CN118256467B - Terminal deoxynucleotidyl transferase variants, nucleic acids and uses - Google Patents
Terminal deoxynucleotidyl transferase variants, nucleic acids and uses Download PDFInfo
- Publication number
- CN118256467B CN118256467B CN202410333012.XA CN202410333012A CN118256467B CN 118256467 B CN118256467 B CN 118256467B CN 202410333012 A CN202410333012 A CN 202410333012A CN 118256467 B CN118256467 B CN 118256467B
- Authority
- CN
- China
- Prior art keywords
- deoxynucleotidyl transferase
- terminal deoxynucleotidyl
- stranded dna
- nucleotide
- tdt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
- C12N9/1264—DNA nucleotidylexotransferase (2.7.7.31), i.e. terminal nucleotidyl transferase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/34—Polynucleotides, e.g. nucleic acids, oligoribonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
- C12Y207/07031—DNA nucleotidylexotransferase (2.7.7.31), i.e. terminal deoxynucleotidyl transferase
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明涉及末端脱氧核苷酸转移酶变体、核酸及应用,涉及基因工程领域。其包括野生型或携带突变的末端脱氧核苷酸转移酶(TdT)、单链DNA稳定因子(sSF)和柔性连接子;所述单链DNA稳定因子通过所述柔性连接子融合至所述末端脱氧核苷酸转移酶的N末端或/和C末端,或者插入至所述末端脱氧核苷酸转移酶的序列中间处。本发明获得了不依赖于模板的末端脱氧核苷酸转移酶突变体,这些TdT突变体能显著提高其耦合天然核苷酸和3’‑OH修饰核苷酸的效率,同时增强了3’‑OH修饰核苷酸掺入到具有发卡二级结构寡核苷酸的合成效率,可用于高效可控的合成寡核苷酸,这些TdT突变体可用于酶促寡核苷酸的合成,或用于其他循环合成功能DNA片段。
The present invention relates to terminal deoxynucleotidyl transferase variants, nucleic acids and applications, and relates to the field of genetic engineering. It includes wild-type or mutant terminal deoxynucleotidyl transferase (TdT), single-stranded DNA stabilizing factor (sSF) and flexible linker; the single-stranded DNA stabilizing factor is fused to the N-terminus or/and C-terminus of the terminal deoxynucleotidyl transferase through the flexible linker, or inserted into the middle of the sequence of the terminal deoxynucleotidyl transferase. The present invention obtains terminal deoxynucleotidyl transferase mutants that are independent of templates, and these TdT mutants can significantly improve their efficiency of coupling natural nucleotides and 3'-OH modified nucleotides, while enhancing the synthesis efficiency of 3'-OH modified nucleotides incorporated into oligonucleotides with hairpin secondary structures, which can be used for efficient and controllable synthetic oligonucleotides, and these TdT mutants can be used for the synthesis of enzymatic oligonucleotides, or for other cyclic synthesis of functional DNA fragments.
Description
技术领域Technical Field
本发明涉及基因工程领域,具体涉及末端脱氧核苷酸转移酶变体、核酸及应用。The present invention relates to the field of genetic engineering, and in particular to terminal deoxynucleotidyl transferase variants, nucleic acids and applications.
背景技术Background Art
DNA是自然进化的超级信息存储载体,人工获取DNA是未来信息存储技术的重要基础。现有从头合成DNA的关键方法包括:化学合成法和生物合成法。其中传统的化学合成法虽然在工业制备寡核苷酸链中被广泛使用,但是化学法大量使用有毒、易燃的有机试剂,污染较大。并且由于化学方法的极限,一次性寡核苷酸的合成长度存在限制。因此,如何采用生物合成法实现温和、环境友好的寡核苷酸的可控合成,逐渐成为DNA合成及存储的研究核心。DNA is a super information storage carrier evolved by nature, and artificial DNA is an important foundation for future information storage technology. The key methods for synthesizing DNA from scratch include chemical synthesis and biosynthesis. Although the traditional chemical synthesis method is widely used in the industrial preparation of oligonucleotide chains, the chemical method uses a large amount of toxic and flammable organic reagents, which causes great pollution. And due to the limitations of chemical methods, the synthesis length of disposable oligonucleotides is limited. Therefore, how to use biosynthesis to achieve the controllable synthesis of mild and environmentally friendly oligonucleotides has gradually become the research core of DNA synthesis and storage.
末端脱氧核糖核苷转移酶(TdT)不依赖模板DNA序列,对四种核苷酸的偏好性差异小且偶联效率高,可持续合成并延伸单链DNA,产生长达8000nt的均聚物,是最具前景的DNA合成工具酶。为了利用TdT实现可控的DNA单链合成,针对TdT合成酶的改造方向集中在提高TdT将非天然3'-OH端携带阻断基团的核苷三磷酸掺入到多核苷酸中的活性,携带阻断基团的核苷酸需要被进一步切除可逆基团后才能进入下一步合成循环,从而实现酶促反应的高效可控操作,例如专利CN110331136B,CN113302289A,CN114207140A。Terminal deoxyribonucleoside transferase (TdT) is independent of the template DNA sequence, has a small preference for the four nucleotides and high coupling efficiency, can continuously synthesize and extend single-stranded DNA, and produce homopolymers up to 8000 nt, making it the most promising DNA synthesis tool enzyme. In order to use TdT to achieve controllable single-stranded DNA synthesis, the modification direction of TdT synthetase is focused on improving the activity of TdT in incorporating nucleoside triphosphates carrying blocking groups at the non-natural 3'-OH end into polynucleotides. The nucleotides carrying blocking groups need to be further cleaved of the reversible group before entering the next synthesis cycle, thereby achieving efficient and controllable operation of the enzymatic reaction, such as patents CN110331136B, CN113302289A, and CN114207140A.
此外,Keasling团队发展了将TdT与单个核苷三磷酸进行可逆共价连接方法,阻止TdT催化合成的DNA链的进一步延伸,当可逆共价键断裂后,DNA链便可以进入新的合成循环。基于创新型TdT的可控DNA合成得到了学术界和工业界的普遍关注。然而,随着DNA链长的延伸,DNA单链容易形成各种发卡结构,3’末端附近碱基一旦参与形成二级结构,将直接阻碍TdT对DNA链的识别,进而损害TdT的延伸效率。因TdT越发显著的DNA合成应用,开发耐受长链二级结构的高活性TdT十分必要。In addition, Keasling’s team developed a method for reversibly covalently linking TdT to a single nucleoside triphosphate to prevent further extension of the DNA chain synthesized by TdT. When the reversible covalent bond is broken, the DNA chain can enter a new synthesis cycle. Controllable DNA synthesis based on innovative TdT has received widespread attention from academia and industry. However, as the length of the DNA chain increases, single-stranded DNA is prone to form various hairpin structures. Once the bases near the 3’ end participate in the formation of secondary structures, they will directly hinder TdT’s recognition of the DNA chain, thereby impairing the extension efficiency of TdT. Due to the increasingly significant application of TdT in DNA synthesis, it is necessary to develop highly active TdT that can tolerate long-chain secondary structures.
发明内容Summary of the invention
本发明所要解决的技术问题是提供末端脱氧核苷酸转移酶变体、核酸及应用。目的是通过将一些单链DNA稳定因子融合到现有的TdT,实现以高结合力包裹单链DNA从而预防二级结构的生成,提高TdT在长链DNA合成的效率。The technical problem to be solved by the present invention is to provide terminal deoxynucleotidyl transferase variants, nucleic acids and applications. The purpose is to achieve wrapping of single-stranded DNA with high binding force to prevent the formation of secondary structures by fusing some single-stranded DNA stabilizing factors to existing TdT, thereby improving the efficiency of TdT in long-chain DNA synthesis.
本发明解决上述技术问题的技术方案如下:The technical solution of the present invention to solve the above technical problems is as follows:
第一方面,末端脱氧核苷酸转移酶变体,其包括野生型或携带突变的末端脱氧核苷酸转移酶(TdT)、单链DNA稳定因子(sSF)和柔性连接子;所述单链DNA稳定因子通过所述柔性连接子融合至所述末端脱氧核苷酸转移酶的N末端或/和C末端,或者所述单链DNA稳定因子通过所述柔性连接子插入至所述末端脱氧核苷酸转移酶的序列中间处。In the first aspect, a terminal deoxynucleotidyl transferase variant comprises a wild-type or mutant terminal deoxynucleotidyl transferase (TdT), a single-stranded DNA stabilizing factor (sSF) and a flexible linker; the single-stranded DNA stabilizing factor is fused to the N-terminus and/or C-terminus of the terminal deoxynucleotidyl transferase via the flexible linker, or the single-stranded DNA stabilizing factor is inserted into the middle of the sequence of the terminal deoxynucleotidyl transferase via the flexible linker.
进一步,所述单链DNA稳定因子具有以mM或mM以下水平的结合能,结合或包裹单链DNA的蛋白质结构域或子结构域。Furthermore, the single-stranded DNA stabilizing factor has a protein domain or subdomain that binds to or wraps single-stranded DNA with a binding energy at a level of mM or below mM.
进一步,所述单链DNA稳定因子来源于生物体;所述生物体包括病毒(例如T4噬菌体、T7噬菌体)、原核生物,细菌(例如大肠杆菌)、古细菌(例如超嗜热古菌、水生栖热菌)、真核生物中的任意一种。Furthermore, the single-stranded DNA stabilizing factor is derived from an organism; the organism includes any one of a virus (such as T4 phage, T7 phage), a prokaryotic organism, a bacterium (such as Escherichia coli), an archaeon (such as hyperthermophilic archaea, Thermus aquaticus), and a eukaryotic organism.
其中,真核生物可以是低等真核生物,诸如酵母(例如巴斯德毕赤酵母)或真菌(例如属曲霉属(Aspergillus)或高等真核生物诸如植物(例如拟南芥)、爬行动物(例如鸟类)或哺乳动物(例如人)等。The eukaryotic organism may be a lower eukaryotic organism, such as yeast (e.g., Pichia pastoris) or fungi (e.g., Aspergillus), or a higher eukaryotic organism, such as a plant (e.g., Arabidopsis), a reptile (e.g., a bird), or a mammal (e.g., a human).
进一步,所述单链DNA稳定因子的序列如SEQ ID NO:1至SEQ ID NO:6任意一项所示;所述末端脱氧核苷酸转移酶的序列如SEQ ID NO:7或SEQ ID NO:8所示。Furthermore, the sequence of the single-stranded DNA stabilizing factor is shown in any one of SEQ ID NO:1 to SEQ ID NO:6; the sequence of the terminal deoxynucleotidyl transferase is shown in SEQ ID NO:7 or SEQ ID NO:8.
进一步,所述柔性连接子以甘氨酸(G)、丝氨酸(S)为重复模块的序列:(GS)m,其中m=0~20,m为零或整数,例如可以是1,2,4,6,8,10;或者所述柔性连接子以甘氨酸(G)为重复模块的序列:(G)n,其中n=0~40,n为为零或整数。Furthermore, the flexible linker has a sequence of glycine (G) and serine (S) as a repeating module: (GS) m , wherein m=0-20, m is zero or an integer, for example, 1, 2, 4, 6, 8, 10; or the flexible linker has a sequence of glycine (G) as a repeating module: (G) n , wherein n=0-40, n is zero or an integer.
进一步,所述末端脱氧核苷酸转移酶变体的序列如SEQ ID NO 9至SEQ ID NO 15任意一项所示。Furthermore, the sequence of the terminal deoxynucleotidyl transferase variant is shown in any one of SEQ ID NO 9 to SEQ ID NO 15.
第二方面,一种核酸,所述的核酸编码所述末端脱氧核苷酸转移酶变体。The second aspect provides a nucleic acid encoding the terminal deoxynucleotidyl transferase variant.
第三方面,一种在没有模板链的情况下合成核酸分子的方法,包括如下步骤:在所述末端脱氧核苷酸转移酶变体的存在下,使起始核苷酸链与至少一种核苷酸接触。In a third aspect, a method for synthesizing a nucleic acid molecule in the absence of a template chain comprises the following steps: contacting a starting nucleotide chain with at least one nucleotide in the presence of the terminal deoxynucleotidyl transferase variant.
进一步,所述末端脱氧核苷酸转移酶变体与核苷酸进行耦合;所述核苷酸为天然核苷酸或者3’-OH端经修饰的核苷酸,所述3’-OH端经修饰的核苷酸为3’-OH端加入阻断基团修饰的核苷酸。Furthermore, the terminal deoxynucleotidyl transferase variant is coupled with a nucleotide; the nucleotide is a natural nucleotide or a nucleotide with a modified 3'-OH end, and the nucleotide with a modified 3'-OH end is a nucleotide with a blocking group added to the 3'-OH end.
第四方面,一种试剂盒,所述的试剂盒包括所述末端脱氧核苷酸转移酶变体,一个或多个核苷酸,和至少一个起始核苷酸链。In a fourth aspect, a kit is provided, comprising the terminal deoxynucleotidyl transferase variant, one or more nucleotides, and at least one starting nucleotide chain.
本发明的有益效果是:本发明获得了不依赖于模板的末端转移酶(TdT)突变体,这些突变体能显著提高其耦合天然核苷酸和3’-OH修饰核苷酸的效率,同时增强了3’-OH修饰核苷酸掺入到具有发卡二级结构DNA的合成效率,可用于高效可控的合成寡核苷酸,这些TdT突变体可用于酶促寡核苷酸的合成,或用于其他循环合成功能DNA片段。The beneficial effects of the present invention are as follows: the present invention obtains terminal transferase (TdT) mutants that are independent of templates, and these mutants can significantly improve their efficiency in coupling natural nucleotides and 3'-OH modified nucleotides, while enhancing the synthesis efficiency of 3'-OH modified nucleotides incorporated into DNA with a hairpin secondary structure, and can be used for efficient and controllable synthesis of oligonucleotides. These TdT mutants can be used for the synthesis of enzymatic oligonucleotides, or for other cyclic synthesis of functional DNA fragments.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明方法中TdT变体的构建示意图;FIG1 is a schematic diagram of the construction of TdT variants in the method of the present invention;
图2为本发明TdT蛋白表达纯化SDS-PAGE图;其中,WT-Ms(Lane 2):小鼠种属来源TdT;Sso-Ms(Lane 3):融合了超嗜热古菌SSB的小鼠TdT新变体;WT-Za(Lane5):白喉雀种属来源TdT;Ec-Za(Lane 6):融合了大肠杆菌SSB的白喉雀新变体;Sso-Za(Lane 7):融合了超嗜热古菌SSB的白喉雀新变体;T4-Za(Lane 8):融合了T4噬菌体SSB的白喉雀新变体;T7-Za(Lane 9):融合了T7噬菌体SSB的白喉雀新变体;Hs-Za(Lane 10):融合了人源SSB的白喉雀新变体;Taq-Za(Lane 11):融合了水生栖热菌Taq SSB的白喉雀新变体。Figure 2 is an SDS-PAGE diagram of the expression and purification of the TdT protein of the present invention; wherein, WT-Ms (Lane 2): TdT from mouse species; Sso-Ms (Lane 3): a new variant of mouse TdT fused with the hyperthermophilic archaeon SSB; WT-Za (Lane 5): TdT from the white-throated sparrow species; Ec-Za (Lane 6): a new variant of the white-throated sparrow fused with the Escherichia coli SSB; Sso-Za (Lane 7): a new variant of the white-throated sparrow fused with the hyperthermophilic archaeon SSB; T4-Za (Lane 8): a new variant of the white-throated sparrow fused with the T4 phage SSB; T7-Za (Lane 9): a new variant of the white-throated sparrow fused with the T7 phage SSB; Hs-Za (Lane 10): a new variant of the white-throated sparrow fused with the human SSB; Taq-Za (Lane 11): a new variant of the white-throated sparrow fused with the aquatic Thermus Taq A new variant of the White-throated Sparrow of SSB.
图3为本发明天然核苷酸反应图;其中,NC:阴性对照,仅有起始核苷酸;Za:加入白喉雀种属TdT;Sso-Za:融合了超嗜热古菌SSB的白喉雀新变体;Ec-Za:融合了大肠杆菌SSB的白喉雀新变体;Ms:加入小鼠TdT;SSo-Ms:融合了超嗜热古菌SSB的小鼠TdT新变体。Figure 3 is a natural nucleotide reaction diagram of the present invention; wherein, NC: negative control, only starting nucleotide; Za: adding TdT of white-throated sparrow species; Sso-Za: a new variant of white-throated sparrow fused with hyperthermophilic archaeon SSB; Ec-Za: a new variant of white-throated sparrow fused with Escherichia coli SSB; Ms: adding mouse TdT; SSo-Ms: a new variant of mouse TdT fused with hyperthermophilic archaeon SSB.
图4为本发明3’-OH末端修饰的核苷酸掺入效率;其中,柱状图代表野生型白喉雀TdT(灰色)、融合超嗜热古菌SSB的白喉雀TdT(红色)、融合大肠杆菌SSB的白喉雀TdT(红色)分别催化四种3’末端被氨基修饰的核苷酸掺入效率。Figure 4 shows the incorporation efficiency of nucleotides modified at the 3'-OH end of the present invention; wherein, the bar graph represents the incorporation efficiency of four nucleotides modified with amino groups at the 3' end catalyzed by wild-type white-throated sparrow TdT (gray), white-throated sparrow TdT fused with hyperthermophilic archaea SSB (red), and white-throated sparrow TdT fused with Escherichia coli SSB (red).
图5为本发明发卡结构DNA单链掺入非天然核苷酸反应图;其中,测试了四种包含发卡二级结构的DNA单链;L14S9:5’和3’共14个碱基互补配对,形成由9个碱基组成的loop;L14S9+2:相比L14S9 3’端多两个碱基;L14S9+4:相比L14S9 3’端多四个碱基;L14S9+6:相比L14S9 3’端多六个碱基;FIG5 is a reaction diagram of the incorporation of non-natural nucleotides into a single-stranded hairpin structure DNA of the present invention; wherein four single-stranded DNAs containing a hairpin secondary structure were tested; L14S9: 14 bases in total at 5' and 3' are complementary to form a loop consisting of 9 bases; L14S9+2: two more bases than at the 3' end of L14S9; L14S9+4: four more bases than at the 3' end of L14S9; L14S9+6: six more bases than at the 3' end of L14S9;
图6为本发明末端脱氧核苷酸核酸转移酶变体固相催化寡核苷酸聚合的反应应用;使用白喉雀种属变体Ec-Za TdT进行固相合成,共十个循环;NC:不加入TdT。FIG6 is a reaction application of the solid phase catalytic oligonucleotide polymerization of the terminal deoxynucleotidyl transferase variant of the present invention; solid phase synthesis was performed using the white-throated finches species variant Ec-Za TdT, for a total of ten cycles; NC: no TdT was added.
具体实施方式DETAILED DESCRIPTION
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购得的常规产品。The principles and features of the present invention are described below, and the examples are only used to explain the present invention and are not used to limit the scope of the present invention. If no specific technology or conditions are specified in the embodiments, the technology or conditions described in the literature in this field or the product instructions are used. If the manufacturer of the reagents or instruments used is not specified, they are all conventional products that can be purchased through regular channels.
定义与说明Definition and Explanation
本发明中单链DNA稳定因子定义为:能够以高亲和力结合并包裹单链DNA的蛋白质结构域或子结构域,以保护单链DNA免遭降解并防止二级结构形成。该术语来源于早期对单链DNA结合蛋白(SSB)的功能研究,SSB被发现具有加速打开DNA螺旋结构、结合DNA游离单链从而稳定单链结构、最终促进DNA复制的功能,本发明术语延用这一概念。但应当注意,本发明的DNA稳定因子包括但不限于已知的SSB,其它具有类似属性的生物结构(例如蛋白质结构域)或化学结构(例如环肽、修饰多肽、核酸适配体等)都应当属于本发明定义的单链DNA稳定因子范畴。In the present invention, the single-stranded DNA stabilizing factor is defined as: a protein domain or subdomain that can bind and wrap single-stranded DNA with high affinity to protect the single-stranded DNA from degradation and prevent the formation of secondary structure. The term comes from the early functional research on single-stranded DNA binding protein (SSB). SSB was found to have the function of accelerating the opening of DNA helical structure, binding to free single-stranded DNA to stabilize the single-stranded structure, and ultimately promoting DNA replication. The terminology of the present invention continues to use this concept. However, it should be noted that the DNA stabilizing factor of the present invention includes but is not limited to the known SSB, and other biological structures (such as protein domains) or chemical structures (such as cyclic peptides, modified polypeptides, nucleic acid aptamers, etc.) with similar properties should belong to the category of single-stranded DNA stabilizing factors defined in the present invention.
本发明中氨基酸由单字母或三字母代码表示,具有如下含义:A:Ala(丙氨酸);R:Arg(精氨酸);N:Asn(天冬酰胺);D:Asp(天冬氨酸);C:Cys(半胱氨酸);Q:Gln(谷氨酰胺);E:Glu(谷氨酸);G:Gly(甘氨酸);H:His(组氨酸);I:Ile(异亮氨酸);L:Leu(亮氨酸);K:Lys(赖氨酸);M:Met(甲硫氨酸);F:Phe(苯丙氨酸);P:Pro(脯氨酸);S:Ser(丝氨酸);T:Thr(苏氨酸);W:Trp(色氨酸);Y:Tyr(酪氨酸);V:Val(缬氨酸)。In the present invention, amino acids are represented by single-letter or three-letter codes and have the following meanings: A: Ala (alanine); R: Arg (arginine); N: Asn (asparagine); D: Asp (aspartic acid); C: Cys (cysteine); Q: Gln (glutamine); E: Glu (glutamic acid); G: Gly (glycine); H: His (histidine); I: Ile (isoleucine); L: Leu (leucine); K: Lys (lysine); M: Met (methionine); F: Phe (phenylalanine); P: Pro (proline); S: Ser (serine); T: Thr (threonine); W: Trp (tryptophan); Y: Tyr (tyrosine); V: Val (valine).
本发明中,术语“转化”指将DNA导入宿主细胞以便DNA可作为染色体外元件或通过染色体整合被复制。即,转化指通过将外源DNA导入细胞引起的基因的合成改变。术语“由转化体产生的末端脱氧核糖核苷转移酶”指根据已知的培养微生物的方法通过培养转化体而获得的产物。In the present invention, the term "transformation" refers to the introduction of DNA into a host cell so that the DNA can be replicated as an extrachromosomal element or by chromosomal integration. That is, transformation refers to the synthetic change of a gene caused by the introduction of exogenous DNA into a cell. The term "terminal deoxyribonucleoside transferase produced by a transformant" refers to a product obtained by culturing a transformant according to a known method for culturing a microorganism.
本发明中,“核酸分子的合成”包括合成DNA(脱氧核糖核酸)或RNA(核糖核酸)长度的方法,其中通过加入另外的核苷酸(n+1)延伸核酸(n)的链。在一个实施方案中,核酸是DNA。在替代实施方案中,核酸是RNA。例如,通过加入另外的核苷酸(n+1)延伸DNA链(n)的DNA链合成方法。本文描述的方法提供了本发明的末端脱氧核苷酸转移酶和3’可逆修饰的核苷酸在从头DNA链合成中依次加入核苷酸的新用途。In the present invention, "synthesis of nucleic acid molecules" includes methods for synthesizing lengths of DNA (deoxyribonucleic acid) or RNA (ribonucleic acid), wherein the chain of nucleic acid (n) is extended by adding additional nucleotides (n+1). In one embodiment, the nucleic acid is DNA. In alternative embodiments, the nucleic acid is RNA. For example, a DNA chain synthesis method in which DNA chain (n) is extended by adding additional nucleotides (n+1). The methods described herein provide new uses of the terminal deoxynucleotidyl transferase of the present invention and 3' reversibly modified nucleotides for sequentially adding nucleotides in de novo DNA chain synthesis.
本发明中,术语“核苷酸”可以是脱氧核糖核苷酸(dNTPs)或者双脱氧核糖核苷酸(ddNTPs);在一个实施方案中,所述核苷酸可以是核苷酸三磷酸,是指含有与三个磷酸酯基团结合的核苷(即与脱氧核糖或核糖分子连接的碱基)的分子。含有脱氧核糖的核苷酸三磷酸的实例是:脱氧腺苷三磷酸(dATP)、脱氧鸟苷三磷酸(dGTP)、脱氧胞苷三磷酸(dCTP)或脱氧胸苷三磷酸(dTTP)。含有核糖的核苷酸三磷酸的实例是:腺苷三磷酸(ATP)、鸟苷三磷酸(GTP)、胞苷三磷酸(CTP)或尿苷三磷酸(UTP),还可以是其他核苷与三个磷酸酯结合以形成核苷酸三磷酸,例如天然存在的修饰核苷和人工核苷。本发明中对“3’-OH端经修饰的核苷酸”是指在3’-OH端具有额外的基团的核苷酸(例如dATP、dGTP、dCTP或dTTP),其防止反应过程中进一步加入核苷酸,即通过用阻断基团替代3’-OH基。应当理解,本方法使用可逆的3’端阻断基团,其可通过切割(例如裂解剂)而被除去,以允许加入额外的核苷酸。In the present invention, the term "nucleotide" may be a deoxyribonucleotide (dNTPs) or a dideoxyribonucleotide (ddNTPs); in one embodiment, the nucleotide may be a nucleotide triphosphate, which refers to a molecule containing a nucleoside (i.e., a base linked to a deoxyribose or ribose molecule) bound to three phosphate groups. Examples of nucleotide triphosphates containing deoxyribose are: deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), deoxycytidine triphosphate (dCTP), or deoxythymidine triphosphate (dTTP). Examples of nucleotide triphosphates containing ribose are: adenosine triphosphate (ATP), guanosine triphosphate (GTP), cytidine triphosphate (CTP), or uridine triphosphate (UTP), and other nucleosides may be bound to three phosphates to form nucleotide triphosphates, such as naturally occurring modified nucleosides and artificial nucleosides. In the present invention, "3'-OH terminal modified nucleotides" refer to nucleotides with additional groups at the 3'-OH terminal (e.g., dATP, dGTP, dCTP or dTTP) that prevent further addition of nucleotides during the reaction, i.e., by replacing the 3'-OH group with a blocking group. It should be understood that the present method uses a reversible 3'-terminal blocking group that can be removed by cleavage (e.g., a cleaving agent) to allow the addition of additional nucleotides.
本发明中“TdT”是指末端脱氧核苷酸转移酶(TdT),并且包括对所述酶的纯化和重组形式的参考。TdT也通常称为DNTT(DNA核苷酸转移酶),任何这样的术语都应该互换使用。本发明的末端脱氧核苷酸转移酶(TdT)在包含一种或多种缓冲液(例如,Tris、Hepes、Mops、磷酸盐、碳酸盐或二甲基胂酸盐等)、一种或多种盐(例如Na+、K+、Mg2+、Mn2+、Cu2+、Zn2+、Co2+等,均具有适当的平衡离子,如Cl-)、一种或多种稳定蛋白结构的溶液(例如,甘油、PMSF或曲拉通等)和无机焦磷酸酶(例如,酿酒酵母同源物)的延伸溶液存在下加入。应当理解,缓冲液和盐的选择取决于最佳的酶活性和稳定性。"TdT" in the present invention refers to terminal deoxynucleotidyl transferase (TdT), and includes references to purified and recombinant forms of the enzyme. TdT is also commonly referred to as DNTT (DNA nucleotidyl transferase), and any such terms should be used interchangeably. The terminal deoxynucleotidyl transferase (TdT) of the present invention is added in the presence of an extension solution comprising one or more buffers (e.g., Tris, Hepes, Mops, phosphate, carbonate or dimethyl arsenate, etc.), one or more salts (e.g., Na + , K + , Mg2 + , Mn2 + , Cu2 + , Zn2 + , Co2 +, etc., all with appropriate counterions, such as Cl- ), one or more solutions of stabilizing protein structures (e.g., glycerol, PMSF or Triton, etc.) and an inorganic pyrophosphatase (e.g., a Saccharomyces cerevisiae homolog). It should be understood that the selection of buffers and salts depends on optimal enzyme activity and stability.
本实施例涉及末端脱氧核苷酸转移酶变体,其包括野生型或携带突变的末端脱氧核苷酸转移酶(TdT)、单链DNA稳定因子(sSF)和柔性连接子;所述单链DNA稳定因子通过所述柔性连接子融合至所述末端脱氧核苷酸转移酶的N末端或/和C末端,或者所述单链DNA稳定因子通过所述柔性连接子插入至所述末端脱氧核苷酸转移酶的序列中间处。This embodiment relates to a terminal deoxynucleotidyl transferase variant, which includes a wild-type or mutant terminal deoxynucleotidyl transferase (TdT), a single-stranded DNA stabilizing factor (sSF) and a flexible linker; the single-stranded DNA stabilizing factor is fused to the N-terminus and/or C-terminus of the terminal deoxynucleotidyl transferase through the flexible linker, or the single-stranded DNA stabilizing factor is inserted into the middle of the sequence of the terminal deoxynucleotidyl transferase through the flexible linker.
本发明的末端脱氧核苷酸转移酶变体具体的连接方式为式Ⅰ、式Ⅱ或式Ⅲ等:式Ⅰ至Ⅲ中,sSF代表单链DNA稳定因子,TdT代表末端脱氧核苷酸转移酶,TdT-A和TdT-B代表末端脱氧核苷酸转移酶组成的两个部分;式Ⅰ表示单链DNA稳定因子融合在TdT的N末端;式Ⅱ表示单链DNA稳定因子融合在TdT的C末端;式Ⅲ表示单链DNA稳定因子融合在TdT的序列中间。The specific connection mode of the terminal deoxynucleotidyl transferase variant of the present invention is Formula I, Formula II or Formula III, etc.: In formulas Ⅰ to Ⅲ, sSF represents a single-stranded DNA stabilizing factor, TdT represents terminal deoxynucleotidyl transferase, TdT-A and TdT-B represent two parts of terminal deoxynucleotidyl transferase; formula Ⅰ indicates that the single-stranded DNA stabilizing factor is fused to the N-terminus of TdT; formula Ⅱ indicates that the single-stranded DNA stabilizing factor is fused to the C-terminus of TdT; formula Ⅲ indicates that the single-stranded DNA stabilizing factor is fused in the middle of the TdT sequence.
本实施例优选的,所述单链DNA稳定因子具有以mM或mM以下水平的结合能,例如mM、μM、nM、pM等结合力,结合或包裹单链DNA的蛋白质结构域或子结构域。所述单链DNA稳定因子能够保护DNA单链免遭降解并防止二级结构形成。In this embodiment, the single-stranded DNA stabilizing factor has a binding energy at a level of mM or below, such as mM, μM, nM, pM, etc., to bind or wrap the protein domain or subdomain of the single-stranded DNA. The single-stranded DNA stabilizing factor can protect the DNA single strand from degradation and prevent the formation of secondary structures.
本实施例优选的,所述单链DNA稳定因子来源于生物体;所述生物体包括病毒(例如T4噬菌体、T7噬菌体)、原核生物,细菌(例如大肠杆菌)、古细菌(例如超嗜热古菌、水生栖热菌)、真核生物中的任意一种。In this embodiment, the single-stranded DNA stabilizing factor is preferably derived from an organism; the organism includes any one of a virus (such as T4 phage, T7 phage), a prokaryotic organism, a bacterium (such as Escherichia coli), an archaeon (such as hyperthermophilic archaea, Thermus aquaticus), and a eukaryotic organism.
其中,真核生物可以是低等真核生物,诸如酵母(例如巴斯德毕赤酵母)或真菌(例如属曲霉属(Aspergillus)或高等真核生物诸如植物(例如拟南芥)、爬行动物(例如鸟类)或哺乳动物(例如人)等。The eukaryotic organism may be a lower eukaryotic organism, such as yeast (e.g., Pichia pastoris) or fungi (e.g., Aspergillus), or a higher eukaryotic organism, such as a plant (e.g., Arabidopsis), a reptile (e.g., a bird), or a mammal (e.g., a human).
本实施例优选的,sSF可选自单链核酸结合蛋白(single strand DNA-bindingprotein domain,SSB)的氨基酸序列,包含一个或更多个SSB氨基酸区域或其他物种的同源区域或任何物种的SSB的同源区域或任何物种的核酸结合蛋白的氨基酸区域。优选地,sSF序列可由SEQ ID NO:1至SEQ ID NO:6任意一项所示。sSF也可来源于具有核酸结合能力(mM及mM以下)的线性多肽、环肽、或其它结构组成形式。单链核酸结合蛋白在自然界中普遍存在,并且存在于许多物种中,大量已知的单链核酸结合蛋白在Uniprot数据库中已被报道,如表1。In this embodiment, preferably, sSF can be selected from the amino acid sequence of single-stranded nucleic acid binding protein domain (SSB), including one or more SSB amino acid regions or homologous regions of other species or homologous regions of SSB of any species or amino acid regions of nucleic acid binding proteins of any species. Preferably, the sSF sequence can be shown by any one of SEQ ID NO:1 to SEQ ID NO:6. sSF can also be derived from linear polypeptides, cyclic peptides, or other structural compositions with nucleic acid binding ability (mM and below). Single-stranded nucleic acid binding proteins are ubiquitous in nature and exist in many species. A large number of known single-stranded nucleic acid binding proteins have been reported in the Uniprot database, as shown in Table 1.
表1Table 1
本实施例优选的,末端脱氧核苷酸转移酶(TdT)序列可选自已知任一种属存在的、野生型序列或者截短型式或者已知氨基酸突变形式的具有非模板依赖的催化核苷酸聚合反应活性的天然或突变体序列。具体的,所述末端脱氧核苷酸转移酶的序列如SEQ ID NO:7或SEQ ID NO:8所示。具体的所述末端脱氧核糖核苷转移酶可来源于:gi768家牛(Bostaurus);gi16923262智人(Homo sapiens);gi460163原鸡(Gallus gallus);gi494987非洲爪蟾(Xenopus laevis);gi1354475虹鳟(Oncorhynchus mykiss);gi2149634短尾负鼠(Monodelphis domestica);gi1280244小家鼠(Mus musculus);gi28852989墨西哥虎螈(Ambystoma mexicanum);gi1491390057白喉雀(White-throated sparrow);gi101919206游隼(peregrine falcon);gi1708926270金雕(Aquila chrysaetos);gi 975102570壁虎(Gekko);gi38603668红鳍东方鲀(Takifugu rubripes);gi40037389晶吻鳐(Raiaeglanteria);gi40218593铰口鲨(Ginglymostoma cirratum);gi46369889斑马鱼(Danioreri);gi73998101家犬(Canis lupus familiaris);gi139001476环尾狐猴(Lemurcatta);gi507537868非洲跳鼠(Jaculus iaculus);gi507572662非洲跳鼠;gi507622751智利八齿鼠(Octodon degus);gi507640406小马岛猬(Echinops telfairi);gi507669049小马岛猬;gi507930719星鼻鼹(Condylura cristata);gi507940587星鼻鼹;gi511850623蒙眼貂(Mustela putorius furo);gi512856623热带爪蟾;gi512952456裸鼹鼠;gi524918754金色仓鼠(Mesocricetus auratus);gi527251632虎皮鹦鹉(Melopsittacus undulatus);gi528493137斑马鱼;gi528493139斑马鱼;gis29438486游隼(Falco peregrinus);gi530565557西部锦龟(Chrysemys picta bellii);gi532017142草原田鼠(Microtusochrogaster);gi 532099471十三线地松鼠(Ictidomys tridecemlineatus);gi533166077绒毛丝鼠(Chinchilla lanigera);gi533189443绒毛丝鼠;gi537205041中国地鼠(Cricetulus griseus);gi537263119中国地鼠;gi543247043中国地雀(Geospizafortis);gi543351492地山雀(Pseudopodoces humilis);gi543731985原鸽(Columbalivia);gi544420267食蟹猴(Macaca fascicularis);gi545193630家马;gi548384565Pundamilia nyererei;gi551487466花斑剑尾鱼(Xiphophorus maculatus);gi551523268花斑剑尾鱼;gi554582962布氏鼠耳蝠(Mvotis brandtii);gi554588252布氏鼠耳蝠;gi556778822藏羚羊(Pantholops hodgsonii);gi556990133矛尾鱼(Latimeriachalumnae);gi557297894扬子鳄(Alligator sinensis);gi558116760中华鳖(Pelodiscussinensis);gi558207237小棕蝠(Myotis lucifugus);gi560895997野骆驼(Camelusferus);gi139001490倭狐猴(Microcebus murinus);gi139001511小耳大婴猴(Otolemurgarnettii);gi148708614小家鼠;gi149040157福家鼠(Rattus norvegicus);gi149704611家马(Equus caballus);gi164451472家牛;gi169642654热带爪蟾(Xenopus(Silurana)tropicalis);gi291394899欧洲免(Oryctolagus cuniculus);gi291404551欧洲免;gi301763246大熊猫(Ailuropoda melanoleuca);gi311271684野猪(Sus scrofa);gi327280070安乐断(Anolis carolinensis);gi334313404短尾负鼠;gi 344274915非洲象(Loxodonta africana);gi345330196鸭嘴兽(Ornithorhynchus anatinus);gi348588114豚鼠(Cavia porcellus);gi351697151裸鼹鼠(Heterocephalus glaber);gi355562663猕猴(Macaca mulatta);gi395501816袋灌(Sarcophilus harrisii);gi395508711袋灌;gi395850042小耳大婴猴;gi397467153倭黑猩猩(Pan paniscus);gi403278452Saimiriboliviensis boliviensis;gi410903980红鳞东方鲀;gi410975770家猫(Felis catus);gi432092624大卫鼠耳蝠(Myotis davidii);gi432113117大卫鼠耳蝠;gi444708211树鼩(Tupaia chinensis);gi460417122欧非肋突螈(Pleurodeles waltl);gi466001476虎鲸(Orcinus orca);gi471358897佛罗里达海牛(Trichechus manatus latirostris);gi478507321白犀牛(Ceratotherium simum simum);gi478528402白犀牛;gi488530524九带犰狳(Dasypus novemcinctus);gi499037612斑马拟丽鱼(Maylandia zebra);gi504135178北美鼠兔(Ochotona princeps);gi505844004普通鼩鼱(Sorex araneus);gi505845913普通鼩鼱;gi560897502野骆驼;gi562857949树鼩;gi562876575树鼩;gi564229057密西西比河鳄(Alligator mississippiensis);gi564236372密西西比河鳄;gi564384286褐家鼠等等。In this embodiment, the terminal deoxynucleotidyl transferase (TdT) sequence can be selected from any known natural or mutant sequence of a wild-type sequence or a truncated form or a known amino acid mutation form having non-template-dependent catalytic nucleotide polymerization activity. Specifically, the sequence of the terminal deoxynucleotidyl transferase is shown in SEQ ID NO: 7 or SEQ ID NO: 8. The terminal deoxyribonucleoside transferase can be derived from: gi768 cattle (Bostaurus); gi16923262 Homo sapiens; gi460163 Gallus gallus; gi494987 African clawed frog (Xenopus laevis); gi1354475 rainbow trout (Oncorhynchus mykiss); gi2149634 short-tailed opossum (Monodelphis domestica); gi1280244 house mouse (Mus musculus); gi28852989 Mexican tiger axolotl (Ambystoma mexicanum); gi1491390057 White-throated sparrow; gi101919206 peregrine falcon; gi1708926270 golden eagle (Aquila chrysaetos); gi 975102570 Gecko (Gekko); gi38603668 Redfin pufferfish (Takifugu rubripes); gi40037389 Crystalline ray (Raiaeglanteria); gi40218593 Nurse shark (Ginglymostoma cirratum); gi46369889 Zebrafish (Danioreri); gi73998101 Domestic dog (Canis lupus familiaris); gi139001476 Ring-tailed lemur (Lemurcatta); gi507537868 African jerboa (Jaculus iaculus); gi507572662 African jerboa; gi507622751 Chilean degu (Octodon degus); gi507640406 Pony Island hedgehog (Echinops telfairi); gi507669049 Pony Island hedgehog; gi507930719 Star-nosed mole (Condylura cristata); gi507940587 Star-nosed mole; gi511850623 Mustela putorius furo; gi512856623 Clawed frog; gi512952456 Naked mole rat; gi524918754 Golden hamster (Mesocricetus auratus); gi527251632 Budgie (Melopsittacus undulatus); gi528493137 Zebrafish; gi528493139 Zebrafish; gis29438486 Peregrine falcon (Falco peregrinus); gi530565557 Western painted turtle (Chrysemys picta bellii;gi532017142Prairie vole (Microtus ochrogaster);gi 532099471Thirteen-lined ground squirrel (Ictidomys tridecemlineatus);gi533166077Chinchilla lanigera;gi533189443Chinchilla;gi537205041Chinese ground slug (Cricetulus griseus);gi537263119Chinese ground slug;gi543247043Chinese ground finch (Geospizafortis);gi543351492Ground tit (Pseudopodoces humilis);gi543731985Columbalivia;gi544420267Macaca fascicularis fascicularis); gi545193630 domestic horse; gi548384565 Pundamilia nyererei; gi551487466 Xiphophorus maculatus; gi551523268 Xiphophorus maculatus; gi554582962 Brandt's myotis brandtii; gi554588252 Brandt's myotis; gi556778822 Tibetan antelope (Pantholops hodgsonii); gi556990133 Latimeria chalumnae; gi557297894 Alligator sinensis; gi558116760 Chinese soft-shell turtle (Pelodiscus sinensis); gi558207237 Little brown bat (Myotis lucifugus;gi560895997Wild camel (Camelusferus);gi139001490Dwarf lemur (Microcebus murinus);gi139001511Small-eared monkey (Otolemurgarnettii);gi148708614House mouse;gi149040157Rattus norvegicus;gi149704611Domestic horse (Equus caballus);gi164451472Domestic cattle;gi169642654Tropical clawed frog (Xenopus (Silurana) tropicalis);gi291394899European rabbit (Oryctolagus cuniculus);gi291404551European rabbit;gi301763246Giant panda (Ailuropoda melanoleuca); gi311271684 wild boar (Sus scrofa); gi327280070 Anolis carolinensis; gi334313404 short-tailed opossum; gi 344274915 African elephant (Loxodonta africana); gi345330196 platypus (Ornithorhynchus anatinus); gi348588114 guinea pig (Cavia porcellus); gi351697151 naked mole rat (Heterocephalus glaber); gi355562663 macaque (Macaca mulatta); gi395501816 bag jar (Sarcophilus harrisii); gi395508711 bagged; gi395850042 small-eared monkey; gi397467153 bonobo (Pan paniscus); gi403278452 Saimiriboliviensis boliviensis; gi410903980 red-scaled pufferfish; gi410975770 domestic cat (Felis catus); gi432092624 David's mouse-eared bat (Myotis davidii); gi432113117 David's mouse-eared bat; gi444708211 tree shrew (Tupaia chinensis); gi460417122 European and African ribbed newt (Pleurodeles waltl); gi466001476 killer whale (Orcinus orca); gi471358897 Florida manatee (Trichechus manatus latirostris); gi478507321 White rhinoceros (Ceratotherium simum simum); gi478528402 White rhinoceros; gi488530524 Nine-banded armadillo (Dasypus novemcinctus); gi499037612 Zebra cichlid (Maylandia zebra); gi504135178 North American pika (Ochotona princeps); gi505844004 Common shrew (Sorex araneus); gi505845913 Common shrew; gi560897502 Wild camel; gi562857949 Tree shrew; gi562876575 Tree shrew; gi564229057 Mississippi alligator (Alligator mississippiensis); gi564236372 Mississippi alligator; gi564384286 Rattus norvegicus, etc.
本实施例优选的,所述柔性连接子允许由任意类型和长度氨基酸或类似长度的其它化学结构基团作为连接部分。所述柔性连接子以甘氨酸(G)、丝氨酸(S)为重复模块的序列:(GS)m,其中m=0~20,m为零或整数,例如可以是1,2,4,6,8,10;或者所述柔性连接子以甘氨酸(G)为重复模块的序列:(G)n,其中n=0~40,n为零或整数。连接子还可以是类似长度的其它化学结构基团,例如PEG。In this embodiment, the flexible linker is preferably allowed to be composed of any type and length of amino acids or other chemical structural groups of similar length as the connecting part. The flexible linker is a sequence of glycine (G) and serine (S) as a repeating module: (GS) m , where m = 0 to 20, m is zero or an integer, for example, it can be 1, 2, 4, 6, 8, 10; or the flexible linker is a sequence of glycine (G) as a repeating module: (G) n , where n = 0 to 40, n is zero or an integer. The linker can also be other chemical structural groups of similar length, such as PEG.
当TdT变体来源于小鼠(145-510氨基酸片段),N端区段融合了超嗜热古菌SSB蛋白2-117氨基酸片段,连接子为氨基酸EF。当TdT变体来源于白喉雀(145-513氨基酸片段),同时包含C187A,C215S,C319S,R335L,K337G,C375A,C417S点突变,N端区段分别融合了大肠杆菌SSB蛋白2-115氨基酸片段,或者超嗜热古菌SSB蛋白2-117氨基酸片段,或者T4噬菌体SSB蛋白21-153氨基酸片段,或者T7噬菌体SSB蛋白2-186氨基酸片段,或者水生栖热菌SSB蛋白2-230氨基酸片段,或者人源SSB蛋白2-110氨基酸片段;连接子为氨基酸EF。When the TdT variant is derived from mice (145-510 amino acid fragment), the N-terminal segment is fused with the 2-117 amino acid fragment of the hyperthermophilic archaeon SSB protein, and the linker is amino acid EF. When the TdT variant is derived from white-throated sparrow (145-513 amino acid fragment), it also contains C187A, C215S, C319S, R335L, K337G, C375A, C417S point mutations, and the N-terminal segment is fused with the 2-115 amino acid fragment of the SSB protein of Escherichia coli, or the 2-117 amino acid fragment of the SSB protein of hyperthermophilic archaea, or the 21-153 amino acid fragment of the SSB protein of T4 bacteriophage, or the 2-186 amino acid fragment of the SSB protein of T7 bacteriophage, or the 2-230 amino acid fragment of the SSB protein of Thermus aquaticus, or the 2-110 amino acid fragment of the SSB protein of human origin; the linker is amino acid EF.
本实施例优选的,所述末端脱氧核苷酸转移酶变体的序列如SEQ ID NO 9至SEQID NO 15任意一项所示。Preferably, in this embodiment, the sequence of the terminal deoxynucleotidyl transferase variant is shown in any one of SEQ ID NO 9 to SEQ ID NO 15.
本实施例也涉及一种核酸,其特征在于,所述的核酸编码所述末端脱氧核苷酸转移酶变体。所述核酸还可以是核酸密码子发生替换但不改变氨基酸序列的核酸序列,或者从编码所述核酸结构域或其前体、末端脱氧核糖核苷转移酶或其前体的核酸序列得到。This embodiment also relates to a nucleic acid, characterized in that the nucleic acid encodes the terminal deoxynucleotidyl transferase variant. The nucleic acid can also be a nucleic acid sequence in which nucleic acid codons are replaced but the amino acid sequence is not changed, or is obtained from a nucleic acid sequence encoding the nucleic acid domain or a precursor thereof, a terminal deoxyribonucleoside transferase or a precursor thereof.
本实施例也涉及一种生产所述末端脱氧核苷酸转移酶变体的方法,所述方法包括:This embodiment also relates to a method for producing the terminal deoxynucleotidyl transferase variant, the method comprising:
在适合表达编码所述末端脱氧核苷酸转移酶变体的核酸的条件下,培养所述的核酸的宿主细胞;从所述细胞培养物中回收所述末端脱氧核苷酸转移酶变体。Cultivating a host cell expressing the nucleic acid under conditions suitable for expression of the nucleic acid encoding the terminal deoxynucleotidyl transferase variant; and recovering the terminal deoxynucleotidyl transferase variant from the cell culture.
本实施例优选的,所述宿主细胞可以是原核生物,例如大肠杆菌,或真核生物。真核生物可以是低等真核生物,诸如酵母(例如,巴斯德毕赤酵母或乳酸克鲁维酵母)或真菌(例如属曲霉属(Aspergillus))或高等真核生物诸如昆虫细胞(例如Sf9或Sf21)、哺乳动物细胞或植物细胞。细胞可以是哺乳动物细胞,例如COS(绿猴细胞系)、CHO(中国仓鼠卵巢细胞系)、小鼠细胞和人类细胞等。The present embodiment is preferred, the host cell can be a prokaryote, such as Escherichia coli, or a eukaryote. The eukaryote can be a lower eukaryote, such as yeast (e.g., Pichia pastoris or Kluyveromyces lactis) or fungi (e.g., belonging to Aspergillus (Aspergillus)) or higher eukaryotes such as insect cells (e.g., Sf9 or Sf21), mammalian cells or plant cells. The cell can be a mammalian cell, such as COS (green monkey cell line), CHO (Chinese hamster ovary cell line), mouse cell and human cell, etc.
本实施例也涉及一种生产所述末端脱氧核苷酸转移酶变体的表达盒,包含表达所述末端脱氧核苷酸转移酶变体的所有元件,包括在宿主细胞中转录和翻译过程中所必须的元件,例如,表达盒包括启动子和终止子,所述启动子和终止子没有特别的限定,可以是本领域已知的能够实现所述变体表达的启动子和终止子。例如,启动子可以是原核的或真核的,可选自例如Lacl、LacZ、pLacT、ptac、T3或T7噬菌体RNA聚合酶启动子、CMV启动子、HSV胸苷激酶启动子、SV40启动子、小鼠金属硫蛋白–L启动子等。This embodiment also relates to an expression cassette for producing the terminal deoxynucleotidyl transferase variant, comprising all elements for expressing the terminal deoxynucleotidyl transferase variant, including elements necessary for transcription and translation in the host cell, for example, the expression cassette comprises a promoter and a terminator, and the promoter and the terminator are not particularly limited, and can be a promoter and a terminator known in the art that can achieve the expression of the variant. For example, the promoter can be prokaryotic or eukaryotic, and can be selected from, for example, Lacl, LacZ, pLacT, ptac, T3 or T7 phage RNA polymerase promoter, CMV promoter, HSV thymidine kinase promoter, SV40 promoter, mouse metallothionein-L promoter, etc.
本发明所述的表达盒,还包括载体。所述载体可以是质粒、噬菌体、噬菌粒、粘粒、病毒、YAC、BAC、土壤杆菌属(Agrobacterium)pTi质粒等。载体可以优选地包含选自以下的一个或更多个元件:复制起点、多克隆位点和可选择的基因。优选地,载体是质粒。原核载体的一些非详尽实例如下:pQE70、pQE60、pQE–9(Qiagen)、pbs、pD10、phagescript、psiX174、pbluescriptSK、pbsks、pNH8A、pNH16A、pNH18A、pNH46A;ptrc99a、pKK223–3、pKK233–3、pDR540、pBR322、pRIT5、pET-28a。优选地,所述载体是表达载体,优选为pET-28a。The expression cassette of the present invention also includes a vector. The vector may be a plasmid, a phage, a phagemid, a cosmid, a virus, a YAC, a BAC, an Agrobacterium pTi plasmid, etc. The vector may preferably contain one or more elements selected from the following: an origin of replication, a multiple cloning site, and a selectable gene. Preferably, the vector is a plasmid. Some non-exhaustive examples of prokaryotic vectors are as follows: pQE70, pQE60, pQE-9 (Qiagen), pbs, pD10, phagescript, psiX174, pbluescriptSK, pbsks, pNH8A, pNH16A, pNH18A, pNH46A; ptrc99a, pKK223-3, pKK233-3, pDR540, pBR322, pRIT5, pET-28a. Preferably, the vector is an expression vector, preferably pET-28a.
本实施例也涉及一种在没有模板链的情况下合成核酸分子的方法,包括如下步骤:在所述末端脱氧核苷酸转移酶变体的存在下,使起始核苷酸链与至少一种核苷酸接触。其中所述末端脱氧核苷酸转移酶变体可以高效率的与核苷酸耦合,包括可用于酶促寡核苷酸的合成,或用于其他循环合成功能DNA和/或RNA片段、或者用于酶促DNA合成仪的合成DNA/RNA循环迭代。This embodiment also relates to a method for synthesizing a nucleic acid molecule in the absence of a template chain, comprising the following steps: contacting a starting nucleotide chain with at least one nucleotide in the presence of the terminal deoxynucleotidyl transferase variant, wherein the terminal deoxynucleotidyl transferase variant can be efficiently coupled with nucleotides, including being used for the synthesis of enzymatic oligonucleotides, or for other cyclic synthesis of functional DNA and/or RNA fragments, or for the cyclic iteration of synthesizing DNA/RNA in an enzymatic DNA synthesizer.
本实施例优选的,所述末端脱氧核苷酸转移酶变体与核苷酸进行耦合;所述核苷酸为天然核苷酸或者3’-OH端经修饰的核苷酸,所述3’-OH端经修饰的核苷酸为3’-OH端加入阻断基团修饰的核苷酸。具体的,所述阻断基团还可包括但不限于磷酸基团、叠氮,2-硝基苯基。In this embodiment, the terminal deoxynucleotidyl transferase variant is coupled with a nucleotide; the nucleotide is a natural nucleotide or a nucleotide with a modified 3'-OH end, and the nucleotide with a modified 3'-OH end is a nucleotide with a modified blocking group added to the 3'-OH end. Specifically, the blocking group may also include, but is not limited to, a phosphate group, an azide, and a 2-nitrophenyl group.
本实施例优选的,所述起始核苷酸链为具有二级发卡结构DNA单链。本发明的所述末端脱氧核苷酸转移酶变体在没有模板链的情况下,可以将3’-OH端经修饰的核苷酸掺入到多种发卡结构DNA中,相比原有的TdT序列,能够增强具有二级结构的DNA单链的链延伸能力,合成核酸分子。In this embodiment, the starting nucleotide chain is a single-stranded DNA with a secondary hairpin structure. The terminal deoxynucleotidyl transferase variant of the present invention can incorporate nucleotides with modified 3'-OH ends into a variety of hairpin structure DNAs in the absence of a template chain, and can enhance the chain extension ability of the single-stranded DNA with a secondary structure to synthesize nucleic acid molecules compared to the original TdT sequence.
本实施例也涉及一种试剂盒,所述的试剂盒包括所述末端脱氧核苷酸转移酶变体,一个或多个核苷酸,和至少一个起始核苷酸链。This embodiment also relates to a kit, which includes the terminal deoxynucleotidyl transferase variant, one or more nucleotides, and at least one starting nucleotide chain.
下面将结合具体实施例对本发明的实施方案进行详细描述。The embodiments of the present invention will be described in detail below with reference to specific examples.
实施例1:TdT变体的构建Example 1: Construction of TdT variants
1、单链DNA稳定因子氨基酸序列1. Amino acid sequence of single-stranded DNA stabilizing factor
超嗜热古菌来源单链DNA稳定因子氨基酸序列为SEQ ID NO:1(EcSSB(P0AGE0,Escherichia coli),2-115);大肠杆菌来源单链DNA稳定因子氨基酸序列为SEQ ID NO:2(SsoSSB(Q97W73,Sulfolobus solfataricus),2-117);T4噬菌体来源单链DNA稳定因子氨基酸序列为SEQ ID NO:3(T4SSB(P03695,Enterobacteria phage T4),21-253);T7噬菌体来源单链DNA稳定因子氨基酸序列为SEQ ID NO:4(T7SSB(P03696,Escherichia phageT7),2-186);水生栖热菌来源单链DNA稳定因子氨基酸序列为SEQ ID NO:5(TaqSSB(Q9KH06,Thermus aquaticus),2-230);人源单链DNA稳定因子氨基酸序列为SEQ ID NO:6(HsSSB(Q9BQ15,Homo sapiens)2-110)。The amino acid sequence of the single-stranded DNA stabilizing factor derived from hyperthermophilic archaea is SEQ ID NO: 1 (EcSSB (P0AGE0, Escherichia coli), 2-115); the amino acid sequence of the single-stranded DNA stabilizing factor derived from Escherichia coli is SEQ ID NO: 2 (SsoSSB (Q97W73, Sulfolobus solfataricus), 2-117); the amino acid sequence of the single-stranded DNA stabilizing factor derived from T4 phage is SEQ ID NO: 3 (T4SSB (P03695, Enterobacteria phage T4), 21-253); the amino acid sequence of the single-stranded DNA stabilizing factor derived from T7 phage is SEQ ID NO: 4 (T7SSB (P03696, Escherichia phage T7), 2-186); the amino acid sequence of the single-stranded DNA stabilizing factor derived from aquatic Thermus is SEQ ID NO: 5 (TaqSSB (Q9KH06, Thermus aquaticus), 2-230); the amino acid sequence of human single-stranded DNA stabilizing factor is SEQ ID NO: 6 (HsSSB (Q9BQ15, Homo sapiens) 2-110).
2、TdT蛋白原始氨基酸序列2. Original amino acid sequence of TdT protein
小鼠TdT氨基酸序列为SEQ ID NO:7(MsTdT(P09838,Mus musculus)145-510);白喉雀TdT氨基酸序列为SEQ ID NO:8(ZaTdT(A0A8C5JUL5,Zonotrichia albicollis)145-513(包含突变C187A,C215S,C319S,R335L,K337G,C375A,C417S))。The amino acid sequence of mouse TdT is SEQ ID NO:7 (MsTdT (P09838, Mus musculus) 145-510); the amino acid sequence of white-throated sparrow TdT is SEQ ID NO:8 (ZaTdT (A0A8C5JUL5, Zonotrichia albicollis) 145-513 (including mutations C187A, C215S, C319S, R335L, K337G, C375A, C417S)).
3、TdT变体的构建3. Construction of TdT variants
TdT变体按照图1的方式进行组合。任意可编码SEQ ID NO:1至SEQ ID NO:8氨基酸序列的基因序列均可用于表达载体的构建。通过PCR方法扩增,利用酶切位点和T4连接酶的连接方法将编码SEQ ID NO:1至SEQ ID NO:6氨基酸序列的基因序列构建至包含原始TdT序列SEQ ID NO:7或者SEQ ID NO:8的表达载体pET-28a(Novagen,Kan+),得到变体的重组质粒,构建的TdT变体氨基酸序列为SEQ ID NO:9(His-SsoSSB-MsTdT)、SEQ ID NO:10(His-EcSSB-ZaTdT)、SEQ ID NO:11(His-SsoSSB-ZaTdT)、SEQ ID NO:12(His-T4SSB-ZaTdT)、SEQID NO:13(His-T7SSB-ZaTdT)、SEQ ID NO:14(His-HsSSB-ZaTdT)、SEQ ID NO:15(His-TaqSSB-ZaTdT)。pET-28a为实施例所述,但本发明的表达载体并不仅限于此。The TdT variants are combined according to the method of Figure 1. Any gene sequence that can encode the amino acid sequence of SEQ ID NO: 1 to SEQ ID NO: 8 can be used to construct the expression vector. The gene sequences encoding the amino acid sequences of SEQ ID NO:1 to SEQ ID NO:6 were amplified by PCR, and the gene sequences were constructed into the expression vector pET-28a (Novagen, Kan+) containing the original TdT sequence SEQ ID NO:7 or SEQ ID NO:8 using the ligation method of restriction sites and T4 ligase to obtain the recombinant plasmid of the variant. The amino acid sequences of the constructed TdT variants were SEQ ID NO:9 (His-SsoSSB-MsTdT), SEQ ID NO:10 (His-EcSSB-ZaTdT), SEQ ID NO:11 (His-SsoSSB-ZaTdT), SEQ ID NO:12 (His-T4SSB-ZaTdT), SEQ ID NO:13 (His-T7SSB-ZaTdT), SEQ ID NO:14 (His-HsSSB-ZaTdT), and SEQ ID NO:15 (His-TaqSSB-ZaTdT). pET-28a is described in the examples, but the expression vector of the present invention is not limited thereto.
实施例2:野生和变体TdT蛋白的制备Example 2: Preparation of wild-type and variant TdT proteins
1、基因的表达1. Gene expression
为了体外检测TdT酶活性,在大肠杆菌中对该酶进行外源表达及纯化。实施例中所述的宿主菌为E.coli BL21(DE3)(购买于全式基因,货号CD601-02)。包括如下步骤:In order to detect the activity of TdT enzyme in vitro, the enzyme was exogenously expressed and purified in E. coli. The host bacteria described in the embodiment is E. coli BL21 (DE3) (purchased from Quanshi Gene, catalog number CD601-02). The following steps are included:
(1)将大肠杆菌表达型重组质粒pET-28a-TdT转化进入E.coli BL21(DE3)中,获得重组菌。采用卡那霉素抗性平板进行阳性克隆筛选(Kan+,50μg/mL),37℃过夜培养;(1) The E. coli expression recombinant plasmid pET-28a-TdT was transformed into E. coli BL21 (DE3) to obtain recombinant bacteria. Positive clones were screened using kanamycin resistance plates (Kan+, 50 μg/mL) and cultured overnight at 37°C;
(2)挑单克隆至5mL LB液体培养基中(Kan+,50μg/mL),37℃、220r/min过夜培养。将5mL LB培养基中菌液转接至800mL LB培养基中(Kan+,50μg/mL),37℃、22 0rpm培养至OD600为0.6-0.8时,降温至18℃,加IPTG至终浓度0.5mM,诱导表达16h;(2) Pick a single clone into 5 mL LB liquid medium (Kan+, 50 μg/mL) and culture overnight at 37°C and 220 rpm. Transfer the bacterial solution in 5 mL LB medium to 800 mL LB medium (Kan+, 50 μg/mL) and culture at 37°C and 220 rpm until OD600 is 0.6-0.8, then cool to 18°C, add IPTG to a final concentration of 0.5 mM, and induce expression for 16 h;
(3)将上述培养菌液收集到收菌瓶中,4000r/min离心30min;(3) Collect the above culture solution into a collection bottle and centrifuge at 4000 rpm for 30 min;
(4)弃上清,用35mL蛋白缓冲液(50mM Tris-HCl,500mM NaCl,pH7.5)将所得菌体沉淀悬起,倒入50mL离心管中,-80℃冰箱保存。(4) Discard the supernatant, suspend the resulting bacterial pellet with 35 mL of protein buffer (50 mM Tris-HCl, 500 mM NaCl, pH 7.5), pour into a 50 mL centrifuge tube, and store in a -80°C refrigerator.
2、蛋白纯化2. Protein purification
包括如下步骤:The steps include:
(1)破菌:采用高压低温破碎仪,在压力700bar,4℃条件下对于上述3得到的菌体沉淀破菌2次。4℃、18000r/min离心60min,取离心后的沉淀、上清,制样;(1) Bacterial disruption: The bacterial precipitate obtained in step 3 above was disrupted twice using a high-pressure low-temperature disruptor at a pressure of 700 bar and 4°C. The precipitate and supernatant were collected after centrifugation at 4°C and 18,000 r/min for 60 min and sampled;
(2)纯化:上清液经0.22μm微孔滤膜抽滤,进行镍亲和层析纯化(HisTrap HP5ml),具体步骤如下:(2) Purification: The supernatant was filtered through a 0.22 μm microporous filter membrane and purified by nickel affinity chromatography (HisTrap HP5 ml). The specific steps are as follows:
a:柱平衡:挂上清前,先用ddH2O洗2个柱体积,再用蛋白缓冲液平衡Ni亲和层析柱2个柱体积;a: Column balancing: Before loading the supernatant, wash the Ni affinity column with ddH 2 O for 2 column volumes, and then balance the Ni affinity column with protein buffer for 2 column volumes;
b:上样:将上清按5mL/min流速缓慢经过Ni亲和层析柱,再重复一次;b: Sample loading: slowly pass the supernatant through the Ni affinity chromatography column at a flow rate of 5 mL/min, repeat once;
c:洗脱杂蛋白:采用蛋白缓冲液冲洗1个柱体积,再用50mL含50mM咪唑的蛋白缓冲液去洗脱结合较强的杂蛋白并制样;c: Elution of impurities: Use protein buffer to wash 1 column volume, then use 50 mL of protein buffer containing 50 mM imidazole to elute strongly bound impurities and prepare samples;
d:洗脱目的蛋白:分别用50mL含50-500mM线性咪唑梯度缓冲液将目的蛋白洗脱下来并制样,12% SDS-PAGE检测,结果如图2所示。其中Lane 1对应蛋白标准Marker,Lane 2对应SEQ ID NO:7(WT-MS),Lane 3对应SEQ ID NO:9(Sso-MS),Lane 4对应蛋白标准Marker,Lane 5对应SEQ ID NO:8(WT-Za),Lane 6对应SEQ ID NO:10(Ec-Za),Lane 7对应SEQ ID NO:11(Sso-Za),Lane 8对应SEQ ID NO:12(T4-Za),Lane 9对应SEQ ID NO:13(T7-Za),Lane 10对应SEQ ID NO:14(Hs-Za),Lane 11对应SEQ ID NO:15(Taq-Za)。d: Elution of target protein: 50 mL of 50-500 mM linear imidazole gradient buffer was used to elute the target protein and prepare samples, and 12% SDS-PAGE was used for detection. The results are shown in Figure 2. Lane 1 corresponds to protein standard Marker, Lane 2 corresponds to SEQ ID NO: 7 (WT-MS), Lane 3 corresponds to SEQ ID NO: 9 (Sso-MS), Lane 4 corresponds to protein standard Marker, Lane 5 corresponds to SEQ ID NO: 8 (WT-Za), Lane 6 corresponds to SEQ ID NO: 10 (Ec-Za), Lane 7 corresponds to SEQ ID NO: 11 (Sso-Za), Lane 8 corresponds to SEQ ID NO: 12 (T4-Za), Lane 9 corresponds to SEQ ID NO: 13 (T7-Za), Lane 10 corresponds to SEQ ID NO: 14 (Hs-Za), and Lane 11 corresponds to SEQ ID NO: 15 (Taq-Za).
(3)凝胶过滤层析:将收集到的目的蛋白用50mL Amicon超滤管(10kDa,Millipore公司)离心浓缩(4℃、3400r/min),浓缩至1mL,上样Cytiva Hiload Superdex 200 16/60分子筛,收集蛋白峰并浓缩。(3) Gel filtration chromatography: The collected target protein was concentrated by centrifugation (4°C, 3400 r/min) using a 50 mL Amicon ultrafiltration tube (10 kDa, Millipore) to 1 mL, loaded with Cytiva Hiload Superdex 200 16/60 molecular sieve, and the protein peak was collected and concentrated.
(4)用Nondrop 2000微量分光光度计检测浓缩后蛋白浓度,即得到纯化浓缩的TdT蛋白。(4) The concentration of the concentrated protein was detected using a Nondrop 2000 micro-spectrophotometer to obtain the purified and concentrated TdT protein.
实施例3:天然核苷酸反应活性测试Example 3: Natural nucleotide reactivity test
本实施例采用的起始核苷酸链为5’带有FAM荧光标记的单链DNA,插入核苷酸是dATP。The starting nucleotide chain used in this example is a single-stranded DNA with a FAM fluorescent label at the 5' end, and the inserted nucleotide is dATP.
TdT反应体系:50mM Tris-Ac pH 7.2,100mM KAc,0.25mM CoCl2。底物:1μM5’-FAM标记的单链DNA(14bp),100μM dATP。酶:2μM TdT野生型及突变体。TdT reaction system: 50 mM Tris-Ac pH 7.2, 100 mM KAc, 0.25 mM CoCl 2. Substrate: 1 μM 5'-FAM labeled single-stranded DNA (14 bp), 100 μM dATP. Enzyme: 2 μM TdT wild type and mutant.
反应条件:30℃保温20min,95℃灭活5min(使得蛋白变性释放oligo链)离心取上清进行尿素变性PAGE胶。Reaction conditions: incubate at 30°C for 20 min, inactivate at 95°C for 5 min (to denature the protein and release the oligo chains), centrifuge and collect the supernatant for urea denatured PAGE gel.
结果如图3,可知相比原序列能够提高无模板延伸多核苷酸效率。The results are shown in Figure 3, which shows that the efficiency of template-free extension of polynucleotides can be improved compared with the original sequence.
实施例4:3’-OH末端修饰的核苷酸掺入效率测试Example 4: 3'-OH terminal modified nucleotide incorporation efficiency test
本实施例采用的起始核苷酸链为5’带有FAM荧光标记的单链DNA,插入核苷酸是3'-OH端加入氨基为阻断基团的核苷酸(3‘-O-NH2-2'-dNTP)。The starting nucleotide chain used in this example is a single-stranded DNA with a FAM fluorescent label at the 5' end, and the inserted nucleotide is a nucleotide with an amino group added to the 3'-OH end as a blocking group (3'-O-NH2-2'-dNTP).
TdT反应体系:50mM Tris-Ac pH 7.2,100mM KAc,0.25mM CoCl2。底物:1μM5’-FAM标记的单链DNA oligo(14bp),20μM 3’端带修饰基团的核苷酸。酶:2μM TDT野生型及突变体。TdT reaction system: 50mM Tris-Ac pH 7.2, 100mM KAc, 0.25mM CoCl 2. Substrate: 1μM 5'-FAM labeled single-stranded DNA oligo (14bp), 20μM nucleotides with modified groups at the 3' end. Enzyme: 2μM TDT wild type and mutants.
反应条件:30℃保温10min,95℃灭活5min(使得蛋白变性释放oligo链)离心取上清进行尿素变性PAGE胶。Reaction conditions: incubate at 30°C for 10 min, inactivate at 95°C for 5 min (to denature the protein and release the oligo chains), centrifuge and collect the supernatant for urea denatured PAGE gel.
TdT野生型及变体活性检测:使用20%变性聚丙烯酰胺凝胶分析。预先倾倒凝胶并静置至聚合。然后将其放置在填充有1xTBE缓冲液的适当大小的电泳槽上。样品上样到凝胶上,然后使凝胶经历180V的电位差持续80分钟。在迁移令人满意后,释放凝胶,使用ChemiDoc(BioRad)凝胶成像仪得到凝胶电泳图,进一步用Biorad的Gel Image分析软件分析图片各个DNA条带的亮度,获得亮度值,用掺入核苷酸之后的DNA条带的亮度值(15bp对应DNA条带亮度值)除以总的DNA条带的亮度值(14bp和15bp对应DNA条带的亮度值之和),获得核苷酸掺入效率,结果如图4所示。TdT wild type and variant activity detection: 20% denaturing polyacrylamide gel analysis was used. The gel was poured in advance and allowed to stand until polymerization. It was then placed in an electrophoresis tank of appropriate size filled with 1xTBE buffer. The sample was loaded onto the gel, and then the gel was subjected to a potential difference of 180V for 80 minutes. After satisfactory migration, the gel was released, and the gel electrophoresis image was obtained using the ChemiDoc (BioRad) gel imager. The brightness of each DNA band in the image was further analyzed using Biorad's Gel Image analysis software to obtain the brightness value, and the brightness value of the DNA band after the incorporation of nucleotides (the brightness value of the DNA band corresponding to 15bp) was divided by the brightness value of the total DNA band (the sum of the brightness values of the DNA bands corresponding to 14bp and 15bp) to obtain the nucleotide incorporation efficiency, as shown in Figure 4.
根据图4结果可以看出,实施例中两种融合了单链DNA稳定因子(Ec-SSB和Sso-SSB)的突变体的单核苷酸掺入效率均优于野生型TdT,呈现更加高的催化效率,可以在没有模板链的情况下高效可控地合成核酸分子。According to the results in Figure 4, it can be seen that the single nucleotide incorporation efficiency of the two mutants fused with single-stranded DNA stabilizing factors (Ec-SSB and Sso-SSB) in the embodiment is better than that of wild-type TdT, showing a higher catalytic efficiency, and nucleic acid molecules can be synthesized efficiently and controllably in the absence of a template chain.
实施例5:含有发卡结构单链DNA延伸活性测试Example 5: Single-stranded DNA extension activity test containing hairpin structure
本实施例采用含有发卡结构单链DNA为起始核苷酸链,以3'-OH端加入氨基为阻断基团的核苷酸(3‘-O-NH2-2'-dATP)为底物,测试起始核苷酸链二级结构对延伸反应的影响。This example uses single-stranded DNA containing a hairpin structure as the starting nucleotide chain and nucleotides with an amino group as a blocking group at the 3'-OH end (3'-O-NH 2 -2'-dATP) as substrates to test the effect of the secondary structure of the starting nucleotide chain on the extension reaction.
TdT反应体系:50mM Tris-Ac pH 7.2,100mM KAc,0.25mM CoCl2。底物:1μM单链DNA oligo(32、34、36和38bp),20μM 3’端带修饰基团的核苷酸。酶:2μM TDT野生型及突变体。TdT reaction system: 50mM Tris-Ac pH 7.2, 100mM KAc, 0.25mM CoCl 2. Substrate: 1μM single-stranded DNA oligo (32, 34, 36 and 38bp), 20μM nucleotides with modified groups at the 3' end. Enzyme: 2μM TDT wild type and mutants.
反应条件:30℃保温10min,95℃灭活5min(使得蛋白变性释放oligo链)离心取上清进行尿素变性PAGE胶。Reaction conditions: incubate at 30°C for 10 min, inactivate at 95°C for 5 min (to denature the protein and release the oligo chains), centrifuge and collect the supernatant for urea denatured PAGE gel.
TDT野生型及变体活性检测:使用15%变性聚丙烯酰胺凝胶分析。预先倾倒凝胶并静置至聚合。然后将其放置在填充有1xTBE缓冲液的适当大小的电泳槽上。样品上样到凝胶上,然后使凝胶经历180V的电位差持续80分钟。在迁移令人满意后,释放凝胶,并使用SybrGold染色10分钟,然后使用ChemiDoc(BioRad)凝胶成像仪得到凝胶电泳图(图5)。TDT wild-type and variant activity detection: 15% denaturing polyacrylamide gel analysis was used. The gel was poured in advance and allowed to stand until polymerization. It was then placed in an electrophoresis tank of appropriate size filled with 1xTBE buffer. The sample was loaded onto the gel, which was then subjected to a potential difference of 180V for 80 minutes. After satisfactory migration, the gel was released and stained with SybrGold for 10 minutes, and then the gel electrophoresis image (Figure 5) was obtained using a ChemiDoc (BioRad) gel imager.
根据图5结果可以看出,起始核苷酸链含有二级结构,特别是3’末端参与发卡配对TdT活性影响很大,而融合了单链DNA稳定因子的本发明变体相比野生型具有更强的核苷酸掺入效率,特别是融合了Sso SSB的变体大大提高了插入核苷酸为底物效率。随着3’末端游离碱基的增加,例如L14S9+2、L14S9+4和L14S9+6,发卡结构变得松散,WT-Za的效率开始逐渐提升,但本发明末端脱氧核苷酸转移酶变体特别是Sso-Za仍保持相比野生WT-Za更高的掺入效率。According to the results in Figure 5, it can be seen that the starting nucleotide chain contains a secondary structure, especially the 3' end is involved in the hairpin pairing TdT activity, and the variant of the present invention fused with the single-stranded DNA stabilizing factor has a stronger nucleotide incorporation efficiency than the wild type, especially the variant fused with Sso SSB greatly improves the efficiency of inserting nucleotides as substrates. With the increase of the 3' terminal free base, such as L14S9+2, L14S9+4 and L14S9+6, the hairpin structure becomes loose, and the efficiency of WT-Za begins to gradually increase, but the terminal deoxynucleotidyl transferase variant of the present invention, especially Sso-Za, still maintains a higher incorporation efficiency than wild WT-Za.
实施例6:固相催化寡核苷酸聚合反应Example 6: Solid-phase catalytic oligonucleotide polymerization
本实施例采用的起始核苷酸链为5’带有biotin标记的单链DNA,插入核苷酸是3'-OH端加入氨基为阻断基团的核苷酸(3’-O-NH2-2'-dATP)。包括如下步骤:The starting nucleotide chain used in this embodiment is a single-stranded DNA with a biotin label at the 5' end, and the inserted nucleotide is a nucleotide with an amino group as a blocking group added to the 3'-OH end (3'-O-NH2-2'-dATP). The following steps are included:
(1)起始核苷酸链与固相基质孵育结合:1μM带有生物素标记的起始核苷酸链(5’-biotin-ACTAGGACGACTCGAATT-3’)加入Streptavidin Sepharose High Performance(Cytiva),30℃,1000rpm震荡保温30分钟。(1) Incubation and binding of the starting nucleotide chain with the solid phase matrix: 1 μM biotin-labeled starting nucleotide chain (5’-biotin-ACTAGGACGACTCGAATT-3’) was added to Streptavidin Sepharose High Performance (Cytiva) and incubated at 30°C with shaking at 1000 rpm for 30 minutes.
(2)核苷酸插入:50mM Tris-Ac pH 7.2,100mM KAc,0.25mM CoCl2,20μM 3’端带修饰基团的核苷酸(3’-O-NH2-2'-dATP),2μM Sso-Za,30℃,1000rpm震荡保温10分钟。(2) Nucleotide insertion: 50 mM Tris-Ac pH 7.2, 100 mM KAc, 0.25 mM CoCl2, 20 μM nucleotide with a modified group at the 3’ end (3’-O-NH2-2’-dATP), 2 μM Sso-Za, 30°C, 1000 rpm shaking for 10 min.
(3)清洗:800g离心1分钟,吸取上清反应溶液,缓冲液(50mM Tris-Ac pH 7.2,100mM KAc)清洗凝胶珠。(3) Washing: Centrifuge at 800 g for 1 minute, aspirate the supernatant reaction solution, and wash the gel beads with buffer (50 mM Tris-Ac pH 7.2, 100 mM KAc).
(4)脱氨基:0.7M NaNO2 pH5.4溶液清洗凝胶珠,重复一次。(4) Deamination: Wash the gel beads with 0.7 M NaNO2 pH 5.4 solution, repeat once.
(5)清洗:800g离心1分钟,缓冲液(50mM Tris-Ac pH 7.2,100mM KAc)清洗凝胶珠两次(5) Washing: Centrifuge at 800 g for 1 min and wash the beads twice with buffer (50 mM Tris-Ac pH 7.2, 100 mM KAc).
(6)重复(2)-(5)步骤9轮。(6) Repeat steps (2) to (5) for 9 rounds.
每轮反应取样制样用于20%变性聚丙烯酰胺凝胶分析,结果见图6。结果表明本发明提供的末端脱氧核苷酸转移酶变体能实现固相分步的寡核苷酸的高效合成。Samples were taken from each round of reaction for 20% denaturing polyacrylamide gel analysis, and the results are shown in Figure 6. The results show that the terminal deoxynucleotidyl transferase variant provided by the present invention can achieve efficient stepwise synthesis of oligonucleotides in solid phase.
综上可知,本发明提供的末端脱氧核苷酸转移酶(TdT)变体,通过对末端脱氧核苷酸转移酶的主链骨架进行改造,将一些相关的单链DNA稳定因子(ssDNAStabilizingFactor)引入到原有TdT序列中,相比原序列具有以下优势:(i)能够提高无模板延伸多核苷酸效率;(ii)在将3’-OH封闭的核苷三磷酸掺入到多核苷酸中表现出增强的稳定性或增强的效率;(iii)以及促进具有发卡二级结构的DNA单链的核苷酸延伸能力,有利于实现高效可控的核酸分子合成。本发明涉及了多个基于此策略改造的末端脱氧核苷酸转移酶变体。本发明还涉及这些TdT变体在合成任意给定序列的DNA合成中的应用。In summary, the terminal deoxynucleotidyl transferase (TdT) variant provided by the present invention introduces some related single-stranded DNA stabilizing factors (ssDNAStabilizingFactor) into the original TdT sequence by modifying the main chain backbone of the terminal deoxynucleotidyl transferase, and has the following advantages over the original sequence: (i) it can improve the efficiency of template-free extension of polynucleotides; (ii) it exhibits enhanced stability or enhanced efficiency in incorporating 3'-OH-blocked nucleoside triphosphates into polynucleotides; (iii) and promotes the nucleotide extension ability of a single-stranded DNA with a hairpin secondary structure, which is conducive to achieving efficient and controllable nucleic acid molecule synthesis. The present invention relates to a plurality of terminal deoxynucleotidyl transferase variants modified based on this strategy. The present invention also relates to the use of these TdT variants in the synthesis of DNA of any given sequence.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it is to be understood that the above embodiments are exemplary and are not to be construed as limitations of the present invention. A person skilled in the art may change, modify, replace and vary the above embodiments within the scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410333012.XA CN118256467B (en) | 2024-03-22 | 2024-03-22 | Terminal deoxynucleotidyl transferase variants, nucleic acids and uses |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410333012.XA CN118256467B (en) | 2024-03-22 | 2024-03-22 | Terminal deoxynucleotidyl transferase variants, nucleic acids and uses |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN118256467A CN118256467A (en) | 2024-06-28 |
| CN118256467B true CN118256467B (en) | 2024-09-20 |
Family
ID=91612342
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410333012.XA Active CN118256467B (en) | 2024-03-22 | 2024-03-22 | Terminal deoxynucleotidyl transferase variants, nucleic acids and uses |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN118256467B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119193526B (en) * | 2024-10-09 | 2025-08-26 | 浙江大学 | Terminal deoxynucleotidyl transferase mutant and its application |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111684069A (en) * | 2017-12-22 | 2020-09-18 | G+Flas生命科学有限公司 | Chimeric genome engineering molecules and methods |
| CN116836955A (en) * | 2023-05-17 | 2023-10-03 | 中国科学院深圳先进技术研究院 | Terminal deoxynucleotidyl transferase and preparation method thereof |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7058228B2 (en) * | 2016-06-24 | 2022-04-21 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Nucleic acid synthesis and sequencing with tethered nucleoside triphosphates |
| WO2018102818A1 (en) * | 2016-12-02 | 2018-06-07 | President And Fellows Of Harvard College | Processive template independent dna polymerase variants |
| GB201901501D0 (en) * | 2019-02-04 | 2019-03-27 | Nuclera Nucleics Ltd | Modified terminal deoxynucleotidyl transferase (TdT) enzymes |
| CA3177282A1 (en) * | 2020-05-12 | 2021-11-18 | Illumina Inc. | Thermostable terminal deoxynucleotidyl transferase |
| EP4150065A2 (en) * | 2020-05-12 | 2023-03-22 | Illumina Inc | Generating nucleic acids with modified bases using recombinant terminal deoxynucleotidyl transferase |
| GB2598152B (en) * | 2020-08-21 | 2025-04-16 | Nuclera Ltd | Modified terminal deoxynucleotidyl transferase (TdT) enzymes |
| CN114921436B (en) * | 2022-03-03 | 2023-08-04 | 翌圣生物科技(上海)股份有限公司 | Terminal deoxynucleotidyl transferase mutant, encoding gene, recombinant expression plasmid and genetically engineered bacterium thereof |
-
2024
- 2024-03-22 CN CN202410333012.XA patent/CN118256467B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111684069A (en) * | 2017-12-22 | 2020-09-18 | G+Flas生命科学有限公司 | Chimeric genome engineering molecules and methods |
| CN116836955A (en) * | 2023-05-17 | 2023-10-03 | 中国科学院深圳先进技术研究院 | Terminal deoxynucleotidyl transferase and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN118256467A (en) | 2024-06-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2019205606A1 (en) | Variants of Terminal deoxynucleotidyl Transferase and uses thereof | |
| US11015178B2 (en) | Enzymatic synthesis of L-nucleic acids | |
| EP3071702B1 (en) | Synthesis of l-nucleic acids by means of an enzyme | |
| CN118256467B (en) | Terminal deoxynucleotidyl transferase variants, nucleic acids and uses | |
| EP3665274B1 (en) | Variants of family a dna polymerase and uses thereof | |
| CN110331136B (en) | A terminal deoxyribonucleoside transferase variant and its application | |
| CA3061651A1 (en) | Dp04 polymerase variants | |
| WO2022227880A1 (en) | Novel phosphorylated adenylase, and preparation method therefor and application thereof | |
| WO2023143123A1 (en) | Terminal transferase variant for controllable synthesis of single-stranded dna and use thereof | |
| EP3976809B1 (en) | Variants of terminal deoxynucleotidyl transferase and uses thereof | |
| CN116836955A (en) | Terminal deoxynucleotidyl transferase and preparation method thereof | |
| CN113403287B (en) | Isolated polypeptides, nucleic acids and their applications | |
| CN113774039B (en) | Recombinant DNA polymerase and application thereof | |
| EP3744854A1 (en) | Variants of terminal deoxynucleotidyl transferase and uses thereof | |
| CN118291420A (en) | Multi-site mutant of glucosyltransferase and application thereof | |
| CN120249243A (en) | Engineered terminal deoxynucleotidyl transferase mutants and their applications | |
| WO2025137872A1 (en) | Terminal deoxyribonucleoside transferase mutant, preparation method therefor and use thereof | |
| Class et al. | Patent application title: Enzymatic Synthesis of L-Nucleic Acids Inventors: Andreas Pech (Halle, DE) Ralf David (Leipzig, DE) Florian Jarosch (Berlin, DE) Florian Jarosch (Berlin, DE) Michael Jahnz (Berlin, DE) Sven Klussmann (Berlin, DE) Assignees: NOXXON PHARMA AG | |
| CN117535264A (en) | Mutant PST DNA polymerase, and preparation method and application thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |