CN118202139A - Controller for aftertreatment system and method for configuring pump and dispenser - Google Patents
Controller for aftertreatment system and method for configuring pump and dispenser Download PDFInfo
- Publication number
- CN118202139A CN118202139A CN202280073732.6A CN202280073732A CN118202139A CN 118202139 A CN118202139 A CN 118202139A CN 202280073732 A CN202280073732 A CN 202280073732A CN 118202139 A CN118202139 A CN 118202139A
- Authority
- CN
- China
- Prior art keywords
- dispenser
- pump
- reductant
- speed
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion
- F01N3/206—Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. by adjusting the dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/08—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1433—Pumps
- F01N2610/144—Control thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1453—Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
- F01N2610/146—Control thereof, e.g. control of injectors or injection valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1808—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1821—Injector parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1822—Pump parameters
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本申请要求2021年12月6日提交的美国临时申请第63/286,231号的优先权和权益,其全部公开内容通过引用并入本文。This application claims priority to and the benefit of U.S. Provisional Application No. 63/286,231, filed on December 6, 2021, the entire disclosure of which is incorporated herein by reference.
技术领域Technical Field
本申请总体上涉及基于在不同模式下获得的不同泵速来改进后处理系统的系统和方法。The present application generally relates to systems and methods for improving aftertreatment systems based on different pump speeds achieved in different modes.
背景background
对于内燃发动机,例如柴油发动机,氮氧化物(NOx)化合物可能被排放在排气中。可以希望减少NOx排放,例如,以符合环境法规。为了减少NOx排放,还原剂可以通过配给器配给到排气中。还原剂有助于将一部分排气转化为非NOx排放物,如氮气(N2)、二氧化碳(CO2)和水(H2O),从而减少NOx排放物。For internal combustion engines, such as diesel engines, nitrogen oxide ( NOx ) compounds may be emitted in the exhaust. It may be desirable to reduce NOx emissions, for example, to comply with environmental regulations. To reduce NOx emissions, a reductant may be dosed into the exhaust through a doser. The reductant helps convert a portion of the exhaust into non- NOx emissions, such as nitrogen ( N2 ), carbon dioxide ( CO2 ), and water ( H2O ), thereby reducing NOx emissions.
后处理系统可以包括泵、配给器和控制器,以向分解室配给或提供还原剂。配给器可以包括压力传感器,该压力传感器生成指示配给器压力的压力值。基于压力测量值,控制器可以通过调节泵、配给器或泵和配给器两者来控制配给量。例如,基于压力测量值,控制器可以确定配给器是配给过量还是配给不足,并配置泵、配给器或泵和配给器两者来补偿配给过量或配给不足。The post-treatment system may include a pump, a dispenser, and a controller to dispense or provide a reductant to the decomposition chamber. The dispenser may include a pressure sensor that generates a pressure value indicating the pressure of the dispenser. Based on the pressure measurement, the controller may control the dispensed amount by adjusting the pump, the dispenser, or both the pump and the dispenser. For example, based on the pressure measurement, the controller may determine whether the dispenser is over- or under-dispensing, and configure the pump, the dispenser, or both the pump and the dispenser to compensate for the over- or under-dispensing.
概述Overview
虽然基于压力传感器测量来控制或调节配给器的现有方法可以校正由于泵的变化而引起的误差,但是现有方法可能不能完全考虑由于配给器的变化而引起的误差。While existing methods of controlling or regulating a dispenser based on pressure sensor measurements may correct for errors due to pump variations, existing methods may not fully account for errors due to dispenser variations.
根据本公开的一个实施例,提供了一种用于后处理系统的控制器,该后处理系统包括配置成将还原剂配给到分解室中的配给器和配置成将还原剂供应给配给器的泵。控制器被配置成可操作地联接到配给器和泵。控制器被编程为:使泵和配给器在空闲模式下操作,在空闲模式下,泵以稳定状态将还原剂从还原剂罐供应给配给器,配给器不配给还原剂,并且由泵供应给配给器的还原剂再循环到还原剂罐;当泵和配给器在空闲模式下操作时,确定实现预定目标压力所需的泵的第一速度;使泵和配给器在配给模式下操作,在配给模式下,泵向配给器供应还原剂,并且配给器以稳定状态将还原剂配给到分解室中;当泵和配给器在配给模式下操作时,确定实现预定目标压力所需的泵的第二速度;以及基于第一速度和第二速度生成命令以配置泵和配给器。According to one embodiment of the present disclosure, a controller for an aftertreatment system is provided, the aftertreatment system including a dispenser configured to dispense a reductant into a decomposition chamber and a pump configured to supply the reductant to the dispenser. The controller is configured to be operably connected to the dispenser and the pump. The controller is programmed to: operate the pump and the dispenser in an idle mode, in which the pump supplies the reductant from the reductant tank to the dispenser in a stable state, the dispenser does not dispense the reductant, and the reductant supplied to the dispenser by the pump is recycled to the reductant tank; when the pump and the dispenser are operated in the idle mode, determine the first speed of the pump required to achieve a predetermined target pressure; operate the pump and the dispenser in a dosing mode, in which the pump supplies the reductant to the dispenser, and the dispenser dispenses the reductant into the decomposition chamber in a stable state; when the pump and the dispenser are operated in the dosing mode, determine the second speed of the pump required to achieve the predetermined target pressure; and generate commands based on the first speed and the second speed to configure the pump and the dispenser.
在一个方面,配给器包括压力传感器,该压力传感器被配置成提供已经由偏移压力值调节的压力测量值。控制器被编程为基于第一速度和第二速度确定偏移压力值,以及基于确定的偏移压力值生成命令。In one aspect, the dispenser includes a pressure sensor configured to provide a pressure measurement that has been adjusted by an offset pressure value. The controller is programmed to determine the offset pressure value based on the first speed and the second speed, and to generate a command based on the determined offset pressure value.
在一个方面,控制器被编程为基于确定的偏移压力值来确定配给器的有效孔面积,并基于确定的有效孔面积来生成命令以配置泵和配给器。In one aspect, the controller is programmed to determine an effective orifice area of the dispenser based on the determined offset pressure value and to generate commands to configure the pump and the dispenser based on the determined effective orifice area.
在一个方面,控制器被编程为基于确定的偏移压力值来确定泵的排量,并且基于确定的排量来生成命令以配置泵和配给器。In one aspect, the controller is programmed to determine a displacement of the pump based on the determined offset pressure value, and to generate commands to configure the pump and the dispenser based on the determined displacement.
在一个方面,控制器被编程为基于确定的排量和确定的有效孔面积来更新后处理系统的泵流动模型,并基于更新的泵流动模型来生成命令以配置泵和配给器。In one aspect, the controller is programmed to update a pump flow model of the aftertreatment system based on the determined displacement and the determined effective orifice area, and to generate commands to configure the pump and the doser based on the updated pump flow model.
在一个方面,控制器被编程为基于有效孔面积确定配给器的占空比,并基于配给器的确定的占空比生成命令以配置泵和配给器。In one aspect, the controller is programmed to determine a duty cycle of the doser based on the effective orifice area and to generate commands to configure the pump and the doser based on the determined duty cycle of the doser.
在一个方面,控制器被编程为基于第一速度和第二速度来确定配给器的有效孔面积,基于有效孔面积来确定配给器的占空比,并且基于配给器的确定的占空比来生成命令以配置泵和配给器。In one aspect, the controller is programmed to determine an effective orifice area of the doser based on the first speed and the second speed, determine a duty cycle of the doser based on the effective orifice area, and generate commands to configure the pump and the doser based on the determined duty cycle of the doser.
根据另一实施例,提供了一种用于后处理系统的控制器,该后处理系统包括配置为将还原剂配给到第一分解室的第一配给器、配置为将还原剂配给到第二分解室的第二配给器、以及配置为将还原剂供应到第一配给器的泵,第一配给器联接在泵和第二配给器之间。控制器被配置成可操作地联接到第一配给器、第二配给器和泵。控制器被编程为使泵、第一配给器和第二配给器在空闲模式下操作,在空闲模式下,泵以稳定状态将还原剂从还原剂罐供应到第一配给器,第一配给器和第二配给器不配给还原剂,并且由泵供应到第一配给器和第二配给器的还原剂再循环到还原剂罐;当泵、第一配给器和第二配给器在空闲模式下操作时,确定实现预定目标压力所需的泵的第一速度;使泵、第一配给器和第二配给器在第一配给模式下操作,在第一配给模式下,泵向第一配给器供应还原剂,第一配给器以稳定状态将还原剂配给到第一分解室中,并且第二配给器不配给还原剂;当泵、第一配给器和第二配给器在第一配给模式下操作时,确定实现预定目标压力所需的泵的第二速度;使泵、第一配给器和第二配给器在第二配给模式下操作,在第二配给模式下,泵向第一配给器供应还原剂,第二配给器以稳定状态将还原剂配给到第二分解室中,并且第一配给器不配给还原剂;当泵、第一配给器和第二配给器在第二配给模式下操作时,确定实现预定目标压力所需的泵的第三速度;以及基于第一速度、第二速度和第三速度生成命令以配置泵、第一配给器和第二配给器。According to another embodiment, a controller for an aftertreatment system is provided, the aftertreatment system including a first dispenser configured to dispense a reductant to a first decomposition chamber, a second dispenser configured to dispense the reductant to a second decomposition chamber, and a pump configured to supply the reductant to the first dispenser, the first dispenser being coupled between the pump and the second dispenser. The controller is configured to be operably coupled to the first dispenser, the second dispenser, and the pump. The controller is programmed to operate the pump, the first dispenser, and the second dispenser in an idle mode, in which the pump supplies the reductant from the reductant tank to the first dispenser in a steady state, the first dispenser and the second dispenser do not dispense the reductant, and the reductant supplied by the pump to the first dispenser and the second dispenser is recirculated to the reductant tank; determine a first speed of the pump required to achieve a predetermined target pressure when the pump, the first dispenser, and the second dispenser are operated in the idle mode; operate the pump, the first dispenser, and the second dispenser in a first dosing mode, in which the pump supplies the reductant to the first dispenser, the first dispenser dispenses the reductant into the first decomposition chamber in a steady state, and The second dispenser dispenses no reductant; when the pump, the first dispenser, and the second dispenser operate in the first dosing mode, determining a second speed of the pump required to achieve a predetermined target pressure; operating the pump, the first dispenser, and the second dispenser in a second dosing mode, in which the pump supplies the reductant to the first dispenser, the second dispenser dispenses the reductant into the second decomposition chamber in a steady state, and the first dispenser does not dispense the reductant; when the pump, the first dispenser, and the second dispenser operate in the second dosing mode, determining a third speed of the pump required to achieve a predetermined target pressure; and generating a command to configure the pump, the first dispenser, and the second dispenser based on the first speed, the second speed, and the third speed.
在一个方面,泵被配置成通过第一配给器向第二配给器供应还原剂。In one aspect, the pump is configured to supply reductant through the first doser to the second doser.
在一个方面,第二配给器包括压力传感器,该压力传感器被配置成提供已经由偏移压力值调节的压力测量值。控制器被编程为基于第一速度和第三速度确定偏移压力值,并基于确定的偏移压力值生成命令以配置泵、第一配给器和第二配给器。In one aspect, the second dispenser includes a pressure sensor configured to provide a pressure measurement that has been adjusted by an offset pressure value. The controller is programmed to determine the offset pressure value based on the first speed and the third speed, and to generate commands to configure the pump, the first dispenser, and the second dispenser based on the determined offset pressure value.
在一个方面,控制器被编程为基于确定的偏移压力值来确定第二配给器的第一有效孔面积,并基于确定的第一有效孔面积来生成命令以配置泵、第一配给器和第二配给器。In one aspect, the controller is programmed to determine a first effective orifice area of the second doser based on the determined offset pressure value and to generate commands to configure the pump, the first doser, and the second doser based on the determined first effective orifice area.
在一个方面,控制器被编程为基于确定的偏移压力值来确定泵的排量,并基于确定的排量来生成命令以配置泵、第一配给器和第二配给器。In one aspect, the controller is programmed to determine a displacement of the pump based on the determined offset pressure value and to generate commands to configure the pump, the first doser, and the second doser based on the determined displacement.
在一个方面,控制器被编程为基于泵的确定的排量、第一速度和第二速度来确定第一配给器的第二有效孔面积,并基于确定的第二有效孔面积来生成命令以配置泵、第一配给器和第二配给器。In one aspect, the controller is programmed to determine a second effective orifice area of the first doser based on the determined displacement, first speed, and second speed of the pump, and to generate commands to configure the pump, the first doser, and the second doser based on the determined second effective orifice area.
在一个方面,控制器被配置为基于确定的排量、确定的第一有效孔面积和确定的第二有效孔面积来更新后处理系统的泵流动模型,并且基于更新的泵流动模型来生成命令以配置泵、第一配给器和第二配给器。In one aspect, the controller is configured to update a pump flow model of the aftertreatment system based on the determined displacement, the determined first effective orifice area, and the determined second effective orifice area, and generate commands to configure the pump, the first doser, and the second doser based on the updated pump flow model.
在一个方面,控制器被编程为基于第一有效孔面积和第二有效孔面积来确定第一配给器的配给调节因子,并根据配给调节因子生成命令以配置第一配给器。In one aspect, the controller is programmed to determine a dosing adjustment factor for the first doser based on the first effective orifice area and the second effective orifice area, and to generate a command to configure the first doser according to the dosing adjustment factor.
在一个方面,控制器被编程为基于第一速度确定泵的排量,基于泵的排量、第一速度和第二速度确定第一有效孔面积,基于泵的排量、第一速度和第三速度确定第二有效孔面积,基于第一有效孔面积确定第一配给器的第一配给调节因子,基于第二有效孔面积确定第二配给器的第二配给调节因子,以及根据第一配给调节因子和第二配给调节因子生成命令以配置第一配给器和第二配给器。In one aspect, the controller is programmed to determine a displacement of the pump based on a first speed, determine a first effective orifice area based on the displacement of the pump, the first speed, and a second speed, determine a second effective orifice area based on the displacement of the pump, the first speed, and a third speed, determine a first dosing adjustment factor for a first doser based on the first effective orifice area, determine a second dosing adjustment factor for a second doser based on the second effective orifice area, and generate commands to configure the first doser and the second doser based on the first dosing adjustment factor and the second dosing adjustment factor.
根据另一个实施例,提供了一种用于后处理系统的方法,该后处理系统包括配置成将还原剂配给到分解室中的配给器和配置成将还原剂供应到配给器的泵。该方法包括:通过处理器使泵和配给器在空闲模式下操作,在空闲模式下,泵以稳定状态将还原剂从还原剂罐供应到配给器,配给器不配给还原剂,并且由泵供应到配给器的还原剂再循环到还原剂罐;当泵和配给器在空闲模式下操作时,通过处理器确定实现预定目标压力所需的泵的第一速度;通过处理器使泵和配给器在配给模式下操作,在配给模式下,泵向配给器供应还原剂,并且配给器以稳定状态将还原剂配给到分解室中;通过处理器确定实现预定目标压力所需的泵的第二速度,同时泵和配给器在配给模式下操作;以及通过处理器基于第一速度和第二速度生成命令以配置泵和配给器。According to another embodiment, a method for an aftertreatment system is provided, the aftertreatment system including a dispenser configured to dispense a reductant into a decomposition chamber and a pump configured to supply the reductant to the dispenser. The method includes: operating the pump and the dispenser in an idle mode by a processor, in which the pump supplies the reductant from the reductant tank to the dispenser in a steady state, the dispenser does not dispense the reductant, and the reductant supplied to the dispenser by the pump is recycled to the reductant tank; determining by the processor a first speed of the pump required to achieve a predetermined target pressure when the pump and the dispenser are operating in the idle mode; operating the pump and the dispenser in a dosing mode by the processor, in which the pump supplies the reductant to the dispenser, and the dispenser dispenses the reductant into the decomposition chamber in a steady state; determining by the processor a second speed of the pump required to achieve the predetermined target pressure while the pump and the dispenser are operating in the dosing mode; and generating by the processor a command to configure the pump and the dispenser based on the first speed and the second speed.
在一个方面,配给器包括压力传感器,该压力传感器被配置成提供已经由偏移压力值调整的压力测量值。该方法包括通过处理器基于第一速度和第二速度确定偏移压力值;以及通过处理器基于确定的偏移压力值生成命令。In one aspect, the dispenser includes a pressure sensor configured to provide a pressure measurement that has been adjusted by an offset pressure value. The method includes determining, by a processor, an offset pressure value based on a first speed and a second speed; and generating, by the processor, a command based on the determined offset pressure value.
在一个方面,该方法包括通过处理器基于确定的偏移压力值来确定配给器的有效孔面积;以及通过处理器基于确定的偏移压力值来确定泵的排量。In one aspect, the method includes determining, by a processor, an effective orifice area of a dispenser based on a determined offset pressure value; and determining, by the processor, a displacement of a pump based on the determined offset pressure value.
在一个方面,该方法包括通过处理器基于确定的排量和确定的有效孔面积更新后处理系统的泵流动模型;以及通过处理器基于更新的泵流动模型生成命令以配置泵和配给器。In one aspect, the method includes updating, by a processor, a pump flow model of the aftertreatment system based on the determined displacement and the determined effective orifice area; and generating, by the processor, commands to configure the pump and the dispenser based on the updated pump flow model.
在一个方面,该方法包括通过处理器基于有效孔面积确定配给器的占空比;以及基于确定的配给器的占空比生成命令以配置泵和配给器。In one aspect, the method includes determining, by a processor, a duty cycle of a doser based on an effective orifice area; and generating commands to configure a pump and a doser based on the determined duty cycle of the doser.
在一个方面,该方法包括通过处理器基于第一速度和第二速度确定配给器的有效孔面积,通过处理器基于有效孔面积确定配给器的占空比;以及通过处理器基于确定的配给器的占空比生成命令以配置泵和配给器。In one aspect, the method includes determining, by a processor, an effective orifice area of a doser based on a first speed and a second speed, determining, by the processor, a duty cycle of the doser based on the effective orifice area; and generating, by the processor, a command to configure a pump and the doser based on the determined duty cycle of the doser.
根据另一实施例,提供了一种用于后处理系统的方法,该后处理系统包括配置为将还原剂配给到第一分解室的第一配给器、配置为将还原剂配给到第二分解室的第二配给器、以及配置为将还原剂供应到第一配给器的泵,第一配给器联接在泵和第二配给器之间。该方法包括:通过处理器使第一配给器和第二配给器在空闲模式下操作,在空闲模式下,泵以稳定状态从还原剂罐向第一配给器供应还原剂,第一配给器和第二配给器不配给还原剂,并且由泵供应到第一配给器和第二配给器的还原剂再循环到还原剂罐;在泵、第一配给器和第二配给器在空闲模式下操作时,通过处理器确定实现预定目标压力所需的泵的第一速度;通过处理器使泵、第一配给器和第二配给器在第一配给模式下操作,在第一配给模式下,泵向第一配给器供应还原剂,第一配给器以稳定状态将还原剂配给到第一分解室中,并且第二配给器不配给还原剂;在泵、第一配给器和第二配给器在第一配给模式下操作时,通过处理器确定实现预定目标压力所需的泵的第二速度;通过处理器使泵、第一配给器和第二配给器在第二配给模式下操作,在第二配给模式下,泵向第一配给器供应还原剂,第二配给器以稳定状态将还原剂配给到第二分解室中,并且第一配给器不配给所述还原剂;在泵、第一配给器和第二配给器在第二配给模式下操作时,通过处理器确定实现预定目标压力所需的泵的第三速度;以及通过处理器基于第一速度、第二速度和第三速度生成命令以配置泵、第一配给器和第二配给器。According to another embodiment, a method for an aftertreatment system is provided, the aftertreatment system including a first dispenser configured to dispense a reductant to a first decomposition chamber, a second dispenser configured to dispense a reductant to a second decomposition chamber, and a pump configured to supply the reductant to the first dispenser, the first dispenser being connected between the pump and the second dispenser. The method includes: operating the first dispenser and the second dispenser in an idle mode by a processor, in which the pump supplies the reductant from the reductant tank to the first dispenser in a steady state, the first dispenser and the second dispenser do not dispense the reductant, and the reductant supplied to the first dispenser and the second dispenser by the pump is recycled to the reductant tank; determining a first speed of the pump required to achieve a predetermined target pressure by a processor when the pump, the first dispenser and the second dispenser operate in the idle mode; operating the pump, the first dispenser and the second dispenser in a first dispensing mode by a processor, in which the pump supplies the reductant to the first dispenser, the first dispenser dispenses the reductant into the first decomposition chamber in a steady state, and the second dispenser does not dispense the reductant; dispensing the reductant; determining, by the processor, a second speed of the pump required to achieve a predetermined target pressure when the pump, the first dispenser, and the second dispenser are operated in a first dispensing mode; operating, by the processor, the pump, the first dispenser, and the second dispenser in a second dispensing mode, in which the pump supplies the reductant to the first dispenser, the second dispenser dispenses the reductant into the second decomposition chamber in a steady state, and the first dispenser does not dispense the reductant; determining, by the processor, a third speed of the pump required to achieve a predetermined target pressure when the pump, the first dispenser, and the second dispenser are operated in the second dispensing mode; and generating, by the processor, a command to configure the pump, the first dispenser, and the second dispenser based on the first speed, the second speed, and the third speed.
在一个方面,第二配给器包括压力传感器,该压力传感器被配置成提供已经由偏移压力值调节的压力测量值。该方法包括通过处理器基于第一速度和第三速度确定偏移压力值;以及通过处理器根据确定的偏移压力值生成命令以配置泵、第一配给器和第二配给器。In one aspect, the second dispenser includes a pressure sensor configured to provide a pressure measurement value that has been adjusted by an offset pressure value. The method includes determining, by a processor, an offset pressure value based on a first speed and a third speed; and generating, by the processor, a command to configure the pump, the first dispenser, and the second dispenser according to the determined offset pressure value.
在一个方面,该方法包括通过处理器基于确定的偏移压力值确定第二配给器的第一有效孔面积,通过处理器基于确定的偏移压力值确定泵的排量;以及通过处理器基于泵的确定的排量、第一速度和第二速度来确定第一配给器的第二有效孔面积。In one aspect, the method includes determining, by a processor, a first effective orifice area of a second dispenser based on a determined offset pressure value, determining, by the processor, a displacement of a pump based on the determined offset pressure value; and determining, by the processor, a second effective orifice area of the first dispenser based on the determined displacement, a first speed, and a second speed of the pump.
在一个方面,该方法包括通过处理器基于确定的排量、确定的第一有效孔面积和确定的第二有效孔面积来更新后处理系统的泵流动模型;以及通过处理器基于更新的泵流动模型生成命令以配置泵、第一配给器和第二配给器。In one aspect, the method includes updating, by a processor, a pump flow model of the aftertreatment system based on the determined displacement, the determined first effective orifice area, and the determined second effective orifice area; and generating, by the processor, commands to configure the pump, the first doser, and the second doser based on the updated pump flow model.
在一个方面,该方法包括通过处理器基于第一有效孔面积和第二有效孔面积确定第一配给器的配给调节因子;以及通过处理器根据配给调节因子生成命令以配置第一配给器。In one aspect, the method includes determining, by a processor, a dosing adjustment factor for a first doser based on a first effective orifice area and a second effective orifice area; and generating, by the processor, a command to configure the first doser according to the dosing adjustment factor.
在一个方面,该方法包括通过处理器基于第一速度确定泵的排量;通过处理器基于泵的排量、第一速度和第二速度确定第一有效孔面积;通过处理器基于泵的排量、第一速度和第三速度确定第二有效孔面积;通过处理器基于第一有效孔面积确定第一配给器的第一配给调节因子;通过处理器基于第二有效孔面积确定第二配给器的第二配给调节因子;由通过处理器根据第一配给调节因子和第二配给调节因子生成命令以配置第一配给器和第二配给器。In one aspect, the method includes determining, by a processor, a displacement of a pump based on a first speed; determining, by a processor, a first effective orifice area based on the displacement of the pump, the first speed, and a second speed; determining, by a processor, a second effective orifice area based on the displacement of the pump, the first speed, and a third speed; determining, by a processor, a first dosing adjustment factor for a first dispenser based on the first effective orifice area; determining, by a processor, a second dosing adjustment factor for a second dispenser based on the second effective orifice area; and generating, by the processor, a command to configure the first dispenser and the second dispenser based on the first dosing adjustment factor and the second dosing adjustment factor.
附图简述BRIEF DESCRIPTION OF THE DRAWINGS
各种实施例的细节在附图和下面的描述中阐述。根据描述、附图和权利要求,本公开的其它特征、方面和优点将变得明显,在附图中:Details of various embodiments are set forth in the accompanying drawings and the following description. Other features, aspects, and advantages of the present disclosure will become apparent from the description, drawings, and claims, in which:
图1是具有配给器的示例后处理系统的示意框图;FIG1 is a schematic block diagram of an example aftertreatment system having a dispenser;
图2是示例后处理系统的示例框图;FIG2 is an example block diagram of an example post-processing system;
图3是示出了基于在不同模式下获得的不同泵速来操作后处理系统的示例过程的流程图;3 is a flow chart illustrating an example process for operating an aftertreatment system based on different pump speeds achieved in different modes;
图4是示出了基于在不同模式下获得的不同泵速来操作后处理系统的示例过程的流程图;4 is a flow chart illustrating an example process for operating an aftertreatment system based on different pump speeds achieved in different modes;
图5是具有两个配给器的示例后处理系统的示意框图;5 is a schematic block diagram of an example aftertreatment system having two dispensers;
图6是示例后处理系统的示例框图;FIG6 is an example block diagram of an example post-processing system;
图7是示出了基于在不同模式下获得的不同泵速来操作后处理系统的示例过程的流程图;以及7 is a flow chart illustrating an example process for operating an aftertreatment system based on different pump speeds achieved in different modes; and
图8是示出了基于在不同模式下获得的不同泵速来操作后处理系统的示例过程的流程图。8 is a flow chart illustrating an example process for operating an aftertreatment system based on different pump speeds achieved in different modes.
将认识到,附图中的一些或所有附图是用于说明目的的示意性图示。为了说明一个或更多个实施方式的目的而提供附图,明确地理解这些附图将不用于限制权利要求的范围或含义。It will be appreciated that some or all of the drawings are schematic illustrations for illustrative purposes. The drawings are provided for the purpose of illustrating one or more embodiments, with the explicit understanding that they will not be used to limit the scope or meaning of the claims.
详细描述A detailed description
I.概述I. Overview
以下是与方法、装置相关的各种概念和实施方式的更详细描述,以及用于实施对内燃发动机的后处理系统中的还原剂输送系统的校正。上面介绍和下面更详细讨论的各种概念可以用很多方式中的任一种实现,因为所描述的概念不限于任何特定的实现方式。主要为了说明性目的来提供特定的实施方式和应用的示例。The following is a more detailed description of various concepts and embodiments related to methods, apparatus, and methods for implementing corrections to a reductant delivery system in an aftertreatment system of an internal combustion engine. The various concepts introduced above and discussed in more detail below can be implemented in any of a number of ways, as the concepts described are not limited to any particular implementation. Examples of specific embodiments and applications are provided primarily for illustrative purposes.
本文公开了用于改进后处理系统的系统和方法,该后处理系统包括泵、配给器和控制器,以向分解室配给或提供还原剂。在一个方面,在以下不同模式下获得不同泵速:空闲模式和配给模式。在空闲模式下,泵以稳定状态将还原剂从还原剂罐供应到配给器,配给器不配给还原剂,并且由泵供应到配给器的还原剂再循环到还原剂罐。在配给模式下,泵向配给器供应还原剂,配给器以稳定状态将还原剂配给到分解室中。在一个方面,当泵和配给器在空闲模式下操作时,可以确定实现目标压力所需的泵的第一速度。此外,当泵和配给器在配给模式下操作时,可以确定实现目标压力所需的泵的第二速度。基于在不同模式下获得的第一速度和第二速度,可以生成命令以配置泵和配给器。Disclosed herein are systems and methods for improving an aftertreatment system, the aftertreatment system including a pump, a dispenser, and a controller to dispense or provide a reductant to a decomposition chamber. In one aspect, different pump speeds are obtained in the following different modes: an idle mode and a dispensing mode. In the idle mode, the pump supplies the reductant from the reductant tank to the dispenser in a stable state, the dispenser does not dispense the reductant, and the reductant supplied to the dispenser by the pump is recycled to the reductant tank. In the dispensing mode, the pump supplies the reductant to the dispenser, and the dispenser dispenses the reductant into the decomposition chamber in a stable state. In one aspect, when the pump and the dispenser are operated in the idle mode, a first speed of the pump required to achieve a target pressure can be determined. In addition, when the pump and the dispenser are operated in the dispensing mode, a second speed of the pump required to achieve the target pressure can be determined. Based on the first speed and the second speed obtained in different modes, a command can be generated to configure the pump and the dispenser.
在一个方面,基于配给器的压力传感器测量来控制后处理系统可以校正由于泵的变化引起的误差。例如,泵和配给器可配置为实现目标压力值。然后,可以获得根据这种配置操作的配给器的压力测量值。基于目标压力值和压力测量值之间的差异,可以确定配给器是配给过量还是配给不足。此外,泵和配给器可被配置为补偿配给过量或配给不足。虽然仅基于压力传感器测量来控制后处理系统可以校正由于泵到泵的变化而引起的误差,但是它可能不足以校正由于配给器的变化或由于安装而引起的变化而引起的误差。In one aspect, controlling the aftertreatment system based on pressure sensor measurements of the dispenser can correct errors due to pump variations. For example, the pump and dispenser can be configured to achieve a target pressure value. Then, a pressure measurement of the dispenser operating according to this configuration can be obtained. Based on the difference between the target pressure value and the pressure measurement, it can be determined whether the dispenser is overdosing or underdosing. In addition, the pump and dispenser can be configured to compensate for overdosing or underdosing. Although controlling the aftertreatment system based solely on pressure sensor measurements can correct errors due to pump-to-pump variations, it may not be sufficient to correct errors due to dispenser variations or variations due to installation.
当配给器的压力传感器被调整或调节时,仅基于压力传感器测量来控制后处理系统可能变得更加困难。在某些情况下,压力传感器被调整或调节以校正压力传感器中的误差或变化。通常,压力传感器输出的压力测量值由配给器的制造商在内部调节或调整,并且压力传感器的调节量可能是未知的。在不知道调节量的情况下,估计配给器的其他参数(例如,有效喷射器孔面积或排量)可能是困难的,并且导致控制后处理系统的不准确。When a pressure sensor of a dispenser is adjusted or regulated, it may become more difficult to control the aftertreatment system based solely on the pressure sensor measurement. In some cases, the pressure sensor is adjusted or regulated to correct for errors or changes in the pressure sensor. Typically, the pressure measurement output by the pressure sensor is adjusted or regulated internally by the manufacturer of the dispenser, and the amount of the pressure sensor adjustment may be unknown. Without knowing the amount of the adjustment, estimating other parameters of the dispenser (e.g., effective injector orifice area or displacement) may be difficult and result in inaccuracies in controlling the aftertreatment system.
在一个方面,所公开的系统和方法可以获得在不同模式下的泵速,并基于在不同模式下获得的泵速来确定偏移压力值、有效喷射器孔面积、排量或它们的任意组合。基于确定的值,控制器可以以提高的精度控制后处理系统。In one aspect, the disclosed systems and methods can obtain pump speeds in different modes and determine offset pressure values, effective injector orifice area, displacement, or any combination thereof based on the pump speeds obtained in the different modes. Based on the determined values, the controller can control the aftertreatment system with improved accuracy.
II.包括单个配给器的后处理系统概述II. Overview of the Aftertreatment System Including a Single Dispenser
图1描绘了用于排气系统190的具有示例性还原剂输送系统110的后处理系统100。后处理系统100包括颗粒过滤器,例如柴油颗粒过滤器(DPF)102、还原剂输送系统110、分解室104(例如反应器、反应器管等)、SCR催化剂106和传感器150。1 depicts an aftertreatment system 100 having an exemplary reductant delivery system 110 for an exhaust system 190. The aftertreatment system 100 includes a particulate filter, such as a diesel particulate filter (DPF) 102, a reductant delivery system 110, a decomposition chamber 104 (e.g., a reactor, a reactor tube, etc.), an SCR catalyst 106, and a sensor 150.
DPF 102配置成从在排气系统190中流动的排气移除颗粒物质,例如烟灰。DPF 102包括入口和出口,排气被接纳在入口中,在使颗粒物质大体上从排气被过滤和/或将颗粒物质转换成二氧化碳之后排气在出口处离开。在一些实施方式中,DPF 102可以省略。The DPF 102 is configured to remove particulate matter, such as soot, from the exhaust gas flowing in the exhaust system 190. The DPF 102 includes an inlet in which the exhaust gas is received and an outlet at which the exhaust gas exits after having the particulate matter substantially filtered from the exhaust gas and/or converting the particulate matter into carbon dioxide. In some embodiments, the DPF 102 may be omitted.
分解室104配置成将诸如尿素或柴油机排气处理液(DEF)的还原剂转换成氨。分解室104包括还原剂输送系统110,还原剂输送系统110具有配给器112,该配给器112配置成将还原剂配给到分解室104中(例如,经由喷射器,诸如下面所描述的喷射器)。在一些实施方式中,还原剂在SCR催化器106的上游被喷射。还原剂液滴然后经历蒸发、热解和水解的过程以在排气系统190内形成气态氨。分解室104包括入口和出口,入口与DPF 102流体连通以接纳包含NOx排放物的排气,出口用于使排气、NOx排放物、氨和/或还原剂流到SCR催化器106。The decomposition chamber 104 is configured to convert a reductant such as urea or diesel exhaust fluid (DEF) into ammonia. The decomposition chamber 104 includes a reductant delivery system 110 having a dispenser 112 configured to dispense the reductant into the decomposition chamber 104 (e.g., via an injector, such as the injector described below). In some embodiments, the reductant is injected upstream of the SCR catalyst 106. The reductant droplets then undergo a process of evaporation, pyrolysis, and hydrolysis to form gaseous ammonia within the exhaust system 190. The decomposition chamber 104 includes an inlet and an outlet, the inlet being fluidly connected to the DPF 102 to receive exhaust gas containing NO x emissions, and the outlet being used to flow the exhaust gas, NO x emissions, ammonia, and/or reductant to the SCR catalyst 106.
分解室104包括或联接到配给器112,使得配给器112可以将还原剂配给到在排气系统190中流动的排气中。配给器112可以包括隔离件114,隔离件114置于配给器112的一部分和配给器112安装在其上的分解室104的一部分之间。配给器112流体联接到还原剂罐116。还原剂罐116可以包括多个还原剂罐116。在一些实施方式中,泵118可用于对来自还原剂罐116的还原剂加压,以输送到配给器112。在一些实施例中,泵118是压力控制的(例如,控制以获得目标压力等)。还原剂罐116可以是例如包含的柴油排气流体罐。The decomposition chamber 104 includes or is coupled to a dispenser 112 such that the dispenser 112 can dispense reductant into the exhaust gas flowing in the exhaust system 190. The dispenser 112 may include a spacer 114 disposed between a portion of the dispenser 112 and a portion of the decomposition chamber 104 on which the dispenser 112 is mounted. The dispenser 112 is fluidly coupled to a reductant tank 116. The reductant tank 116 may include a plurality of reductant tanks 116. In some embodiments, a pump 118 may be used to pressurize the reductant from the reductant tank 116 for delivery to the dispenser 112. In some embodiments, the pump 118 is pressure controlled (e.g., controlled to obtain a target pressure, etc.). The reductant tank 116 may be, for example, a reductant tank 116 comprising a plurality of reductant tanks 116. of diesel exhaust fluid tank.
配给器112和泵118还电气地或通信地联接到控制器120。控制器120配置成控制配给器112以将还原剂配给到分解室104中。控制器120也可配置成控制泵118。控制器120可以包括微处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)等或其组合。控制器120可以包括存储器,该存储器可以包括但不限于能够为处理器、ASIC、FPGA等提供程序指令的电子的、光的、磁的或任何其它的储存设备或传输设备。存储器可以包括控制器120可以从其读取指令的存储器芯片、电可擦可编程只读存储器(EEPROM)、可擦可编程只读存储器(EPROM)、快闪存储器或任何其它合适的存储器。指令可以包括来自任何合适的编程语言的代码。The dispenser 112 and the pump 118 are also electrically or communicatively connected to the controller 120. The controller 120 is configured to control the dispenser 112 to dispense the reducing agent into the decomposition chamber 104. The controller 120 may also be configured to control the pump 118. The controller 120 may include a microprocessor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), etc. or a combination thereof. The controller 120 may include a memory, which may include but is not limited to an electronic, optical, magnetic or any other storage device or transmission device capable of providing program instructions to the processor, ASIC, FPGA, etc. The memory may include a memory chip, an electrically erasable programmable read-only memory (EEPROM), an erasable programmable read-only memory (EPROM), a flash memory or any other suitable memory from which the controller 120 can read instructions. The instructions may include code from any suitable programming language.
SCR催化器106配置成通过加速氨和排气的NOx之间的NOx还原过程来帮助将NOx排放物还原成双原子氮、水和/或二氧化碳。选择性催化还原(SCR)催化器106包括入口和出口,该入口与分解室104流体连通,排气和还原剂从该入口被接纳,该出口与排气系统190的端部流体连通。The SCR catalyst 106 is configured to help reduce NOx emissions to diatomic nitrogen, water, and/or carbon dioxide by accelerating the NOx reduction process between ammonia and exhaust NOx . The selective catalytic reduction (SCR) catalyst 106 includes an inlet and an outlet, the inlet being in fluid communication with the decomposition chamber 104, the exhaust gas and the reductant being received from the inlet, and the outlet being in fluid communication with an end of the exhaust system 190.
排气系统190还可以包括氧化催化器(例如柴油机氧化催化器(DOC)),该氧化催化器与排气系统190流体流通(例如,在SCR催化器106的下游或在DPF 102的上游),以氧化排气中的碳氢化合物和一氧化碳。The exhaust system 190 may further include an oxidation catalyst, such as a diesel oxidation catalyst (DOC), in fluid communication with the exhaust system 190 (eg, downstream of the SCR catalyst 106 or upstream of the DPF 102 ) to oxidize hydrocarbons and carbon monoxide in the exhaust.
在一些实施方式中,DPF 102可以位于分解室104的下游。例如,DPF 102和SCR催化器106可组合成单个单元。在一些实施方式中,配给器112可以替代地定位在涡轮增压器的下游或涡轮增压器的上游。In some embodiments, the DPF 102 may be located downstream of the decomposition chamber 104. For example, the DPF 102 and the SCR catalyst 106 may be combined into a single unit. In some embodiments, the doser 112 may alternatively be located downstream of the turbocharger or upstream of the turbocharger.
传感器150可联接到排气系统190以检测流经排气系统190的排气的状况。在一些实施方式中,传感器150可具有布置在排气系统190内的一部分;例如传感器150的尖端可延伸到排气系统190的一部分内。在其它实施方式中,传感器150可接纳穿过另一管道(例如从排气系统190延伸的一个或更多个样品管)的排气。虽然传感器150被描绘为定位在SCR催化器106的下游,但是应理解,传感器150可定位在排气系统190的任何其它位置处,包括在DPF102的上游、在DPF 102内、在DPF 102和分解室104之间、在分解室104内、在分解室104和SCR催化器106之间、在SCR催化器106内或在SCR催化器106的下游。此外,两个或更多个传感器150可用于检测排气的状况,例如两个、三个、四个、五个或六个传感器150,其中每个传感器150位于排气系统190的前述位置中的一个位置处。The sensor 150 may be coupled to the exhaust system 190 to detect a condition of the exhaust gas flowing through the exhaust system 190. In some embodiments, the sensor 150 may have a portion disposed within the exhaust system 190; for example, the tip of the sensor 150 may extend into a portion of the exhaust system 190. In other embodiments, the sensor 150 may receive exhaust gas passing through another conduit (e.g., one or more sample tubes extending from the exhaust system 190). Although the sensor 150 is depicted as being positioned downstream of the SCR catalyst 106, it should be understood that the sensor 150 may be positioned at any other location of the exhaust system 190, including upstream of the DPF 102, within the DPF 102, between the DPF 102 and the decomposition chamber 104, within the decomposition chamber 104, between the decomposition chamber 104 and the SCR catalyst 106, within the SCR catalyst 106, or downstream of the SCR catalyst 106. Additionally, two or more sensors 150 may be used to detect conditions of the exhaust, such as two, three, four, five, or six sensors 150 , where each sensor 150 is located at one of the aforementioned locations in the exhaust system 190 .
图2示出了用于还原NOx排放物的后处理系统200。后处理系统200包括还原剂罐218、泵220、配给器260和控制器233。在该实施例中,还原剂罐218对应于还原剂罐116,泵220对应于泵118,配给器260对应于配给器112,并且控制器233对应于控制器120。这些部件可以一起工作,以配给或提供还原剂,并生成物质(例如氨)来还原NOx排放物。在一些实施例中,后处理系统200包括比图2中所示更多、更少或不同的部件。例如,后处理系统200可以包括联接到配给器260的分解室104。FIG. 2 shows a post-treatment system 200 for reducing NO x emissions. The post-treatment system 200 includes a reductant tank 218, a pump 220, a dispenser 260, and a controller 233. In this embodiment, the reductant tank 218 corresponds to the reductant tank 116, the pump 220 corresponds to the pump 118, the dispenser 260 corresponds to the dispenser 112, and the controller 233 corresponds to the controller 120. These components can work together to dispense or provide a reductant and generate a substance (e.g., ammonia) to reduce NO x emissions. In some embodiments, the post-treatment system 200 includes more, fewer, or different components than those shown in FIG. 2. For example, the post-treatment system 200 can include a decomposition chamber 104 coupled to the dispenser 260.
在一种配置中,还原剂罐218通过管道222流体联接到泵220,并且泵220通过管道224流体联接到配给器260。在一种配置中,配给器260通过管道228流体联接到还原剂罐218,并且流体联接到分解室104。在一种配置中,控制器233通过有线介质(例如,导电迹线或导线)或无线介质(例如,无线链路,例如Wi-Fi、蜂窝、蓝牙等)通信联接到泵220和配给器260。在这种配置中,控制器233可以生成电信号或命令来操作泵220、配给器260或操作泵220和配给器260两者,以将还原剂配给到分解室104中。In one configuration, the reductant tank 218 is fluidly coupled to the pump 220 via a conduit 222, and the pump 220 is fluidly coupled to the dispenser 260 via a conduit 224. In one configuration, the dispenser 260 is fluidly coupled to the reductant tank 218 via a conduit 228, and is fluidly coupled to the decomposition chamber 104. In one configuration, the controller 233 is communicatively coupled to the pump 220 and the dispenser 260 via a wired medium (e.g., conductive traces or wires) or a wireless medium (e.g., a wireless link, such as Wi-Fi, cellular, Bluetooth, etc.). In this configuration, the controller 233 can generate electrical signals or commands to operate the pump 220, the dispenser 260, or both the pump 220 and the dispenser 260 to dispense the reductant into the decomposition chamber 104.
在一些实施例中,还原剂罐218是储存还原剂的部件。还原剂可以是例如尿素、柴油排气流体(DEF)、尿素水溶液(UWS)、水溶性尿素溶液(aqueous ureasolution)(例如,AUS32等)和其他类似的流体。还原剂罐218可以包括多个还原剂罐218。在一种配置中,还原剂罐218包括通过管道228流体联接到配给器260的第一出口的入口,以及通过管道222流体联接到泵220的入口的出口。在这种配置中,还原剂罐218可以向泵220提供还原剂,并从配给器260接收再循环的还原剂。In some embodiments, the reductant tank 218 is a component for storing a reductant. The reductant may be, for example, urea, diesel exhaust fluid (DEF), Urea aqueous solution (UWS), aqueous urea solution (e.g., AUS32, etc.), and other similar fluids. The reductant tank 218 may include a plurality of reductant tanks 218. In one configuration, the reductant tank 218 includes an inlet fluidly coupled to a first outlet of a dispenser 260 via a conduit 228, and an outlet fluidly coupled to an inlet of a pump 220 via a conduit 222. In this configuration, the reductant tank 218 may provide the pump 220 with reductant and receive recirculated reductant from the dispenser 260.
泵220是对来自还原剂罐218的还原剂加压以输送到配给器260的部件。在一些实施例中,泵220是压力控制的(例如,控制以获得目标压力等)。在一种配置中,泵220包括流体联接到还原剂罐218的出口的入口和流体联接到配给器260的入口的出口。此外,泵220通信地联接到控制器233以接收指示泵速或还原剂的排量的电信号或命令。在该配置中,泵220可以根据由电信号或命令指示的泵速或排量,将还原剂从还原剂罐218提供给配给器260。The pump 220 is a component that pressurizes the reductant from the reductant tank 218 to be delivered to the dispenser 260. In some embodiments, the pump 220 is pressure controlled (e.g., controlled to obtain a target pressure, etc.). In one configuration, the pump 220 includes an inlet fluidly coupled to the outlet of the reductant tank 218 and an outlet fluidly coupled to the inlet of the dispenser 260. In addition, the pump 220 is communicatively coupled to the controller 233 to receive an electrical signal or command indicating a pump speed or a displacement of the reductant. In this configuration, the pump 220 can provide the reductant from the reductant tank 218 to the dispenser 260 according to the pump speed or displacement indicated by the electrical signal or command.
配给器260是将还原剂从泵220提供或配给到分解室104的部件。配给器260可以直接安装在分解室104上。在一种配置中,配给器260包括流体联接到泵220的出口的入口、流体联接到还原剂罐218的入口的第一出口、直接联接到分解室104的入口的第二出口以及连接在入口和出口之间的内部管道。配给器260包括设置在配给器260的第二出口处的喷射器214,来自入口的一些还原剂可以通过该喷射器214被配给或提供给分解室104。配给器260还包括配给器260的第一出口的返回孔212,未提供给分解室208的剩余还原剂可以通过该返回孔212再循环回还原剂罐218。配给器260可以包括压力传感器268,该压力传感器268检测配给器260内的压力(例如,内部管道内的压力)并生成对应于压力测量值的电信号。配给器260还可以包括接口电路262,该接口电路262通信地联接到控制器233和内部设备,诸如压力传感器268和喷射器214。在该配置中,接口电路262可以从控制器233接收电信号或命令,并根据电信号或命令配置喷射器214的打开或关闭。通过调节喷射器214的打开量或打开和关闭的占空比,可以向分解室104提供所需量的还原剂。此外,接口电路262可以从压力传感器268接收与压力测量值相对应的电信号,并根据电信号生成指示压力测量值的传感器测量数据。接口电路262可以将传感器测量数据传输到控制器233。The dispenser 260 is a component that provides or dispenses the reductant from the pump 220 to the decomposition chamber 104. The dispenser 260 can be mounted directly on the decomposition chamber 104. In one configuration, the dispenser 260 includes an inlet fluidly coupled to the outlet of the pump 220, a first outlet fluidly coupled to the inlet of the reductant tank 218, a second outlet directly coupled to the inlet of the decomposition chamber 104, and an internal conduit connected between the inlet and the outlet. The dispenser 260 includes an injector 214 disposed at the second outlet of the dispenser 260, through which some of the reductant from the inlet can be dispensed or provided to the decomposition chamber 104. The dispenser 260 also includes a return hole 212 at the first outlet of the dispenser 260, through which the remaining reductant not provided to the decomposition chamber 208 can be recirculated back to the reductant tank 218. The dispenser 260 may include a pressure sensor 268 that detects the pressure within the dispenser 260 (e.g., the pressure within the internal conduit) and generates an electrical signal corresponding to the pressure measurement value. The dispenser 260 may also include an interface circuit 262 that is communicatively coupled to the controller 233 and internal devices, such as the pressure sensor 268 and the injector 214. In this configuration, the interface circuit 262 may receive an electrical signal or command from the controller 233 and configure the opening or closing of the injector 214 according to the electrical signal or command. By adjusting the opening amount or the duty cycle of the injector 214, the desired amount of reducing agent may be provided to the decomposition chamber 104. In addition, the interface circuit 262 may receive an electrical signal corresponding to the pressure measurement value from the pressure sensor 268 and generate sensor measurement data indicating the pressure measurement value according to the electrical signal. The interface circuit 262 may transmit the sensor measurement data to the controller 233.
控制器233是生成电信号或命令以操作泵220和配给器260以将还原剂配给到分解室104中的部件。在一些实施例中,控制器233包括处理器和存储器。处理器可以实施为微处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其任意组合。存储器可以被实施为存储器芯片、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、闪存或存储和提供用于执行本文描述的各种功能的指令的任何其他合适的存储器。指令可以包括来自任何合适的编程语言的代码。控制器233可以与内燃发动机的发动机控制单元(ECU)通信,或者可以被实现为内燃发动机的发动机控制单元(ECU)的一部分。在一种配置中,控制器233通信地联接到泵220和配给器260。在该配置中,控制器233可以从配给器260接收指示检测到的压力测量值的传感器测量数据,并根据传感器测量数据生成信号或命令来配置泵220和配给器260。Controller 233 is a component that generates electrical signals or commands to operate pump 220 and dispenser 260 to dispense reductant into decomposition chamber 104. In some embodiments, controller 233 includes a processor and a memory. The processor can be implemented as a microprocessor, an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or any combination thereof. The memory can be implemented as a memory chip, an electrically erasable programmable read-only memory (EEPROM), an erasable programmable read-only memory (EPROM), a flash memory, or any other suitable memory that stores and provides instructions for performing various functions described herein. The instructions may include code from any suitable programming language. Controller 233 can communicate with an engine control unit (ECU) of an internal combustion engine, or can be implemented as a part of an engine control unit (ECU) of an internal combustion engine. In one configuration, controller 233 is communicatively coupled to pump 220 and dispenser 260. In this configuration, controller 233 can receive sensor measurement data indicating a detected pressure measurement value from dispenser 260, and generate signals or commands to configure pump 220 and dispenser 260 according to the sensor measurement data.
在一个方面,控制器233根据泵流动模型生成用于控制泵220和配给器260的命令。泵流动模型可以表示如下:In one aspect, controller 233 generates commands for controlling pump 220 and dispenser 260 based on a pump flow model. The pump flow model may be represented as follows:
其中,Aret是返回孔212的有效孔面积,Ainj是喷射器214的有效孔面积,δ是喷射器占空比,ρfluid是流体密度,γ是比重,P是压力测量值,Ω是泵速,并且D是通过泵220的还原剂的排量。控制器233可以生成电信号或命令来配置喷射器214的打开或喷射器214的打开和关闭的占空比,使得喷射器214可以具有有效孔面积Ainj或用有效孔面积Ainj操作。此外,控制器233可以生成电信号或命令,以配置泵220以泵速Ω将还原剂配给到配给器260中。在一个方面,控制器233可以接收目标压力Ptarget,并且基于泵流动模型或等式(1)自动设定、调节或确定返回孔212的有效孔面积Aret,喷射器214的有效孔面积Ainj和泵速Ω来实现目标压力Ptarget。然后,控制器233可以生成对应于返回孔212的有效孔面积Aret、喷射器214的有效孔面积Ainj和泵速Ω的电信号或命令。控制器233可以将电信号或命令发送到泵220和配给器260,使得泵220和配给器260可以如电信号或命令所指示的那样操作。Wherein, A ret is the effective orifice area of the return orifice 212, A inj is the effective orifice area of the injector 214, δ is the injector duty cycle, ρ fluid is the fluid density, γ is the specific gravity, P is the pressure measurement, Ω is the pump speed, and D is the displacement of the reductant through the pump 220. The controller 233 can generate an electrical signal or command to configure the opening of the injector 214 or the duty cycle of the opening and closing of the injector 214, so that the injector 214 can have an effective orifice area A inj or operate with an effective orifice area A inj . In addition, the controller 233 can generate an electrical signal or command to configure the pump 220 to dispense the reductant into the dispenser 260 at a pump speed Ω. In one aspect, the controller 233 can receive a target pressure P target and automatically set, adjust or determine the effective orifice area A ret of the return orifice 212, the effective orifice area A inj of the injector 214 and the pump speed Ω based on the pump flow model or equation (1) to achieve the target pressure P target . Then, the controller 233 may generate an electrical signal or command corresponding to the effective orifice area A ret of the return orifice 212, the effective orifice area A inj of the injector 214, and the pump speed Ω. The controller 233 may send the electrical signal or command to the pump 220 and the dispenser 260 so that the pump 220 and the dispenser 260 may operate as instructed by the electrical signal or command.
一方面,控制后处理系统200在目标压力下Ptarget操作可以校正由于泵220的变化引起的误差。例如,控制器233可以根据泵流动模型或等式(1)来确定返回孔212的有效孔面积Aret、喷射器的有效孔面积Ainj和泵速Ω来实现目标压力Ptarget。控制器233可以根据确定的返回孔212的有效孔面积Aret、喷射器214的有效孔面积Ainj和泵速Ω配置泵220和配给器260来操作。控制器233可以从压力传感器268获得压力测量值,同时泵220和配给器260根据确定的值操作。然后,控制器233可以比较目标压力Ptarget和压力测量值之间的差异,以及根据差异确定配给器260是配给过量还是配给不足。基于该差异,控制器233可配置泵220、配给器260或两者以补偿配给过量或配给不足。虽然仅基于压力传感器测量来控制后处理系统200可以校正由于泵到泵的变化引起的误差,但是它可能不足以校正由于配给器260的变化或由于安装引起的变化引起的误差。In one aspect, controlling the aftertreatment system 200 to operate at a target pressure P target can correct errors caused by variations in the pump 220. For example, the controller 233 can determine the effective orifice area A ret of the return orifice 212, the effective orifice area A inj of the injector, and the pump speed Ω to achieve the target pressure P target according to the pump flow model or equation (1). The controller 233 can configure the pump 220 and the dispenser 260 to operate according to the determined effective orifice area A ret of the return orifice 212, the effective orifice area A inj of the injector 214, and the pump speed Ω. The controller 233 can obtain a pressure measurement value from the pressure sensor 268 while the pump 220 and the dispenser 260 operate according to the determined value. The controller 233 can then compare the difference between the target pressure P target and the pressure measurement value, and determine whether the dispenser 260 is overdosing or underdosing according to the difference. Based on the difference, the controller 233 can configure the pump 220, the dispenser 260, or both to compensate for the overdosing or underdosing. While controlling the aftertreatment system 200 based solely on pressure sensor measurements may correct for errors due to pump-to-pump variations, it may not be sufficient to correct for errors due to variations in the doser 260 or due to installation-induced variations.
当压力传感器268被调整或调节时,仅基于压力传感器测量来控制后处理系统200可能变得更加困难。在一些情况下,压力传感器268被调整或调节以校正压力传感器268中的误差或变化。例如,由压力传感器268输出的压力测量值可以通过对应于压力传感器268中的误差或变化的偏移压力值ΔP来调节。用调节后的压力传感器操作配给器260可有助于提高配给精度,但偏移压力值ΔP可能导致对喷射器214的有效孔面积Ainj的估计不准确。通常,压力测量值由配给器260的制造商在内部调节或调整,并且偏移压力值ΔP可能是未知的。在不知道偏移压力值ΔP的情况下,确定喷射器214的有效孔面积Ainj可能是困难的,并且对有效孔面积的不准确估计Ainj可能导致后处理系统200的控制不准确。When the pressure sensor 268 is adjusted or regulated, it may become more difficult to control the aftertreatment system 200 based solely on the pressure sensor measurements. In some cases, the pressure sensor 268 is adjusted or regulated to correct for errors or variations in the pressure sensor 268. For example, the pressure measurement output by the pressure sensor 268 may be adjusted by an offset pressure value ΔP corresponding to the error or variation in the pressure sensor 268. Operating the doser 260 with the regulated pressure sensor may help improve dosing accuracy, but the offset pressure value ΔP may result in an inaccurate estimate of the effective orifice area A inj of the injector 214. Typically, the pressure measurement is adjusted or regulated internally by the manufacturer of the doser 260, and the offset pressure value ΔP may be unknown. Without knowing the offset pressure value ΔP, it may be difficult to determine the effective orifice area A inj of the injector 214, and an inaccurate estimate of the effective orifice area A inj may result in inaccurate control of the aftertreatment system 200.
在一些实施例中,控制器233获得泵220在不同模式下操作的两个泵速,并基于这两个泵速控制泵220和配给器260。在一个方面,控制器133获得在以下不同模式下的不同泵速:空闲模式和配给模式。在空闲模式下,泵220以稳定状态将还原剂从还原剂罐218供应到配给器260,配给器260不配给还原剂,并且由泵220供应到配给器260的还原剂再循环到还原剂罐218。在配给模式下,泵220向配给器260供应还原剂,配给器160以稳定状态将还原剂配给到分解室104中。在一个方面,当泵220和配给器260在空闲模式下操作时,可以确定实现目标压力Ptarget所需的泵220的第一速度Ω1。此外,当泵220和配给器260在配给模式下操作时,可以确定实现目标压力Ptarget所需的泵220的第二速度Ptarget。基于在不同模式下获得的第一速度Ω1和第二个速度Ω2,可以获得用于配置泵220和配给器260的偏移压力值ΔP,喷射器214的有效孔面积Ainj,排量D或它们的任意组合。基于确定的值,控制器233可以以提高的精度控制后处理系统200。In some embodiments, the controller 233 obtains two pump speeds of the pump 220 operating in different modes, and controls the pump 220 and the dispenser 260 based on the two pump speeds. In one aspect, the controller 133 obtains different pump speeds in the following different modes: an idle mode and a dosing mode. In the idle mode, the pump 220 supplies the reductant from the reductant tank 218 to the dispenser 260 in a steady state, the dispenser 260 does not dispense the reductant, and the reductant supplied to the dispenser 260 by the pump 220 is recycled to the reductant tank 218. In the dosing mode, the pump 220 supplies the reductant to the dispenser 260, and the dispenser 160 dispenses the reductant into the decomposition chamber 104 in a steady state. In one aspect, when the pump 220 and the dispenser 260 operate in the idle mode, a first speed Ω 1 of the pump 220 required to achieve the target pressure P target can be determined. In addition, when the pump 220 and the dispenser 260 operate in the dosing mode, a second speed P target of the pump 220 required to achieve the target pressure P target can be determined. Based on the first speed Ω1 and the second speed Ω2 obtained in different modes, the offset pressure value ΔP for configuring the pump 220 and the doser 260, the effective orifice area A inj of the injector 214, the displacement D, or any combination thereof can be obtained. Based on the determined values, the controller 233 can control the aftertreatment system 200 with increased accuracy.
III.包括非调整配给器的后处理系统III. Aftertreatment Systems Including Non-Regulating Dispensers
在一些实施例中,控制器233可获得泵速Ω1、Ω2,并根据泵速Ω1、Ω2确定喷射器214的有效孔面积Ainj和排量D。此外,控制器233可以根据喷射器214的有效孔面积Ainj确定调节后的喷射器占空比δadj以调节喷射器214的开关占空比。In some embodiments, the controller 233 may obtain the pump speeds Ω 1 , Ω 2 and determine the effective orifice area A inj and the displacement D of the injector 214 according to the pump speeds Ω 1 , Ω 2. In addition, the controller 233 may determine the adjusted injector duty cycle δ adj according to the effective orifice area A inj of the injector 214 to adjust the on/off duty cycle of the injector 214.
在一个方面,控制器233可以将后处理系统200配置为在空闲模式下操作。在空闲模式下,泵220以稳定状态将还原剂从还原剂罐218供应到配给器260,配给器260不配给还原剂,并且由泵220供应到配给器260的还原剂再循环到还原剂罐218。在空闲模式下,喷射器214的有效孔面积Ainj可以为零,并且泵流动模型或者等式(1)可以表示如下:In one aspect, the controller 233 can configure the aftertreatment system 200 to operate in an idle mode. In the idle mode, the pump 220 supplies the reductant from the reductant tank 218 to the dispenser 260 in a steady state, the dispenser 260 does not dispense the reductant, and the reductant supplied to the dispenser 260 by the pump 220 is recirculated to the reductant tank 218. In the idle mode, the effective orifice area A inj of the injector 214 can be zero, and the pump flow model or equation (1) can be expressed as follows:
其中,Ω1是在空闲模式下实现目标压力Ptarget所需的泵速,并且Aret_nom是返回孔212的标称返回孔面积。因此,控制器233可以确定如下的排量D。Wherein, Ω 1 is the pump speed required to achieve the target pressure P target in the idle mode, and A ret_nom is the nominal return orifice area of the return orifice 212. Therefore, the controller 233 may determine the displacement D as follows.
在一个方面,控制器233可以将后处理系统200配置为在配给模式下操作。在配给模式下,泵220向配给器260供应还原剂,配给器260以稳定状态将还原剂配给到分解室104中。在配给模式下,泵流动模型或者等式(1)可以表示如下:In one aspect, the controller 233 can configure the aftertreatment system 200 to operate in a dosing mode. In the dosing mode, the pump 220 supplies the reductant to the doser 260, and the doser 260 doses the reductant into the decomposition chamber 104 at a steady state. In the dosing mode, the pump flow model or equation (1) can be expressed as follows:
其中,Ω2是在配给模式下实现目标压力Ptarget所需的泵速。此外,控制器233可以基于排量D确定喷射器214的有效孔面积Ainj,如下所示。Wherein, Ω 2 is the pump speed required to achieve the target pressure P target in the dosing mode. In addition, the controller 233 can determine the effective orifice area A inj of the injector 214 based on the displacement D as shown below.
此外,控制器233可以确定调节后的喷射器占空比δadj以基于喷射器214的有效孔面积Ainj调节喷射器214的开关占空比,如下所示:Additionally, the controller 233 may determine an adjusted injector duty cycle δadj to adjust the on-off duty cycle of the injector 214 based on the effective orifice area Ainj of the injector 214 as follows:
其中Ainj_nom是喷射器214的标称孔面积。控制器233可以根据调节后的喷射器占空比δadj来调节喷射器214的开/关持续时间,使得尽管配给器260的变化或由于安装过程的变化,也可以提高配给器260的精度。Where A inj_nom is the nominal orifice area of the injector 214. The controller 233 may adjust the on/off duration of the injector 214 according to the adjusted injector duty cycle δ adj so that the accuracy of the doser 260 may be improved despite variations in the doser 260 or due to variations in the installation process.
IV.包括调整配给器的后处理系统IV. Post-processing system including adjustment of dispenser
在一些实施例中,控制器233可获得泵速Ω1、Ω2,并根据泵速Ω1、Ω2确定偏移压力值ΔP,喷射器214的有效孔面积Ainj和排量D。此外,控制器233可以根据喷射器214的有效孔面积Ainj确定调节后的喷射器占空比δadj以调节喷射器214的开关占空比。In some embodiments, the controller 233 may obtain the pump speeds Ω 1 , Ω 2 , and determine the offset pressure value ΔP, the effective orifice area A inj of the injector 214 , and the displacement D according to the pump speeds Ω 1 , Ω 2 . In addition, the controller 233 may determine the adjusted injector duty cycle δadj according to the effective orifice area A inj of the injector 214 to adjust the switching duty cycle of the injector 214 .
在一个方面,控制器233可以将后处理系统200配置为在空闲模式下操作。在空闲模式下,泵220以稳定状态将还原剂从还原剂罐218供应到配给器260,配给器260不配给还原剂,并且由泵220供应到配给器260的还原剂再循环到还原剂罐218。在空闲模式下,喷射器214的有效孔面积Ainj可以为零,并且泵流动模型或者等式(1)可以表示如下。In one aspect, the controller 233 can configure the aftertreatment system 200 to operate in an idle mode. In the idle mode, the pump 220 supplies the reductant from the reductant tank 218 to the dispenser 260 in a steady state, the dispenser 260 does not dispense the reductant, and the reductant supplied to the dispenser 260 by the pump 220 is recirculated to the reductant tank 218. In the idle mode, the effective orifice area A inj of the injector 214 can be zero, and the pump flow model or equation (1) can be expressed as follows.
在一个方面,控制器233可以将后处理系统200配置为在配给模式下操作。在配给模式下,泵220向配给器260供应还原剂,配给器160以稳定状态将还原剂配给到分解室104中。In one aspect, the controller 233 can configure the aftertreatment system 200 to operate in a dosing mode. In the dosing mode, the pump 220 supplies the reductant to the doser 260, which doses the reductant into the decomposition chamber 104 at a steady state.
在配给模式下,泵流动模型或者等式(1)可以表示如下。In the dosing mode, the pump flow model or equation (1) can be expressed as follows.
基于等式(7)和等式(8)之间的差异,控制器233可以确定如下的偏移压力值ΔP。Based on the difference between equation (7) and equation (8), the controller 233 may determine the offset pressure value ΔP as follows.
此外,控制器233可以基于偏移压力值ΔP确定如下的喷射器214的有效孔面积Ainj。Furthermore, the controller 233 may determine the effective orifice area A inj of the injector 214 as follows based on the offset pressure value ΔP.
此外,控制器233可以基于偏移压力值ΔP确定如下的位移量D。Furthermore, the controller 233 may determine the displacement amount D as follows based on the offset pressure value ΔP.
在一方面,偏移压力值ΔP、喷射器214的有效孔面积Ainj以及排量D允许控制器233以提高的精度控制后处理系统200,而不管偏移压力值ΔP如何。In one aspect, the offset pressure value ΔP, the effective orifice area A inj of the injector 214 , and the displacement D allow the controller 233 to control the aftertreatment system 200 with increased accuracy regardless of the offset pressure value ΔP.
V.还原剂输送系统的示例操作V. Example Operation of Reductant Delivery System
图3是示出基于不同模式下获得的不同泵速Ω1、Ω2操作后处理系统100或200的示例过程300的流程图。在一些实施例中,过程300由控制器233执行。在一些实施例中,过程300由其他实体(例如,另一个控制设备)执行。在一些实施例中,过程300包括比图3中所示的更多、更少或不同的步骤。例如,泵速Ω1、Ω2可以以不同于图3所示的顺序获得。FIG3 is a flow chart showing an example process 300 for operating the aftertreatment system 100 or 200 based on different pump speeds Ω 1 , Ω 2 obtained in different modes. In some embodiments, the process 300 is performed by the controller 233. In some embodiments, the process 300 is performed by other entities (e.g., another control device). In some embodiments, the process 300 includes more, fewer, or different steps than those shown in FIG3 . For example, the pump speeds Ω 1 , Ω 2 may be obtained in an order different from that shown in FIG3 .
在步骤310中,控制器233使泵220和配给器260在空闲模式下操作。在空闲模式下,泵220以稳定状态将还原剂从还原剂罐218供应到配给器260,配给器260不配给还原剂,并且由泵220供应到配给器260的还原剂再循环到还原剂罐218。In step 310, the controller 233 operates the pump 220 and the dispenser 260 in an idle mode. In the idle mode, the pump 220 supplies the reductant from the reductant tank 218 to the dispenser 260 in a steady state, the dispenser 260 does not dispense the reductant, and the reductant supplied by the pump 220 to the dispenser 260 is recirculated to the reductant tank 218.
在步骤320中,当泵220和配给器260在空闲模式下操作时,控制器233确定泵220的第一速度Ω1,以实现预定的目标压力Ptarget。In step 320 , when the pump 220 and the dispenser 260 are operating in the idle mode, the controller 233 determines a first speed Ω 1 of the pump 220 to achieve a predetermined target pressure P target .
在步骤330中,控制器233使泵220和配给器260在配给模式下操作。在配给模式下,泵220向配给器260供应还原剂,配给器260以稳定状态将还原剂配给到分解室104中。In step 330, the controller 233 operates the pump 220 and the dispenser 260 in the dispensing mode. In the dispensing mode, the pump 220 supplies the reductant to the dispenser 260, and the dispenser 260 dispenses the reductant into the decomposition chamber 104 in a steady state.
在步骤340中,当泵220和配给器260在配给模式下操作时,控制器233确定泵220的第二速度Ω2,以实现预定的目标压力Ptarget。In step 340 , when the pump 220 and the dispenser 260 are operating in the dosing mode, the controller 233 determines a second speed Ω 2 of the pump 220 to achieve a predetermined target pressure P target .
在步骤350中,控制器233基于第一速度Ω1和第二个速度Ω2生成命令以配置泵220和配给器260。在一种方法中,控制器233可以根据等式(9)基于第一速度Ω1和第二速度Ω2确定偏移压力值ΔP。基于偏移压力值ΔP,控制器233可以根据根据等式(10)确定喷射器214的有效孔面积Ainj。此外,基于偏移压力值ΔP,控制器233可以根据等式(11)确定排量D。控制器233可根据确定的值(例如,偏移压力值、喷射器214的有效孔面积Ainj以及排量D)更新泵流动模型ΔP,并基于更新的泵流动模型生成命令来以提高的精度控制后处理系统100或200。In step 350, the controller 233 generates commands to configure the pump 220 and the dispenser 260 based on the first speed Ω1 and the second speed Ω2. In one approach, the controller 233 may determine the offset pressure value ΔP based on the first speed Ω1 and the second speed Ω2 according to equation (9). Based on the offset pressure value ΔP, the controller 233 may determine the effective orifice area A inj of the injector 214 according to equation (10). In addition, based on the offset pressure value ΔP, the controller 233 may determine the displacement D according to equation (11). The controller 233 may update the pump flow model ΔP based on the determined values (e.g., the offset pressure value, the effective orifice area A inj of the injector 214, and the displacement D), and generate commands based on the updated pump flow model to control the aftertreatment system 100 or 200 with improved accuracy.
图4是示出基于不同模式下获得的不同泵速Ω1、Ω2操作后处理系统100或200的示例过程400的流程图。在一些实施例中,过程400由控制器233执行。在一些实施例中,过程400由其他实体执行。在一些实施例中,过程400包括比图4中所示的更多、更少或不同的步骤。FIG4 is a flow chart showing an example process 400 for operating the aftertreatment system 100 or 200 based on different pump speeds Ω 1 , Ω 2 obtained in different modes. In some embodiments, the process 400 is performed by the controller 233. In some embodiments, the process 400 is performed by other entities. In some embodiments, the process 400 includes more, fewer, or different steps than those shown in FIG4 .
在步骤410中,控制器233启动处理400。控制器233可以在后处理系统100或200首次部署时、部署后处理系统100或200之前、或者在安装泵220或配给器260时启动处理400一次。当控制器233启动过程400时,诸如Dosing Cmd、Idle Learn、Dosing Learn之类的变量可以被设置为初始值(例如,“0”)。控制器233可以在控制器233的存储器中存储DosingCmd、Idle Learn、Dosing Learn的变量或指示符。Dosing Cmd可以是指示配给器260是否正在向分解室104中配给还原剂的指示器。Idle Learn可以是指示是否确定了在空闲模式下的泵220的第一速度Ω1的指示器。Dosing Learn可以是指示是否确定了在配给模式下的泵220的第二速度Ω2的指示器。In step 410, the controller 233 starts the process 400. The controller 233 may start the process 400 once when the post-treatment system 100 or 200 is first deployed, before the post-treatment system 100 or 200 is deployed, or when the pump 220 or the dispenser 260 is installed. When the controller 233 starts the process 400, variables such as Dosing Cmd, Idle Learn, Dosing Learn, etc. may be set to initial values (e.g., "0"). The controller 233 may store variables or indicators of Dosing Cmd, Idle Learn, Dosing Learn in a memory of the controller 233. Dosing Cmd may be an indicator indicating whether the dispenser 260 is dispensing the reductant into the decomposition chamber 104. Idle Learn may be an indicator indicating whether the first speed Ω 1 of the pump 220 in the idle mode is determined. Dosing Learn may be an indicator indicating whether the second speed Ω 2 of the pump 220 in the dosing mode is determined.
在步骤415中,控制器233确定Dosing Cmd是否具有“0”的值。具有值“0”的DosingCmd可以指示后处理系统100或200在空闲模式下操作,而具有不同于“0”的值的Dosing Cmd可以指示后处理系统100或200在配给模式下操作。响应于Dosing Cmd具有不同于“0”的值,控制器233可以进行到步骤435。响应于Dosing Cmd具有值“0”,控制器233可以等待泵速稳定。在步骤420中,当泵速在空闲模式下稳定以实现目标压力Ptarget时,控制器233可以确定泵220的泵速Ω1。在步骤425中,响应于确定泵220的泵速Ω1,控制器230可以将Idle Learn设置为具有值“1”。具有值“0”的Idle Learn可以指示在空闲模式下操作的泵220的泵速Ω1还没有确定,而具有值“1”的Idle Learn可以指示在空闲模式下操作的泵220的泵速Ω1已经确定。In step 415, the controller 233 determines whether Dosing Cmd has a value of "0". Dosing Cmd having a value of "0" may indicate that the aftertreatment system 100 or 200 is operating in the idle mode, while Dosing Cmd having a value different from "0" may indicate that the aftertreatment system 100 or 200 is operating in the dosing mode. In response to Dosing Cmd having a value different from "0", the controller 233 may proceed to step 435. In response to Dosing Cmd having a value of "0", the controller 233 may wait for the pump speed to stabilize. In step 420, when the pump speed stabilizes in the idle mode to achieve the target pressure P target , the controller 233 may determine the pump speed Ω 1 of the pump 220. In step 425, in response to determining the pump speed Ω 1 of the pump 220, the controller 230 may set Idle Learn to have a value of "1". Idle Learn having a value of “0” may indicate that the pump speed Ω1 of the pump 220 operating in the idle mode has not been determined, whereas Idle Learn having a value of “1” may indicate that the pump speed Ω1 of the pump 220 operating in the idle mode has been determined.
在步骤430中,在步骤425中将Idle Learn设置为具有值“1”之后,控制器233可以确定Dosing Learn是否具有值“0”。具有值“0”的Dosing Learn可以指示还没有确定泵220在配给模式下的泵速Ω2,而具有值“1”的Dosing Learn可以指示已经确定泵220在配给模式下的泵速Ω2。在步骤455中,响应于确定Dosing Learn不具有值“0”(或者具有值“1”),控制器233可以根据等式(9)至等式(11)确定偏移压力值ΔP、喷射器214的有效孔面积Ainj以及排量D。根据偏移压力值ΔP、喷射器214的有效孔面积Ainj和排量D,控制器233可以更新泵流动模型或等式(1)以提高后处理系统100或200的精度。此外,控制器233可以根据更新的泵流动模型生成电信号或命令来操作泵220和配给器260。In step 430, after setting Idle Learn to have a value of "1" in step 425, the controller 233 may determine whether Dosing Learn has a value of "0". Dosing Learn having a value of "0" may indicate that the pump speed Ω 2 of the pump 220 in the dosing mode has not been determined, while Dosing Learn having a value of "1" may indicate that the pump speed Ω 2 of the pump 220 in the dosing mode has been determined. In step 455, in response to determining that Dosing Learn does not have a value of "0" (or has a value of "1"), the controller 233 may determine the offset pressure value ΔP, the effective orifice area A inj of the injector 214, and the displacement D according to equations (9) to (11). According to the offset pressure value ΔP, the effective orifice area A inj of the injector 214, and the displacement D, the controller 233 may update the pump flow model or equation (1) to improve the accuracy of the aftertreatment system 100 or 200. Additionally, controller 233 may generate electrical signals or commands to operate pump 220 and dispenser 260 based on the updated pump flow model.
在步骤435中,响应于在步骤430中确定Dosing Learn具有值“0”,控制器233可以确定Dosing Cmd是否大于阈值。阈值可以预先确定或调节。在一个方面,具有大于阈值的值的Dosing Cmd可以指示足够的还原剂被提供给分解室104以测量在配给模式下的泵速Ω2,而具有小于或等于阈值的值的Dosing Cmd可以指示提供给分解室104的还原剂不足以测量在配给模式下的泵速Ω2。因此,响应于确定Dosing Cmd具有小于或等于阈值的值,控制器233可以进行到步骤415。响应于确定Dosing Cmd具有大于阈值的值,控制器233可以在配给模式下等待泵速稳定。在步骤440中,当泵速在配给模式下稳定以实现目标压力Ptarget时,控制器233可以确定泵220的泵速Ω2。在步骤445中,响应于确定泵220的泵速Ω2,控制器230可以将Dosing Learn设置为具有值“1”。In step 435, in response to determining that Dosing Learn has a value of "0" in step 430, the controller 233 may determine whether Dosing Cmd is greater than a threshold value. The threshold value may be predetermined or adjusted. In one aspect, Dosing Cmd having a value greater than the threshold value may indicate that sufficient reductant is provided to the decomposition chamber 104 to measure the pump speed Ω 2 in the dosing mode, while Dosing Cmd having a value less than or equal to the threshold value may indicate that the reductant provided to the decomposition chamber 104 is insufficient to measure the pump speed Ω 2 in the dosing mode. Therefore, in response to determining that Dosing Cmd has a value less than or equal to the threshold value, the controller 233 may proceed to step 415. In response to determining that Dosing Cmd has a value greater than the threshold value, the controller 233 may wait for the pump speed to stabilize in the dosing mode. In step 440, when the pump speed stabilizes in the dosing mode to achieve the target pressure P target , the controller 233 may determine the pump speed Ω 2 of the pump 220. In step 445 , in response to determining the pump speed Ω 2 of the pump 220 , the controller 230 may set Dosing Learn to have a value of “1”.
在步骤450中,在步骤445中将Dosing Learn设置为具有值“1”之后,控制器233可以确定Idle Learn是否具有值“1”。响应于确定Idle Learn不具有值“1”,控制器233可以进行到步骤415。在步骤455中,响应于确定Idle Learn具有值“1”,控制器233可以根据等式(9)至等式(11)确定偏移压力值ΔP、喷射器214的有效孔面积Ainj和排量D,。根据偏移压力值ΔP、喷射器214的有效孔面积Ainj和排量D,控制器233可以更新泵流动模型或等式(1)以提高后处理系统100或200的精度。此外,控制器233可以根据更新的泵流动模型生成电信号或命令来操作泵220和配给器260。In step 450, after setting Dosing Learn to have a value of "1" in step 445, the controller 233 may determine whether Idle Learn has a value of "1". In response to determining that Idle Learn does not have a value of "1", the controller 233 may proceed to step 415. In step 455, in response to determining that Idle Learn has a value of "1", the controller 233 may determine the offset pressure value ΔP, the effective orifice area A inj of the injector 214, and the displacement D according to equations (9) to (11). According to the offset pressure value ΔP, the effective orifice area A inj of the injector 214, and the displacement D, the controller 233 may update the pump flow model or equation (1) to improve the accuracy of the aftertreatment system 100 or 200. In addition, the controller 233 may generate an electrical signal or command to operate the pump 220 and the doser 260 according to the updated pump flow model.
VI.包括两个配给器的后处理系统概述VI. Overview of the aftertreatment system including two dispensers
图5描绘了包括配给器502和配给器504的后处理系统500。如上所述,配给器502可以用作如上所述的图1的配给器112。在进入配给器504之前,流体的流量可以由阀(例如,限制阀等)、孔或其他类似结构调整。可替代地,流体的流动由配给器504下游的后处理系统500的部件控制。FIG. 5 depicts an aftertreatment system 500 including a dispenser 502 and a dispenser 504. As described above, the dispenser 502 can be used as the dispenser 112 of FIG. 1 described above. Before entering the dispenser 504, the flow of the fluid can be regulated by a valve (e.g., a restrictor valve, etc.), an orifice, or other similar structure. Alternatively, the flow of the fluid is controlled by a component of the aftertreatment system 500 downstream of the dispenser 504.
后处理系统500包括入口排气部段506、与入口排气部段506流体连通的后处理部件508和与后处理部件508流体连通的出口排气部段510。入口排气部段506接收来自内燃发动机的排气(例如,经由排气歧管等)。出口排气部段510向下游(诸如向排气管、消声器或其他类似结构)提供来自内燃发动机的排气。The aftertreatment system 500 includes an inlet exhaust section 506, an aftertreatment component 508 in fluid communication with the inlet exhaust section 506, and an outlet exhaust section 510 in fluid communication with the aftertreatment component 508. The inlet exhaust section 506 receives exhaust gas from the internal combustion engine (e.g., via an exhaust manifold, etc.). The outlet exhaust section 510 provides exhaust gas from the internal combustion engine downstream (such as to an exhaust pipe, a muffler, or other similar structure).
后处理部件508被配置成协同处理从内燃发动机接收的排气,使得后处理部件508产生的排放物更理想。例如,后处理部件508可以降低排气中的NOx的水平。以这种方式,系统(例如,交通工具、发电机、海上船只等)利用具有后处理系统500的内燃发动机可能比没有后处理系统500的类似系统更理想。Aftertreatment component 508 is configured to cooperatively treat exhaust gas received from an internal combustion engine so that the emissions produced by aftertreatment component 508 are more desirable. For example, aftertreatment component 508 can reduce the level of NO x in the exhaust gas. In this way, a system (e.g., a vehicle, a generator, a marine vessel, etc.) utilizing an internal combustion engine with aftertreatment system 500 may be more desirable than a similar system without aftertreatment system 500.
在一种配置中,配给器502、配给器504、还原剂罐516和泵532流体连通。例如,还原剂罐516流体联接到泵532的入口536。例如,泵532的出口530流体联接到配给器504的入口528。例如,配给器504的出口524流体联接到配给器502的入口522。例如,配给器502的出口519流体地连接到还原剂罐516。In one configuration, the dispenser 502, the dispenser 504, the reductant tank 516, and the pump 532 are in fluid communication. For example, the reductant tank 516 is fluidly coupled to the inlet 536 of the pump 532. For example, the outlet 530 of the pump 532 is fluidly coupled to the inlet 528 of the dispenser 504. For example, the outlet 524 of the dispenser 504 is fluidly coupled to the inlet 522 of the dispenser 502. For example, the outlet 519 of the dispenser 502 is fluidly connected to the reductant tank 516.
泵532用于从还原剂罐516抽取还原剂,并将还原剂提供给配给器502和配给器504。在一个实施例中,泵532被配置成使得来自还原剂罐516的还原剂被提供到配给器504的入口528,并且剩余的还原剂从配给器504的出口524被提供到配给器502的入口522。然后,剩余的还原剂从配给器502的出口519返回到还原剂罐516。The pump 532 is used to draw the reductant from the reductant tank 516 and provide the reductant to the dispenser 502 and the dispenser 504. In one embodiment, the pump 532 is configured so that the reductant from the reductant tank 516 is provided to the inlet 528 of the dispenser 504, and the remaining reductant is provided from the outlet 524 of the dispenser 504 to the inlet 522 of the dispenser 502. Then, the remaining reductant is returned to the reductant tank 516 from the outlet 519 of the dispenser 502.
后处理部件508可以被分成多个部段572、570A、575A、580、575B、570B和582。在一些实施例中,后处理组件508可以包括更多或更少的部段。部段572是后处理部件508的入口,并且部段582是后处理部件508的出口。在一些实施例中,部段572包括DOC;部段570A包括混合器;部段575A包括SCR;区段580包括DPF(或cDPF);部段575B包括SCR;部段570B包括混合器570B;并且部段582包括泄露催化剂(例如,氨泄露催化剂(ASC))。Aftertreatment component 508 may be divided into a plurality of sections 572, 570A, 575A, 580, 575B, 570B, and 582. In some embodiments, aftertreatment assembly 508 may include more or fewer sections. Section 572 is the inlet of aftertreatment component 508, and section 582 is the outlet of aftertreatment component 508. In some embodiments, section 572 includes a DOC; section 570A includes a mixer; section 575A includes an SCR; section 580 includes a DPF (or cDPF); section 575B includes an SCR; section 570B includes a mixer 570B; and section 582 includes a slip catalyst (e.g., an ammonia slip catalyst (ASC)).
如图5所示,后处理系统500还包括发动机控制单元542。发动机控制单元542经由通信网络544与配给器502、配给器504和泵532电子通信。通信网络544便于在发动机控制单元542、配给器502、配给器504和泵532中的任何之间传输信号。例如,发动机控制单元542可以向配给器502和配给器504发送信号,该信号使得配给器502和/或配给器504对排气进行配给。从发动机控制单元542发送的信号可以包括例如配给量、配给持续时间、泵送命令(例如,到泵532等),以及其他类似的命令。As shown in FIG5 , aftertreatment system 500 also includes an engine control unit 542. Engine control unit 542 is in electronic communication with dispenser 502, dispenser 504, and pump 532 via communication network 544. Communication network 544 facilitates transmission of signals between any of engine control unit 542, dispenser 502, dispenser 504, and pump 532. For example, engine control unit 542 may send a signal to dispenser 502 and dispenser 504 that causes dispenser 502 and/or dispenser 504 to dispense exhaust gas. Signals sent from engine control unit 542 may include, for example, a dispense amount, a dispense duration, a pumping command (e.g., to pump 532, etc.), and other similar commands.
在一些实施例中,后处理系统500还包括参数单元546,该参数单元546可与通信网络544电子通信。参数单元546可以向发动机控制单元542提供信息(例如,存储的参数、感测的参数等)。例如,参数单元546可以与各种传感器电子通信,使得参数单元546从后处理系统500内的各种部件接收信息。在一些应用中,参数单元546接收还原剂罐516内还原剂的水平(例如,量、最大容量的百分比等)、温度(例如,入口排气部段506的温度、配给器504的温度、后处理部件508内的温度、配给器502的温度、出口排气部段510的温度等)、还原剂的质量(例如,还原剂的浓度等)、组分的水平(例如,NOx,NH3等),以及其他类似的信息。参数单元546可以包括存储器和处理电路。参数单元546可以包括存储在存储器上的配置数据、与后处理系统500的配置相关的配置数据(例如,部段572、570A、575A、580、575B、570B、582等)。In some embodiments, the aftertreatment system 500 further includes a parameter unit 546 that can be in electronic communication with the communication network 544. The parameter unit 546 can provide information (e.g., stored parameters, sensed parameters, etc.) to the engine control unit 542. For example, the parameter unit 546 can be in electronic communication with various sensors so that the parameter unit 546 receives information from various components within the aftertreatment system 500. In some applications, the parameter unit 546 receives the level of the reductant in the reductant tank 516 (e.g., amount, percentage of maximum capacity, etc.), the temperature (e.g., the temperature of the inlet exhaust section 506, the temperature of the dispenser 504, the temperature within the aftertreatment component 508, the temperature of the dispenser 502, the temperature of the outlet exhaust section 510, etc.), the quality of the reductant (e.g., the concentration of the reductant, etc.), the level of the component (e.g., NOx , NH3 , etc.), and other similar information. The parameter unit 546 can include a memory and a processing circuit. Parameter unit 546 may include configuration data stored on memory, configuration data related to the configuration of aftertreatment system 500 (eg, sections 572 , 570A, 575A, 580 , 575B, 570B, 582 , etc.).
后处理系统500还可以包括配给控制单元548,该配给控制单元548可与通信网络544电子通信。配给控制单元548可以提供对配给器502、配给器504和/或泵532的局部控制。Aftertreatment system 500 may also include a dosing control unit 548 that may be in electronic communication with communication network 544. Dosing control unit 548 may provide local control of dosing device 502, dosing device 504, and/or pump 532.
在一个方面,后处理部件508作为包括部段575A、575B的两个SCR系统操作。当发动机冷起动时,两个SCR系统可以尽可能早地操作以减少排放物。部段575A中的第一SCR可以在比部段575B中的第二SCR更低的温度下工作。In one aspect, aftertreatment component 508 operates as two SCR systems including sections 575A, 575B. When the engine is cold started, the two SCR systems can be operated as early as possible to reduce emissions. The first SCR in section 575A can operate at a lower temperature than the second SCR in section 575B.
图6示出了用于还原NOx排放物的后处理系统600。在一些实施例中,后处理系统600被实施为或对应于图5的后处理系统500。在该实施例中,还原剂罐618对应于还原剂罐516,泵620对应于泵532,配给器660A对应于配给器504,配给器660B对应于配给器502,并且控制器633对应于配给控制单元548。后处理系统600类似于图2的后处理系统200,除了后处理系统600包括两个配给器660A、660B,而不是单个配给器260。因此,为了简洁起见,这里省略了对其复制部分的详细描述。在一些实施例中,后处理系统600包括比图6中所示更多、更少或不同的部件。例如,后处理系统600包括一个或更多个分解室(或混合器570A、570B),并且配给器660A、660B中的每个可以联接到或安装在相应的分解室(或相应的混合器570)上。FIG. 6 shows a post-treatment system 600 for reducing NO x emissions. In some embodiments, the post-treatment system 600 is implemented as or corresponds to the post-treatment system 500 of FIG. 5 . In this embodiment, the reductant tank 618 corresponds to the reductant tank 516, the pump 620 corresponds to the pump 532, the dispenser 660A corresponds to the dispenser 504, the dispenser 660B corresponds to the dispenser 502, and the controller 633 corresponds to the dosing control unit 548. The post-treatment system 600 is similar to the post-treatment system 200 of FIG. 2, except that the post-treatment system 600 includes two dispensers 660A, 660B, instead of a single dispenser 260. Therefore, for the sake of brevity, a detailed description of the duplicated portions thereof is omitted here. In some embodiments, the post-treatment system 600 includes more, less, or different components than those shown in FIG. 6 . For example, the aftertreatment system 600 includes one or more decomposition chambers (or mixers 570A, 570B), and each of the dispensers 660A, 660B may be coupled to or mounted on a corresponding decomposition chamber (or a corresponding mixer 570).
在一种配置中,配给器660A、660B串联地流体联接在泵620和还原剂罐618之间。泵620和还原剂罐618可以分别对应于泵220和还原剂罐218。配给器660A可以直接联接到混合器570A的第一入口,并且配给器660B可以直接联接到混合器570B的第二入口。在一种配置中,控制器633通过有线介质(例如,导电迹线或导线)或无线介质(例如,无线链路,例如Wi-Fi、蜂窝、蓝牙等)通信联接到泵620和配给器600A、660B。在该配置中,控制器633可以生成电信号或命令来操作泵620、配给器660A、660B或它们的任意组合,以将还原剂配给到一个或更多个分解室(或混合器570A、570B)中。In one configuration, dispensers 660A, 660B are serially fluidly coupled between pump 620 and reductant tank 618. Pump 620 and reductant tank 618 may correspond to pump 220 and reductant tank 218, respectively. Dispenser 660A may be directly coupled to a first inlet of mixer 570A, and dispenser 660B may be directly coupled to a second inlet of mixer 570B. In one configuration, controller 633 is coupled to pump 620 and dispensers 600A, 660B via a wired medium (e.g., conductive traces or wires) or a wireless medium (e.g., a wireless link, such as Wi-Fi, cellular, Bluetooth, etc.) communication. In this configuration, controller 633 may generate electrical signals or commands to operate pump 620, dispensers 660A, 660B, or any combination thereof, to dispense reductant into one or more decomposition chambers (or mixers 570A, 570B).
配给器660A是将还原剂从泵620提供或配给到分解室(或混合器570A)的部件。配给器660A可以直接安装在分解室(混合器570A)的第一入口上。在一种配置中,配给器660A包括流体联接到泵620的出口的入口、流体联接到配给器660B的入口的第一出口、直接联接到分解室(或混合器570A)的第一入口的第二出口、以及连接在入口和出口之间的内部管道。配给器660A包括设置在配给器660A的第二出口处的喷射器614A,来自入口的一些还原剂可以通过该喷射器614A被配给或提供给分解室(或混合器570A)。配给器660A还包括配给器660A的第一出口的返回孔612A,未提供给分解室(或混合器570A)的剩余还原剂可以通过该返回孔612A提供给配给器660B。在一些实施例中,配给器660A不包括压力传感器。配给器660A还可以包括通信联接到控制器633和诸如喷射器614A的内部设备的接口电路662A。在该配置中,接口电路662A可以从控制器633接收电信号或命令,并根据电信号或命令配置喷射器614A的打开或关闭。通过调节喷射器614A的打开量或打开和关闭的占空比,可以向分解室(或混合器570A)提供所需量的还原剂。Dispenser 660A is a component that provides or dispenses reducing agent to decomposition chamber (or mixer 570A) from pump 620. Dispenser 660A can be directly mounted on the first inlet of decomposition chamber (mixer 570A). In one configuration, dispenser 660A includes an inlet of the outlet of pump 620 that is fluidly coupled, a first outlet of the inlet of dispenser 660B that is fluidly coupled, a second outlet of the first inlet that is directly coupled to decomposition chamber (or mixer 570A), and an internal pipeline connected between the inlet and the outlet. Dispenser 660A includes an ejector 614A disposed at the second outlet of dispenser 660A, and some reducing agents from the inlet can be dispensed or provided to decomposition chamber (or mixer 570A) by the ejector 614A. Dispenser 660A also includes a return hole 612A of the first outlet of dispenser 660A, and the remaining reducing agent that is not provided to decomposition chamber (or mixer 570A) can be provided to dispenser 660B by the return hole 612A. In some embodiments, the dispenser 660A does not include a pressure sensor. The dispenser 660A may also include an interface circuit 662A that is communicatively coupled to the controller 633 and internal devices such as the injector 614A. In this configuration, the interface circuit 662A may receive an electrical signal or command from the controller 633 and configure the opening or closing of the injector 614A according to the electrical signal or command. By adjusting the opening amount of the injector 614A or the duty cycle of opening and closing, the desired amount of reducing agent may be provided to the decomposition chamber (or mixer 570A).
配给器660B是将还原剂从配给器660A提供或配给到分解室(或混合器570B)的部件。配给器660B可以直接安装在分解室(或混合器570B)上。在一种配置中,配给器660B包括流体联接到配给器660A的第一出口的入口、流体联接到还原剂罐618的入口的第一出口、直接联接到分解室(或混合器570B)的第二入口的第二出口、以及连接在入口和出口之间的内部管道。配给器660B包括设置在配给器660B的第二出口处的喷射器614B,来自配给器660A的一些还原剂可以通过该喷射器614B被配给或提供给分解室(或混合器570B)。配给器660B还包括配给器660B的第一出口的返回孔612B,未提供给分解室(或混合器570B)的剩余还原剂可以通过该返回孔612B再循环回还原剂罐618。在一些实施例中,配给器660B包括压力传感器668,该压力传感器668检测配给器660B内的压力(例如,内部管道内的压力)并生成对应于压力测量值的电信号。配给器660B还可以包括接口电路662B,该接口电路662B通信地联接到控制器633和内部设备,诸如压力传感器668和喷射器614B。在该配置中,接口电路662B可以从控制器633接收电信号或命令,并根据电信号或命令配置喷射器614B的打开或关闭。通过调节喷射器614B的打开量或打开和关闭的占空比,可以向分解室(或混合器570B)提供所需量的还原剂。此外,接口电路662B可以从压力传感器668接收对应于压力测量值的电信号,并且根据电信号生成指示压力测量值的传感器测量数据。接口电路662B可以将传感器测量数据传输到控制器633。Dispenser 660B is a component that provides or dispenses reductant from dispenser 660A to decomposition chamber (or mixer 570B). Dispenser 660B can be directly mounted on decomposition chamber (or mixer 570B). In one configuration, dispenser 660B includes an inlet of a first outlet of dispenser 660A, a first outlet of an inlet of a fluid coupled to reductant tank 618, a second outlet directly coupled to a second inlet of decomposition chamber (or mixer 570B), and an internal conduit connected between the inlet and the outlet. Dispenser 660B includes an injector 614B disposed at the second outlet of dispenser 660B, and some reductants from dispenser 660A can be dispensed or provided to decomposition chamber (or mixer 570B) by the injector 614B. The dispenser 660B also includes a return hole 612B of the first outlet of the dispenser 660B, and the remaining reductant not provided to the decomposition chamber (or the mixer 570B) can be recycled back to the reductant tank 618 through the return hole 612B. In some embodiments, the dispenser 660B includes a pressure sensor 668, which detects the pressure in the dispenser 660B (for example, the pressure in the internal pipeline) and generates an electrical signal corresponding to the pressure measurement value. The dispenser 660B can also include an interface circuit 662B, which is communicatively connected to the controller 633 and internal devices, such as pressure sensors 668 and injectors 614B. In this configuration, the interface circuit 662B can receive an electrical signal or command from the controller 633, and configure the opening or closing of the injector 614B according to the electrical signal or command. By adjusting the opening amount of the injector 614B or the duty cycle of opening and closing, the required amount of reductant can be provided to the decomposition chamber (or the mixer 570B). In addition, the interface circuit 662B can receive an electrical signal corresponding to the pressure measurement value from the pressure sensor 668 and generate sensor measurement data indicating the pressure measurement value based on the electrical signal. The interface circuit 662B can transmit the sensor measurement data to the controller 633.
在一个方面,控制器633根据泵流动模型生成用于控制泵620和配给器660A、660B的命令。泵流动模型可以表示如下:In one aspect, the controller 633 generates commands for controlling the pump 620 and the dispensers 660A, 660B according to the pump flow model. The pump flow model can be expressed as follows:
其中,Aret是返回孔612的有效孔面积,Ainj1是喷射器614A的有效孔面积,Ainj2是喷射器614B的有效孔面积,δ1是喷射器614A的喷射器占空比,δ2是喷射器614B的喷射器占空比,ρfluid是流体密度,γ是比重,P是压力测量值,Ω是泵速,并且D是通过泵620的还原剂的排量。控制器633可以生成电信号或命令来配置喷射器614A、614B的打开或喷射器614A、614B的打开和关闭的占空比,使得喷射器614A、614B可以具有有效孔面积Ainj1或用有效孔面积Ainj2操作。此外,控制器633可以生成电信号或命令,以配置泵620以泵速Ω向配给器660A、660B提供还原剂。在一个方面,控制器633可以接收目标压力Ptarget,并且基于泵流动模型或等式(12)自动设定、调节或确定喷射器614A的有效孔面积Ainj1,喷射器614B的有效孔面积Ainj2和泵速Ω来实现目标压力Ptarget。然后,控制器133可以生成对应于喷射器614A的有效孔面积Ainj1、喷射器614B的有效孔面积Ainj2和泵速Ω的电信号或命令。控制器133可以将电信号或命令发送到泵620和配给器660A、660B,使得泵620和配给器660A、660B可以如电信号或命令所指示的那样操作。Wherein, A ret is the effective orifice area of the return orifice 612, A inj1 is the effective orifice area of the injector 614A, A inj2 is the effective orifice area of the injector 614B, δ1 is the injector duty cycle of the injector 614A, δ2 is the injector duty cycle of the injector 614B, ρ fluid is the fluid density, γ is the specific gravity, P is the pressure measurement, Ω is the pump speed, and D is the displacement of the reductant through the pump 620. The controller 633 can generate an electrical signal or command to configure the opening of the injectors 614A, 614B or the duty cycle of the opening and closing of the injectors 614A, 614B, so that the injectors 614A, 614B can have an effective orifice area A inj1 or operate with an effective orifice area A inj2 . In addition, the controller 633 can generate an electrical signal or command to configure the pump 620 to provide the reductant to the dispensers 660A, 660B at the pump speed Ω. In one aspect, the controller 633 can receive the target pressure P target and automatically set, adjust or determine the effective orifice area A inj1 of the injector 614A, the effective orifice area A inj2 of the injector 614B and the pump speed Ω to achieve the target pressure P target based on the pump flow model or equation (12). The controller 133 can then generate an electrical signal or command corresponding to the effective orifice area A inj1 of the injector 614A, the effective orifice area A inj2 of the injector 614B and the pump speed Ω. The controller 133 can send the electrical signal or command to the pump 620 and the dispensers 660A, 660B so that the pump 620 and the dispensers 660A, 660B can operate as indicated by the electrical signal or command.
在一些实施例中,控制器633获得在不同模式下操作的泵620的三种泵速,并基于这三种泵速控制泵620和配给器660A、660B。在一个方面,控制器633获得以下不同模式下的不同泵速:空闲模式、第一配给模式和第二配给模式。在空闲模式下,泵620以稳定状态将还原剂从还原剂罐618供应到第一配给器660A,第一配给器660A和第二配给器660B不配给还原剂,并且由泵620供应到第一配给器660A和第二配给器660B的还原剂再循环到还原剂罐618。在第一配给模式下,泵620向第一配给器660A供应还原剂,第一配给器660A以稳定状态将还原剂配给到分解室(或混合器570A)中,并且第二配给器660B不配给还原剂。在第二配给模式下,泵620向第一配给器660A供应还原剂,第一配给器660A不配给还原剂,并且第二配给器660B以稳定状态将还原剂配给到分解室(或混合器570B)中。在一个方面,当泵620和配给器660A、660B在空闲模式下操作时,可以确定实现目标压力Ptarget所需的泵620的第一速度Ω1。此外,当泵620和配给器660A、660B在第一配给模式下操作时,可以确定实现目标压力Ptarget所需的泵620的第二速度Ω2。此外,当泵620和配给器660A、660B在第二配给模式下操作时,可以确定实现目标压力Ptarget所需的泵620的第二速度Ω3。基于在不同模式下获得的第一速度Ω1、第二速度Ω2和第三速度Ω3,可以确定喷射614A、614B的偏移压力值ΔP、有效孔面积Ainj1、Ainj1、排量D或它们的任意组合,以配置泵620和配给器660A、660B。基于确定的值,控制器633可以以提高的精度控制后处理系统600。In some embodiments, the controller 633 obtains three pump speeds of the pump 620 operating in different modes, and controls the pump 620 and the dispensers 660A, 660B based on the three pump speeds. In one aspect, the controller 633 obtains different pump speeds in the following different modes: idle mode, first dispensing mode, and second dispensing mode. In idle mode, the pump 620 supplies the reductant from the reductant tank 618 to the first dispenser 660A in a stable state, the first dispenser 660A and the second dispenser 660B do not dispense the reductant, and the reductant supplied by the pump 620 to the first dispenser 660A and the second dispenser 660B is recycled to the reductant tank 618. In the first dispensing mode, the pump 620 supplies the reductant to the first dispenser 660A, the first dispenser 660A dispenses the reductant into the decomposition chamber (or mixer 570A) in a stable state, and the second dispenser 660B does not dispense the reductant. In the second dosing mode, the pump 620 supplies the reductant to the first doser 660A, the first doser 660A does not dosing the reductant, and the second doser 660B dosing the reductant into the decomposition chamber (or the mixer 570B) in a steady state. In one aspect, when the pump 620 and the doser 660A, 660B are operated in the idle mode, a first speed Ω 1 of the pump 620 required to achieve the target pressure P target may be determined. In addition, when the pump 620 and the doser 660A, 660B are operated in the first dosing mode, a second speed Ω 2 of the pump 620 required to achieve the target pressure P target may be determined. In addition, when the pump 620 and the doser 660A, 660B are operated in the second dosing mode, a second speed Ω 3 of the pump 620 required to achieve the target pressure P target may be determined. Based on the first speed Ω 1 , the second speed Ω 2 and the third speed Ω 3 obtained in different modes, the offset pressure value ΔP, the effective orifice area A inj1 , A inj1 , the displacement D or any combination thereof of the jets 614A, 614B may be determined to configure the pump 620 and the dosing devices 660A, 660B. Based on the determined values, the controller 633 may control the aftertreatment system 600 with increased accuracy.
VII.包括调整配给器的后处理系统VII. Post-processing system including adjustment of dispenser
在一些实施例中,控制器633可获得泵速Ω1、Ω2、Ω3并根据泵速Ω1、Ω2、Ω3确定偏移压力值ΔP,喷射器614A、614B的有效孔面积Ainj1、Ainj2以及排量D。此外,控制器633可以根据喷射器614A的有效孔面积Ainj1确定调节后的喷射器占空比δadj1以调节喷射器614A的开关占空比。类似的,控制器633可以根据喷射器614B的有效孔面积Ainj2确定调节后的喷射器占空比δadj2以调节喷射器614B的开关占空比。In some embodiments, the controller 633 may obtain the pump speeds Ω 1 , Ω 2 , and Ω 3 and determine the offset pressure value ΔP according to the pump speeds Ω 1 , Ω 2 , and Ω 3 , the effective orifice areas A inj1 , A inj2 of the injectors 614A and 614B, and the displacement D. In addition, the controller 633 may determine the adjusted injector duty ratio δ adj1 according to the effective orifice area A inj1 of the injector 614A to adjust the on/off duty ratio of the injector 614A. Similarly, the controller 633 may determine the adjusted injector duty ratio δ adj2 according to the effective orifice area A inj2 of the injector 614B to adjust the on/off duty ratio of the injector 614B.
在一个方面,控制器633可以将后处理系统600配置为在空闲模式下操作。在空闲模式下,泵620以稳定状态将还原剂从还原剂罐618供应到第一配给器660A,第一配给器660A和第二配给器660B不配给还原剂,并且由泵620供应到第一配给器660A和第二配给器660B的还原剂再循环到还原剂罐618。在空闲模式下,喷射器614A、614B的有效孔面积Ainj1、Ainj2可以为零,并且泵流动模型或者等式(12)可以表示如下。In one aspect, the controller 633 can configure the aftertreatment system 600 to operate in an idle mode. In the idle mode, the pump 620 supplies the reductant from the reductant tank 618 to the first doser 660A in a steady state, the first doser 660A and the second doser 660B do not dose the reductant, and the reductant supplied by the pump 620 to the first doser 660A and the second doser 660B is recirculated to the reductant tank 618. In the idle mode, the effective orifice areas A inj1 , A inj2 of the injectors 614A, 614B can be zero, and the pump flow model or equation (12) can be expressed as follows.
其中,Ω1是在空闲模式下实现目标压力Ptarget所需的泵速,并且Aret_nom是返回孔612B的标称返回孔面积。Wherein, Ω 1 is the pump speed required to achieve the target pressure P target in idle mode, and A ret_nom is the nominal return orifice area of the return orifice 612B.
在一个方面,控制器633可以将后处理系统600配置为在第一配给模式下操作。在第一配给模式中,泵620向第一配给器660A供应还原剂,第一配给器660A以稳定状态将还原剂配给到分解室(或混合器570A)中,并且第二配给器660B不配给还原剂。在第一配给模式下,泵流动模型或者等式(12)可以表示如下:In one aspect, the controller 633 can configure the aftertreatment system 600 to operate in a first dosing mode. In the first dosing mode, the pump 620 supplies the reductant to the first doser 660A, the first doser 660A dispenses the reductant into the decomposition chamber (or mixer 570A) at a steady state, and the second doser 660B does not dispense the reductant. In the first dosing mode, the pump flow model or equation (12) can be expressed as follows:
其中,Ω2是在第一配给模式下实现目标压力Ptarget所需的泵速。Wherein, Ω 2 is the pump speed required to achieve the target pressure P target in the first dosing mode.
在一个方面,控制器633可以将后处理系统600配置为在第二配给模式下操作。在第二配给模式下,泵620向第一配给器660A供应还原剂,第一配给器660A不配给还原剂,并且第二配给器660B以稳定状态将还原剂配给到分解室(或混合器570B)中。在第二配给模式下,泵流动模型或者等式(12)可以表示如下:In one aspect, the controller 633 can configure the aftertreatment system 600 to operate in a second dosing mode. In the second dosing mode, the pump 620 supplies the reductant to the first doser 660A, the first doser 660A does not dosing the reductant, and the second doser 660B dosing the reductant into the decomposition chamber (or mixer 570B) at a steady state. In the second dosing mode, the pump flow model or equation (12) can be expressed as follows:
其中,Ω3是在第二配给模式下实现目标压力Ptarget所需的泵速。此外,喷射器614B的有效孔面积Ainj2可如下获得:Wherein, Ω 3 is the pump speed required to achieve the target pressure P target in the second dosing mode. In addition, the effective orifice area A inj2 of the injector 614B can be obtained as follows:
其中,Ainj_nom是喷射器614B的标称喷射器孔面积。Where A inj_nom is the nominal injector orifice area of injector 614B.
基于等式(15)和等式(16),控制器633可以确定如下的偏移压力值ΔP。Based on equation (15) and equation (16), the controller 633 may determine the offset pressure value ΔP as follows.
此外,控制器633可以基于偏移压力值ΔP确定如下的位移量D。Furthermore, the controller 633 may determine the displacement amount D as follows based on the offset pressure value ΔP.
此外,基于等式(13)和等式(14)之间的差异,控制器633可以基于排量D确定如下的喷射器214的有效孔面积Ainj1。Furthermore, based on the difference between equation (13) and equation (14), the controller 633 may determine the effective orifice area A inj1 of the injector 214 based on the displacement D as follows.
基于喷射器614A的有效孔面积Ainj1,控制器633可以确定应用于喷射器614A的喷射器占空比δ1的如下的配给调节因子Inj1adj。Based on the effective orifice area A inj1 of the injector 614A, the controller 633 may determine the following dosing adjustment factor Inj1 adj that is applied to the injector duty cycle δ1 of the injector 614A.
例如,控制器633可以将喷射器614A的喷射器占空比δ1乘以配给调节因子Inj1adj,以获得调整后的喷射器占空比δadj1。For example, the controller 633 may multiply the injector duty cycle δ1 of the injector 614A by the dosing adjustment factor Inj1 adj to obtain the adjusted injector duty cycle δ adj1 .
在一个方面,偏移压力值ΔP、喷射器614A的有效孔面积Ainj1、喷射器614B的有效孔面积Ainj2和排量D允许控制器633以提高的精度控制后处理系统600,而不管偏移压力值ΔP如何。In one aspect, the offset pressure value ΔP, the effective orifice area A inj1 of injector 614A, the effective orifice area A inj2 of injector 614B, and the displacement D allow the controller 633 to control the aftertreatment system 600 with increased accuracy regardless of the offset pressure value ΔP.
VIII.包括非调整配给器的后处理系统VIII. Aftertreatment Systems Including Non-Regulating Dispensers
在一些实施例中,控制器633可以获得泵速Ω1、Ω2、Ω3,并根据泵速Ω1、Ω2、Ω3,确定喷射器614A的有效孔面积Ainj1、喷射器614B的有效孔面积Ainj2和排量D。此外,控制器633可以根据喷射器614A的有效孔面积Ainj1确定调节后的喷射器占空比δadj1以调节喷射器614A的占空比δ1。此外,控制器633可以根据喷射器614B的有效孔面积Ainj2确定调节后的喷射器占空比δadj2以调节喷射器614B的占空比δ2。In some embodiments, the controller 633 may obtain the pump speeds Ω 1 , Ω 2 , and Ω 3 , and determine the effective orifice area A inj1 of the injector 614A, the effective orifice area A inj2 of the injector 614B, and the displacement D according to the pump speeds Ω 1 , Ω 2 , and Ω 3 . In addition, the controller 633 may determine the adjusted injector duty cycle δ adj1 according to the effective orifice area A inj1 of the injector 614A to adjust the duty cycle δ 1 of the injector 614A. In addition, the controller 633 may determine the adjusted injector duty cycle δ adj2 according to the effective orifice area A inj2 of the injector 614B to adjust the duty cycle δ 2 of the injector 614B.
在一个方面,控制器633可以基于喷射器614A的有效孔面积Ainj1确定如下的调节后的喷射器占空比δadj1,以调节喷射器614A的占空比δ1。In one aspect, the controller 633 may determine an adjusted injector duty cycle δ adj1 as follows based on the effective orifice area A inj1 of the injector 614A to adjust the duty cycle δ 1 of the injector 614A.
类似地,控制器633可以基于喷射器614B的有效孔面积Ainj2确定如下的调节后的喷射器占空比δadj2,以调节喷射器614A的占空比δ2。Similarly, the controller 633 may determine an adjusted injector duty cycle δ adj2 as follows based on the effective orifice area A inj2 of the injector 614B to adjust the duty cycle δ 2 of the injector 614A.
控制器633可以根据调节后的喷射器占空比δadj1、δadj2来调节喷射器614A、614B的开/关持续时间,使得尽管配给器660A、660B存在变化或者由于安装过程而存在变化,也可以提高配给器660A、660B的精度。Controller 633 may adjust the on/off duration of injectors 614A, 614B according to the adjusted injector duty cycles δ adj1 , δ adj2 so that the accuracy of dosers 660A, 660B may be improved despite variations in dosers 660A, 660B or variations due to the installation process.
IX.还原剂输送系统的示例操作IX. Example Operation of Reductant Delivery System
图7是示出基于不同模式下获得的不同泵速Ω1、Ω2、Ω3操作后处理系统500或600的示例过程700的流程图。在一些实施例中,过程700由控制器633执行。在一些实施例中,过程700由其他实体执行。在一些实施例中,过程700包括比图7中所示的更多、更少或不同的步骤。例如,泵速Ω1、Ω2、Ω3可以以不同于图7所示的顺序获得。FIG. 7 is a flow chart illustrating an example process 700 for operating the aftertreatment system 500 or 600 based on different pump speeds Ω 1 , Ω 2 , Ω 3 obtained in different modes. In some embodiments, the process 700 is performed by the controller 633. In some embodiments, the process 700 is performed by other entities. In some embodiments, the process 700 includes more, fewer, or different steps than those shown in FIG. 7 . For example, the pump speeds Ω 1 , Ω 2 , Ω 3 may be obtained in an order different from that shown in FIG. 7 .
在步骤710中,控制器633使泵620和配给器660A、660B在空闲模式下操作。在空闲模式下,泵620以稳定状态将还原剂从还原剂罐618供应到第一配给器660A,第一配给器660A和第二配给器660B不配给还原剂,并且由泵620供应到第一配给器660A和第二配给器660B的还原剂再循环到还原剂罐618。In step 710, the controller 633 operates the pump 620 and the dispensers 660A, 660B in an idle mode. In the idle mode, the pump 620 supplies the reductant from the reductant tank 618 to the first dispenser 660A in a steady state, the first dispenser 660A and the second dispenser 660B do not dispense the reductant, and the reductant supplied by the pump 620 to the first dispenser 660A and the second dispenser 660B is recirculated to the reductant tank 618.
在步骤720中,当泵620和配给器660A、660B在空闲模式下操作时,控制器633确定泵620的第一速度Ω1,以实现预定的目标压力Ptarget。In step 720 , when the pump 620 and the dispensers 660A, 660B are operating in the idle mode, the controller 633 determines a first speed Ω 1 of the pump 620 to achieve a predetermined target pressure P target .
在步骤730中,控制器633使泵620和配给器660A、660B在第一配给模式下操作。在第一配给模式下,泵620向第一配给器660A供应还原剂,第一配给器660A以稳定状态将还原剂配给到一个或更多个分解室(或混合器570A、570B)中,并且第二配给器660B不配给还原剂。In step 730, the controller 633 operates the pump 620 and the dispensers 660A, 660B in a first dispensing mode. In the first dispensing mode, the pump 620 supplies the reductant to the first dispenser 660A, the first dispenser 660A dispenses the reductant to one or more decomposition chambers (or mixers 570A, 570B) in a steady state, and the second dispenser 660B does not dispense the reductant.
在步骤740中,当泵620和配给器660A、660B在第二配给模式下操作时,控制器633确定泵620的第二速度Ω2,以实现预定的目标压力Ptarget。In step 740, the controller 633 determines a second speed Ω 2 of the pump 620 to achieve a predetermined target pressure P target when the pump 620 and the dispensers 660A, 660B are operated in the second dosing mode.
在步骤750中,控制器633使泵620和配给器660A、660B在第二配给模式下操作。在第二配给模式下,泵620向第一配给器660A供应还原剂,第二配给器660B以稳定状态将还原剂配给到分解室608中,并且第一配给器660A不配给还原剂。In step 750, the controller 633 operates the pump 620 and the dispensers 660A, 660B in the second dispensing mode. In the second dispensing mode, the pump 620 supplies the reductant to the first dispenser 660A, the second dispenser 660B dispenses the reductant into the decomposition chamber 608 at a steady state, and the first dispenser 660A does not dispense the reductant.
在步骤760中,当泵620和配给器660A、660B在第三配给模式下操作时,控制器633确定泵620的第三速度Ω3,以实现预定的目标压力Ptarget。In step 760, the controller 633 determines a third speed Ω 3 of the pump 620 to achieve a predetermined target pressure P target when the pump 620 and the dosing devices 660A, 660B are operated in the third dosing mode.
在步骤770中,控制器633基于第一速度Ω1、第二速度Ω2和第三速度Ω3生成的命令以配置泵620和配给器660A、660B。在一种方法中,控制器633可以根据等式(17)基于第一速度Ω1和第三速度Ω3确定偏移压力值ΔP。在一种方法中,控制器633可以根据等式(16)基于第一速度Ω1和第三速度Ω3确定偏移压力值ΔP。基于偏移压力值ΔP,控制器633可以根据根据等式(16)确定喷射器614B的有效孔面积Ainj2。此外,基于排量D、第一速度Ω1、第二速度Ω2,控制器633可以根据等式(19)确定喷射器614A的有效孔面积Ainj1。控制器633可以根据确定的值(例如,偏移压力值ΔP、喷射器614A的有效孔面积Ainj1、喷射器614B的有效孔面积Ainj2和排量D)更新泵流动模型,并基于更新的泵流动模型生成命令,从而以提高的精度控制后处理系统500或600。In step 770, the controller 633 generates commands based on the first speed Ω 1 , the second speed Ω 2 , and the third speed Ω 3 to configure the pump 620 and the dispensers 660A, 660B. In one approach, the controller 633 may determine the offset pressure value ΔP based on the first speed Ω 1 and the third speed Ω 3 according to equation (17). In one approach, the controller 633 may determine the offset pressure value ΔP based on the first speed Ω 1 and the third speed Ω 3 according to equation (16). Based on the offset pressure value ΔP, the controller 633 may determine the effective orifice area A inj2 of the injector 614B according to equation (16). In addition, based on the displacement D, the first speed Ω 1 , and the second speed Ω 2 , the controller 633 may determine the effective orifice area A inj1 of the injector 614A according to equation (19). Controller 633 may update the pump flow model according to the determined values (eg, offset pressure value ΔP, effective orifice area A inj1 of injector 614A, effective orifice area A inj2 of injector 614B, and displacement D) and generate commands based on the updated pump flow model to control aftertreatment system 500 or 600 with improved accuracy.
图8是示出基于不同模式下获得的不同泵速Ω1、Ω2、Ω3操作后处理系统500或600的示例过程800的流程图。在一些实施例中,过程800由控制器633执行。在一些实施例中,过程800由其他实体执行。在一些实施例中,过程800包括比图8中所示的更多、更少或不同的步骤。FIG8 is a flow chart showing an example process 800 for operating the aftertreatment system 500 or 600 based on different pump speeds Ω 1 , Ω 2 , Ω 3 obtained in different modes. In some embodiments, the process 800 is performed by the controller 633. In some embodiments, the process 800 is performed by other entities. In some embodiments, the process 800 includes more, fewer, or different steps than those shown in FIG8 .
在步骤810中,控制器633启动处理800。控制器633可以在后处理系统500或600首次部署时、部署后处理系统500或600之前、或者在安装泵620或配给器660A或配给器660B时启动处理800一次。当控制器633启动过程800时,诸如Dosing Cmd、Idle Learn、DosingLearn之类的变量可以被设置为初始值(例如,“0”)。控制器633可以在控制器633的存储器中存储Dosing Cmd、Idle learn、Dosing Learn的变量或指示符。Dosing Cmd可以是指示配给器660A或配给器660B是否正在将还原剂配给到一个或更多个分解室(或混合器570A、570B)中的指示器。Idle Learn可以是指示是否确定了空闲模式下的泵620的第一速度Ω1的指示器。Dosing Learn可以是指示是否确定了第一配给模式下的泵620的第二速度Ω2和第二配给模式下的泵620的第三速度Ω3的指示器。In step 810, the controller 633 starts the process 800. The controller 633 may start the process 800 once when the aftertreatment system 500 or 600 is first deployed, before the aftertreatment system 500 or 600 is deployed, or when the pump 620 or the dispenser 660A or the dispenser 660B is installed. When the controller 633 starts the process 800, variables such as Dosing Cmd, Idle Learn, DosingLearn, etc. may be set to initial values (e.g., "0"). The controller 633 may store variables or indicators of Dosing Cmd, Idle learn, Dosing Learn in the memory of the controller 633. Dosing Cmd may be an indicator indicating whether the dispenser 660A or the dispenser 660B is dispensing the reductant into one or more decomposition chambers (or mixers 570A, 570B). Idle Learn may be an indicator indicating whether the first speed Ω 1 of the pump 620 in the idle mode has been determined. Dosing Learn may be an indicator indicating whether the second speed Ω2 of the pump 620 in the first dosing mode and the third speed Ω3 of the pump 620 in the second dosing mode are determined.
在步骤815中,控制器633确定Dosing Cmd是否具有“0”的值。具有值“0”的DosingCmd可以指示后处理系统500或600在空闲模式下操作,而具有不同于“0”的值的Dosing Cmd可以指示后处理系统500或600在第一配给模式或第二配给模式下操作。响应于Dosing Cmd具有不同于“0”的值,控制器633可以进行到步骤835。响应于Dosing Cmd具有值“0”,控制器633可以等待泵速稳定。在步骤820中,当泵速在空闲模式下稳定以实现目标压力Ptarget时,控制器633可以确定泵620的泵速Ω1。在步骤825中,响应于确定泵620的泵速Ω1,控制器630可以将Idle Learn设置为具有值“1”。具有值“0”的Idle Learn可以指示在空闲模式下操作的泵620的泵速Ω1还没有确定,而具有值“1”的Idle Learn可以指示在空闲模式下操作的泵620的泵速Ω1已经确定。In step 815, the controller 633 determines whether Dosing Cmd has a value of "0". Dosing Cmd having a value of "0" may indicate that the aftertreatment system 500 or 600 is operating in the idle mode, while Dosing Cmd having a value different from "0" may indicate that the aftertreatment system 500 or 600 is operating in the first dosing mode or the second dosing mode. In response to Dosing Cmd having a value different from "0", the controller 633 may proceed to step 835. In response to Dosing Cmd having a value of "0", the controller 633 may wait for the pump speed to stabilize. In step 820, when the pump speed stabilizes in the idle mode to achieve the target pressure P target , the controller 633 may determine the pump speed Ω 1 of the pump 620. In step 825, in response to determining the pump speed Ω 1 of the pump 620, the controller 630 may set Idle Learn to have a value of "1". Idle Learn having a value of “0” may indicate that the pump speed Ω1 of the pump 620 operating in the idle mode has not been determined, whereas Idle Learn having a value of “1” may indicate that the pump speed Ω1 of the pump 620 operating in the idle mode has been determined.
在步骤830中,在步骤825中将Idle Learn设置为具有值“1”之后,控制器633可以确定Dosing Learn是否具有值“0”。具有值“0”的Dosing Learn可以指示还没有确定泵620在第一配给模式下操作的泵速Ω2和泵620在第二配给模式下操作的泵速Ω3,而具有值“1”的Dosing Learn可以指示已经确定泵620在第一配给模式下操作的泵速Ω2和泵620在第二配给模式下操作的泵速Ω3。在步骤855中,响应于确定Dosing Learn不具有值“0”(或者具有值“1”),控制器633可以根据等式(16)至等式(19)确定偏移压力值ΔP、喷射器614A的有效孔面积Ainj1、喷射器614B的有效孔面积Ainj2和排量D。根据偏移压力值ΔP、喷射器614A的有效孔面积Ainj1、喷射器614B的有效孔面积Ainj2和排量D,控制器633可以更新泵流动模型或等式(12)以提高后处理系统500或600的精度。此外,控制器633可以根据更新的泵流动模型生成电信号或命令以操作泵620和配给器660A、660B。In step 830, after setting Idle Learn to have a value of "1" in step 825, the controller 633 may determine whether Dosing Learn has a value of "0". Dosing Learn having a value of "0" may indicate that the pump speed Ω2 at which the pump 620 operates in the first dosing mode and the pump speed Ω3 at which the pump 620 operates in the second dosing mode have not yet been determined, while Dosing Learn having a value of "1" may indicate that the pump speed Ω2 at which the pump 620 operates in the first dosing mode and the pump speed Ω3 at which the pump 620 operates in the second dosing mode have already been determined. In step 855, in response to determining that Dosing Learn does not have a value of "0" (or has a value of "1"), the controller 633 may determine the offset pressure value ΔP, the effective orifice area A inj1 of the injector 614A, the effective orifice area A inj2 of the injector 614B, and the displacement D according to equations (16) to (19). Based on the offset pressure value ΔP, the effective orifice area A inj1 of injector 614A, the effective orifice area A inj2 of injector 614B, and the displacement D, the controller 633 may update the pump flow model or equation (12) to improve the accuracy of the aftertreatment system 500 or 600. In addition, the controller 633 may generate electrical signals or commands to operate the pump 620 and the dosing devices 660A, 660B based on the updated pump flow model.
在步骤835中,响应于确定Dosing Learn具有值“0”,控制器633可以确定DosingCmd是否大于阈值。阈值可以预先确定或调节。在一个方面,具有大于阈值的值的DosingCmd可以指示向一个或更多个分解室(例如,或混合器570A、570B)提供足够的还原剂以测量第一配给模式下的泵速Ω2和第二配给模式下的泵速Ω3,而具有小于或等于阈值的值的Dosing Cmd可以指示提供给一个或更多个分解室(例如,或混合器570A、570B)还原剂不足以测量第一配给模式下的泵速Ω2和第二配给模式下的泵速Ω3。因此,响应于确定DosingCmd具有小于或等于阈值的值,控制器633可以进行到步骤815。响应于确定Dosing Cmd具有大于阈值的值,控制器633可以配置配给器660A、660B在第一配给模式下操作并等待泵速稳定。在步骤840中,当泵速在第一配给模式下稳定以实现目标压力Ptarget时,控制器633可以确定泵620的泵速Ω2。响应于确定泵速Ω2,控制器633可以配置配给器660A、660B以在第二配给模式下操作。在步骤842中,当泵速在第二配给模式下稳定以实现第二配给模式下的目标压力Ptarget时,控制器633可以确定泵620的泵速Ω3。在步骤845中,响应于确定泵速Ω2、Ω3,控制器630可以将Dosing Learn设置为具有值“1”。In step 835, in response to determining that Dosing Learn has a value of "0", the controller 633 may determine whether DosingCmd is greater than a threshold value. The threshold value may be predetermined or adjusted. In one aspect, DosingCmd having a value greater than the threshold value may indicate that sufficient reductant is provided to one or more decomposition chambers (e.g., or mixers 570A, 570B) to measure the pump speed Ω2 in the first dosing mode and the pump speed Ω3 in the second dosing mode, while Dosing Cmd having a value less than or equal to the threshold value may indicate that the reductant provided to one or more decomposition chambers (e.g., or mixers 570A, 570B) is insufficient to measure the pump speed Ω2 in the first dosing mode and the pump speed Ω3 in the second dosing mode. Therefore, in response to determining that DosingCmd has a value less than or equal to the threshold value, the controller 633 may proceed to step 815. In response to determining that Dosing Cmd has a value greater than the threshold value, the controller 633 may configure the dispensers 660A, 660B to operate in the first dosing mode and wait for the pump speed to stabilize. In step 840, when the pump speed is stable in the first dosing mode to achieve the target pressure P target , the controller 633 may determine the pump speed Ω 2 of the pump 620. In response to determining the pump speed Ω 2 , the controller 633 may configure the dosing devices 660A, 660B to operate in the second dosing mode. In step 842, when the pump speed is stable in the second dosing mode to achieve the target pressure P target in the second dosing mode, the controller 633 may determine the pump speed Ω 3 of the pump 620. In step 845, in response to determining the pump speeds Ω 2 , Ω 3 , the controller 630 may set Dosing Learn to have a value of “1”.
在步骤850中,在步骤845中将Dosing Learn设置为具有值“1”之后,控制器633可以确定Idle Learn是否具有值“1”。响应于确定Idle Learn不具有值“1”,控制器633可以进行到步骤815。在步骤855中,响应于确定Idle Learn具有值“1”,控制器633可以根据等式(16)至等式(19)确定偏移压力值ΔP、喷射器614A的有效孔面积Ainj1、喷射器614B的有效孔面积Ainj2和排量D。根据偏移压力值ΔP、喷射器614A的有效孔面积Ainj1、喷射器614B的有效孔面积Ainj2和排量D,控制器633可以更新泵流动模型或等式(12)以提高后处理系统500或600的精度。此外,控制器633可以根据更新的泵流动模型生成电信号或命令以操作泵620和配给器660A、660B。In step 850, after setting Dosing Learn to have a value of "1" in step 845, the controller 633 may determine whether Idle Learn has a value of "1". In response to determining that Idle Learn does not have a value of "1", the controller 633 may proceed to step 815. In step 855, in response to determining that Idle Learn has a value of "1", the controller 633 may determine the offset pressure value ΔP, the effective orifice area A inj1 of the injector 614A, the effective orifice area A inj2 of the injector 614B, and the displacement D according to equations (16) to (19). According to the offset pressure value ΔP, the effective orifice area A inj1 of the injector 614A, the effective orifice area A inj2 of the injector 614B, and the displacement D, the controller 633 may update the pump flow model or equation (12) to improve the accuracy of the aftertreatment system 500 or 600. In addition, the controller 633 may generate an electrical signal or command to operate the pump 620 and the dosing devices 660A, 660B according to the updated pump flow model.
X.示例实施例的构造X. Configuration of Example Embodiments
虽然本说明书包含很多特定的实施方式细节,但是这些不应被解释为对可要求保护的内容的范围的限制,而是应被解释为特定的实施方式所特有的特征的描述。本说明书中在单独实施方式的上下文中描述的某些特征也可以在单个实施方式中组合地实施。相反,在单个实施方式的上下文中描述的各种特征也可以在多个实施方式中单独地或以任何合适的子组合方式来实施。而且,虽然特征可被描述为以某些组合起作用且甚至最初被这样要求保护,但是来自所要求保护的组合的一个或更多个特征在一些情况下可从该组合删除,且所要求保护的组合可涉及子组合或子组合的变形。Although this specification contains many specific implementation details, these should not be interpreted as limitations on the scope of the content that can be claimed, but should be interpreted as descriptions of features that are unique to specific implementations. Certain features described in the context of separate implementations in this specification may also be implemented in combination in a single implementation. On the contrary, the various features described in the context of a single implementation may also be implemented individually or in any suitable sub-combination in multiple implementations. Moreover, although features may be described as working in certain combinations and even initially claimed as such, one or more features from the claimed combination may be deleted from the combination in some cases, and the claimed combination may involve a sub-combination or a deformation of a sub-combination.
如本文中利用的,术语“大体上”、“大致”和类似的术语旨在具有与本公开的主题所属的领域中的普通技术人员的常见和被接受的使用一致的广泛含义。查阅本公开的本领域技术人员应当理解,这些术语旨在允许对所描述和要求保护的某些特征进行描述,而不将这些特征的范围限制到所提供的精确的数值范围。因此,这些术语应被解释为指示所描述和要求保护的主题的非实质性或无关紧要的修改或改变被认为在所附权利要求中所述的本发明的范围内。As utilized herein, the terms "substantially," "approximately," and similar terms are intended to have a broad meaning consistent with common and accepted usage by those of ordinary skill in the art to which the subject matter of the present disclosure belongs. Those skilled in the art who review the present disclosure should understand that these terms are intended to allow description of certain features described and claimed without limiting the scope of these features to the precise numerical ranges provided. Therefore, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the present invention as described in the appended claims.
本文中所使用的术语“联接”以及类似术语意味着两个部件彼此直接或间接地连结。这种连结可以是固定的(例如,永久的)或可移动的(例如,可移除的或可释放的)。这样的连结可以通过两个部件或两个部件和任何附加中间部件彼此一体地形成为单个整体来实现,通过两个部件或两个部件和任何附加中间部件彼此附接来实现。As used herein, the term "coupled" and similar terms mean the joining of two components directly or indirectly to one another. Such joining may be fixed (e.g., permanent) or movable (e.g., removable or releasable). Such joining may be achieved by the two components, or the two components and any additional intermediate components, being integrally formed as a single unitary body with one another, or by the two components, or the two components and any additional intermediate components, being attached to one another.
本文使用的术语“流体联接到”、“流体配置为与...连通”等意味着两个部件或物体具有形成在两个部件或物体之间的路径,在该路径中,流体(诸如空气、液体还原剂、气体还原剂、水性还原剂、气态氨等)可以在有或没有中间的部件或物体的情况下流动。用于实现流体连通的流体联接或构造的示例可包括管路、通道或用于实现流体从一个部件或对象到另一部件或对象的流动的任何其它适当的部件。As used herein, the terms "fluidically coupled to," "fluidically configured to communicate with," and the like mean that two components or objects have a path formed between the two components or objects in which a fluid (such as air, liquid reductant, gaseous reductant, aqueous reductant, gaseous ammonia, etc.) can flow with or without an intervening component or object. Examples of fluid couplings or configurations for achieving fluid communication may include pipes, channels, or any other suitable components for achieving the flow of a fluid from one component or object to another component or object.
重要的是要注意,在各个示例性实施方式中示出的系统的结构和布置在性质上只是说明性的而非限制性的。在所描述的实施方式的精神和/或范围内的所有改变和修改需要被保护。应该理解的是,一些特征可能不是必要的,且无各种特征的实施方式可被考虑为在该申请的范围内,所述范围由随后的权利要求限定。当语言“一部分”被使用时,该项可包括一部分和/或整个项,除非明确地相反地陈述。It is important to note that the structure and arrangement of the systems shown in the various exemplary embodiments are illustrative and non-restrictive in nature. All changes and modifications within the spirit and/or scope of the described embodiments need to be protected. It should be understood that some features may not be necessary, and embodiments without various features may be considered to be within the scope of this application, which is defined by the subsequent claims. When the language "a portion" is used, the item may include a portion and/or the entire item unless explicitly stated to the contrary.
Claims (28)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202163286231P | 2021-12-06 | 2021-12-06 | |
| US63/286,231 | 2021-12-06 | ||
| PCT/US2022/049280 WO2023107227A1 (en) | 2021-12-06 | 2022-11-08 | Controller and method for configuring pump and doser of aftertreatment system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN118202139A true CN118202139A (en) | 2024-06-14 |
Family
ID=86731091
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202280073732.6A Pending CN118202139A (en) | 2021-12-06 | 2022-11-08 | Controller for aftertreatment system and method for configuring pump and dispenser |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20250041802A1 (en) |
| CN (1) | CN118202139A (en) |
| DE (1) | DE112022005818T5 (en) |
| GB (1) | GB2627652A (en) |
| WO (1) | WO2023107227A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025058614A1 (en) * | 2023-09-11 | 2025-03-20 | Cummins Emission Solutions Inc. | Systems and methods for dual dosing system disruption detection |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8915062B2 (en) * | 2009-10-09 | 2014-12-23 | GM Global Technology Operations LLC | Method and apparatus for monitoring a reductant injection system in an exhaust aftertreatment system |
| US10662843B2 (en) * | 2014-07-18 | 2020-05-26 | Cummins Emission Solutions, Inc. | Exhaust after-treatment system and method with dual closed-loop reductant dosing systems |
| US10669911B2 (en) * | 2014-08-15 | 2020-06-02 | Robert Bosch Gmbh | Diesel exhaust fluid delivery system with pressure control |
| US10301996B2 (en) * | 2015-10-08 | 2019-05-28 | Cummins Emission Solutions Inc. | System and method for varying reductant delivery pressure to aftertreatment systems |
| US10494972B2 (en) * | 2016-11-04 | 2019-12-03 | Ford Global Technologies, Llc | System and method for diesel exhaust fluid injector cleaning |
| US10590823B2 (en) * | 2018-01-24 | 2020-03-17 | Tenneco Automotive Operating Company Inc. | Systems and methods for improving injector accuracy |
| US10753254B2 (en) * | 2018-03-06 | 2020-08-25 | Cummins Emission Solutions Inc. | Reductant insertion assemblies including multiple metering assemblies and a single pump |
-
2022
- 2022-11-08 WO PCT/US2022/049280 patent/WO2023107227A1/en not_active Ceased
- 2022-11-08 GB GB2407883.4A patent/GB2627652A/en active Pending
- 2022-11-08 DE DE112022005818.8T patent/DE112022005818T5/en active Pending
- 2022-11-08 CN CN202280073732.6A patent/CN118202139A/en active Pending
- 2022-11-08 US US18/716,197 patent/US20250041802A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| GB202407883D0 (en) | 2024-07-17 |
| GB2627652A (en) | 2024-08-28 |
| US20250041802A1 (en) | 2025-02-06 |
| DE112022005818T5 (en) | 2024-09-19 |
| WO2023107227A1 (en) | 2023-06-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8132405B2 (en) | Exhaust emission purifying apparatus for engine | |
| US10315162B2 (en) | Reagent doser diagnostic system and method | |
| US9546584B2 (en) | Multi-stage SCR system | |
| US8209966B2 (en) | Exhaust emission control device for internal combustion | |
| CN101257963B (en) | Method of operating an internal combustion engine and device for performing the method | |
| CN110805483B (en) | A fault diagnosis method for gas-assisted SCR with low urea consumption | |
| US9181834B2 (en) | Method and device for adapting the injection agent supply in an injection system, and exhaust gas aftertreatment system | |
| CN102454460B (en) | For carrying out the method for ammonia jet quality measurement to the after-treatment system on motor vehicle | |
| US20090049899A1 (en) | Diagnostic method for an exhaust aftertreatment system | |
| WO2011148814A1 (en) | Selective catalytic reduction system | |
| CN101896701A (en) | Apparatus for making diagnosis of abnormality of NOx catalyst and method for making diagnosis of abnormality | |
| CN110637148B (en) | System and method for controlling flow distribution in an aftertreatment system | |
| CN110344918B (en) | Method for checking the function of an exhaust gas aftertreatment device | |
| US9221014B2 (en) | Fluid injection control system | |
| CN118202139A (en) | Controller for aftertreatment system and method for configuring pump and dispenser | |
| CN102235219A (en) | Method to estimate NO2 concentration in an exhaust gas of an internal combustion engine | |
| CN113348298B (en) | Method for injecting ammonia in gaseous form into a heat engine exhaust line | |
| US10156173B1 (en) | Systems and methods for compensating a reductant delivery system in an aftertreatment system of an internal combustion engine | |
| US10619541B2 (en) | Reductant dosing quantity correction based on accumulated error during reductant insertion | |
| US9228467B2 (en) | Urea injection controller for a motorized system | |
| CN112262253B (en) | Dynamic monitoring of the flow of a liquid additive injected into a motor vehicle exhaust gas treatment system | |
| CN118911802A (en) | Method for operating an SCR system | |
| CN113330197A (en) | System and method for correcting a reductant delivery system in an exhaust aftertreatment system of an internal combustion engine | |
| CN118686688A (en) | Method for controlling an SCR system having an intake line and a return line for an internal combustion engine | |
| US11668220B2 (en) | Flash boiling injection control |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |