CN118116967A - Radio frequency device and preparation method thereof, and electronic equipment - Google Patents
Radio frequency device and preparation method thereof, and electronic equipment Download PDFInfo
- Publication number
- CN118116967A CN118116967A CN202211521778.8A CN202211521778A CN118116967A CN 118116967 A CN118116967 A CN 118116967A CN 202211521778 A CN202211521778 A CN 202211521778A CN 118116967 A CN118116967 A CN 118116967A
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- substrate
- electrode
- sub
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及半导体技术领域,尤其涉及一种射频器件及其制备方法、电子设备。The present application relates to the field of semiconductor technology, and in particular to a radio frequency device and a preparation method thereof, and an electronic device.
背景技术Background technique
随着半导体科技的发展,器件性能的要求不断被提高,从而促使了新型半导体材料和器件的出现。砷化镓(GaAs)、氮化镓(GaN)等材料具有电子漂移速率高、耐高温、化学性质稳定等特点,被广泛应用于高频、高温、微波领域。With the development of semiconductor technology, the requirements for device performance are constantly being improved, which has led to the emergence of new semiconductor materials and devices. Materials such as gallium arsenide (GaAs) and gallium nitride (GaN) have the characteristics of high electron drift rate, high temperature resistance, and stable chemical properties, and are widely used in high-frequency, high-temperature, and microwave fields.
目前,GaN和GaAs器件大多以异质结为基本结构。高电子迁移率晶体管(highelectron mobility transistor,HEMT)是一种半导体器件,其利用在异质结位置产生的高浓度二维电子气(two dimensional electron gas,2DEG)作为电流载体。2DEG在空间维度实现了杂质与电子的分离,避免或降低了杂质散射,因此电子具有较高的迁移率。GaN射频器件的基础就是HEMT。At present, most GaN and GaAs devices use heterojunction as their basic structure. High electron mobility transistor (HEMT) is a semiconductor device that uses high-concentration two-dimensional electron gas (2DEG) generated at the heterojunction as a current carrier. 2DEG separates impurities and electrons in the spatial dimension, avoiding or reducing impurity scattering, so electrons have a higher mobility. The basis of GaN RF devices is HEMT.
随着第三代半导体技术的不断发展,越来越多的应用场景选择了GaN射频器件,GaN HEMT射频器件也在不同的场景下不断渗透并大规模使用。基于此,本领域对GaN HEMT射频器件的防潮性和鲁棒性提出了严格的要求。With the continuous development of third-generation semiconductor technology, more and more application scenarios have chosen GaN RF devices, and GaN HEMT RF devices have also been continuously infiltrated and used on a large scale in different scenarios. Based on this, the field has put forward strict requirements on the moisture resistance and robustness of GaN HEMT RF devices.
发明内容Summary of the invention
本申请实施例提供一种射频器件及其制备方法、电子设备,用于提高器件的防潮防水特性,提高器件的可靠性。The embodiments of the present application provide a radio frequency device and a method for manufacturing the same, and an electronic device, which are used to improve the moisture-proof and waterproof properties of the device and improve the reliability of the device.
为达到上述目的,本申请的实施例采用如下技术方案:To achieve the above objectives, the embodiments of the present application adopt the following technical solutions:
第一方面,提供了一种射频器件,该射频器件包括衬底、电路结构、第一介质层、辅助电极和第二介质层。电路结构位于所述衬底的一侧,所述电路结构包括远离所述衬底的第一表面,所述第一表面包括台阶面,所述台阶面包括远离所述衬底一侧的凸起。第一介质层位于所述第一表面远离所述衬底的一侧。所述第一介质层包括远离所述衬底的第二表面。在垂直于所述衬底的方向上,所述第二表面中任意两点到所述衬底的上表面的距离之差小于或等于20nm。辅助电极包括相连接的第一子电极和第二子电极,所述第一子电极位于所述第一介质层远离所述衬底的一侧,所述第二子电极贯穿所述第一介质层与所述电路结构连接。第二介质层,位于所述第一介质层远离所述衬底的一侧,且覆盖所述辅助电极。In a first aspect, a radio frequency device is provided, which includes a substrate, a circuit structure, a first dielectric layer, an auxiliary electrode, and a second dielectric layer. The circuit structure is located on one side of the substrate, and the circuit structure includes a first surface away from the substrate, the first surface includes a step surface, and the step surface includes a protrusion away from one side of the substrate. The first dielectric layer is located on the side of the first surface away from the substrate. The first dielectric layer includes a second surface away from the substrate. In a direction perpendicular to the substrate, the difference in distance from any two points in the second surface to the upper surface of the substrate is less than or equal to 20nm. The auxiliary electrode includes a first sub-electrode and a second sub-electrode connected to each other, the first sub-electrode is located on the side of the first dielectric layer away from the substrate, and the second sub-electrode penetrates the first dielectric layer and is connected to the circuit structure. The second dielectric layer is located on the side of the first dielectric layer away from the substrate and covers the auxiliary electrode.
本申请实施例所提供的射频器件,包括第一介质层和位于第一介质层远离衬底的一侧的第二介质层,在垂直于衬底的方向上,第一介质层的第二表面中任意两点到衬底的上表面的距离之差小于或等于20nm,使得第二表面整体较为平坦。这样,即使在形成第一介质层的过程中,第一介质层中位于台阶面上的部分内产生了合并缝隙,第二介质层位于台阶面远离衬底一侧的部分中也不会具有合并缝隙,第一介质层中的合并缝隙无法穿过第二介质层与外界连通,使得外界环境中的水汽也不容易进入到第一介质层的合并缝隙内,并穿过合并缝隙进入到电路结构中,从而避免了因水汽入侵使得第一介质层开裂的问题,进而避免了水汽接触电路结构中的电极,导致电极被腐蚀,造成同层电极之间相互短路问题,提高了射频器件的防潮防水特性,同时提高了射频器件的可靠性。The radio frequency device provided in the embodiment of the present application includes a first dielectric layer and a second dielectric layer located on a side of the first dielectric layer away from a substrate. In a direction perpendicular to the substrate, the difference in distance between any two points in the second surface of the first dielectric layer and the upper surface of the substrate is less than or equal to 20 nm, so that the second surface is relatively flat as a whole. In this way, even if a merged gap is generated in the portion of the first dielectric layer located on the step surface during the formation of the first dielectric layer, the portion of the second dielectric layer located on the side of the step surface away from the substrate will not have a merged gap, and the merged gap in the first dielectric layer cannot pass through the second dielectric layer to communicate with the outside world, so that water vapor in the external environment is not easy to enter the merged gap of the first dielectric layer and pass through the merged gap into the circuit structure, thereby avoiding the problem of cracking of the first dielectric layer due to water vapor intrusion, and further avoiding water vapor contacting the electrodes in the circuit structure, causing the electrodes to be corroded, causing the problem of short circuit between electrodes in the same layer, improving the moisture and water resistance of the radio frequency device, and at the same time improving the reliability of the radio frequency device.
在一些实施例中,所述第二表面平行于所述衬底的上表面。此时,第二表面位于台阶面上的部分更加平坦。这样,位于第一介质层远离衬底的一侧的第二介质层,更加不会在对应台阶面的位置处产生合并缝隙,使得外界环境中的水汽更加不容易穿过第一介质层和第二介质层进入到电路结构中,从而进一步提高了射频器件的防潮防水特性,提高了射频器件的可靠性。In some embodiments, the second surface is parallel to the upper surface of the substrate. In this case, the portion of the second surface located on the step surface is flatter. In this way, the second dielectric layer located on the side of the first dielectric layer away from the substrate will not generate a merged gap at the position corresponding to the step surface, making it more difficult for water vapor in the external environment to pass through the first dielectric layer and the second dielectric layer into the circuit structure, thereby further improving the moisture and water resistance of the RF device and improving the reliability of the RF device.
在一些实施例中,所述第二表面中被所述第一子电极覆盖的部分为第一部分,所述第二表面中位于所述第一子电极周围的部分为第二部分,所述第一部分相比于所述第二部分更远离衬底的上表面。In some embodiments, the portion of the second surface covered by the first sub-electrode is a first portion, the portion of the second surface located around the first sub-electrode is a second portion, and the first portion is farther away from the upper surface of the substrate than the second portion.
在一些实施例中,所述射频器件还包括第三介质层,第三介质层位于所述第一介质层与所述第一子电极之间;所述第二子电极还贯穿所述第三介质层。在本申请实施例中,由于第二表面位于台阶面上的部分与较为平坦,因此第三介质层中位于台阶面远离衬底一侧的部分内也不会出现合并缝隙。这样,即使第一介质层位于台阶面上的部分中出现合并缝隙,第二介质层中也出现合并缝隙,第三介质层可以将第一介质层中的合并缝隙与第二介质层中的合并缝隙间隔开,从而进一步避免了第一介质层中的合并缝隙与外界环境连通,进一步阻挡了水汽的入侵,提高了射频器件的防潮防水特性,提高了射频器件的可靠性。In some embodiments, the RF device further includes a third dielectric layer, and the third dielectric layer is located between the first dielectric layer and the first sub-electrode; the second sub-electrode also penetrates the third dielectric layer. In the embodiment of the present application, since the portion of the second surface located on the step surface is relatively flat, no merged gap will appear in the portion of the third dielectric layer located on the side of the step surface away from the substrate. In this way, even if a merged gap appears in the portion of the first dielectric layer located on the step surface, a merged gap also appears in the second dielectric layer. The third dielectric layer can separate the merged gap in the first dielectric layer from the merged gap in the second dielectric layer, thereby further avoiding the merged gap in the first dielectric layer from being connected to the external environment, further blocking the intrusion of water vapor, improving the moisture-proof and waterproof properties of the RF device, and improving the reliability of the RF device.
在一些实施例中,所述第三介质层包括远离所述衬底的第三表面,所述第三表面中被所述第一子电极覆盖的部分为第三部分,所述第三表面中位于所述第一子电极周围的部分为第四部分,所述第三部分相比于所述第四部分更远离所述衬底的上表面。In some embodiments, the third dielectric layer includes a third surface away from the substrate, a portion of the third surface covered by the first sub-electrode is a third portion, a portion of the third surface located around the first sub-electrode is a fourth portion, and the third portion is farther away from the upper surface of the substrate than the fourth portion.
在一些实施例中,所述第三介质层包括远离所述衬底的第三表面,所述第三表面平行于所述衬底的上表面。In some embodiments, the third dielectric layer includes a third surface away from the substrate, and the third surface is parallel to the upper surface of the substrate.
在一些实施例中,所述电路结构包括异质结、第四介质层、源极、漏极、第五介质层和栅极。异质结位于所述衬底的一侧;所述异质结包括沿远离所述衬底的方向依次层叠的沟道层和势垒层。第四介质层位于所述异质结远离所述衬底的一侧。源极和漏极位于所述第四介质层远离所述衬底的一侧,且所述源极和所述漏极贯穿所述第四介质层与所述势垒层接触。第五介质层位于所述第四介质层远离所述衬底的一侧,所述第五介质层覆盖所述源极和所述漏极。栅极位于所述第五介质层远离所述衬底的一侧,且位于所述源极和所述漏极之间;所述栅极贯穿所述第四介质层和所述第五介质层,与所述势垒层接触。In some embodiments, the circuit structure includes a heterojunction, a fourth dielectric layer, a source, a drain, a fifth dielectric layer, and a gate. The heterojunction is located on one side of the substrate; the heterojunction includes a channel layer and a barrier layer stacked in sequence in a direction away from the substrate. The fourth dielectric layer is located on the side of the heterojunction away from the substrate. The source and the drain are located on the side of the fourth dielectric layer away from the substrate, and the source and the drain penetrate the fourth dielectric layer and contact the barrier layer. The fifth dielectric layer is located on the side of the fourth dielectric layer away from the substrate, and the fifth dielectric layer covers the source and the drain. The gate is located on the side of the fifth dielectric layer away from the substrate and between the source and the drain; the gate penetrates the fourth dielectric layer and the fifth dielectric layer and contacts the barrier layer.
在一些实施例中,所述电路结构还包括第六介质层和场板电极。第六介质层位于所述第五介质层远离所述衬底的一侧,所述第六介质层覆盖所述栅极。场板电极位于所述第六介质层远离所述衬底的一侧,所述场板电极在所述衬底上的正投影与所述栅极在所述衬底上的正投影部分重叠。In some embodiments, the circuit structure further includes a sixth dielectric layer and a field plate electrode. The sixth dielectric layer is located on a side of the fifth dielectric layer away from the substrate, and the sixth dielectric layer covers the gate. The field plate electrode is located on a side of the sixth dielectric layer away from the substrate, and the orthographic projection of the field plate electrode on the substrate partially overlaps with the orthographic projection of the gate on the substrate.
这样,可以调节射频器件内的电场分布,使栅极边缘所在的位置处的电场分布更加均匀,避免出现电场尖峰,提高射频器件的耐击穿能力。In this way, the electric field distribution in the RF device can be adjusted to make the electric field distribution at the location of the gate edge more uniform, avoid electric field spikes, and improve the breakdown resistance of the RF device.
在一些实施例中,所述射频器件包括有源区和围绕所述有源区的无源区。所述射频器件还包括第一衬垫、第二衬垫和第三衬垫;所述第一衬垫和所述第二衬垫位于所述第一介质层远离所述衬底一侧;所述第一衬垫和所述第二衬垫位于所述无源区,且所述第一衬垫和所述第二衬垫分别通过所述辅助电极与所述漏极和所述栅极电连接。所述第三衬垫位于所述衬底远离所述电路结构一侧;所述第三衬垫与所述源极电连接。In some embodiments, the RF device includes an active region and an inactive region surrounding the active region. The RF device also includes a first pad, a second pad, and a third pad; the first pad and the second pad are located on the side of the first dielectric layer away from the substrate; the first pad and the second pad are located in the inactive region, and the first pad and the second pad are electrically connected to the drain and the gate through the auxiliary electrode, respectively. The third pad is located on the side of the substrate away from the circuit structure; the third pad is electrically connected to the source.
在一些实施例中,所述第二介质层位于所述台阶面远离所述衬底一侧的部分不具有合并缝隙。In some embodiments, a portion of the second dielectric layer located on a side of the step surface away from the substrate does not have a merged gap.
第二方面,提供一种射频器件的制备方法,包括:在衬底的一侧形成电路结构,所述电路结构包括远离所述衬底的第一表面,所述第一表面包括台阶面,所述台阶面包括远离所述衬底一侧的凸起。在所述电路结构远离所述衬底的一侧形成第一介质层;所述第一介质层包括远离所述衬底的第二表面,所述第二表面的高度随所述第一表面的高度变化而变化。对所述第一介质层的第二表面进行平坦化处理。形成辅助电极,所述辅助电极包括相连接的第一子电极和第二子电极,所述第一子电极位于所述第一介质层远离所述衬底的一侧,所述第二子电极贯穿所述第一介质层与所述电路结构连接。在所述第一介质层远离所述衬底的一侧形成第二介质层,所述第二介质层覆盖所述辅助电极。其中,对所述第一介质层的第二表面进行平坦化处理后,在垂直于所述衬底的方向上,所述第二表面中任意两点到所述衬底的上表面的距离之差小于或等于20nm。In a second aspect, a method for preparing a radio frequency device is provided, comprising: forming a circuit structure on one side of a substrate, the circuit structure comprising a first surface away from the substrate, the first surface comprising a step surface, and the step surface comprising a protrusion away from one side of the substrate. Forming a first dielectric layer on the side of the circuit structure away from the substrate; the first dielectric layer comprises a second surface away from the substrate, and the height of the second surface varies with the height of the first surface. Flattening the second surface of the first dielectric layer. Forming an auxiliary electrode, the auxiliary electrode comprising a first sub-electrode and a second sub-electrode connected to each other, the first sub-electrode being located on the side of the first dielectric layer away from the substrate, and the second sub-electrode penetrating the first dielectric layer and connected to the circuit structure. Forming a second dielectric layer on the side of the first dielectric layer away from the substrate, the second dielectric layer covering the auxiliary electrode. After flattening the second surface of the first dielectric layer, in a direction perpendicular to the substrate, the difference in distance between any two points on the second surface and the upper surface of the substrate is less than or equal to 20 nm.
在本申请实施例所提供的射频器件的制备方法中,在起伏不平的第一表面上形成第一介质层,第一介质层的第二表面凹凸不平,对第一介质层的第二表面进行平坦化处理,使得第一介质层的第二表面较为平坦。这样,即使在形成过程中,第一介质层在对应第一表面的台阶面处产生了合并缝隙,在平坦的第二表面上形成第二介质层后,第二介质层中位于台阶面远离衬底的一侧的部分内也不会具有合并缝隙,第一介质层中的合并缝隙无法穿过第二介质层与外界连通,使得外界环境中的水汽也不容易进入到第一介质层的合并缝隙内,并穿过合并缝隙进入到电路结构中,从而避免了因水汽入侵使得第一介质层开裂的问题,进而避免了水汽接触电路结构中的电极,导致电极被腐蚀,造成同层电极之间相互短路的问题,提高了射频器件的防潮防水特性,同时提高了射频器件的可靠性。In the method for preparing the radio frequency device provided in the embodiment of the present application, a first dielectric layer is formed on an uneven first surface, and a second surface of the first dielectric layer is uneven, and a flattening treatment is performed on the second surface of the first dielectric layer, so that the second surface of the first dielectric layer is relatively flat. In this way, even if the first dielectric layer generates a merged gap at the step surface corresponding to the first surface during the formation process, after the second dielectric layer is formed on the flat second surface, there will be no merged gap in the part of the second dielectric layer located on the side of the step surface away from the substrate, and the merged gap in the first dielectric layer cannot pass through the second dielectric layer to communicate with the outside world, so that water vapor in the external environment is not easy to enter the merged gap of the first dielectric layer and pass through the merged gap into the circuit structure, thereby avoiding the problem of cracking of the first dielectric layer due to water vapor intrusion, and further avoiding the problem of water vapor contacting the electrodes in the circuit structure, causing the electrodes to be corroded, causing the problem of short circuits between electrodes in the same layer, improving the moisture-proof and waterproof properties of the radio frequency device, and at the same time improving the reliability of the radio frequency device.
在一些实施例中,所述对所述第一介质层的第二表面进行平坦化处理,包括:采用化学机械抛光工艺或干法刻蚀工艺,去除部分所述第一介质层,以使所述第一介质层的第二表面平坦。In some embodiments, the planarizing the second surface of the first dielectric layer includes: removing a portion of the first dielectric layer by a chemical mechanical polishing process or a dry etching process to make the second surface of the first dielectric layer planar.
在一些实施例中,所述对所述第一介质层的第二表面进行平坦化处理,包括:在所述第一介质层远离所述衬底的一侧形成牺牲层;所述牺牲层包括远离所述衬底的第四表面,所述第四表面的高度随所述第二表面的变化而变化。采用干法刻蚀工艺,去除至少部分所述牺牲层,以使所述第一介质层的第二表面平坦。In some embodiments, the planarizing the second surface of the first dielectric layer includes: forming a sacrificial layer on a side of the first dielectric layer away from the substrate; the sacrificial layer includes a fourth surface away from the substrate, and the height of the fourth surface varies with the change of the second surface. A dry etching process is used to remove at least a portion of the sacrificial layer to make the second surface of the first dielectric layer flat.
在一些实施例中,所述牺牲层的材料包括有机材料。In some embodiments, the material of the sacrificial layer includes an organic material.
在一些实施例中,所述形成辅助电极,包括:刻蚀所述第一介质层,形成开口,所述开口暴露出所述电路结构中的源极、漏极或栅极。在所述第一介质层远离所述衬底的一侧形成导电层。刻蚀所述导电层,形成辅助电极;所述辅助电极包括位于所述第二表面上的第一子电极和位于所述开口中的第二子电极;所述第二子电极与所述源极、所述漏极或所述栅极电连接。In some embodiments, the forming of the auxiliary electrode comprises: etching the first dielectric layer to form an opening, wherein the opening exposes the source, drain or gate in the circuit structure. Forming a conductive layer on a side of the first dielectric layer away from the substrate. Etching the conductive layer to form an auxiliary electrode; the auxiliary electrode comprises a first sub-electrode located on the second surface and a second sub-electrode located in the opening; the second sub-electrode is electrically connected to the source, the drain or the gate.
在一些实施例中,所述形成辅助电极,包括:刻蚀所述第一介质层,形成开口,所述开口暴露出所述电路结构中的源极、漏极或栅极。在所述第一介质层远离所述衬底的一侧形成导电层。采用剥离工艺去除部分所述导电层,形成辅助电极;所述辅助电极包括位于所述第二表面上的第一子电极和位于所述开口中的第二子电极;所述第二子电极与所述源极、所述漏极或所述栅极电连接。In some embodiments, the forming of the auxiliary electrode comprises: etching the first dielectric layer to form an opening, wherein the opening exposes the source, drain or gate in the circuit structure. Forming a conductive layer on a side of the first dielectric layer away from the substrate. Removing a portion of the conductive layer by a stripping process to form an auxiliary electrode; the auxiliary electrode comprises a first sub-electrode located on the second surface and a second sub-electrode located in the opening; and the second sub-electrode is electrically connected to the source, the drain or the gate.
在一些实施例中,所述对所述第一介质层的第二表面进行平坦化处理后,所述形成辅助电极前,所述制备方法还包括:在所述第一介质层远离所述衬底的一侧形成第三介质层。其中,所述第二部分还贯穿所述第三介质层。In some embodiments, after the second surface of the first dielectric layer is planarized and before the auxiliary electrode is formed, the preparation method further includes: forming a third dielectric layer on a side of the first dielectric layer away from the substrate, wherein the second portion also penetrates the third dielectric layer.
在一些实施例中,所述对所述第一介质层的第二表面进行平坦化处理之前,所述第一介质层的厚度为400nm~5μm。In some embodiments, before the second surface of the first dielectric layer is planarized, the thickness of the first dielectric layer is 400 nm to 5 μm.
第三方面,提供一种电子设备,包括电路板,如上述任一实施例所述的射频器件,所述射频器件与所述电路板电连接。According to a third aspect, an electronic device is provided, including a circuit board and a radio frequency device as described in any of the above embodiments, wherein the radio frequency device is electrically connected to the circuit board.
其中,第三方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。Among them, the technical effects brought about by any design method in the third aspect can refer to the technical effects brought about by different design methods in the first aspect, and will not be repeated here.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请中的技术方案,下面将对本申请一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本申请实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。In order to more clearly illustrate the technical solutions in the present application, the following briefly introduces the drawings required to be used in some embodiments of the present application. Obviously, the drawings described below are only drawings of some embodiments of the present application. For ordinary technicians in this field, other drawings can also be obtained based on these drawings. In addition, the drawings described below can be regarded as schematic diagrams, and are not limitations on the actual size of the products involved in the embodiments of the present application, the actual process of the method, the actual timing of the signal, etc.
图1为本申请实施例提供的一种电子设备的结构示意图;FIG1 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application;
图2为本申请实施例提供的另一种电子设备的结构示意图;FIG2 is a schematic diagram of the structure of another electronic device provided in an embodiment of the present application;
图3为本申请实施例提供的再一种电子设备的结构示意图;FIG3 is a schematic diagram of the structure of another electronic device provided in an embodiment of the present application;
图4为本申请实施例提供的一种射频器件的结构示意图;FIG4 is a schematic diagram of the structure of a radio frequency device provided in an embodiment of the present application;
图5为本申请实施例提供的另一种射频器件的结构示意图;FIG5 is a schematic diagram of the structure of another radio frequency device provided in an embodiment of the present application;
图6为本申请实施例提供的再一种射频器件的结构示意图;FIG6 is a schematic diagram of the structure of another radio frequency device provided in an embodiment of the present application;
图7为本申请实施例提供的又一种射频器件的结构示意图;FIG7 is a schematic diagram of the structure of another radio frequency device provided in an embodiment of the present application;
图8为本申请实施例提供的又一种射频器件的结构示意图;FIG8 is a schematic diagram of the structure of another radio frequency device provided in an embodiment of the present application;
图9为本申请实施例提供的又一种射频器件的结构示意图;FIG9 is a schematic structural diagram of another radio frequency device provided in an embodiment of the present application;
图10为本申请实施例提供的又一种射频器件的结构示意图;FIG10 is a schematic diagram of the structure of another radio frequency device provided in an embodiment of the present application;
图11为本申请实施例提供的又一种射频器件的结构示意图;FIG11 is a schematic diagram of the structure of another radio frequency device provided in an embodiment of the present application;
图12为本申请实施例提供的又一种射频器件的结构示意图;FIG12 is a schematic diagram of the structure of another radio frequency device provided in an embodiment of the present application;
图13为本申请实施例提供的一种射频器件的制备方法的流程图;FIG13 is a flow chart of a method for preparing a radio frequency device provided in an embodiment of the present application;
图14~图17B为图13所提供的制备方法对应的射频器件的状态图;14 to 17B are state diagrams of the radio frequency device corresponding to the preparation method provided in FIG. 13 ;
图18A为本申请实施例提供的另一种射频器件的制备方法的流程图;FIG18A is a flow chart of another method for preparing a radio frequency device provided in an embodiment of the present application;
图18B为本申请实施例提供的再一种射频器件的制备方法的流程图;FIG18B is a flow chart of another method for preparing a radio frequency device provided in an embodiment of the present application;
图19为图18B所提供的制备方法对应的射频器件的状态图;FIG19 is a state diagram of a radio frequency device corresponding to the preparation method provided in FIG18B ;
图20为本申请实施例提供的又一种射频器件的制备方法的流程图;FIG20 is a flow chart of another method for preparing a radio frequency device provided in an embodiment of the present application;
图21和图22为图20所提供的制备方法对应的射频器件的状态图;21 and 22 are state diagrams of the radio frequency device corresponding to the preparation method provided in FIG. 20 ;
图23为本申请实施例提供的又一种射频器件的制备方法的流程图;FIG23 is a flow chart of another method for preparing a radio frequency device provided in an embodiment of the present application;
图24为本申请实施例提供的又一种射频器件的制备方法的流程图;FIG24 is a flow chart of another method for preparing a radio frequency device provided in an embodiment of the present application;
图25A和图25B为图24所提供的制备方法对应的射频器件的状态图。25A and 25B are state diagrams of the RF device corresponding to the manufacturing method provided in FIG. 24 .
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B。The technical solution in the embodiment of the present application will be described below in conjunction with the accompanying drawings in the embodiment of the present application. In the description of the present application, unless otherwise specified, "/" indicates that the objects associated before and after are in an "or" relationship, for example, A/B can represent A or B.
本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。The "and/or" in this application is only a way to describe the association relationship of associated objects, indicating that there may be three relationships. For example, A and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。In the description of this application, unless otherwise specified, "plurality" means two or more than two. "At least one of the following" or similar expressions refers to any combination of these items, including any combination of single items or plural items. For example, at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, and c can be single or multiple.
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。In order to clearly describe the technical solutions of the embodiments of the present application, in the embodiments of the present application, words such as "first" and "second" are used to distinguish the same or similar items with substantially the same functions and effects. Those skilled in the art can understand that words such as "first" and "second" do not limit the quantity and execution order, and words such as "first" and "second" do not necessarily limit the difference.
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。In the embodiments of the present application, words such as "exemplary" or "for example" are used to indicate examples, illustrations or descriptions. Any embodiment or design described as "exemplary" or "for example" in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as "exemplary" or "for example" is intended to present related concepts in a concrete way for easy understanding.
本申请实施例提供一种电子设备,该电子设备可以包括通信设备(比如,基站、手机)、无线充电设备、医疗设备、雷达、导航设备、射频(radio frequency,RF)等离子体照明设备、RF感应和微波加热设备等。本申请实施例对上述电子设备的具体形式不做特殊限制。The embodiment of the present application provides an electronic device, which may include a communication device (e.g., a base station, a mobile phone), a wireless charging device, a medical device, a radar, a navigation device, a radio frequency (RF) plasma lighting device, an RF induction and microwave heating device, etc. The embodiment of the present application does not impose any special restrictions on the specific form of the above electronic devices.
以基站为例,图1给出了一种基站100的简单的结构示意图,该基站100包括控制单元101,基站100中的控制单元101包括无线收发信机、天线和有关的信号处理电路等,其中,该控制单元101主要包括四个部件:小区控制器、话音信道控制器、信令信道控制器和用于扩充的多路端接口。一个基站100的控制单元101通常控制几个基站收发台,通过收发台和移动台的远端命令,基站100的控制单元101负责所有的移动通信接口管理,主要是无线信道的分配、释放和管理等。Taking a base station as an example, FIG1 shows a simple structural diagram of a base station 100, wherein the base station 100 includes a control unit 101. The control unit 101 in the base station 100 includes a wireless transceiver, an antenna, and related signal processing circuits, etc., wherein the control unit 101 mainly includes four components: a cell controller, a voice channel controller, a signaling channel controller, and a multi-channel terminal interface for expansion. The control unit 101 of a base station 100 usually controls several base transceiver stations. Through remote commands from the transceiver station and the mobile station, the control unit 101 of the base station 100 is responsible for all mobile communication interface management, mainly the allocation, release, and management of wireless channels.
继续结合图1,该基站100还包括传输单元102,此传输单元102与核心网连接,核心网侧的控制信令、语音呼叫或数据业务信息通过传输单元102发送到基站100的控制单元101中,通过控制单元101对这些业务进行处理。Continuing with Figure 1, the base station 100 also includes a transmission unit 102, which is connected to the core network. The control signaling, voice call or data service information on the core network side is sent to the control unit 101 of the base station 100 through the transmission unit 102, and these services are processed by the control unit 101.
再结合图1,该基站100还包括基带单元103、RF单元104和功率放大器(poweramplifier,PA)105,基带单元103主要是完成基带的调制与解调、无线资源的分配、呼叫处理、功率控制与软切换等功能。RF单元104主要是完成空中射频信道和基带数字信道之间的转换,再经过PA105对信号的放大处理,然后通过射频馈线送到天线上进行发射,终端设备,比如手机(mobile phone)、平板电脑(pad)等,通过无线信道接收天线所发射的无线电波,然后解调出属于自己的信号。PA的主要作用是放大射频信号。In conjunction with Figure 1, the base station 100 also includes a baseband unit 103, an RF unit 104 and a power amplifier (PA) 105. The baseband unit 103 mainly performs baseband modulation and demodulation, wireless resource allocation, call processing, power control and soft switching. The RF unit 104 mainly performs the conversion between the air RF channel and the baseband digital channel, and then the PA 105 amplifies the signal and then sends it to the antenna through the RF feeder for transmission. The terminal device, such as a mobile phone, a tablet computer, etc., receives the radio waves transmitted by the antenna through the wireless channel and then demodulates its own signal. The main function of the PA is to amplify the RF signal.
继续结合图1,该基站还包括供电单元106,此供电单元106可以用于对控制单元101、传输单元102、基带单元103等结构进行供电。Continuing with FIG. 1 , the base station further includes a power supply unit 106 , which can be used to supply power to structures such as the control unit 101 , the transmission unit 102 , and the baseband unit 103 .
图2给出了另一种电子设备的结构图,该电子设备以手机为例,该手机200可以包括中框201、后壳202以及显示屏203。该中框201包括用于承载显示屏203的承载板2011,以及绕承载板2011一周的边框2012,承载板2011上承载有RF单元和PA器件,PA器件对RF单元输出的信号进行放大后,馈送至手机中的天线上(比如,天线可以沿边框2012的边缘设置),以收发信号。FIG2 shows a structural diagram of another electronic device, in which a mobile phone is taken as an example. The mobile phone 200 may include a middle frame 201, a rear shell 202, and a display screen 203. The middle frame 201 includes a carrier board 2011 for carrying the display screen 203, and a frame 2012 surrounding the carrier board 2011. The carrier board 2011 carries an RF unit and a PA device. The PA device amplifies the signal output by the RF unit and feeds it to an antenna in the mobile phone (for example, the antenna may be arranged along the edge of the frame 2012) to send and receive signals.
在一些实施方式中,可采用横向扩散金属氧化物半导体(laterally-diffusedmetal-oxide semiconductor,LDMOS)形成的器件作为PA,或者采用砷化镓(GaAs)形成的器件作为PA。In some embodiments, a device formed of a laterally-diffused metal-oxide semiconductor (LDMOS) may be used as the PA, or a device formed of gallium arsenide (GaAs) may be used as the PA.
随着第四代移动通信技术(4rd generation of wireless communicationstechnologies,4G)向第五代移动通信技术(5rd generation of wirelesscommunications technologies,5G)的发展,对上述的PA的放大射频信号功能要求也越来越高,比如,相比于4G网络通信,5G的通信频段往高频波段迁移,例如,向3GHz至5GHz迁移。With the development from the fourth generation of wireless communications technologies (4G) to the fifth generation of wireless communications technologies (5G), the requirements for the amplification function of the above-mentioned PA for radio frequency signals are becoming higher and higher. For example, compared with 4G network communications, the communication frequency band of 5G is migrating to a high frequency band, for example, migrating to 3 GHz to 5 GHz.
但,砷化镓(GaAs)器件突出的劣势为功率较低(例如,功率通常低于50W),LDMOS器件突出的缺点是工作频率(工作频率一般在3GHz以下)存在局限。所以,砷化镓(GaAs)器件和LDMOS已经无法满足5G通信网络需求。However, the prominent disadvantage of GaAs devices is their low power (for example, the power is usually less than 50W), and the prominent disadvantage of LDMOS devices is the limitation of operating frequency (the operating frequency is generally below 3GHz). Therefore, GaAs devices and LDMOS can no longer meet the needs of 5G communication networks.
氮化镓(GaN)射频器件在体现砷化镓器件高频性能的同时,结合了LDMOS器件的功率处理能力,更能满足5G的高通信频段、高功率等要求,所以,氮化镓(GaN)射频器件的应用范围越来越广。Gallium nitride (GaN) RF devices not only reflect the high-frequency performance of gallium arsenide devices, but also combine the power handling capabilities of LDMOS devices, which can better meet the high communication frequency band and high power requirements of 5G. Therefore, the application scope of gallium nitride (GaN) RF devices is becoming wider and wider.
如图3所示,在一些示例中,射频器件300(例如,功率放大器)可以被承载在封装基板400上,并且通过电连接结构(比如,金属层)401设置在封装基板400上,以使射频器件300可以与封装基板400上的其他电子器件进行信号互连。封装基板400再通过另一电连接结构402设置在电路板500上,比如设置在印制电路板(printed circuit board,PCB)上,这里的另一电连接结构402可以是球阵列(ball grid array,BGA)或者其他电连接结构。As shown in Fig. 3, in some examples, a radio frequency device 300 (e.g., a power amplifier) may be carried on a package substrate 400, and may be disposed on the package substrate 400 via an electrical connection structure (e.g., a metal layer) 401, so that the radio frequency device 300 may be signal-interconnected with other electronic devices on the package substrate 400. The package substrate 400 may be disposed on a circuit board 500, such as a printed circuit board (PCB), via another electrical connection structure 402, where the other electrical connection structure 402 may be a ball grid array (BGA) or other electrical connection structures.
在另一些示例中,电子设备中的射频器件300可以直接设置在电路板500上,与电路板500电连接。In some other examples, the RF device 300 in the electronic device may be directly disposed on the circuit board 500 and electrically connected to the circuit board 500 .
本申请发明人经研究发现,在射频器件的制备过程中,常使用介质层进行器件保护,使器件免于空气中水汽影响,但是由于前层起伏结构存在,使得介质层在不同平面上沉积时不连续,不同平面的介质层在台阶处交汇,从而使介质层中容易出现合并缝隙,成为水汽入侵的薄弱路径,造成器件失效。The inventors of the present application have discovered through research that, in the process of preparing radio frequency devices, a dielectric layer is often used to protect the device to prevent the device from being affected by water vapor in the air. However, due to the existence of the undulating structure of the previous layer, the dielectric layer is discontinuous when deposited on different planes, and the dielectric layers on different planes meet at the steps, which makes it easy for merged gaps to appear in the dielectric layer, which becomes a weak path for water vapor intrusion and causes device failure.
其中,合并缝隙可以理解为介质层内的界面,该界面由介质层靠近衬底的表面向介质层远离衬底的表面延伸,将介质层划分成相邻的两部分。或者,合并缝隙也可以理解为介质层内的一种缺陷。The merged gap can be understood as an interface in the dielectric layer, which extends from the surface of the dielectric layer close to the substrate to the surface of the dielectric layer away from the substrate, dividing the dielectric layer into two adjacent parts. Alternatively, the merged gap can also be understood as a defect in the dielectric layer.
基于此,如图4~图6所示,本申请实施例提供一种射频器件300,该射频器件300包括衬底10、电路结构20、第一介质层30、辅助电极40和第二介质层50。Based on this, as shown in FIGS. 4 to 6 , an embodiment of the present application provides a radio frequency device 300 , which includes a substrate 10 , a circuit structure 20 , a first dielectric layer 30 , an auxiliary electrode 40 and a second dielectric layer 50 .
在一些示例中,衬底10的材料可以包括碳化硅(SiC)、硅(Si)、蓝宝石和金刚石等。In some examples, the material of substrate 10 may include silicon carbide (SiC), silicon (Si), sapphire, diamond, and the like.
电路结构20位于衬底10的一侧,电路结构20包括远离衬底10的第一表面S1,第一表面S1包括台阶面S11,台阶面S11包括远离衬底10一侧的凸起。图4~图6中以“黑色粗实线”示意出了第一表面S1,台阶面S11则以“黑色虚线框”圈出。The circuit structure 20 is located on one side of the substrate 10, and the circuit structure 20 includes a first surface S1 away from the substrate 10, and the first surface S1 includes a step surface S11, and the step surface S11 includes a protrusion away from one side of the substrate 10. In Figures 4 to 6, the first surface S1 is indicated by a "black thick solid line", and the step surface S11 is circled by a "black dotted frame".
在一些示例中,第一表面S1可以包括多个台阶面S11。例如,如图4~图6所示,在平行于衬底10的第一方向X上,第一表面S1可以包括多个台阶面S11。In some examples, the first surface S1 may include a plurality of step surfaces S11. For example, as shown in FIGS. 4 to 6 , in a first direction X parallel to the substrate 10, the first surface S1 may include a plurality of step surfaces S11.
可以理解的是,当射频器件300的电路结构20不同时,台阶面S11的数目和结构也不同。电路结构20的可能的结构在后续实施例中进行介绍,此处不再赘述。It is understandable that when the circuit structure 20 of the radio frequency device 300 is different, the number and structure of the step surface S11 are also different. Possible structures of the circuit structure 20 are introduced in subsequent embodiments and will not be described here in detail.
如图4、图5和图6所示,第一介质层30位于第一表面S1远离衬底10的一侧。第一介质层30包括远离衬底10的第二表面S2。在垂直于衬底10的方向(即,第二方向Y)上,第二表面S2中任意两点到衬底10的上表面S0的距离之差小于或等于20nm。As shown in Fig. 4, Fig. 5 and Fig. 6, the first dielectric layer 30 is located on the side of the first surface S1 away from the substrate 10. The first dielectric layer 30 includes a second surface S2 away from the substrate 10. In the direction perpendicular to the substrate 10 (i.e., the second direction Y), the difference in distance between any two points on the second surface S2 and the upper surface S0 of the substrate 10 is less than or equal to 20 nm.
“在垂直于衬底10的方向上,第二表面S2中任意两点到衬底10的上表面S0的距离之差小于或等于20nm”,可以是,在垂直于衬底10的方向上,第二表面S2中任意两点到衬底10的上表面S0的距离之差等于零。例如,参阅图4,第二表面S2上具有任意两点,例如点N1和点N2,在垂直于衬底10的方向上,点N1到衬底10的上表面S0的距离为h1,点N2到衬底10的上表面S0的距离为h2,h1等于h2。“In the direction perpendicular to the substrate 10, the difference in distances between any two points on the second surface S2 and the upper surface S0 of the substrate 10 is less than or equal to 20 nm” may mean that, in the direction perpendicular to the substrate 10, the difference in distances between any two points on the second surface S2 and the upper surface S0 of the substrate 10 is equal to zero. For example, referring to FIG. 4 , there are any two points on the second surface S2, such as point N1 and point N2, and in the direction perpendicular to the substrate 10, the distance between point N1 and the upper surface S0 of the substrate 10 is h1, and the distance between point N2 and the upper surface S0 of the substrate 10 is h2, and h1 is equal to h2.
或者“在垂直于衬底10的方向上,第二表面S2中任意两点到衬底10的上表面S0的距离之差小于或等于20nm”还可以是,在垂直于衬底10的方向上,第二表面S2中任意两点到衬底10的上表面S0的距离之差h1大于零,且小于或等于20nm。例如,参阅图5和图6,第二表面S2上具有任意两点,例如点N3和点N4,其中,在垂直于衬底10的方向上,点N3到衬底10的上表面S0的距离为h3,点N4到衬底10的上表面S0的距离为h4,h3小于h4,且h4与h3之差小于20nm。Alternatively, “in the direction perpendicular to the substrate 10, the difference in distances between any two points on the second surface S2 and the upper surface S0 of the substrate 10 is less than or equal to 20 nm” may also mean that, in the direction perpendicular to the substrate 10, the difference h1 in distances between any two points on the second surface S2 and the upper surface S0 of the substrate 10 is greater than zero and less than or equal to 20 nm. For example, referring to FIG. 5 and FIG. 6 , there are any two points on the second surface S2, such as point N3 and point N4, wherein, in the direction perpendicular to the substrate 10, the distance between point N3 and the upper surface S0 of the substrate 10 is h3, the distance between point N4 and the upper surface S0 of the substrate 10 is h4, h3 is less than h4, and the difference between h4 and h3 is less than 20 nm.
示例性的,在垂直于衬底10的方向上,第二表面S2中任意两点到衬底10的上表面S0的距离之差可以为0nm、1nm、5nm、10nm、15nm或20nm。本申请实施例中第二表面S2中任意两点到衬底10的上表面S0的距离之差并不仅限于此,只要满足小于或等于20nm均可。For example, in a direction perpendicular to the substrate 10, the difference in distance between any two points on the second surface S2 and the upper surface S0 of the substrate 10 may be 0 nm, 1 nm, 5 nm, 10 nm, 15 nm or 20 nm. In the embodiment of the present application, the difference in distance between any two points on the second surface S2 and the upper surface S0 of the substrate 10 is not limited thereto, as long as it is less than or equal to 20 nm.
示例性的,第一介质层30的材料可包括氮化硅、氧化硅、氧化铝等绝缘介质。For example, the material of the first dielectric layer 30 may include insulating dielectrics such as silicon nitride, silicon oxide, and aluminum oxide.
示例性的,第一介质层30的厚度d1可以为10nm~5μm。例如,第一介质层30的厚度d1可以为10nm、100nm、500nm、1μm、2μm、4μm或5μm等。Exemplarily, the thickness d1 of the first dielectric layer 30 may be 10 nm to 5 μm. For example, the thickness d1 of the first dielectric layer 30 may be 10 nm, 100 nm, 500 nm, 1 μm, 2 μm, 4 μm or 5 μm.
这样,一方面能够避免因第一介质层30厚度较小,无法正常保护电路结构的情况发生,另一方面能够避免因第一介质层30的厚度较大,造成成本较高的问题。In this way, on the one hand, the problem that the circuit structure cannot be properly protected due to the small thickness of the first dielectric layer 30 can be avoided; on the other hand, the problem that the cost is high due to the large thickness of the first dielectric layer 30 can be avoided.
在一些示例中,可以采用等离子体化学气相沉积(plasma chemical vapordeposition,PCVD)、原子层沉积(atomic layer deposition,ALD)、低压化学气相沉积(lowpressure chemical vapor deposition,LPVD)等工艺制备第一介质层30。In some examples, the first dielectric layer 30 may be prepared by plasma chemical vapor deposition (PCVD), atomic layer deposition (ALD), low pressure chemical vapor deposition (LPVD), or other processes.
辅助电极40包括相连接的第一子电极41和第二子电极42,第一子电极41位于第一介质层30远离衬底10的一侧,第二子电极42贯穿第一介质层30与电路结构20电连接。The auxiliary electrode 40 includes a first sub-electrode 41 and a second sub-electrode 42 connected to each other. The first sub-electrode 41 is located on a side of the first dielectric layer 30 away from the substrate 10 , and the second sub-electrode 42 penetrates the first dielectric layer 30 and is electrically connected to the circuit structure 20 .
示例性的,辅助电极40的材料可以包括金属。例如,金、铝等。For example, the material of the auxiliary electrode 40 may include metal, such as gold, aluminum, etc.
在一些示例中,可以采用蒸镀工艺和剥离工艺制备辅助电极40。在另一些示例中,可以采用溅射工艺和刻蚀工艺制备辅助电极40。In some examples, the auxiliary electrode 40 may be prepared by using an evaporation process and a lift-off process. In other examples, the auxiliary electrode 40 may be prepared by using a sputtering process and an etching process.
第二介质层50位于第一介质层30远离衬底10的一侧,且覆盖辅助电极40。The second dielectric layer 50 is located on a side of the first dielectric layer 30 away from the substrate 10 , and covers the auxiliary electrode 40 .
可以理解的是,第二介质层50覆盖辅助电极40,不仅可以是第二介质层50完全覆盖辅助电极40,还可以是第二介质层50覆盖部分辅助电极40。It can be understood that the second dielectric layer 50 covers the auxiliary electrode 40 , which means that the second dielectric layer 50 not only completely covers the auxiliary electrode 40 , but also partially covers the auxiliary electrode 40 .
在一些示例中,第二介质层50的材料可以包括氮化硅、氧化硅、氧化铝等绝缘介质。In some examples, the material of the second dielectric layer 50 may include insulating dielectrics such as silicon nitride, silicon oxide, and aluminum oxide.
在一些示例中,第二介质层50的厚度d2可以为10nm~5μm。例如,第二介质层50的厚度d2可以为10nm、100nm、500nm、1μm、2μm、4μm或5μm等。In some examples, the thickness d2 of the second dielectric layer 50 may be 10 nm to 5 μm. For example, the thickness d2 of the second dielectric layer 50 may be 10 nm, 100 nm, 500 nm, 1 μm, 2 μm, 4 μm, or 5 μm.
这样,一方面能够避免因第二介质层50厚度较小,绝缘能力较差,无法正常保护辅助电极的情况发生,另一方面能够避免出现因第二介质层50的厚度较大,造成成本较高的问题。In this way, on the one hand, the problem that the second dielectric layer 50 is too thin and has poor insulation capacity to properly protect the auxiliary electrode can be avoided; on the other hand, the problem that the second dielectric layer 50 is too thick and causes high costs can be avoided.
本申请实施例所提供的射频器件300,包括第一介质层30和位于第一介质层30远离衬底10的一侧的第二介质层50,在垂直于衬底10的方向上,第一介质层30的第二表面S2中任意两点到衬底10的上表面S0的距离之差小于或等于20nm,使得第二表面S2整体较为平坦。这样,即使在形成第一介质层30的过程中,第一介质层30中位于台阶面S11上的部分内产生了合并缝隙31(参阅图4~图6),第二介质层50位于台阶面S11远离衬底10一侧的部分中也不会具有合并缝隙,第一介质层30中的合并缝隙31无法穿过第二介质层50与外界连通,使得外界环境中的水汽也不容易进入到第一介质层30的合并缝隙31内,并穿过合并缝隙31进入到电路结构20中,从而避免了因水汽入侵使得第一介质层开裂的问题,进而避免了水汽接触电路结构中的电极,导致电极被腐蚀,造成同层电极之间相互短路问题,提高了射频器件300的防潮防水特性,同时提高了射频器件300的可靠性。The RF device 300 provided in the embodiment of the present application includes a first dielectric layer 30 and a second dielectric layer 50 located on a side of the first dielectric layer 30 away from the substrate 10. In a direction perpendicular to the substrate 10, the difference in distance between any two points on the second surface S2 of the first dielectric layer 30 and the upper surface S0 of the substrate 10 is less than or equal to 20 nm, so that the second surface S2 is relatively flat as a whole. In this way, even if a merged gap 31 is generated in the portion of the first dielectric layer 30 located on the step surface S11 during the process of forming the first dielectric layer 30 (see Figures 4 to 6), the portion of the second dielectric layer 50 located on the side of the step surface S11 away from the substrate 10 will not have a merged gap. The merged gap 31 in the first dielectric layer 30 cannot pass through the second dielectric layer 50 to communicate with the outside world, so that water vapor in the external environment is not easy to enter the merged gap 31 of the first dielectric layer 30 and pass through the merged gap 31 into the circuit structure 20, thereby avoiding the problem of cracking of the first dielectric layer due to water vapor invasion, and further avoiding water vapor contacting the electrodes in the circuit structure, causing the electrodes to be corroded, causing the problem of short circuit between electrodes in the same layer, thereby improving the moisture-proof and waterproof properties of the RF device 300, and at the same time improving the reliability of the RF device 300.
图4~图6提供了射频器件300的3种不同的结构,其主要的区别在于第一介质层30的第二表面S2形貌不同。4 to 6 provide three different structures of the radio frequency device 300 , the main difference between which is that the morphology of the second surface S2 of the first dielectric layer 30 is different.
图4所示,在一些实施例中,第二表面S2可以平行于衬底10的上表面S0。As shown in FIG. 4 , in some embodiments, the second surface S2 may be parallel to the upper surface S0 of the substrate 10 .
此时,第二表面S2更加平坦,第二表面S2位于台阶面S11上的部分也更加平坦。这样,位于第一介质层30远离衬底10的一侧的第二介质层50,更加不会在对应台阶面S11的位置处产生合并缝隙,使得外界环境中的水汽更加不容易穿过第一介质层30和第二介质层50进入到电路结构20中,从而进一步提高了射频器件300的防潮防水特性,提高了射频器件300的可靠性。At this time, the second surface S2 is flatter, and the portion of the second surface S2 located on the step surface S11 is also flatter. In this way, the second dielectric layer 50 located on the side of the first dielectric layer 30 away from the substrate 10 will not generate a merged gap at the position corresponding to the step surface S11, making it more difficult for water vapor in the external environment to pass through the first dielectric layer 30 and the second dielectric layer 50 into the circuit structure 20, thereby further improving the moisture-proof and waterproof properties of the RF device 300 and improving the reliability of the RF device 300.
如图5所示,在另一些实施例中,第二表面S2中被第一子电极41覆盖的部分为第一部分S21,第二表面S2中位于第一子电极41周围的部分为第二部分S22,第一部分S21相比于第二部分S22更远离衬底10的上表面S0。As shown in Figure 5, in other embodiments, the portion of the second surface S2 covered by the first sub-electrode 41 is the first portion S21, and the portion of the second surface S2 located around the first sub-electrode 41 is the second portion S22. The first portion S21 is farther away from the upper surface S0 of the substrate 10 than the second portion S22.
在一些示例中,如图5所示,第一部分S21与第二部分S22之间可以平滑过渡。In some examples, as shown in FIG. 5 , there may be a smooth transition between the first portion S21 and the second portion S22 .
通过这样设置,第二介质层50不容易在第一部分S21与第二部分S22的交界处出现合并缝隙,从而有利于避免第二介质层50中出现合并缝隙,水汽通过合并缝隙腐蚀辅助电极的情况出现,进一步提高了射频器件300的防水防潮特性,提高了射频器件300的稳定性。Through such an arrangement, the second dielectric layer 50 is not prone to having a merged gap at the junction of the first part S21 and the second part S22, which is conducive to avoiding the occurrence of merged gaps in the second dielectric layer 50 and the corrosion of the auxiliary electrode by water vapor through the merged gaps, further improving the waterproof and moisture-proof properties of the RF device 300 and improving the stability of the RF device 300.
如图6所示,在又一些实施例中,第二表面S2中位于台阶面S11上方的部分相比于其周围部分更远离衬底10的上表面S0。As shown in FIG. 6 , in some other embodiments, a portion of the second surface S2 located above the step surface S11 is farther away from the upper surface S0 of the substrate 10 than a surrounding portion thereof.
可以理解的是,上述实施例中仅示出了第二表面S2的三种可能的形貌,本申请实施例中第二表面S2的形貌并不仅限于此。It can be understood that the above embodiments only show three possible morphologies of the second surface S2, and the morphology of the second surface S2 in the embodiments of the present application is not limited thereto.
在一些实施例中,如图7所示,射频器件300还可以包括第三介质层60。第三介质层60位于第一介质层30与第一子电极41之间。第二子电极42还贯穿第三介质层60。In some embodiments, as shown in FIG7 , the radio frequency device 300 may further include a third dielectric layer 60. The third dielectric layer 60 is located between the first dielectric layer 30 and the first sub-electrode 41. The second sub-electrode 42 also penetrates the third dielectric layer 60.
示例性的,第三介质层60的材料可以包括氮化硅、氧化硅、氧化铝等绝缘介质。Exemplarily, the material of the third dielectric layer 60 may include insulating dielectrics such as silicon nitride, silicon oxide, and aluminum oxide.
示例性的,第三介质层60的厚度d3可以为10nm~5μm。例如,第三介质层60的厚度d3可以为10nm、100nm、500nm、1μm、2μm、4μm或5μm等。Exemplarily, the thickness d3 of the third dielectric layer 60 may be 10 nm to 5 μm. For example, the thickness d3 of the third dielectric layer 60 may be 10 nm, 100 nm, 500 nm, 1 μm, 2 μm, 4 μm or 5 μm.
在本申请实施例中,由于第二表面S2较为平坦,第二表面位于台阶面S11上的部分与较为平坦,因此第三介质层60中位于台阶面S11远离衬底10一侧的部分内也不会出现合并缝隙。这样,即使第一介质层30位于台阶面S11上的部分中出现合并缝隙31(参阅图7),第二介质层50中也出现合并缝隙,第三介质层60可以将第一介质层30中的合并缝隙31与第二介质层50中的合并缝隙间隔开,从而进一步避免了第一介质层30中的合并缝隙31与外界环境连通,进一步阻挡了水汽的入侵,提高了射频器件300的防潮防水特性,提高了射频器件300的可靠性。In the embodiment of the present application, since the second surface S2 is relatively flat, and the portion of the second surface located on the step surface S11 is relatively flat, no merged gap will appear in the portion of the third dielectric layer 60 located on the side of the step surface S11 away from the substrate 10. In this way, even if a merged gap 31 appears in the portion of the first dielectric layer 30 located on the step surface S11 (see FIG. 7 ), a merged gap also appears in the second dielectric layer 50, and the third dielectric layer 60 can separate the merged gap 31 in the first dielectric layer 30 from the merged gap in the second dielectric layer 50, thereby further preventing the merged gap 31 in the first dielectric layer 30 from being connected to the external environment, further blocking the invasion of water vapor, improving the moisture-proof and waterproof properties of the RF device 300, and improving the reliability of the RF device 300.
如图7和图8所示,第三介质层60包括远离衬底10的第三表面S3。基于辅助电极40不同的制备方式,第三表面S3的形貌可以略有不同。As shown in Fig. 7 and Fig. 8, the third dielectric layer 60 includes a third surface S3 away from the substrate 10. Based on different preparation methods of the auxiliary electrode 40, the morphology of the third surface S3 may be slightly different.
例如,当辅助电极40采用剥离工艺制备时,第三介质层60不容易被损伤,此时,如图7所示,第三表面S3可以平行于衬底10的上表面S0。For example, when the auxiliary electrode 40 is prepared by a lift-off process, the third dielectric layer 60 is not easily damaged. At this time, as shown in FIG. 7 , the third surface S3 may be parallel to the upper surface S0 of the substrate 10 .
此时,第三表面S3平整,第三表面S3中位于台阶面S11上的部分也较为平整。这样,位于第三介质层60远离衬底10的一侧的第二介质层50,第二介质层50更加不会在对应台阶面S11的位置处产生合并缝隙,使得外界环境中的水汽更加不容易穿过第二介质层50、第三介质层60和第一介质层30进入到电路结构20中,从而进一步提高了射频器件300的防潮防水特性,提高了射频器件300的可靠性。At this time, the third surface S3 is flat, and the portion of the third surface S3 located on the step surface S11 is also relatively flat. In this way, the second dielectric layer 50 located on the side of the third dielectric layer 60 away from the substrate 10 will not generate a merged gap at the position corresponding to the step surface S11, making it more difficult for water vapor in the external environment to pass through the second dielectric layer 50, the third dielectric layer 60 and the first dielectric layer 30 into the circuit structure 20, thereby further improving the moisture and water resistance of the RF device 300 and improving the reliability of the RF device 300.
又例如,当辅助电极40采用刻蚀工艺制备时,第三介质层容易被刻蚀,此时,如图8所示,第三介质层60包括远离衬底10的第三表面S3,第三表面S3中被第一子电极41覆盖的部分为第三部分S31,第三表面S3中位于第一子电极41周围的部分为第四部分S32,第三部分S31相比于第四部分S32更远离衬底10的上表面S0。For another example, when the auxiliary electrode 40 is prepared by an etching process, the third dielectric layer is easily etched. At this time, as shown in Figure 8, the third dielectric layer 60 includes a third surface S3 away from the substrate 10, and the portion of the third surface S3 covered by the first sub-electrode 41 is the third portion S31, and the portion of the third surface S3 located around the first sub-electrode 41 is the fourth portion S32. The third portion S31 is farther away from the upper surface S0 of the substrate 10 than the fourth portion S32.
下面结合图4~图10对电路结构20做进一步介绍。The circuit structure 20 is further described below in conjunction with FIG. 4 to FIG. 10 .
在一些实施例中,如图4~图8所示,电路结构20可以包括异质结21,第四介质层22、源极23、漏极24、第五介质层25和栅极26。In some embodiments, as shown in FIGS. 4 to 8 , the circuit structure 20 may include a heterojunction 21 , a fourth dielectric layer 22 , a source electrode 23 , a drain electrode 24 , a fifth dielectric layer 25 and a gate electrode 26 .
异质结21位于衬底10的一侧。异质结21包括沿远离衬底10方向依次层叠的沟道层211和势垒层212。The heterojunction 21 is located on one side of the substrate 10 . The heterojunction 21 includes a channel layer 211 and a barrier layer 212 which are sequentially stacked in a direction away from the substrate 10 .
示例性的,沟道层211的材料可以包括GaN。沟道层211的厚度可以为100nm~5μm。例如,沟道层211的厚度可以为100nm、200nm、500nm、1μm或5μm等。For example, the material of the channel layer 211 may include GaN. The thickness of the channel layer 211 may be 100 nm to 5 μm. For example, the thickness of the channel layer 211 may be 100 nm, 200 nm, 500 nm, 1 μm, or 5 μm.
示例性的,势垒层212的材料可以包括铝镓氮(AlGaN)、氮化铝(AlN)、铟镓氮(InGaN)等。势垒层212的厚度可以为2nm~5μm。例如,势垒层212的厚度2nm、100nm、500nm、1μm或5μm等。For example, the material of the barrier layer 212 may include aluminum gallium nitride (AlGaN), aluminum nitride (AlN), indium gallium nitride (InGaN), etc. The thickness of the barrier layer 212 may be 2nm to 5μm. For example, the thickness of the barrier layer 212 is 2nm, 100nm, 500nm, 1μm or 5μm, etc.
其中,沟道层211和势垒层212形成异质结,并通过极化作用产生二维电子气。The channel layer 211 and the barrier layer 212 form a heterojunction and generate a two-dimensional electron gas through polarization.
第四介质层22,位于异质结21远离衬底10的一侧。The fourth dielectric layer 22 is located on a side of the heterojunction 21 away from the substrate 10 .
示例性的,第四介质层22的材料可以包括氮化硅、氧化硅、氧化铝等绝缘介质。第四介质层22的厚度可以为1nm~5μm。例如,第四介质层22的厚度可以为1nm、10nm、100nm、500nm、1μm、3μm或5μm等。Exemplarily, the material of the fourth dielectric layer 22 may include insulating dielectrics such as silicon nitride, silicon oxide, and aluminum oxide. The thickness of the fourth dielectric layer 22 may be 1 nm to 5 μm. For example, the thickness of the fourth dielectric layer 22 may be 1 nm, 10 nm, 100 nm, 500 nm, 1 μm, 3 μm, or 5 μm.
源极23和漏极24位于第四介质层22远离衬底10的一侧,且源极23和漏极24贯穿第四介质层22与势垒层212接触。The source electrode 23 and the drain electrode 24 are located on a side of the fourth dielectric layer 22 away from the substrate 10 , and the source electrode 23 and the drain electrode 24 penetrate the fourth dielectric layer 22 and contact the barrier layer 212 .
其中,源极23和漏极24与势垒层212之间可以形成欧姆接触。The source electrode 23 and the drain electrode 24 may form an ohmic contact with the barrier layer 212 .
示例性的,源极23和漏极24的材料可以包括金属,例如,钛、铝、金等。Exemplarily, the material of the source electrode 23 and the drain electrode 24 may include metal, such as titanium, aluminum, gold, etc.
在一些示例中,源极23和漏极24的材料可以相同,这样源极23和漏极24可以同时制备,从而简化射频器件300的制备工艺,提高射频器件300的制备效率,降低射频器件300的制备成本。In some examples, the materials of the source 23 and the drain 24 can be the same, so that the source 23 and the drain 24 can be prepared at the same time, thereby simplifying the preparation process of the RF device 300, improving the preparation efficiency of the RF device 300, and reducing the preparation cost of the RF device 300.
第五介质层25位于第四介质层22远离衬底10的一侧,第五介质层25覆盖源极23和漏极24。The fifth dielectric layer 25 is located on a side of the fourth dielectric layer 22 away from the substrate 10 , and the fifth dielectric layer 25 covers the source 23 and the drain 24 .
可以理解的是,第五介质层25覆盖源极23和漏极24,不仅包括第五介质层25完全覆盖源极23和漏极24的情况,还包括第五介质层25覆盖部分源极23和部分漏极24的情况。It can be understood that the fifth dielectric layer 25 covers the source 23 and the drain 24 , which includes not only the case where the fifth dielectric layer 25 completely covers the source 23 and the drain 24 , but also the case where the fifth dielectric layer 25 covers part of the source 23 and the drain 24 .
示例性的,第五介质层25的材料可以包括氮化硅、氧化硅、氧化铝等绝缘介质。Exemplarily, the material of the fifth dielectric layer 25 may include insulating dielectrics such as silicon nitride, silicon oxide, and aluminum oxide.
示例性的,第五介质层25的厚度也可以为1nm~5μm。例如,第五介质层25的厚度可以为1nm、10nm、100nm、500nm、1μm、3μm或5μm等。Exemplarily, the thickness of the fifth dielectric layer 25 may also be 1 nm to 5 μm. For example, the thickness of the fifth dielectric layer 25 may be 1 nm, 10 nm, 100 nm, 500 nm, 1 μm, 3 μm or 5 μm.
栅极26位于第五介质层25远离衬底10的一侧,且位于源极23和漏极24之间,栅极26贯穿第四介质层22和第五介质层25,与势垒层212接触。The gate 26 is located on a side of the fifth dielectric layer 25 away from the substrate 10 and between the source 23 and the drain 24 . The gate 26 penetrates the fourth dielectric layer 22 and the fifth dielectric layer 25 and contacts the barrier layer 212 .
其中,栅极26与势垒层212之间可以形成肖特基接触。A Schottky contact may be formed between the gate 26 and the barrier layer 212 .
示例性的,栅极26的材料也可以包括金属,例如镍、金等。Exemplarily, the material of the gate 26 may also include metal, such as nickel, gold, etc.
在上述实施例所提供的电路结构20的工作状态下,源极23和漏极24能够在电场的作用下使二维电子气在源极23和漏极24之间的沟道层211内流动,源极23和漏极24之间的导通发生在沟道层211中的二维电子气处。栅极26设置在源极23和漏极24之间,用于允许或阻碍二维电子气的流通,从而控制射频器件的导通或截止。In the working state of the circuit structure 20 provided in the above embodiment, the source 23 and the drain 24 can make the two-dimensional electron gas flow in the channel layer 211 between the source 23 and the drain 24 under the action of the electric field, and the conduction between the source 23 and the drain 24 occurs at the two-dimensional electron gas in the channel layer 211. The gate 26 is arranged between the source 23 and the drain 24 to allow or hinder the flow of the two-dimensional electron gas, thereby controlling the conduction or cutoff of the radio frequency device.
在本申请实施例中,参阅图8,电路结构20的第一表面S1可以包括第五介质层25中未被栅极26覆盖的表面,以及栅极26的顶面261和侧壁262。第一表面S1中位于源极23和漏极24的边缘上方的部分形成台阶面S11,栅极的顶面261和侧壁262也形成台阶面S11。In the embodiment of the present application, referring to FIG8 , the first surface S1 of the circuit structure 20 may include the surface of the fifth dielectric layer 25 not covered by the gate 26, and the top surface 261 and the side wall 262 of the gate 26. The portion of the first surface S1 located above the edges of the source 23 and the drain 24 forms a step surface S11, and the top surface 261 and the side wall 262 of the gate also form a step surface S11.
在本申请实施例中,射频器件300可以包括多个辅助电极40。In the embodiment of the present application, the radio frequency device 300 may include a plurality of auxiliary electrodes 40 .
在一些示例中,源极23、漏极24和栅极26可以分别与一个辅助电极40对应连接。基于上述电路结构20,与源极23对应连接的辅助电极40可以贯穿第一介质层30和第五介质层25与源极23电接触,与漏极24对应连接的辅助电极40可以贯穿第一介质层30和第五介质层25与漏极24电接触,与栅极26对应连接的辅助电极40可以贯穿第一介质层30与栅极26电接触。In some examples, the source 23, the drain 24, and the gate 26 may be respectively connected to an auxiliary electrode 40. Based on the above circuit structure 20, the auxiliary electrode 40 corresponding to the source 23 may penetrate the first dielectric layer 30 and the fifth dielectric layer 25 to be in electrical contact with the source 23, the auxiliary electrode 40 corresponding to the drain 24 may penetrate the first dielectric layer 30 and the fifth dielectric layer 25 to be in electrical contact with the drain 24, and the auxiliary electrode 40 corresponding to the gate 26 may penetrate the first dielectric layer 30 to be in electrical contact with the gate 26.
在另一些示例中,漏极24和栅极26可以分别与一个辅助电极40对应连接,而源极23可以不与辅助电极电连接。In some other examples, the drain 24 and the gate 26 may be respectively connected to a corresponding auxiliary electrode 40 , while the source 23 may not be electrically connected to the auxiliary electrode.
在一些实施例中,如图9所示,电路结构20还可以包括第六介质层27和场板(fieldplate,FP)电极28,第六介质层27位于第五介质层25远离衬底10的一侧,且第六介质层27覆盖栅极26。场板电极28位于第六介质层27远离衬底10的一侧,且场板电极28在衬底10上的正投影与栅极26在衬底10上的正投影部分重叠。In some embodiments, as shown in FIG9 , the circuit structure 20 may further include a sixth dielectric layer 27 and a field plate (FP) electrode 28, the sixth dielectric layer 27 being located on a side of the fifth dielectric layer 25 away from the substrate 10, and the sixth dielectric layer 27 covering the gate 26. The field plate electrode 28 is located on a side of the sixth dielectric layer 27 away from the substrate 10, and the orthographic projection of the field plate electrode 28 on the substrate 10 partially overlaps with the orthographic projection of the gate 26 on the substrate 10.
可以理解的是,第六介质层27覆盖栅极26,可以是第六介质层27完全覆盖栅极26,也可以是第六介质层27覆盖部分栅极26。It can be understood that the sixth dielectric layer 27 covers the gate 26 , and the sixth dielectric layer 27 may completely cover the gate 26 , or the sixth dielectric layer 27 may partially cover the gate 26 .
示例性的,第六介质层27的材料可以包括氮化硅、氧化硅、氧化铝等绝缘介质。Exemplarily, the material of the sixth dielectric layer 27 may include insulating dielectrics such as silicon nitride, silicon oxide, and aluminum oxide.
示例性的,第六介质层27的厚度可以为1nm~5μm。例如,第六介质层27的厚度可以为1nm、10nm、100nm、500nm、1μm、3μm或5μm等。Exemplarily, the thickness of the sixth dielectric layer 27 may be 1 nm to 5 μm. For example, the thickness of the sixth dielectric layer 27 may be 1 nm, 10 nm, 100 nm, 500 nm, 1 μm, 3 μm or 5 μm.
示例性的,场板电极28的材料可以为金属,例如金、铝等。Exemplarily, the material of the field plate electrode 28 may be metal, such as gold, aluminum, etc.
在一些示例中,场板电极28上可以不与栅极26、源极23或者漏极24接触,从而不加载任何信号。在另一些示例中,场板电极28可以与源极23电连接。在又一些示例中,场板电极28可以与栅极26电连接。In some examples, the field plate electrode 28 may not contact the gate 26, the source 23, or the drain 24, so that no signal is loaded. In other examples, the field plate electrode 28 may be electrically connected to the source 23. In still other examples, the field plate electrode 28 may be electrically connected to the gate 26.
在本申请实施例中,在第五介质层25上设置场板电极28,且场板电极28在衬底10上的正投影与栅极26在衬底10上的正投影部分重叠,可以调节射频器件300内的电场分布,使栅极26边缘所在的位置处的电场分布更加均匀,避免出现电场尖峰,提高射频器件的耐击穿能力。In the embodiment of the present application, a field plate electrode 28 is provided on the fifth dielectric layer 25, and the orthographic projection of the field plate electrode 28 on the substrate 10 partially overlaps with the orthographic projection of the gate 26 on the substrate 10, so that the electric field distribution in the RF device 300 can be adjusted, so that the electric field distribution at the edge of the gate 26 is more uniform, avoiding the occurrence of electric field spikes, and improving the breakdown resistance of the RF device.
在此基础上,电路结构20的第一表面S1可以包括第六介质层27中未被场板电极28覆盖的部分,以及场板电极28的顶面281和侧壁282。其中,第一表面S1中位于源极23、漏极24和栅极26的边缘上方的部分形成台阶面S11,场板电极28的顶面281和侧壁282也形成台阶面S11。On this basis, the first surface S1 of the circuit structure 20 may include a portion of the sixth dielectric layer 27 that is not covered by the field plate electrode 28, and a top surface 281 and a side wall 282 of the field plate electrode 28. The portion of the first surface S1 located above the edges of the source 23, the drain 24, and the gate 26 forms a step surface S11, and the top surface 281 and the side wall 282 of the field plate electrode 28 also form a step surface S11.
在一些示例中,场板电极28的顶面281可以起伏不平,即,场板电极28的顶面281上存在两点,在垂直于衬底10的方向上,这两点到衬底10的上表面S0的距离不同。In some examples, the top surface 281 of the field plate electrode 28 may be uneven, that is, there are two points on the top surface 281 of the field plate electrode 28 , and the distances from the two points to the upper surface S0 of the substrate 10 are different in a direction perpendicular to the substrate 10 .
在另一些示例中,场板电极28的顶面281可以平行于衬底10。In other examples, the top surface 281 of the field plate electrode 28 may be parallel to the substrate 10 .
在一些实施例中,如图10所示,异质结21还可以包括位于沟道层211和势垒层212之间的插入层213。In some embodiments, as shown in FIG. 10 , the heterojunction 21 may further include an insertion layer 213 between the channel layer 211 and the barrier layer 212 .
示例性的,插入层213的材料可以包括AlN。For example, the material of the insertion layer 213 may include AlN.
插入层213位于沟道层211与势垒层212之间,用于提高二维电子气的浓度,降低二维电子气向势垒层的渗入量,减少合金无序散射从而提高电子迁移率,改善射频器件300的输出特征。The insertion layer 213 is located between the channel layer 211 and the barrier layer 212 and is used to increase the concentration of the two-dimensional electron gas, reduce the penetration of the two-dimensional electron gas into the barrier layer, reduce alloy disorder scattering, thereby increasing electron mobility and improving the output characteristics of the RF device 300 .
继续参阅图10,在另一些实施例中,电路结构20还可以包括成核层291和缓冲层292。成核层291位于衬底10与沟道层211之间,缓冲层292位于成核层291和沟道层211之间。10 , in some other embodiments, the circuit structure 20 may further include a nucleation layer 291 and a buffer layer 292 . The nucleation layer 291 is located between the substrate 10 and the channel layer 211 , and the buffer layer 292 is located between the nucleation layer 291 and the channel layer 211 .
示例性的,成核层291的材料可以包括GaN、AlGaN、AlN中一种或多种。Exemplarily, the material of the nucleation layer 291 may include one or more of GaN, AlGaN, and AlN.
通过设置成核层291,能够提高外延质量,利于上层外延材料(例如,缓冲层292的材料)的生长。By providing the nucleation layer 291 , the epitaxial quality can be improved, which is beneficial to the growth of the upper epitaxial material (eg, the material of the buffer layer 292 ).
示例性的,缓冲层292的材料可以包括AlGaN和/或AlN。例如,缓冲层292的材料包括AlGaN,其中AlGaN中Al的组分可以随着厚度增加而降低。又例如,缓冲层292的材料包括AlGaN和AlN,此时缓冲层292可以为超晶格结构。Exemplarily, the material of the buffer layer 292 may include AlGaN and/or AlN. For example, the material of the buffer layer 292 includes AlGaN, wherein the Al component in the AlGaN may decrease as the thickness increases. For another example, the material of the buffer layer 292 includes AlGaN and AlN, in which case the buffer layer 292 may be a superlattice structure.
通过设置缓冲层292,一方面可以缓解衬底10上多个膜层(例如,沟道层211和势垒层212)的应力,另一方面能够提高射频器件300的抗击穿能力。By providing the buffer layer 292 , on one hand, the stress of multiple film layers (eg, the channel layer 211 and the barrier layer 212 ) on the substrate 10 can be relieved, and on the other hand, the anti-breakdown capability of the RF device 300 can be improved.
继续参阅图10,在又一些实施例中,电路结构20还可以包括帽层293,帽层293位于势垒层212与第四介质层22之间。帽层293用于保护势垒层212。10 , in some other embodiments, the circuit structure 20 may further include a cap layer 293 , and the cap layer 293 is located between the barrier layer 212 and the fourth dielectric layer 22 . The cap layer 293 is used to protect the barrier layer 212 .
示例性的,帽层293的材料可以包括氮化铝、铝镓氮或氮化镓。Exemplarily, the material of the cap layer 293 may include aluminum nitride, aluminum gallium nitride, or gallium nitride.
示例性的,帽层293的厚度可以为1nm~5nm。例如,帽层293的厚度可以为1nm、2nm、3nm、4nm或5nm等。Exemplarily, the thickness of the cap layer 293 may be 1 nm to 5 nm. For example, the thickness of the cap layer 293 may be 1 nm, 2 nm, 3 nm, 4 nm, or 5 nm.
可以理解的是,帽层293的存在并不影响源极23和漏极24与势垒层212之间的欧姆接触,帽层293的存在也不影响栅极26与势垒层212之间的肖特基接触。It is understandable that the presence of the cap layer 293 does not affect the ohmic contact between the source 23 and the drain 24 and the barrier layer 212 , and the presence of the cap layer 293 does not affect the Schottky contact between the gate 26 and the barrier layer 212 .
在一些实施例中,上述成核层291、缓冲层292、沟道层211、势垒层212和帽层293可以采用金属有机化合物化学气相沉淀(metal-organic chemical vapor deposition,MOCVD)或分子束外延(molecular beam epitaxy,MBE)等工艺在衬底10上外延生长形成。In some embodiments, the nucleation layer 291 , the buffer layer 292 , the channel layer 211 , the barrier layer 212 and the cap layer 293 may be formed by epitaxial growth on the substrate 10 using processes such as metal-organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
图11为本申请实施例所提供的射频器件300的俯视图,图12为本申请实施例所提供的射频器件300的简化的截面图。FIG. 11 is a top view of the RF device 300 provided in the embodiment of the present application, and FIG. 12 is a simplified cross-sectional view of the RF device 300 provided in the embodiment of the present application.
如图11和图12所示,在一些实施例中,射频器件300包括有源区AA和围绕有源区AA的无源区BB。其中,有源区AA内存在2DEG,无源区BB内不存在2DEG。As shown in Figures 11 and 12, in some embodiments, the radio frequency device 300 includes an active area AA and a passive area BB surrounding the active area AA, wherein 2DEG exists in the active area AA, and 2DEG does not exist in the passive area BB.
在一些示例中,源极23和漏极24的至少部分位于有源区AA内,栅极26的一部分位于有源区AA内,栅极26的另一部分位于无源区BB内。In some examples, at least portions of the source 23 and the drain 24 are located in the active area AA, a portion of the gate 26 is located in the active area AA, and another portion of the gate 26 is located in the non-active area BB.
射频器件300还可以包括第一衬垫71、第二衬垫72和第三衬垫73。第一衬垫71和第二衬垫72位于第一介质层30远离衬底10一侧。第一衬垫71和第二衬垫72位于无源区BB,且第一衬垫71和第二衬垫72分别通过辅助电极40与漏极24和栅极26电连接。第三衬垫73位于衬底10远离电路结构20一侧。第三衬垫73与源极23电连接。The RF device 300 may further include a first pad 71, a second pad 72, and a third pad 73. The first pad 71 and the second pad 72 are located on the side of the first dielectric layer 30 away from the substrate 10. The first pad 71 and the second pad 72 are located in the passive region BB, and the first pad 71 and the second pad 72 are electrically connected to the drain 24 and the gate 26 through the auxiliary electrode 40, respectively. The third pad 73 is located on the side of the substrate 10 away from the circuit structure 20. The third pad 73 is electrically connected to the source 23.
“第一衬垫71和第二衬垫72分别通过辅助电极40与漏极24和栅极26电连接”,可以是第一衬垫71通过一个辅助电极40与漏极24电连接,第二衬垫72通过另一个辅助电极40与栅极26电连接。“The first pad 71 and the second pad 72 are electrically connected to the drain 24 and the gate 26 respectively through the auxiliary electrode 40 ” can mean that the first pad 71 is electrically connected to the drain 24 through one auxiliary electrode 40 , and the second pad 72 is electrically connected to the gate 26 through another auxiliary electrode 40 .
“第一衬垫71和第二衬垫72分别通过辅助电极40与漏极24和栅极26电连接”,还可以是,第一衬垫71通过一个辅助电极40与栅极26电连接,第二衬垫72通过另一个辅助电极40与漏极24电连接。“The first pad 71 and the second pad 72 are electrically connected to the drain 24 and the gate 26 respectively through the auxiliary electrode 40 ” may also mean that the first pad 71 is electrically connected to the gate 26 through one auxiliary electrode 40 , and the second pad 72 is electrically connected to the drain 24 through another auxiliary electrode 40 .
示例性的,第一衬垫71、第二衬垫72和第三衬垫73的材料可以均包括金属,例如,金、铝等。Exemplarily, the materials of the first pad 71 , the second pad 72 , and the third pad 73 may all include metal, such as gold, aluminum, and the like.
在一些示例中,第一衬垫71、第二衬垫72和辅助电极40的材料可以相同。这样,第一衬垫71和第二衬垫72可以与辅助电极40同步制备,从而简化射频器件300的制备工艺,降低射频器件300的制备成本。In some examples, the first pad 71, the second pad 72 and the auxiliary electrode 40 may be made of the same material. In this way, the first pad 71 and the second pad 72 may be prepared simultaneously with the auxiliary electrode 40, thereby simplifying the preparation process of the RF device 300 and reducing the preparation cost of the RF device 300.
在一些示例中,如图11所示,与漏极24对应连接的辅助电极40可以位于无源区BB。在另一些示例中,如图12所示,与漏极24对应连接的辅助电极40的一部分位于有源区AA,与漏极24对应连接的辅助电极40的另一部分位于无源区BB中。In some examples, as shown in Fig. 11, the auxiliary electrode 40 correspondingly connected to the drain 24 may be located in the passive region BB. In other examples, as shown in Fig. 12, a portion of the auxiliary electrode 40 correspondingly connected to the drain 24 is located in the active region AA, and another portion of the auxiliary electrode 40 correspondingly connected to the drain 24 is located in the passive region BB.
在一些示例中,如图11所示,与栅极26对应连接的辅助电极40可以位于无源区BB。In some examples, as shown in FIG. 11 , the auxiliary electrode 40 correspondingly connected to the gate 26 may be located in the inactive region BB.
在一些示例中,如图12所示,射频器件300还可以包括位于衬底10远离电路结构20一侧的互联金属80,互联金属80可以通过背孔(backside via,Bvia)81与源极23电连接。In some examples, as shown in FIG. 12 , the RF device 300 may further include an interconnect metal 80 located on a side of the substrate 10 away from the circuit structure 20 , and the interconnect metal 80 may be electrically connected to the source 23 through a backside via (Bvia) 81 .
示例性的,背孔81可以包括位于异质结21、第四介质层22、缓冲层292和成核层291中的部分。Exemplarily, the back hole 81 may include portions located in the heterojunction 21 , the fourth dielectric layer 22 , the buffer layer 292 , and the nucleation layer 291 .
在一些示例中,背孔81可以位于有源区AA。在另一些示例中,背孔81可以为无源区BB。In some examples, the back hole 81 may be located in the active area AA. In other examples, the back hole 81 may be located in the inactive area BB.
本申请实施例中,对第三衬垫73的位置不做限制,第三衬垫73可以位于有源区AA中,也可以位于无源区BB中。In the embodiment of the present application, there is no limitation on the position of the third pad 73 , and the third pad 73 may be located in the active area AA or in the passive area BB.
本申请实施例还提供一种射频器件300的制备方法,如图13所示,该制备方法包括:The embodiment of the present application also provides a method for preparing a radio frequency device 300, as shown in FIG13, the method comprising:
S100、如图14所示,在衬底10的一侧形成电路结构20,电路结构20包括远离衬底10的第一表面S1,第一表面S1包括台阶面S11,台阶面S11包括远离衬底10一侧的凸起。S100 , as shown in FIG. 14 , a circuit structure 20 is formed on one side of a substrate 10 , wherein the circuit structure 20 includes a first surface S1 away from the substrate 10 , the first surface S1 includes a step surface S11 , and the step surface S11 includes a protrusion away from one side of the substrate 10 .
其中,电路结构20可以具有上述任一实施例所提供的结构。图14中仅以电路结构20包括异质结21(异质结21包括沟道层211、势垒层212和插入层213),第四介质层22、源极23、漏极24、第五介质层25、栅极26、第六介质层27、场板电极28、成核层291、缓冲层292和帽层293为例进行示意。The circuit structure 20 may have a structure provided by any of the above embodiments. FIG14 only takes the circuit structure 20 including the heterojunction 21 (the heterojunction 21 includes the channel layer 211, the barrier layer 212 and the insertion layer 213), the fourth dielectric layer 22, the source 23, the drain 24, the fifth dielectric layer 25, the gate 26, the sixth dielectric layer 27, the field plate electrode 28, the nucleation layer 291, the buffer layer 292 and the cap layer 293 as an example for illustration.
示例性的,异质结21、成核层291、缓冲层292和帽层293可以采用金属有机化合物化学气相沉淀或分子束外延等工艺在衬底10上外延生长形成。Exemplarily, the heterojunction 21 , the nucleation layer 291 , the buffer layer 292 and the cap layer 293 may be formed by epitaxial growth on the substrate 10 using processes such as metal organic chemical vapor deposition or molecular beam epitaxy.
示例性的,第四介质层22、第五介质层25和第六介质层27可以采用等离子体化学气相沉积、原子层沉积或低压化学气相沉积等工艺形成。Exemplarily, the fourth dielectric layer 22 , the fifth dielectric layer 25 and the sixth dielectric layer 27 may be formed by plasma chemical vapor deposition, atomic layer deposition or low pressure chemical vapor deposition.
示例性的,源极23、漏极24、栅极26和场板电极28可以采用沉积工艺形成,例如蒸镀或溅射。Exemplarily, the source 23 , the drain 24 , the gate 26 and the field plate electrode 28 may be formed by a deposition process, such as evaporation or sputtering.
其中,图14中以“粗黑实线”示意出了第一表面S1,第一表面S1可以包括第六介质层27未被场板电极28覆盖的表面,以及场板电极28的顶面281和侧壁282。The first surface S1 is schematically illustrated by a “thick black solid line” in FIG. 14 . The first surface S1 may include a surface of the sixth dielectric layer 27 that is not covered by the field plate electrode 28 , and a top surface 281 and a side wall 282 of the field plate electrode 28 .
S200、如图15所示,在电路结构20远离衬底10的一侧形成第一介质层30。第一介质层30包括远离衬底10的第二表面S2,第二表面S2的高度随第一表面S1的高度变化而变化。S200, as shown in Fig. 15, a first dielectric layer 30 is formed on a side of the circuit structure 20 away from the substrate 10. The first dielectric layer 30 includes a second surface S2 away from the substrate 10, and the height of the second surface S2 varies with the height of the first surface S1.
示例性的,可以采用等离子体化学气相沉积、原子层沉积、低压化学气相沉积等工艺在电路结构20远离衬底10的一侧形成第一介质层30。For example, the first dielectric layer 30 may be formed on a side of the circuit structure 20 away from the substrate 10 by using processes such as plasma chemical vapor deposition, atomic layer deposition, and low pressure chemical vapor deposition.
S300、如图16A和图16B所示,对第一介质层30的第二表面S2进行平坦化处理。S300 , as shown in FIG. 16A and FIG. 16B , the second surface S2 of the first dielectric layer 30 is planarized.
其中,在对第一介质层30的第二表面S2进行平坦化处理后,在垂直于衬底10的方向(例如第二方向Y)上,第二表面S2中任意两点到衬底10的上表面S0的距离之差小于或等于20nm。After the second surface S2 of the first dielectric layer 30 is planarized, the difference in distance between any two points on the second surface S2 and the upper surface S0 of the substrate 10 in a direction perpendicular to the substrate 10 (eg, the second direction Y) is less than or equal to 20 nm.
示例性的,参阅图16A,在对第一介质层30的第二表面S2进行平坦化处理后,第二表面S2上具有任意两点,例如点N1和点N2,点N1到衬底10的上表面S0的距离为h1,点N2到衬底10的上表面S0的距离为h2,h1等于h2。Exemplarily, referring to FIG. 16A , after the second surface S2 of the first dielectric layer 30 is planarized, there are any two points on the second surface S2, such as point N1 and point N2, the distance from point N1 to the upper surface S0 of the substrate 10 is h1, the distance from point N2 to the upper surface S0 of the substrate 10 is h2, and h1 is equal to h2.
或者,示例性的,参阅图16B,在对第一介质层30的第二表面S2进行平坦化处理后,第二表面S2上具有任意两点,例如点N3和点N4。点N3到衬底10的上表面S0的距离为h3,点N4到衬底10的上表面S0的距离为h4,h3小于h4,且h4与h3之差小于20nm。Alternatively, illustratively, referring to FIG. 16B , after the second surface S2 of the first dielectric layer 30 is planarized, there are any two points on the second surface S2, such as point N3 and point N4. The distance between point N3 and the upper surface S0 of the substrate 10 is h3, the distance between point N4 and the upper surface S0 of the substrate 10 is h4, h3 is smaller than h4, and the difference between h4 and h3 is smaller than 20 nm.
S400、如图17A和图17B所示,形成辅助电极40,辅助电极40包括相连接的第一子电极41和第二子电极42,第一子电极41位于第一介质层30远离衬底10的一侧,第二子电极42贯穿第一介质层30与电路结构20连接。S400, as shown in Figures 17A and 17B, an auxiliary electrode 40 is formed, and the auxiliary electrode 40 includes a first sub-electrode 41 and a second sub-electrode 42 connected to each other. The first sub-electrode 41 is located on a side of the first dielectric layer 30 away from the substrate 10, and the second sub-electrode 42 penetrates the first dielectric layer 30 and is connected to the circuit structure 20.
S500、参阅图4和图6,在第一介质层30远离衬底10的一侧形成第二介质层50,第二介质层50覆盖辅助电极40。S500 , referring to FIG. 4 and FIG. 6 , a second dielectric layer 50 is formed on a side of the first dielectric layer 30 away from the substrate 10 , and the second dielectric layer 50 covers the auxiliary electrode 40 .
示例性的,可以采用等离子体化学气相沉积、原子层沉积或低压化学气相沉积等工艺在第一介质层30远离衬底10的一侧形成第二介质层50。For example, the second dielectric layer 50 may be formed on a side of the first dielectric layer 30 away from the substrate 10 by using a process such as plasma chemical vapor deposition, atomic layer deposition or low pressure chemical vapor deposition.
在本申请实施例所提供的射频器件的制备方法中,在起伏不平的第一表面S1上形成第一介质层30,第一介质层30的第二表面S2凹凸不平,对第一介质层30的第二表面S2进行平坦化处理,使得第一介质层30的第二表面S2较为平坦。这样,即使在形成过程中,第一介质层30在对应第一表面S1的台阶面S11处产生了合并缝隙,在平坦的第二表面S2上形成第二介质层50后,第二介质层50中位于台阶面S11远离衬底10的一侧的部分内也不会出现合并缝隙,第一介质层30中的合并缝隙31无法穿过第二介质层50与外界连通,使得外界环境中的水汽也不容易进入到第一介质层30的合并缝隙内,并穿过合并缝隙进入到电路结构20中,从而避免了因水汽入侵使得第一介质层开裂的问题,进而避免了水汽接触电路结构中的电极,导致电极被腐蚀,造成同层电极之间相互短路的问题,提高了射频器件300的防潮防水特性,同时提高了射频器件300的可靠性。In the method for preparing the RF device provided in the embodiment of the present application, a first dielectric layer 30 is formed on an uneven first surface S1, and a second surface S2 of the first dielectric layer 30 is uneven. The second surface S2 of the first dielectric layer 30 is planarized so that the second surface S2 of the first dielectric layer 30 is relatively flat. In this way, even if the first dielectric layer 30 generates a merged gap at the step surface S11 corresponding to the first surface S1 during the formation process, after the second dielectric layer 50 is formed on the flat second surface S2, no merged gap will appear in the portion of the second dielectric layer 50 located on the side of the step surface S11 away from the substrate 10, and the merged gap 31 in the first dielectric layer 30 cannot pass through the second dielectric layer 50 to communicate with the outside world, so that water vapor in the external environment is not easy to enter the merged gap of the first dielectric layer 30 and pass through the merged gap into the circuit structure 20, thereby avoiding the problem of cracking of the first dielectric layer due to water vapor intrusion, and further avoiding the problem of water vapor contacting the electrodes in the circuit structure, causing the electrodes to be corroded and causing short circuits between electrodes on the same layer, thereby improving the moisture-proof and waterproof properties of the RF device 300 and improving the reliability of the RF device 300.
在一些实施例中,如图15所示,在步骤S300、对第一介质层30的第二表面S2进行平坦化处理之前,第一介质层30的厚度d4可以为400nm~5μm。例如,第一介质层30的厚度可以为400nm、800nm、1μm、2μm、3μm或5μm等。In some embodiments, as shown in FIG15 , before the second surface S2 of the first dielectric layer 30 is planarized in step S300 , the thickness d4 of the first dielectric layer 30 may be 400 nm to 5 μm. For example, the thickness of the first dielectric layer 30 may be 400 nm, 800 nm, 1 μm, 2 μm, 3 μm or 5 μm.
通过这样设置,一方面可以使第一介质层30的厚度不会过小,从而可以预留出平坦化处理所要消耗的第一介质层30的去除量,在对第一介质层30的第二表面S2进行平坦化处理之后,使第一介质层30依旧可以较好的保护电路结构20。另一方面,可以使第一介质层30的厚度不会过厚,避免造成成本的增加。By setting in this way, on the one hand, the thickness of the first dielectric layer 30 can be made not too small, so that the removal amount of the first dielectric layer 30 consumed by the planarization process can be reserved, and after the second surface S2 of the first dielectric layer 30 is planarized, the first dielectric layer 30 can still better protect the circuit structure 20. On the other hand, the thickness of the first dielectric layer 30 can be made not too thick, thereby avoiding an increase in cost.
如图18A所示,在一些示例中,步骤S300、对第一介质层30的第二表面S2进行平坦化处理,可以包括:As shown in FIG. 18A , in some examples, step S300 of planarizing the second surface S2 of the first dielectric layer 30 may include:
S310、采用化学机械抛光工艺(chemical mechanical polishing,CMP)或干法刻蚀工艺,去除部分第一介质层30,以使第一介质层30的第二表面S2平坦。S310 , using a chemical mechanical polishing (CMP) process or a dry etching process to remove a portion of the first dielectric layer 30 , so as to make the second surface S2 of the first dielectric layer 30 flat.
其中,采用干法刻蚀工艺,刻蚀精度较高。采用化学机械抛光工艺,可以使上述过程更加容易实现,第一介质层30的第二表面S2更加平坦,这样,在对第一介质层30的第二表面S2进行平坦化处理后,在第一介质层30远离衬底10的一侧形成第二介质层50时,第二介质层50位于台阶面S11远离衬底10一侧的部分中更不会形成合并缝隙,从而有利于进一步避免因水汽入侵使得第一介质层开裂的问题,避免水汽接触电路结构中的电极,导致电极被腐蚀,造成同层电极之间相互短路问题,提高了射频器件300的防潮防水特性,同时提高了射频器件300的可靠性。Among them, the dry etching process is adopted, and the etching precision is high. The chemical mechanical polishing process is adopted, which can make the above process easier to implement, and the second surface S2 of the first dielectric layer 30 is flatter. In this way, after the second surface S2 of the first dielectric layer 30 is flattened, when the second dielectric layer 50 is formed on the side of the first dielectric layer 30 away from the substrate 10, the second dielectric layer 50 is located on the side of the step surface S11 away from the substrate 10. The part will not form a merged gap, which is conducive to further avoiding the problem of cracking of the first dielectric layer due to water vapor intrusion, avoiding water vapor contacting the electrodes in the circuit structure, causing the electrodes to be corroded, causing the problem of short circuit between the electrodes on the same layer, improving the moisture and water resistance of the RF device 300, and at the same time improving the reliability of the RF device 300.
如图18B所示,在另一些示例中,步骤S300、对第一介质层30的第二表面S2进行平坦化处理,可以包括:As shown in FIG. 18B , in some other examples, step S300 of planarizing the second surface S2 of the first dielectric layer 30 may include:
S320、如图19所示,在第一介质层30远离衬底10的一侧形成牺牲层11。牺牲层11包括远离衬底10的第四表面S4,第四表面S4的高度随第二表面S2的变化而变化。S320, as shown in Fig. 19, a sacrificial layer 11 is formed on a side of the first dielectric layer 30 away from the substrate 10. The sacrificial layer 11 includes a fourth surface S4 away from the substrate 10, and the height of the fourth surface S4 varies with the second surface S2.
示例性的,牺牲层11的材料可以包括有机材料,例如,聚酰亚胺(polyimide,PI)、感光性涂覆玻璃或光刻胶等。Exemplarily, the material of the sacrificial layer 11 may include an organic material, such as polyimide (PI), photosensitive coated glass or photoresist.
当牺牲层11的材料包括光刻胶时,牺牲层11的材料可以为硅化合物光刻胶(hydrogen silsesquioxane,HSQ)。When the material of the sacrificial layer 11 includes photoresist, the material of the sacrificial layer 11 may be hydrogen silsesquioxane (HSQ).
示例性的,牺牲层11的厚度可以是100nm~5μm。例如,牺牲层11的厚度可以是100nm、500nm、1μm、2μm或5μm等。Exemplarily, the thickness of the sacrificial layer 11 may be 100 nm to 5 μm. For example, the thickness of the sacrificial layer 11 may be 100 nm, 500 nm, 1 μm, 2 μm, or 5 μm.
S330、采用干法刻蚀工艺,去除至少部分牺牲层11,以使第一介质层30的第二表面S2平坦。S330 , using a dry etching process to remove at least a portion of the sacrificial layer 11 , so as to make the second surface S2 of the first dielectric layer 30 flat.
本申请实施例通过形成牺牲层11,填充第一介质层30的第二表面S2的低处,并利用干法刻蚀工艺,基于高处刻蚀速度快,低处刻蚀速率慢的特点对第一介质层30进行平坦化处理。In the embodiment of the present application, a sacrificial layer 11 is formed to fill the low part of the second surface S2 of the first dielectric layer 30 , and a dry etching process is used to planarize the first dielectric layer 30 based on the characteristics of fast etching speed at high parts and slow etching speed at low parts.
在一些示例中,“去除至少部分牺牲层11,以使第一介质层30的第二表面S2平坦”,可以是,去除部分牺牲层11,剩余的牺牲层11填充在第二表面S2的低处,使第二表面S2平坦。In some examples, “remove at least a portion of the sacrificial layer 11 to make the second surface S2 of the first dielectric layer 30 flat” may be to remove a portion of the sacrificial layer 11 and fill the remaining sacrificial layer 11 at the lower portion of the second surface S2 to make the second surface S2 flat.
在另一些示例中,“去除至少部分牺牲层11,以使第一介质层30的第二表面S2平坦”,可以是,去除部分牺牲层11,以及第一介质层30中高度较高的部分(距离衬底10的上表面S0较远的部分),剩余的牺牲层11填充在第二表面S2的低处,使第二表面S2平坦。In other examples, “removing at least a portion of the sacrificial layer 11 to make the second surface S2 of the first dielectric layer 30 flat” may be to remove a portion of the sacrificial layer 11 and a higher portion of the first dielectric layer 30 (a portion farther from the upper surface S0 of the substrate 10), and the remaining sacrificial layer 11 is filled in the lower part of the second surface S2 to make the second surface S2 flat.
在又一些示例中,“去除至少部分牺牲层11,以使第一介质层30的第二表面S2平坦”,可以是,去除全部牺牲层11以及部分第一介质层30,使第二表面S2平坦。In some other examples, “remove at least a portion of the sacrificial layer 11 to make the second surface S2 of the first dielectric layer 30 flat” may be to remove the entire sacrificial layer 11 and a portion of the first dielectric layer 30 to make the second surface S2 flat.
可以理解的是,上述图18A和图18B仅示出了两种对第一介质层30的第二表面S2进行平坦化处理的方式,本申请实施例中对第一介质层30的第二表面S2进行平坦化处理的方式并不仅限于此。It is understandable that the above FIG. 18A and FIG. 18B only show two ways of planarizing the second surface S2 of the first dielectric layer 30 , and the way of planarizing the second surface S2 of the first dielectric layer 30 in the embodiment of the present application is not limited thereto.
在一些实施例中,如图20所示,步骤S400、形成辅助电极40,包括:In some embodiments, as shown in FIG. 20 , step S400, forming an auxiliary electrode 40, includes:
S410、如图21所示,刻蚀第一介质层30,形成开口301,开口301暴露出电路结构中的源极23、漏极24或栅极26。S410 , as shown in FIG. 21 , the first dielectric layer 30 is etched to form an opening 301 , wherein the opening 301 exposes the source 23 , the drain 24 or the gate 26 in the circuit structure.
在一些示例中,刻蚀第一介质层30可以形成多个开口301。此时,例如,源极23、漏极24和栅极26可以均对应一个开口301。又例如,漏极24和栅极26分别对应一个开口301。In some examples, etching the first dielectric layer 30 may form a plurality of openings 301. At this time, for example, the source 23, the drain 24 and the gate 26 may each correspond to an opening 301. For another example, the drain 24 and the gate 26 may each correspond to an opening 301.
本申请实施例中,对开口301的形状和大小不做限制,只要能够暴露出源极23、漏极24或栅极26的部分表面即可。In the embodiment of the present application, there is no limitation on the shape and size of the opening 301 , as long as a portion of the surface of the source 23 , the drain 24 or the gate 26 can be exposed.
S420、如图22所示,在第一介质层30远离衬底10的一侧形成导电层12。S420 , as shown in FIG. 22 , forming a conductive layer 12 on a side of the first dielectric layer 30 away from the substrate 10 .
示例性的,可以采用溅射工艺在第一介质层30远离衬底10的一侧形成导电层12。For example, the conductive layer 12 may be formed on a side of the first dielectric layer 30 away from the substrate 10 by using a sputtering process.
S430、参阅图5,刻蚀导电层12,形成辅助电极40。辅助电极40包括位于第二表面S2上的第一子电极41和位于开口301中的第二子电极42。第二子电极42与源极23、漏极24或栅极26。S430 , referring to FIG. 5 , the conductive layer 12 is etched to form an auxiliary electrode 40 . The auxiliary electrode 40 includes a first sub-electrode 41 located on the second surface S2 and a second sub-electrode 42 located in the opening 301 . The second sub-electrode 42 is connected to the source 23 , the drain 24 or the gate 26 .
如图5所示,刻蚀导电层12的过程中,为完全去除导电层12中多余的部分,需要过刻,这样使得第二表面S2的第一部分S21相比于第二部分S22更远离衬底10的上表面S0,其中,第一部分S21为第二表面S2中被第一子电极41覆盖的部分,第二部分S22为第二表面S2中位于第一子电极41周围的部分。As shown in Figure 5, during the etching process of the conductive layer 12, in order to completely remove the redundant parts of the conductive layer 12, over-etching is required, so that the first part S21 of the second surface S2 is farther away from the upper surface S0 of the substrate 10 than the second part S22, wherein the first part S21 is the part of the second surface S2 covered by the first sub-electrode 41, and the second part S22 is the part of the second surface S2 located around the first sub-electrode 41.
在另一些实施例中,如图23所示,步骤S400、形成辅助电极40,包括:In some other embodiments, as shown in FIG. 23 , step S400, forming the auxiliary electrode 40, includes:
S440、如图21所示,刻蚀第一介质层30,形成开口301,开口301暴露出电路结构中的源极23、漏极24或栅极26。S440 , as shown in FIG. 21 , etching the first dielectric layer 30 to form an opening 301 , wherein the opening 301 exposes the source 23 , the drain 24 or the gate 26 in the circuit structure.
S450、如图22所示,在第一介质层30远离衬底10的一侧形成导电层12。S450 , as shown in FIG. 22 , forming a conductive layer 12 on a side of the first dielectric layer 30 away from the substrate 10 .
在一些示例中,可以采用蒸镀工艺在第一介质层30远离衬底10的一侧形成导电层12。In some examples, the conductive layer 12 may be formed on a side of the first dielectric layer 30 away from the substrate 10 by using an evaporation process.
S460、参阅图17A和图17B所示,采用剥离工艺去除部分导电层12,形成辅助电极40。辅助电极40包括位于第二表面S2上的第一子电极41和位于开口301中的第二子电极42。第二子电极42与源极23、漏极24或栅极26。S460, referring to FIG. 17A and FIG. 17B, a portion of the conductive layer 12 is removed by a lift-off process to form an auxiliary electrode 40. The auxiliary electrode 40 includes a first sub-electrode 41 located on the second surface S2 and a second sub-electrode 42 located in the opening 301. The second sub-electrode 42 is connected to the source 23, the drain 24 or the gate 26.
示例性,可以步骤S440、刻蚀第一介质层30,形成开口301之后,在步骤S440、在第一介质层30远离衬底10的一侧形成导电层12之前,在第一介质层30远离衬底10的一侧形成图案化的光刻胶层,这样,在形成导电层12之后,可以利用剥离液去除光刻胶,以及光刻胶上方的导电层12,从而去除部分导电层12。For example, after etching the first dielectric layer 30 to form the opening 301 in step S440, a patterned photoresist layer can be formed on the side of the first dielectric layer 30 away from the substrate 10 before forming the conductive layer 12 on the side of the first dielectric layer 30 away from the substrate 10 in step S440. In this way, after the conductive layer 12 is formed, the photoresist and the conductive layer 12 above the photoresist can be removed by using a stripping solution, thereby removing part of the conductive layer 12.
这样,制备辅助电极40的过程中,不容易使第一介质层30受到损伤,第一介质层30的第二表面S2可以保留平坦化后的形貌。In this way, during the process of preparing the auxiliary electrode 40 , the first dielectric layer 30 is not easily damaged, and the second surface S2 of the first dielectric layer 30 can retain the planarized morphology.
在制备辅助电极40时,平坦化第一介质层30的第二表面S2还可以使光刻胶厚度均匀,显影后光刻胶固化效果较好,从而在刻蚀或剥离工艺中更好的去除导电层中的多余部分,避免金属残留。When preparing the auxiliary electrode 40, planarizing the second surface S2 of the first dielectric layer 30 can also make the photoresist thickness uniform, and the photoresist curing effect is better after development, so that the excess part of the conductive layer can be better removed in the etching or stripping process to avoid metal residue.
在一些实施例中,如图24所示,在步骤300、对第一介质层30的第二表面S2进行平坦化处理之后,在步骤S400、形成辅助电极40之前,制备方法还包括:In some embodiments, as shown in FIG. 24 , after the second surface S2 of the first dielectric layer 30 is planarized in step 300 and before the auxiliary electrode 40 is formed in step S400 , the preparation method further includes:
S600、如图25A和图25B所示,在第一介质层30远离衬底10的一侧形成第三介质层60。其中,第二部分42还贯穿第三介质层60。S600 , as shown in FIG. 25A and FIG. 25B , a third dielectric layer 60 is formed on a side of the first dielectric layer 30 away from the substrate 10 . The second portion 42 also penetrates the third dielectric layer 60 .
示例性的,可以采用等离子体化学气相沉积、原子层沉积或低压化学气相沉积等工艺,在第一介质层30远离衬底10的一侧形成第三介质层60。For example, the third dielectric layer 60 may be formed on a side of the first dielectric layer 30 away from the substrate 10 by using a process such as plasma chemical vapor deposition, atomic layer deposition or low pressure chemical vapor deposition.
由于第二表面S2较为平坦,因此第三介质层60中位于台阶面S11远离衬底10一侧的部分内也不会出现合并缝隙。这样,即使第一介质层30位于台阶面S11上的部分中出现合并缝隙,第二介质层50中也出现合并缝隙,第三介质层60可以将第一介质层30中的合并缝隙与第二介质层50中的合并缝隙间隔开,从而进一步避免了第一介质层30中的合并缝隙与外界环境连通,进一步阻挡了水汽的入侵,提高了射频器件300的防潮防水特性,提高了射频器件300的可靠性。Since the second surface S2 is relatively flat, no merged gap will appear in the portion of the third dielectric layer 60 located on the side of the step surface S11 away from the substrate 10. In this way, even if a merged gap appears in the portion of the first dielectric layer 30 located on the step surface S11, a merged gap also appears in the second dielectric layer 50, and the third dielectric layer 60 can separate the merged gap in the first dielectric layer 30 from the merged gap in the second dielectric layer 50, thereby further preventing the merged gap in the first dielectric layer 30 from being connected to the external environment, further blocking the intrusion of water vapor, improving the moisture-proof and waterproof properties of the RF device 300, and improving the reliability of the RF device 300.
参阅图8,可以理解的是,在第一介质层30远离衬底10的一侧先形成第三介质层60,再形成辅助电极40,还可以利用第三介质层60保护第一介质层30,避免第一介质层在辅助电极40的形成过程中被刻蚀,从而使第一介质层30可以较好的保护电路结构20。8 , it can be understood that the third dielectric layer 60 is first formed on the side of the first dielectric layer 30 away from the substrate 10 and then the auxiliary electrode 40 is formed. The third dielectric layer 60 can also be used to protect the first dielectric layer 30 to prevent the first dielectric layer from being etched during the formation of the auxiliary electrode 40, so that the first dielectric layer 30 can better protect the circuit structure 20.
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, specific features, structures, materials or characteristics may be combined in an appropriate manner in any one or more embodiments or examples.
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific implementations of the present application, but the protection scope of the present application is not limited thereto. Any technician familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the present application, which should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.
Claims (19)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211521778.8A CN118116967A (en) | 2022-11-30 | 2022-11-30 | Radio frequency device and preparation method thereof, and electronic equipment |
| PCT/CN2023/105303 WO2024113863A1 (en) | 2022-11-30 | 2023-06-30 | Radio frequency device and preparation method therefor, and electronic apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211521778.8A CN118116967A (en) | 2022-11-30 | 2022-11-30 | Radio frequency device and preparation method thereof, and electronic equipment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN118116967A true CN118116967A (en) | 2024-05-31 |
Family
ID=91209263
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211521778.8A Pending CN118116967A (en) | 2022-11-30 | 2022-11-30 | Radio frequency device and preparation method thereof, and electronic equipment |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN118116967A (en) |
| WO (1) | WO2024113863A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119361426B (en) * | 2024-12-26 | 2025-02-21 | 成都航天博目电子科技有限公司 | A method for determining AlGaN etching rate |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5884094B2 (en) * | 2011-06-24 | 2016-03-15 | パナソニックIpマネジメント株式会社 | Nitride semiconductor device |
| US9425308B2 (en) * | 2013-12-31 | 2016-08-23 | Delta Electronics, Inc. | Power semiconductor device and method for fabricating the same |
| CN105226093B (en) * | 2015-11-11 | 2018-06-26 | 成都海威华芯科技有限公司 | GaN HEMT devices and preparation method thereof |
| US11127846B2 (en) * | 2019-07-12 | 2021-09-21 | Vanguard International Semiconductor Corporation | High electron mobility transistor devices and methods for forming the same |
| US11152474B1 (en) * | 2020-04-21 | 2021-10-19 | Vanguard International Semiconductor Corporation | Semiconductor device and method for forming the same |
-
2022
- 2022-11-30 CN CN202211521778.8A patent/CN118116967A/en active Pending
-
2023
- 2023-06-30 WO PCT/CN2023/105303 patent/WO2024113863A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| WO2024113863A1 (en) | 2024-06-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110400848B (en) | A kind of Schottky diode and its manufacturing method | |
| CN104134689B (en) | A kind of HEMT device and preparation method | |
| JP5888027B2 (en) | Manufacturing method of semiconductor device | |
| US9082817B2 (en) | Growth of multi-layer group III-nitride buffers on large-area silicon substrates and other substrates | |
| CN106981507A (en) | Semiconductor devices and its manufacture method | |
| CN213459743U (en) | High electron mobility transistor device and electronic device | |
| CN112420850A (en) | Semiconductor device and preparation method thereof | |
| US20120032185A1 (en) | LEAKAGE BARRIER FOR GaN BASED HEMT ACTIVE DEVICE | |
| WO2024113863A1 (en) | Radio frequency device and preparation method therefor, and electronic apparatus | |
| EP4141954A1 (en) | Field effect transistor, production method thereof, and electronic circuit | |
| KR20190027700A (en) | Field effect transistor | |
| CN114843335B (en) | High-linearity GaN HEMT device based on asymmetric ohmic regrowth area and preparation method thereof | |
| CN117133806A (en) | A natural superjunction GaN HEMT device and its preparation method | |
| WO2023197213A1 (en) | Semiconductor device and working method therefor, and electronic device | |
| JP7701602B2 (en) | Semiconductor device, manufacturing method thereof, and electronic device | |
| CN116635995B (en) | Semiconductor device, manufacturing method thereof and electronic equipment | |
| WO2024169875A1 (en) | Semiconductor device, manufacturing method for semiconductor device, and electronic apparatus | |
| WO2014204209A1 (en) | Nitride-based transistor having vrtical channel and method for manufacutring same | |
| CN112838006B (en) | A gallium nitride PIN diode and its preparation method | |
| US20240178296A1 (en) | Semiconductor device and method for manufacturing the same | |
| US20230178612A1 (en) | Semiconductor unit, semiconductor module, and electronic apparatus | |
| CN118522761A (en) | Semiconductor device, manufacturing method thereof, chip and electronic equipment | |
| WO2024114629A1 (en) | Semiconductor device, preparation method for semiconductor device, and electronic device | |
| KR100811492B1 (en) | BaN-based electronic device manufacturing method | |
| CN118156296A (en) | Semiconductor device and manufacturing method thereof, and electronic device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication |