形态装置400的功能。例如,处理电路系统410可配置成通过执行神经形态装置400的存储器420中存储的程序而控制神经形态装置400。Processing circuitry 410 may be configured to control functions for driving neuromorphic device 400 . For example, processing circuitry 410 may be configured to control neuromorphic device 400 by executing a program stored in memory 420 of neuromorphic device 400 .

处理电路系统410可包括硬件诸如逻辑电路;硬件/软件组合,诸如执行软件的处理器;或其组合。例如,处理器可包括,但不限于,如下的一种或多种:中央处理器(CPU)、图形处理单元(GPU)、神经形态装置400中包括的应用处理器(AP)、算术逻辑单元(ALU)、数字信号处理器、微机、现场可编程门阵列(FPGA)、片上系统(SoC)、可编程逻辑单元、微处理器、专用集成电路(ASIC)等。Processing circuitry 410 may include hardware such as logic circuitry; a hardware/software combination such as a processor executing software; or a combination thereof. For example, the processor may include, but is not limited to, one or more of the following: a central processing unit (CPU), a graphics processing unit (GPU), an application processor (AP) included in the neuromorphic device 400, an arithmetic logic unit (ALU), digital signal processor, microcomputer, field programmable gate array (FPGA), system on chip (SoC), programmable logic unit, microprocessor, application specific integrated circuit (ASIC), etc.

处理电路系统410可配置成从外部设备430读取各种数据/在外部设备430中写入各种数据和/或通过使用读取的/写入的数据执行神经形态装置400。外部设备430可包括具有图像传感器(例如,CMOS图像传感器电路)的外部存储器和/或传感器阵列。Processing circuitry 410 may be configured to read various data from/write various data in external device 430 and/or execute neuromorphic device 400 by using the read/written data. External device 430 may include external memory and/or sensor arrays having image sensors (eg, CMOS image sensor circuits).

图16中的神经形态装置400可应用于机器学习系统。所述机器学习系统可利用各种人工神经网络组织和处理模型,诸如如下的一种或多种:卷积神经网络(CNN)、反卷积神经网络、任选地包括长短期记忆(LSTM)单元和/或门控递归单元(GRU)的递归神经网络(RNN)、堆叠式神经网络(SNN)、状态空间动态神经网络(SSDNN)、深度信念网络(DBN)、生成对抗网络(GAN)、和/或受限玻尔兹曼机(RBM)。The neuromorphic device 400 in Figure 16 can be applied to machine learning systems. The machine learning system may utilize various artificial neural network organizations and processing models, such as one or more of: convolutional neural networks (CNN), deconvolutional neural networks, optionally including long short-term memory (LSTM) Recurrent Neural Networks (RNN), Stacked Neural Networks (SNN), State Space Dynamic Neural Networks (SSDNN), Deep Belief Networks (DBN), Generative Adversarial Networks (GAN), and/or Restricted Boltzmann Machine (RBM).

这样的机器学习系统可包括其它形式的机器学习模型诸如线性和/或逻辑回归、统计聚类、贝叶斯分类、决策树、降维诸如主成分分析、和专家系统;和/或其组合,包括集成诸如随机森林。这样的机器学习模型可用于提供多种服务,例如,图像分类服务、基于生物信息或生物识别数据的用户身份验证服务、高级驾驶员辅助系统(ADAS)服务、语音助理服务、自动语音识别(ASR)服务等,并且可被其它电子设备安装和实行。Such machine learning systems may include other forms of machine learning models such as linear and/or logistic regression, statistical clustering, Bayesian classification, decision trees, dimensionality reduction such as principal component analysis, and expert systems; and/or combinations thereof, Includes ensembles such as random forests. Such machine learning models can be used to provide a variety of services, such as image classification services, user authentication services based on biometric information or biometric data, advanced driver assistance systems (ADAS) services, voice assistant services, automatic speech recognition (ASR) ) services, etc., and can be installed and implemented by other electronic devices.

根据多种实例实施方式的可变电阻存储器件即使当绝对值相对小的电压施加至其时也可操作。The variable resistance memory device according to various example embodiments operates even when a voltage of relatively small absolute value is applied thereto.

替代地或额外地,根据多种实例实施方式的可变电阻存储器件对于实现更低的功耗和/或更高的集成可为有利的。Alternatively or additionally, variable resistance memory devices according to various example embodiments may be advantageous for achieving lower power consumption and/or higher integration.

应理解,本文中描述的多种实例实施方式应仅在描述性的意义上考虑且不用于限制的目的。在各实施方式中的特征或方面的描述应典型地被认为可用于其它实施方式中的其它类似特征或方面,并且实例实施方式不一定是互相排斥的。It should be understood that the various example embodiments described herein are to be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each embodiment should typically be considered as available for other similar features or aspects in other embodiments, and example embodiments are not necessarily mutually exclusive.

以上公开的任意元件和/或功能块可包括如下或者以如下实施:处理电路系统诸如包括逻辑电路的硬件;硬件/软件组合诸如执行软件的处理器;或其组合。例如,所述处理电路系统更具体地可包括,但不限于,中央处理器(CPU)、算术逻辑单元(ALU)、数字信号处理器、微机、现场可编程门阵列(FPGA)、片上系统(SoC)、可编程逻辑单元、微处理器、专用集成电路(ASIC)等。所述处理电路系统可包括电组件诸如晶体管、电阻器、电容器等的至少一种。所述处理电路系统可包括电组件诸如逻辑门,其包括AND门、OR门、NAND门、NOT门等的至少一种。Any of the elements and/or functional blocks disclosed above may include or be implemented in: processing circuitry such as hardware including logic circuitry; a hardware/software combination such as a processor executing software; or a combination thereof. For example, the processing circuit system may more specifically include, but is not limited to, a central processing unit (CPU), an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA), a system on a chip ( SoC), programmable logic unit, microprocessor, application specific integrated circuit (ASIC), etc. The processing circuitry may include electrical components such as at least one of a transistor, a resistor, a capacitor, and the like. The processing circuitry may include electrical components such as logic gates including at least one of AND gates, OR gates, NAND gates, NOT gates, and the like.

当在本说明书中关于数值使用“约”或“基本上”时,意图是,相关数值包括围绕所述数值的制造或操作公差(例如,±10%)。而且,当关于几何形状使用词语“大体上”和“基本上”时,意图是,不要求几何形状的精确性,但是所述形状的容度在公开内容的范围内。而且,当关于材料组成使用词语“大体上”和“基本上”时,意图是,不要求材料的精确性,但是所述材料的容度在公开内容的范围内。When "about" or "substantially" is used in this specification with respect to a numerical value, it is intended that the relevant numerical value includes manufacturing or operating tolerances (eg, ±10%) surrounding the stated numerical value. Furthermore, when the words "substantially" and "substantially" are used with respect to a geometric shape, it is intended that the exactness of the geometric shape is not required, but that the tolerances of the shape are within the scope of the disclosure. Furthermore, when the words "substantially" and "substantially" are used with respect to a composition of material, it is intended that the exact nature of the material is not required, but that the tolerance of the material is within the scope of the disclosure.

此外,不管数值或形状是否被修饰为“约”或“基本上”,将理解,这些值和形状应被解释为包括围绕所陈述的数值或形状的制造或操作公差(例如,±10%)。因此,虽然在实例实施方式的描述中使用术语“相同”、“一样”或“相等”,但是应理解,一些不精确性可存在。因此,当一个元件或一个数值被称为与另一元件相同或与另一数值相等时,应理解,一个元件或一个数值在期望的制造或操作公差范围(例如,±10%)内与另一元件或另一数值相同。Furthermore, regardless of whether a numerical value or shape is modified as "about" or "substantially," it will be understood that these values and shapes are to be interpreted as including manufacturing or operating tolerances (e.g., ±10%) surrounding the stated numerical value or shape. . Thus, although the terms "same," "the same," or "equal" are used in descriptions of example embodiments, it is to be understood that some imprecision may exist. Therefore, when an element or a value is referred to as being the same or equal to another value, it will be understood that the one element or value is the same as the other element within expected manufacturing or operating tolerances (e.g., ±10%). One component or another has the same value.

尽管已经参照附图描述了一种或多种实例实施方式,但是本领域普通技术人员将理解,在不背离如由所附权利要求所限定的精神和范围的情况下,可在其中进行形式和细节方面的多种变化。另外,实例实施方式不一定是互相排斥的。例如,一些实例实施方式可包括参照一个或多个附图描述的一个或多个特征,并且还可包括参照一个或多个其它附图描述的一个或多个其它特征。Although one or more example embodiments have been described with reference to the accompanying drawings, those of ordinary skill in the art will understand that various modifications may be made therein without departing from the spirit and scope as defined by the appended claims. Many variations in details. Additionally, example implementations are not necessarily mutually exclusive. For example, some example embodiments may include one or more features described with reference to one or more figures, and may also include one or more other features described with reference to one or more other figures.

Claims (20)

1.可变电阻存储器件,包括:1. Variable resistance memory devices, including: 电阻变化层,其包括金属氧化物,所述金属氧化物包括第一金属元素和任选地第二金属元素,所述金属氧化物具有大于或等于约9%的缺氧率;A resistance change layer comprising a metal oxide including a first metal element and optionally a second metal element, the metal oxide having an oxygen deficiency rate greater than or equal to about 9%; 在所述电阻变化层上的半导体层;a semiconductor layer on the resistance change layer; 在所述半导体层上的栅极绝缘层;和a gate insulating layer on the semiconductor layer; and 在所述栅极绝缘层上彼此隔开的多个栅电极。A plurality of gate electrodes spaced apart from each other on the gate insulating layer. 2.如权利要求1所述的可变电阻存储器件,其中相对于所述电阻变化层的全部金属,所述第一金属元素的含量大于或等于约50原子%。2. The variable resistance memory device of claim 1, wherein the content of the first metal element is greater than or equal to about 50 atomic % with respect to all metals of the resistance change layer. 3.如权利要求1所述的可变电阻存储器件,其中相对于所述电阻变化层的全部金属,所述第二金属元素的含量小于或等于约35原子%。3. The variable resistance memory device of claim 1, wherein a content of the second metal element is less than or equal to about 35 atomic % relative to all metals of the resistance change layer. 4.如权利要求1所述的可变电阻存储器件,其中所述第一金属元素包括Ta、Ti、Sn、Cr、和Mn的至少一种。4. The variable resistance memory device of claim 1, wherein the first metal element includes at least one of Ta, Ti, Sn, Cr, and Mn. 5.如权利要求1所述的可变电阻存储器件,其中所述第二金属元素包括Hf、Al、Nb、La、Zr、Sc、W、V、和Mo的至少一种。5. The variable resistance memory device of claim 1, wherein the second metal element includes at least one of Hf, Al, Nb, La, Zr, Sc, W, V, and Mo. 6.如权利要求1所述的可变电阻存储器件,其中所述电阻变化层进一步包括Si。6. The variable resistance memory device of claim 1, wherein the resistance change layer further includes Si. 7.如权利要求1所述的可变电阻存储器件,其中所述半导体层配置成接收施加至其的具有小于或等于约4V的绝对值的写入电压。7. The variable resistance memory device of claim 1, wherein the semiconductor layer is configured to receive a write voltage applied thereto having an absolute value less than or equal to about 4V. 8.如权利要求1所述的可变电阻存储器件,进一步包括:8. The variable resistance memory device of claim 1, further comprising: 在所述半导体层和所述电阻变化层之间的氧化物层。An oxide layer between the semiconductor layer and the resistance change layer. 9.如权利要求8所述的可变电阻存储器件,其中所述氧化物层的厚度小于所述电阻变化层的厚度。9. The variable resistance memory device of claim 8, wherein the thickness of the oxide layer is smaller than the thickness of the resistance change layer. 10.如权利要求1所述的可变电阻存储器件,其中10. The variable resistance memory device of claim 1, wherein 所述电阻变化层包括在远离所述半导体层的方向上顺序地布置的第一电阻变化层和第二电阻变化层;且The resistance change layer includes a first resistance change layer and a second resistance change layer sequentially arranged in a direction away from the semiconductor layer; and 所述第一电阻变化层的缺氧率大于所述第二电阻变化层的缺氧率。The oxygen deficiency rate of the first resistance change layer is greater than the oxygen deficiency rate of the second resistance change layer. 11.如权利要求1所述的可变电阻存储器件,其中11. The variable resistance memory device of claim 1, wherein 所述多个栅电极的至少三个周期性地布置,并且所述多个栅电极的所述至少三个的节距小于或等于约20nm。At least three of the plurality of gate electrodes are periodically arranged, and a pitch of the at least three of the plurality of gate electrodes is less than or equal to about 20 nm. 12.如权利要求1所述的可变电阻存储器件,进一步包括:12. The variable resistance memory device of claim 1, further comprising: 柱,column, 其中所述电阻变化层、半导体层、和栅极绝缘层以壳形状顺序地围绕所述柱,和wherein the resistance change layer, the semiconductor layer, and the gate insulating layer sequentially surround the pillar in a shell shape, and 所述多个栅电极和绝缘元件以壳形状围绕所述栅极绝缘层。The plurality of gate electrodes and insulating elements surround the gate insulating layer in a shell shape. 13.如权利要求12所述的可变电阻存储器件,其中所述柱包括绝缘材料。13. The variable resistance memory device of claim 12, wherein the pillars comprise insulating material. 14.如权利要求12所述的可变电阻存储器件,其中所述柱包括导电材料。14. The variable resistance memory device of claim 12, wherein the pillars comprise conductive material. 15.如权利要求14所述的可变电阻存储器件,其中所述柱配置成接收大于或等于施加至所述半导体层的电压的电压。15. The variable resistance memory device of claim 14, wherein the pillar is configured to receive a voltage greater than or equal to a voltage applied to the semiconductor layer. 16.可变电阻存储器件,包括:16. Variable resistance memory devices, including: 电阻变化层,其包括具有大于或等于约9%的缺氧率且包含硅的金属氧化物;A resistance change layer comprising a metal oxide having an oxygen deficiency rate greater than or equal to about 9% and including silicon; 在所述电阻变化层上的半导体层;a semiconductor layer on the resistance change layer; 在所述半导体层上的栅极绝缘层;和a gate insulating layer on the semiconductor layer; and 在所述栅极绝缘层上彼此隔开的多个栅电极。A plurality of gate electrodes spaced apart from each other on the gate insulating layer. 17.如权利要求16所述的可变电阻存储器件,其中所述电阻变化层包括Ta、Ti、Sn、Cr、和Mn的至少一种。17. The variable resistance memory device of claim 16, wherein the resistance change layer includes at least one of Ta, Ti, Sn, Cr, and Mn. 18.如权利要求16所述的可变电阻存储器件,其中相对于所述电阻变化层的金属与硅之和,硅的含量小于或等于约35原子%。18. The variable resistance memory device of claim 16, wherein the silicon content is less than or equal to about 35 atomic % relative to the sum of metal and silicon of the resistance change layer. 19.可变电阻存储器件,包括:19. Variable resistance memory devices, including: 电阻变化层,其包括具有大于或等于约9%的缺氧率的第一金属氧化物和具有小于9%的缺氧率的第二金属氧化物,其中所述第一金属氧化物的含量大于所述第二金属氧化物的含量;A resistance change layer comprising a first metal oxide having an oxygen deficiency rate greater than or equal to about 9% and a second metal oxide having an oxygen deficiency rate less than 9%, wherein the content of the first metal oxide is greater than The content of the second metal oxide; 在所述电阻变化层上的半导体层;a semiconductor layer on the resistance change layer; 在所述半导体层上的栅极绝缘层;和a gate insulating layer on the semiconductor layer; and 在所述栅极绝缘层上彼此隔开的多个栅电极。A plurality of gate electrodes spaced apart from each other on the gate insulating layer. 20.如权利要求19所述的可变电阻存储器件,其中相对于所述电阻变化层中包括的全部金属,所述第二金属氧化物中包括的金属的含量小于或等于约35原子%。20. The variable resistance memory device of claim 19, wherein the content of the metal included in the second metal oxide is less than or equal to about 35 atomic % with respect to the total metal included in the resistance change layer.
CN202311052282.5A 2022-08-19 2023-08-21 Variable resistance memory device and electronic apparatus including the same Pending CN117597016A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2022-0104269 2022-08-19
KR10-2022-0153995 2022-11-16
KR1020220153995A KR20240026063A (en) 2022-08-19 2022-11-16 Variable resistance memory device and electronic apparatus including the same

Publications (1)

Publication Number Publication Date
CN117597016A true CN117597016A (en) 2024-02-23

Family

ID=89915572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311052282.5A Pending CN117597016A (en) 2022-08-19 2023-08-21 Variable resistance memory device and electronic apparatus including the same

Country Status (1)

Country Link
CN (1) CN117597016A (en)

Similar Documents

Publication Publication Date Title
US11894053B2 (en) Vertical nonvolatile memory device including memory cell string
US8617959B2 (en) Resistive memory and methods of processing resistive memory
US12408566B2 (en) Variable resistance memory device
CN113054099B (en) Variable resistance memory device
US10903235B2 (en) Non-volatile memory device and operation method thereof
US20230121581A1 (en) Variable resistance memory device
US20220246679A1 (en) Variable resistance memory device
US12027215B2 (en) Nonvolatile memory device and operating method of the same
JP2024027106A (en) Non-volatile memory device and operating method thereof
US11856873B2 (en) Variable resistance memory device
CN117597016A (en) Variable resistance memory device and electronic apparatus including the same
US20240065001A1 (en) Variable resistance memory device and electronic device including the same
KR20240026063A (en) Variable resistance memory device and electronic apparatus including the same
EP4510803A1 (en) Variable resistance memory device and electronic apparatus including the same
US20240196763A1 (en) Variable resistance memory device and electronic apparatus including the same
CN120187017A (en) Vertical nonvolatile memory device and electronic device including memory cell string
CN120321957A (en) Variable resistance memory device and electronic device including the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination