[go: up one dir, main page]

CN118304423B - 多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗脑胶质瘤的研究 - Google Patents

多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗脑胶质瘤的研究 Download PDF

Info

Publication number
CN118304423B
CN118304423B CN202310594285.5A CN202310594285A CN118304423B CN 118304423 B CN118304423 B CN 118304423B CN 202310594285 A CN202310594285 A CN 202310594285A CN 118304423 B CN118304423 B CN 118304423B
Authority
CN
China
Prior art keywords
sirna
chitosan
cgm
cells
p4ha1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310594285.5A
Other languages
English (en)
Other versions
CN118304423A (zh
Inventor
赵旭东
苗增利
张雅婷
田甲甲
周逸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi No 2 Peoples Hospital
Original Assignee
Wuxi No 2 Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi No 2 Peoples Hospital filed Critical Wuxi No 2 Peoples Hospital
Priority to CN202310594285.5A priority Critical patent/CN118304423B/zh
Publication of CN118304423A publication Critical patent/CN118304423A/zh
Application granted granted Critical
Publication of CN118304423B publication Critical patent/CN118304423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了多层级壳聚糖明胶颗粒载P4HA1siRNA通过抑制细胞EMT治疗脑胶质瘤的研究,属于生物医药领域。本发明将壳聚糖作为基础载体,与明胶复合形成支架材料,以P4HA1基因作为目的基因,在体外观察壳聚糖明胶颗粒载P4HA1siRNA通过抑制细胞EMT脑胶质瘤增殖,迁移,达到对脑胶质瘤有效治疗的效果。同时将壳聚糖明胶微球标记125I进行体内成像,观察和评价壳聚糖明胶微球载P4HA1siRNA的体内生物分布和抑瘤效果。

Description

多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗 脑胶质瘤的研究
技术领域
本发明涉及多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗脑胶质瘤的研究,属于生物医药领域。
背景技术
脑胶质瘤是中枢神经系统最常见的肿瘤,约占颅内肿瘤的45%,其中70%为高级别胶质瘤(WHO病理分级Ⅲ级和V级),生存期短,中位生存期仅为12~15个月。高度的异质性和侵袭性特征使其被称为“最富有挑战性的颅内肿瘤”,探索其新的治疗方法以有效抑制其侵袭性具有重要意义。
EMT是上皮细胞获得迁移性和侵袭性间充质表型的过程。发生EMT时,上皮标志物E-cadherin表达下调,而间质标志物N-cadherin和vinmentin表达上调EMT激活转录因子EMT-TFs,包括Snail(也称为SNAI1),Slug(也称为SNAI2),TWIST1和ZEB1,参与了EMT的调控,通过激活EMT诱导上皮细胞表现出间质细胞的表型。胶质母细胞瘤是高度侵袭性肿瘤,由于其向周围组织的侵袭性生长,通常手术难以完全切除,术后复发率高。近年来有研究显示,胶质母细胞瘤发生的间质性改变与其快速进展的临床表型有密切关系,提示EMT过程可能与胶质母细胞瘤侵袭能力有紧密联系。
脯氨酰4羟化酶亚基al(proly14-hydroxylase sub-unit a1,P4HA1)是脯氨酰4-羟化酶(P4H)的限速亚基,而P4H通过催化脯氨酸残基形成4-羟基脯氨酸,对胶原蛋白的翻译后修饰至关重要。P4HA1可以调节成纤维细胞中胶原合成分泌,从而改变细胞外基质组成成分,起到影响肿瘤黏附、迁移等生物学行为的作用。目前,P4HA1在肿瘤中的研究主要涉及P4HA1与肿瘤的增殖、转移和血管生成。研究发现P4HA1可促进胶质瘤干细胞向内皮细胞的跨分化以及保持血管基底膜结构完整性,进而促进胶质瘤的血管生成。P4HA1的表达有可能受HIF1α调控,其表达升高有可能通过上调SNAI1和SNAI2诱导的EMT和通过诱导HBMECs的血管生成从而促进胶质瘤的侵袭性生长。
随着分子生物学研究的深入和药物输送技术的提高,药物或基因缓释与控释受到了广泛关注。利用缓释技术将基因成功转染至细胞且长效地表达或者抑制则有望达到肿瘤治疗的效果。微纳米药物在提高药物成药性、改善药物分布和降低毒副作用等方面具有重要意义。一方面,通过微纳米药物载体能够改善难溶性药物的水溶性和稳定性问题,提高药物在体内的循环时间。另一方面,利用靶向纳米药物体系可以有效提高药物在靶部位的浓度,减少药物在健康组织中的分布,达到对疾病的高效低毒治疗。
壳聚糖是唯一天然存在的可生物降解阳离子多糖,具有无毒,生物相容,可生物降解等优异性能,因而常用于药物/基因转运释放领域。小干扰RNA(siRNA)介导的RNAi技术可以在细胞质内特异性沉默有害基因表达,成为很有发展潜力的基因疗法。然而,荷负电的亲水性siRNA难以跨越荷负电的疏水性细胞膜,易被核酸酶降解及快速从血液循环中清除,因而需要安全高效的载体装载保护,并将其递送人细胞质中引发RNAi。由于siRNA带有负电,以壳聚糖为成分的微球可与siRNA通过静电相互作用达到负载siRNA进入细胞的能力。MMPs能够降解细胞外基质蛋白,在调节细胞外基质(extracellular matrix,ECM)周转和重塑过程中扮演重要的角色。它能通过降解ECM和基底膜促进肿瘤浸润,因此,MMP在肿瘤的远处转移和浸润中起着非常重要的作用,在恶性胶质瘤中表达升高。明胶作为金属基质蛋白酶的天然底物,可被肿瘤组织中高表达的MMP9降解,进而控制药物持续、稳定精准的在肿瘤部位释放。同时明胶微球也是介入栓塞的常用材料,可用于放射性同位素125I的标记,实现载体的生物分布与降解规律的可视化示踪。
发明内容
本发明将壳聚糖作为基础载体,与明胶复合形成支架材料,以P4HA1基因作为目的基因,在体外观察壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT脑胶质瘤增殖,迁移,达到对脑胶质瘤有效治疗的效果。同时将壳聚糖明胶微球标记125I进行体内成像,观察和评价壳聚糖明胶微球载P4HA1 siRNA的体内生物分布和抑瘤效果。
本发明的第一个目的是提供一种靶向脑胶质瘤的壳聚糖纳米颗粒,所述壳聚糖纳米颗粒包含壳聚糖和siRNA的组合物,所述壳聚糖的分子量为4500~5500Da,所述siRNA的核苷酸序列如SEQ ID NO.1所示。
在一种实施方式中,所述壳聚糖和siRNA磷酸基团的氮磷比为(40:1)~(200:1)。
在一种实施方式中,所述壳聚糖和siRNA磷酸基团的氮磷比为(80:1)~(200:1)。
在一种实施方式中,所述壳聚糖和siRNA磷酸基团的氮磷比为80:1。
在一种实施方式中,所述壳聚糖纳米颗粒中还含有明胶。
在一种实施方式中,所述明胶和壳聚糖的质量比为1:1。
在一种实施方式中,所述壳聚糖纳米颗粒经同位素标记。
在一种实施方式中,所述同位素为放射性同位素125I。
本发明的第二个目的是提供一种药物组合物,所述药物组合物中含有上述壳聚糖纳米颗粒。
在一种实施方式中,所述药物组合物中还含有药学上可接受的载体。
在一种实施方式中,所述载体为药学上可接受的填充剂、润湿剂、崩解剂、粘合剂或润滑剂中的一种或多种。
在一种实施方式中,所述填充剂为微晶纤维素、乳糖、甘露醇、淀粉或糊精中的一种或多种。
在一种实施方式中,所述润湿剂为乙醇或甘油中的一种或多种。
在一种实施方式中,所述崩解剂为羧甲基淀粉钠、交联羧甲基淀粉钠、交联聚维酮或低取代羟丙基纤维素中的一种或多种。
在一种实施方式中,所述粘合剂为淀粉糊、糖浆、饴糖、炼蜜或液状葡萄糖中的一种或多种。
在一种实施方式中,所述润滑剂为硬脂酸镁、硬脂酸富马酸钠、滑石粉或二氧化硅中的一种或多种。
本发明第三个目的是提供上述壳聚糖纳米颗粒或上述药物组合物在制备治疗或辅助治疗脑胶质瘤的药物中的应用。
在一种实施方式中,所述药物的给药途径包括皮内注射、皮下注射、静脉注射、肌肉注射、腹腔注射、静脉滴注、动脉注射、体腔内注射和/或口服。
有益效果:
1.利用以壳聚糖为成分的微球与siRNA通过静电相互作用达到负载siRNA,对siRNA进行有效保护,并增强siRNA进入细胞的能力。
2.MMP在肿瘤的远处转移和浸润中起着非常重要的作用,在恶性胶质瘤中表达升高。明胶作为金属基质蛋白酶的天然底物,可被肿瘤组织中高表达的MMP9降解,进而控制药物持续、稳定精准的在肿瘤部位释放。
3.明胶微球是介入栓塞的常用材料,可用于放射性同位素125I的标记,对壳聚糖明胶微球进行核素标记,可以实现载体的生物分布与降解规律的可视化示踪。
附图说明
图1壳聚糖明胶微球(CGM)的制备及理化表征A明胶微球SEM图,B明胶微球显微镜白场图,C明胶微球水动力尺寸图,D明胶微球电位图,E壳聚糖明胶微球负载P4HA1 siRNA,FsiRNA稳定性实验,G血液相容性实验;
图2碘标记壳聚糖明胶微球的体外稳定性;
图3利用TCGA数据库分析P4HA1在人脑胶质瘤中的表达;ATCGA数据库分析P4HA1在脑胶质瘤中正常组织和肿瘤组织的表达,B P4HA1表达与胶质瘤患者的性别、种族、年龄的相关性验证,C P4HA1与生存期关系,D预后生存分析曲线,E ROC曲线;
图4siRNA@CGM对细胞生物学功能及EMT的影响;A管腔形成实验,B MTT检测,C平板克隆;
图5siRNA@CGM对细胞生物学功能及EMT的影响;ATranswell实验,B划痕实验;
图6EMT相关marker分析;AWB实验,B肿瘤形成实验;
图7放射性核素显像和肿瘤生长曲线;
图8体内肿瘤抑制实验A免疫组化检测Ki67表达,B TUNEL方法检测肿瘤组织中细胞凋亡。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1制备壳聚糖明胶微球(CGM)
(1)制备CGM
1)使用电子天秤分别精准称取0.3g壳聚糖和0.3g明胶,将0.3g壳聚糖与0.3g明胶共同溶于12mL 3%乙酸中,得混合液I;
2)将混合液I加入到60mL石蜡油(加入乳化剂司盘80)中,置于搅拌器中,设定60℃,1000r/min进行搅拌,直至混合液I充分混匀,得混合液II;
3)将混合液II液置于烘箱中,加热至55℃~60℃约30min,随后加入1.5mL 25%戊二醛,置于搅拌器中60℃,1000r/min搅拌1.5h,得混合液III;
4)向混合液III中加入3.2mL 10%NaOH溶液,置于搅拌器中60℃,1000r/min搅拌40min,静置5min,除去上层液体,用200目筛子对下层沉淀进行过滤,去除过滤物,过滤得微球;
5)用-20℃预冷的1,4-二氧六环对筛子中的微球进行冲洗,在1,4-二氧六环中,搅拌5min,静置5min,然后除去上层液体,再加入1,4-二氧六环,浸泡30min;
6)过滤后得到微球,将微球转移至干净烧杯,再次加入1,4-二氧六环浸泡30min;
7)静置5min,除去上层1,4-二氧六环,加入无水乙醇浸泡10min;用无水乙醇冲洗微球两次;
8)烘干,将微球置于65℃烘箱中过夜,得到壳聚糖明胶微球,4℃保存备用。
表1.实验试剂
(2)DLS、SEM表征
利用扫描电镜对明胶微球形貌进行表征,结果显示该明胶微球呈球形,表面光滑且粒径相对均一,单个粒径大小大约在10μm左右(图1A)。利用显微镜拍摄材料外观验证明胶微球的形貌特征,结果显示该明胶微球成圆球形,与SEM结果相符(图1B)。
利用DLS检测其粒径,结果显示该纳米材料的水合粒径在8μm左右,利用Zeta电位检测明胶微球的电位,结果显示微球带正电荷,电位为17mV左右(图1C和1D),成功制备得到CGM微球颗粒。
实施例2壳聚糖明胶微球负载P4HA1 siRNA(siRNA@CGM)
(1)制备siRNA@CGM
siRNA溶液:核苷酸序列如SEQ ID NO.1所示的P4HA1 siRNA交由公司合成,并配成100μmol/L的siRNA溶液。
CGM溶液:称取实施例1中制备的CGM微球颗粒40mg,溶解搅拌在20mLPBS中,使溶液中壳聚糖的含量为1mg/mL。
复合物中壳聚糖氨基与siRNA磷酸基团不同氮磷比(N/P比)计算方式如下:每分子质量为325siRNA提供1个磷酸基团,每分子质量为167.88壳聚糖提供1个氨基基团。
取CGM溶液与siRNA溶液按照不同N/P比(40:1,80:1,160:1,200:1)混合,并在37℃温箱中孵育20min。
配制1%的琼脂糖凝胶,于90mV条件下电泳30min,观察CGM与P4HA1 siRNA结合情况。
结果如图1E所示,N/P比为80及其以上时,游离siRNA的条带消失,说明在这个比例下,CGM能够完全装载siRNA。
(2)siRNA稳定性实验
将游离siRNA或等效siRNA@CGM与1μL RNase-A(1mg/mL)在37℃下混合。在不同时间点采集的样品并立即在-80℃下冷冻。通过2%凝胶阻滞分析。以游离siRNA作为对照。
结果如图1F所示,游离siRNA在RNase A的存在下,很快就被完全降解;而siRNA@CGM与RNase A共孵育60min后,仍具有完整的siRNA条带,说明CGM能够很好的保护siRNA。
(3)血液相容性实验
将血红细胞与不同N/P比(40:1,80:1,160:1,200:1)的siRNA@CGM孵育2h,离心取上清液,观察是否有溶血现象发生。进一步在酶标仪上检测血红素的吸光值(540nm波长),计算释放的血红素含量。
不同N/P比(40:1,80:1,160:1,200:1)的siRNA@CGM孵育2h后红细胞上清液中未见红色,说明红细胞未破裂,即未发生明显溶血,说明在不同N/P比下的siRNA@CGM均具有良好的血液相容性(图1G)。
实施例3放射性碘标记标记壳聚糖明胶微球(125I-siRNA@CGM)的制备
(1)制备微球125I-siRNA@CGM
将50g实施例1中的CGM微球颗粒在190L的PBS缓冲溶液(pH=7.0)和10μL的KI溶液中溶胀10min,然后加入2.5μL的Na125I,加入200μL氯胺-T溶液(20g/L),搅拌1h,加入200μL的偏重亚硫酸钠溶液(15g/L)以终止反应。将微球高速离心后取出,用生理盐水洗涤数次得到125I标记的CGM。
采用实施例2中相同的方法负载P4HA1 siRNA,使用125I标记的CGM与siRNA进行孵育,得到125I-siRNA@CGM。
(2)体外稳定性的验证
分别将1.0mL生理盐水缓慢沿试管壁加入装有50mg 125I-siRNA@CGM的试管中,分别在第1,2,3,4,5,6和7天时移走生理盐水,用γ计数仪测量微球的放射性强度,重复实验3次。
结果如图2所示,碘标记壳聚糖明胶微球随着时间的延长稳定性略有下降,说明碘标记壳聚糖明胶微球在体外的稳定性较好。
实施例4生信分析胶质瘤中P4HA1表达水平与临床指征的相关性
(1)TCGA数据库分析P4HA1在脑胶质瘤中的表达水平
从TCGA数据库中收集163个脑胶质瘤肿瘤组织和207个癌旁组织的P4HA1表达谱数据,分析P4HA1在脑胶质瘤肿瘤组织和癌旁组织中的表达水平;绘制箱形图。
结果如图3所示,P4HA1在肿瘤组织中的表达水平较邻近癌旁组织明显升高。
(2)TCGA数据库分析P4HA1在脑胶质瘤中的与生存期的关系
对163个肿瘤病人的生存数据进行分析,取P4HA1表达量前20%和后20%的病人做图(cox回归方法)。
采用cox比例风险模型进行计算
软件:R(3.6.3版本)(统计分析与可视化);R包:survminer包[0.4.9版本](用于可视化),survival包[3.2-10版本](用于生存资料的统计分析);统计方法:Cox回归结果提示,group分组的生存时间分布的差异具有统计学意义,P<0.001。结局:High组预后更差;分组:0-20vs 80-100;预后类型:Overall Survival;数据转化:FPKM(Fregments PerKilobaseperMillion)格式的RNAseq数据转换成了TPM(transcripts per million reads)格式并进行log2转化;生存曲线(也称Kaplan-Meier曲线):可描述各组患者的生存状况或者各组实验动物的存活情况;累积生存率:多个时间段生存概率的累积。
生存分析的方法:①非参数法:寿命表、Kaplan-Meier(乘积极限法Product limitmethod)等;②半参数法:Cox回归。
利用TCGA数据库分析P4HA1在人脑胶质瘤中的表达。结果显示,P4HA1在肿瘤组织中的表达水平较邻近癌旁组织明显升高(图3A)。P4HA1表达与胶质瘤患者的性别、种族、年龄无显著相关性(图3B)。然而,生存曲线分析显示P4HA1高表达胶质瘤患者预后较低(图3C和D),受试者工作特征(ROC)曲线显示曲线下面积(Area Underthe curve,AUC)值为0.938,大大大于0.5,进一步说明P4HA1可能是胶质瘤的预后因素(图3E)。
实施例5微球对肿瘤细胞增殖和迁移的影响
设置四个组别:control组、CGM组、siRNA组、siRNA@CGM组,通过肿瘤细胞增殖实验、划痕实验、迁移实验和管腔形成实验验证siRNA@CGM微球对U87MG胶质瘤细胞的影响。
control组为空白对照组,siRNA组中siRNA的添加量为50nmol,siRNA@CGM组中siRNA也是按照50nmol浓度添加,siRNA@CGM的N/P比为80:1,CGM组的颗粒浓度与siRNA@CGM组的颗粒浓度一致。
细胞培养:U87MG胶质瘤细胞、人脑微血管内皮细胞HBMECs在含有10%胎牛血清的DMEM培养基中置于37℃、5%CO2的恒温培养箱中培养,用含有0.05%的胰蛋白酶液进行消化和传代。
siRNA组中的siRNA通过转染的方式处理细胞:在siRNA转染前2h,将6孔板中的培养上清换成无血清的DMEM培养基培养。用100μL无血清opti-MEM分别稀释10μL siRNA,并用枪头轻轻混匀,室温下静置5min。使用前轻轻混匀lipo,然后取5μL的lipo在100μl opti-MEM中,室温下静置5min;混合lipo和siRNA的稀释液(总体积为200μL),轻轻混匀并在室温下静置20min;每个培养孔分别加混合液200μL,前后轻轻摇动细胞培养板使混合液与培养板中培养液混匀;于37℃CO2培养箱中培养,6h后吸出混合液换完全DMEM培养基,继续培养进行后续的肿瘤细胞增殖实验、平板克隆实验、细胞划痕实验、Transwell实验和管腔形成实验。
siRNA@CGM组和CGM组通过将试剂直接与U87MG细胞孵育的方式处理细胞。
(1)肿瘤细胞增殖实验
分别将处于对数期的U87MG细胞消化,按3000个/100μL接种于96孔板中,将各组相对应的药物加入到96孔板中,孵育24、48、72和96小时后,使用MTT法测定不同处理组对细胞增殖的抑制作用。同时通过平板克隆实验进行验证。
结果如图4B显示:随着培养时间的延长,U87MG细胞增殖水平持续升高;与control组相比,CGM组则略有缓和,但并无明显差异;siRNA组的细胞增殖能力明显低于control组;而siRNA@CGM组的细胞增殖能力最弱,且在48小时后则细胞的增殖受到明显抑制。表明siRNA@CGM可显著抑制U87MG细胞的增殖。
(2)平板克隆实验
1)取处于对数生长期,生长状态良好的U87MG细胞消化,以每孔5×105个接种于细胞培养6孔板,37℃、5%CO2培养箱中培养过夜;
2)用PBS洗细胞3次,加入各组相对应的药物;37℃、5%CO2培养箱中培养24h;
3)取处理好的U87MG细胞,用0.25%胰蛋白酶消化并吹打成单个细胞,把细胞悬浮在培养基中备用。
4)将细胞悬液稀释,以200个细胞密度接种于6孔板中。
5)轻轻转动,使细胞分散均匀。
6)将培养皿置于37℃、5%的CO2培养箱内,培养2-3周。
7)当出现克隆时,弃上清,用PBS浸洗2次,甲醇固定15min。
8)弃固定液,加适量苏木素染色10-30min。
9)用PBS清洗,计数。
计算:克隆形成率=克隆数/接种细胞数*100%。
平板克隆结果显示(图4C):14d后CGM组和Control组的克隆形成速度类似,均处于较高水平;siRNA组的克隆形成显著降低;而siRNA@CGM组的克隆形成显著受到了抑制,克隆数最少。表明siRNA@CGM可显著抑制U87MG细胞的克隆形成能力。
(3)细胞划痕实验
1)marker笔在6孔板背后,用直尺比着,均匀的划横线,大约每隔0.5~1cm一道,横穿过孔,每孔至少穿过5条线;
2)取处于对数生长期,生长状态良好的U87MG细胞,0.25%胰酶分别消化计数约为5×105个细胞,接种于6孔板,37℃、5%CO2饱和湿度条件培养过夜;
3)待细胞密度达到90%左右,铺满6孔板底部,用枪头比着直尺,尽量垂至于背后的横线划痕,枪头要垂直,不要倾斜;
4)用PBS洗细胞3次,去除划下的细胞,各组加入相对应的药物和无血清培养基,同时拍取0h照片;
5)放入37℃、5%CO2培养箱,培养,按10h,12h,15h拍照;
6)用以下公式计算胶质瘤细胞的迁移率(MR):R=(x-y)/x,其中x是划痕在0h的宽度,y是10,12,15h的宽度。
划痕结果显示(图5B):siRNA组的细胞迁移速率明显低于Control组,而siRNA@CGM组的迁移速率更低。表明siRNA@CGM可显著抑制U87细胞的迁移能力。
(4)Transwell实验
1)分别取各组经药物处理24h后处于对数期的U87MG细胞,常规消化后计数,用无血清DMEM培养基重悬,按50000个/200μL接种于Transwell小室的上层。迁移实验时Transwell小室上层不作预处理,下层加入600μL胶质瘤细胞无血清上清液;侵袭实验时Transwell小室上层预先包被一层基质胶,下层加入600μL含15%FBS的DMEM培养基,每组设置3个重复;
2)放入37℃、5%CO2,培养箱中培养。培养一段时间后终止实验(迁移实验培养16h,侵袭实验培养24h);
3)用棉签擦去Transwell小室上层细胞,下层细胞不去除;
4)37℃预温的PBS液漂洗两次,用冰预冷的4%多聚甲醛固定30min,用1%结晶紫染液染色10min,在显微镜下观察细胞染色情况,并随机取3个视野进行计数。
Transwell实验结果显示(图5A):siRNA干预导致U87细胞的迁移和侵袭能力降低;siRNA@CGM干预后U87细胞的迁移和侵袭能力受到了显著抑制。表明siRNA@CGM可显著抑制U87细胞的迁移和侵袭能力。
(5)管腔形成实验
1)将各组经药物处理的细胞放置于37℃,5%CO2培养箱内培养48h。
2)Matrigel基质胶4℃过夜溶解,枪头盒、EP管、24孔板均4℃过夜预冷。
3)次日在冰盒上进行铺胶,将Matrigel基质胶250μl/孔加入24孔板,37℃孵箱放置30min。
4)在胶凝固的过程中,将各组经药物处理的细胞消化,调整细胞浓度为到2×105cell/ml。
5)向铺有Matrigel基质胶的24孔板中接种5×104细胞/每孔,然后放入孵箱中培养8h。
6)显微镜下观察并拍照。
管腔形成实验结果显示(图4A):siRNA干预导致HBMECs细胞的管腔形成能力降低;siRNA@CGM干预后HBMECs细胞的管腔形成能力受到了显著抑制。表明siRNA@CGM可显著抑制HBMECs细胞的管腔形成能力。
实施例6EMT相关marker分析
U87MG胶质瘤细胞在含有10%胎牛血清的DMEM培养基置于37℃、5%CO2的恒温培养箱中培养。
采用10ng/ml的TGF-β1作为U87MG胶质瘤细胞发生EMT的诱导浓度,12h后加入根据不同的分组(control组、CGM组、siRNA组、siRNA@CGM组)添加相应的药物,药物添加量和添加方式参考实施例5,作用细胞48h后,收集细胞。为了明确以及更加深入研究siRNA@CGM对胶质瘤EMT的抑制作用,进一步检测siRNA@CGM对胶质瘤发生EMT过程中重要的间质标志物和重要的转录因子蛋白表达的影响。用免疫印迹的方法检测N-钙黏蛋白、波形蛋白、Snail,Slug,Twist1的蛋白表达情况。以GAPDH作为内参照,以目的条带与GAPDH灰度比值分析蛋白的相对表达水平
结果显示(图6A),siRNA干预抑制了N-Cadherin、Vinmentin、Snail、Slug和Twist1的蛋白表达;siRNA@CGM干预后上述蛋白表达水平则受到更为显著的抑制。表明siRNA@CGM可有效逆转或缓解U87细胞的EMT发生。
实施例7肿瘤细胞球形成实验
组别:control组、EMT组(TGF-β1诱导)、TGF-β1+siRNA@CGM组
(1)诱导胶质瘤干细胞的形成(无血清诱导法):
用Neurobasal完全培养基(20ng/mlbFGF,20ng/ml EGF,1mg/ml肝素,1×B27添加剂,1×N2添加剂,1×GlutaMAX,100U/ml青/链霉素)重悬U87MG细胞,调整细胞密度为2×105/mL,将细胞转移至新的低吸附细胞培养瓶中培养。每2-3d更换新的Neurobasal完全培养基并添加新的20ng/ml bFGF和20ng/ml EGF。待悬浮生长的胶质瘤肿瘤球直径增长至约为150-200μm时(约7d),收集肿瘤球细胞悬液,室温下500r/min,离心5min。加入Accutase消化液消化肿瘤球3-5min后,轻轻吹打使胶质瘤肿瘤球分散成单细胞悬液。进行传代接种。
(2)肿瘤球形成试验
采用10ng/ml的TGF-β1作为U87MG胶质瘤细胞发生EMT的诱导浓度,12h后,TGF-β1+siRNA@CGM组添加siRNA@CGM(siRNA@CGM的N/P比为80:1,siRNA按照50nmol浓度添加)。
按5000个/孔将步骤(1)中制备的单细胞悬液接种于96孔板,在Neurobasal完全培养基中根据相应的组别加入不同药物处理细胞。培养7d,每2天补充Neurobasal完全培养基,7d后在倒置显微镜下(×100)观察胶质瘤肿瘤球的生长形态并计数。
肿瘤球形成实验结果显示(图6B):siRNA@CGM干预后则显著抑制了因EMT促进的肿瘤干细胞球的生长。表明siRNA@CGM抑制了肿瘤干细胞球的形成。
实施例8体内肿瘤抑制实验
体内实验siRNA@CGM相比游离siRNA可以更有效的抑制胶质瘤生长
将U87MG细胞接种于裸鼠皮下,选择肿瘤大小相近的24只裸鼠,随机分为4组,每组5只:分别为Control组,siRNA组、125I-CGM组、125I-siRNA@CGM组,尾静脉隔天进行尾静脉注射100μl(药物浓度为0.26μg/μl)。定期用监测肿瘤大小,并记录裸鼠体重。根据实际情况(约3周)绘制肿瘤生长曲线及小鼠体重变化曲线(图7)。
核素成像相关实验结果中,Control组的放射性核素分布在全身,而125I标记的CGM组肿瘤部位的放射性核素强度高于其他组织。
对肿瘤组织切片进行免疫组化Ki67染色(图8A)及Tunel染色(显示凋亡,图8B),Ki67是衡量恶性肿瘤程度的一个关键指标,Ki67标记的是处于增殖周期中的细胞。该标记阳性率越高,肿瘤生长越快。使用image J进行阳性细胞率定量分析。
结果显示,Control组的ki67表达最高,125I-siRNA@CGM组Ki67表达显著降低,表明其在抑制肿瘤生长方面表现出最好的治疗效果。Control组的凋亡最弱,125I-siRNA@CGM组凋亡水平最高,表明其在促进肿瘤凋亡方面表现出最好的治疗效果。siRNA@CGM组在抑制肿瘤增殖和促进肿瘤凋亡方面有着最好的治疗效果。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (7)

1.一种壳聚糖纳米颗粒,其特征在于,所述壳聚糖纳米颗粒包含壳聚糖和siRNA的组合物,所述壳聚糖的分子量为4500~5500Da,所述siRNA的核苷酸序列如SEQ ID NO.1所示;所述壳聚糖和siRNA磷酸基团的氮磷比为(40:1)~(200:1);所述壳聚糖纳米颗粒中还含有明胶;所述明胶和壳聚糖的质量比为1:1。
2.根据权利要求1所述的壳聚糖纳米颗粒,其特征在于,所述壳聚糖纳米颗粒经同位素标记。
3.根据权利要求2所述的壳聚糖纳米颗粒,其特征在于,所述同位素为放射性同位素125I。
4.一种药物组合物,其特征在于,所述药物组合物中含有权利要求1~3任一所述壳聚糖纳米颗粒和药学上可接受的载体。
5.根据权利要求4所述的药物组合物,其特征在于,所述载体为药学上可接受的填充剂、润湿剂、崩解剂、粘合剂或润滑剂中的一种或多种。
6.权利要求1~3任一所述壳聚糖纳米颗粒或权利要求4或5所述药物组合物在制备治疗或辅助治疗脑胶质瘤的药物中的应用。
7.根据权利要求6所述的应用,其特征在于,所述药物的给药途径包括皮下注射、静脉注射、肌肉注射、腹腔注射、静脉滴注、动脉注射、体腔内注射和/或口服。
CN202310594285.5A 2023-05-25 2023-05-25 多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗脑胶质瘤的研究 Active CN118304423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310594285.5A CN118304423B (zh) 2023-05-25 2023-05-25 多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗脑胶质瘤的研究

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310594285.5A CN118304423B (zh) 2023-05-25 2023-05-25 多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗脑胶质瘤的研究

Publications (2)

Publication Number Publication Date
CN118304423A CN118304423A (zh) 2024-07-09
CN118304423B true CN118304423B (zh) 2024-10-11

Family

ID=91731005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310594285.5A Active CN118304423B (zh) 2023-05-25 2023-05-25 多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗脑胶质瘤的研究

Country Status (1)

Country Link
CN (1) CN118304423B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9700624D0 (en) * 1997-01-14 1997-03-05 Danbiosyst Uk Drug delivery composition
US8236772B2 (en) * 2005-09-16 2012-08-07 The Board Of Trustees Of The Leland Stanford Junior University Methods of modulating angiogenesis and screening compounds for activity in modulating angiogenesis
EP2295045A1 (en) * 2006-07-07 2011-03-16 Aarhus Universitet Nanoparticles for nucleic acid delivery
EP2714089A4 (en) * 2011-05-24 2014-11-26 Polyvalor Sec COMPOSITIONS AND METHODS FOR THE EFFICIENT AND SAFE DISTRIBUTION OF SIRNA WITH THE AID OF SPECIFIC CHITOSANO-BASED NANOCOMPLEXES
WO2018143493A1 (ko) * 2017-02-03 2018-08-09 서강대학교 산학협력단 아토피 질환 치료용 siRNA 하이드로젤 기반 나노입자 및 이의 제조방법
CN110302173B (zh) * 2019-07-26 2022-05-06 武汉理工大学 一种实现可控释放壳聚糖/明胶壳核胶囊的制备方法
CN111840575B (zh) * 2020-05-07 2022-02-11 合肥工业大学 一种递送siRNA的壳聚糖衍生物纳米颗粒的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Multilevel chitosan-gelatin particles loaded with P4HA1 siRNA suppress glioma development;Zhou Yiting;《DRUG DELIVERY AND TRANSLATIONAL RESEARCH》;20230904;第14卷(第3期);第665-677页 *

Also Published As

Publication number Publication date
CN118304423A (zh) 2024-07-09

Similar Documents

Publication Publication Date Title
Sampetrean et al. Invasion precedes tumor mass formation in a malignant brain tumor model of genetically modified neural stem cells
Jun et al. Inhibition of EGFR induces a c-MET-driven stem cell population in glioblastoma
Gril et al. Pazopanib inhibits the activation of PDGFRβ-expressing astrocytes in the brain metastatic microenvironment of breast cancer cells
PT2029746E (pt) Composições e métodos para a inibição do sirna de angiogenese
TWI516267B (zh) 抑制癌症或腫瘤細胞之類癌幹細胞特性及抗化學及放射治療特性的醫藥組合物
US20190010492A1 (en) Monocarboxylate transporter 4 (mct4) antisense oligonucleotide (aso) inhibitors for use as therapeutics in the treatment of cancer
TWI473880B (zh) 微型核糖核酸作為癌症進展之預測因子及其治療癌症之用途
Norton et al. Glioblastoma disrupts the ependymal wall and extracellular matrix structures of the subventricular zone
CN118304423B (zh) 多层级壳聚糖明胶颗粒载P4HA1 siRNA通过抑制细胞EMT治疗脑胶质瘤的研究
KR101854994B1 (ko) M-msc를 유효성분으로 포함하는 방광통증 증후군의 예방 또는 치료용 조성물
CN108245526A (zh) 一种肝癌细胞生长抑制剂及其在肝癌预后判断中的应用
US7547511B2 (en) Antisense inhibition of laminin-8 expression to inhibit human gliomas
EP2892997B1 (en) Urine stem cells for skeletal muscle generation and uses thereof
Muraguchi et al. NKX2. 2 suppresses self-renewal of glioma-initiating cells
CN110157708B (zh) 一种抑制人脑胶质瘤的靶向linc01023基因的抑制剂及其应用
CN114191554A (zh) 抑制tert表达的试剂在制备预防或治疗胸主动脉瘤的药物中的应用
US9284557B2 (en) Double-stranded nucleic acid molecule, cancer cell proliferation inhibitor and pharmaceutical agent suitable for prevention or treatment of cancer
EP2937090B1 (en) Tissue regeneration promoting agent
US20030134266A1 (en) Methods of screening for compounds that modulate blood vessel formation
CN116236576B (zh) Acsl3基因在治疗肝癌中的应用及一种纳米药物
US10835551B2 (en) Double-stranded nucleic acid molecule, DNA, vector, cancer cell growth inhibitor, cancer cell migration inhibitor, and drug
CN110257377B (zh) 一种抑制人恶性脑胶质瘤的靶向linc00998基因的抑制剂及其应用
Kang et al. EGFL7 is an intercellular EGFR signal messenger that plays an oncogenic role in glioma
CN117660450A (zh) 一种miRNA核酸分子、药物组合物及其在制备用于促进组织再生的药物中的应用
Chen et al. Beige Adipocytes Promote Triple‐Negative Breast Cancer Cell Migration and Malignancy Through BMP4 Signaling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant