[go: up one dir, main page]

CN118691331B - A digital enterprise service resource management system and method based on industry support - Google Patents

A digital enterprise service resource management system and method based on industry support Download PDF

Info

Publication number
CN118691331B
CN118691331B CN202411179727.0A CN202411179727A CN118691331B CN 118691331 B CN118691331 B CN 118691331B CN 202411179727 A CN202411179727 A CN 202411179727A CN 118691331 B CN118691331 B CN 118691331B
Authority
CN
China
Prior art keywords
data
historical
service resource
resource
demand data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202411179727.0A
Other languages
Chinese (zh)
Other versions
CN118691331A (en
Inventor
陈航溢
项涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Huzhou Kaixin Digital Technology Co ltd
Original Assignee
Zhejiang Huzhou Kaixin Digital Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Huzhou Kaixin Digital Technology Co ltd filed Critical Zhejiang Huzhou Kaixin Digital Technology Co ltd
Priority to CN202411179727.0A priority Critical patent/CN118691331B/en
Publication of CN118691331A publication Critical patent/CN118691331A/en
Application granted granted Critical
Publication of CN118691331B publication Critical patent/CN118691331B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention relates to the technical field of resource management, and discloses a digital enterprise service resource management system and method based on industry support. According to the method, a sample set is constructed by collecting historical service resource data supported by industry and historical demand data corresponding to a digital enterprise, the accuracy of the collected service resource data and demand data is guaranteed in a mode of preprocessing the historical service resource data supported by industry and the historical demand data corresponding to the digital enterprise in the constructed sample set, meanwhile, a resource decision model is built in a data analysis processing mode, the built resource decision model is trained in a particle swarm optimization algorithm, a trained resource decision model is obtained, and finally, the efficiency and the accuracy of service resource management are improved through the trained resource decision model.

Description

一种基于产业扶持的数字化企业服务资源管理系统及方法A digital enterprise service resource management system and method based on industry support

技术领域Technical Field

本发明涉及资源管理技术领域,具体为一种基于产业扶持的数字化企业服务资源管理系统及方法。The present invention relates to the technical field of resource management, and in particular to a digital enterprise service resource management system and method based on industry support.

背景技术Background Art

随着经济的发展,用户对服务资源管理的要求日益增高,但由于需求资源不断增高的情况下服务资源的匹配管理越来越困难,需要更具有个性化需求的业务系统来提供企业服务。With the development of the economy, users' requirements for service resource management are increasing day by day. However, as the demand for resources continues to increase, the matching management of service resources is becoming more and more difficult. A business system with more personalized needs is needed to provide enterprise services.

现有中国申请专利CN118052528A,该方法通过系统中的人才管理模块设置人才简历单元,实时采集简历数据集,并通过标签分类单元分类方式生成人才标签数据组,完成对人才的分类,同时使用企业管理模块采集职位数据集并分类生成需求标签数据组,并通过统一标签批量化分类标记职位,同时通过资源匹配模块按标签数量进行简历和职位的匹配,并计算生成匹配集合完成对资源的管理,但由于仅仅通过资源匹配的方式对资源管理,忽略了对资源的细致分析,具有一定的局限性。The existing Chinese patent application CN118052528A, this method sets a talent resume unit through the talent management module in the system, collects resume data sets in real time, and generates talent label data groups through classification by label classification units to complete the classification of talents. At the same time, the enterprise management module is used to collect position data sets and classify them to generate demand label data groups, and the positions are batch classified and marked through unified labels. At the same time, the resource matching module matches resumes and positions according to the number of labels, and calculates and generates matching sets to complete the management of resources. However, since resources are managed only through resource matching, the detailed analysis of resources is ignored, which has certain limitations.

发明内容Summary of the invention

(一)解决的技术问题1. Technical issues to be resolved

针对现有技术的不足,本发明提供了一种基于产业扶持的数字化企业服务资源管理系统及方法,具备高效、实时、准确等优点,解决了需求资源不断增高的情况下服务资源的匹配管理越来越困难的问题。In view of the deficiencies in the prior art, the present invention provides a digital enterprise service resource management system and method based on industry support, which has the advantages of high efficiency, real-time and accuracy, and solves the problem that the matching management of service resources is becoming increasingly difficult when the demand for resources continues to increase.

(二)技术方案(II) Technical solution

为解决上述需求资源不断增高的情况下服务资源的匹配管理越来越困难的技术问题,本发明提供如下技术方案:In order to solve the technical problem that the matching management of service resources becomes increasingly difficult when the demand for resources continues to increase, the present invention provides the following technical solutions:

本发明公开一种基于产业扶持的数字化企业服务资源管理方法,具体包括以下步骤:The present invention discloses a digital enterprise service resource management method based on industry support, which specifically includes the following steps:

S1、收集产业扶持的历史服务资源数据以及对应数字化企业的历史需求数据,并基于收集到的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据构建样本集;S1. Collect historical service resource data of industry support and historical demand data of corresponding digital enterprises, and build a sample set based on the collected historical service resource data of industry support and historical demand data of corresponding digital enterprises;

S2、对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行预处理,得到预处理后的历史服务资源数据和对应的历史需求数据;S2. Preprocess the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set to obtain the preprocessed historical service resource data and the corresponding historical demand data;

S3、基于得到的预处理后的历史服务资源数据和对应的历史需求数据,通过数据分析处理方式建立资源决策模型;S3, based on the obtained pre-processed historical service resource data and the corresponding historical demand data, a resource decision model is established through data analysis and processing;

S4、基于建立的资源决策模型,通过使用粒子群优化算法对建立的资源决策模型进行训练,并得到训练后的资源决策模型;S4, based on the established resource decision model, the established resource decision model is trained by using a particle swarm optimization algorithm, and a trained resource decision model is obtained;

S5、基于得到的训练后的资源决策模型对实时收集的服务资源数据以及对应的需求数据进行服务资源分配管理。S5. Perform service resource allocation management on the service resource data collected in real time and the corresponding demand data based on the trained resource decision model.

本发明通过收集产业扶持的历史服务资源数据以及对应数字化企业的历史需求数据构建样本集,并对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行预处理的方式保证收集的服务资源数据和需求数据的准确性,同时通过数据分析处理方式建立资源决策模型,并通过粒子群优化算法对建立的资源决策模型进行训练,得到训练后的资源决策模型,最后通过训练后的资源决策模型,提高了服务资源管理的效率和准确性。The present invention constructs a sample set by collecting historical service resource data supported by industries and historical demand data of corresponding digital enterprises, and pre-processes the historical service resource data supported by industries and the historical demand data of corresponding digital enterprises in the constructed sample set to ensure the accuracy of the collected service resource data and demand data. At the same time, a resource decision model is established through data analysis and processing, and the established resource decision model is trained through a particle swarm optimization algorithm to obtain a trained resource decision model. Finally, the trained resource decision model is used to improve the efficiency and accuracy of service resource management.

优选地,所述对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行预处理包括以下步骤:Preferably, the preprocessing of the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set includes the following steps:

S21、对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤,得到过滤后的历史服务资源数据和对应的历史需求数据;S21. Filter the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set to obtain filtered historical service resource data and corresponding historical demand data;

S22、设定过滤后的历史服务资源数据和对应的历史需求数据为预处理后的历史服务资源数据和对应的历史需求数据。S22. Set the filtered historical service resource data and the corresponding historical demand data as the pre-processed historical service resource data and the corresponding historical demand data.

优选地,所述对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤,得到过滤后的历史服务资源数据和对应的历史需求数据包括以下步骤:Preferably, filtering the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set to obtain the filtered historical service resource data and the corresponding historical demand data includes the following steps:

S211、建立数据标准并过滤异常产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;S211. Establish data standards and filter historical service resource data for abnormal industry support and historical demand data for corresponding digital enterprises;

设定产业扶持的历史服务资源数据和对应数字化企业的历史需求数据的长度标准,对超过长度标准的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行删除,对低于长度标准的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据的末尾加0进行补齐;Set the length standard of the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises, delete the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises that exceed the length standard, and add zeros to the end of the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises that are less than the length standard;

S212、过滤并去除重复的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;S212, filtering and removing duplicate historical service resource data of industry support and historical demand data of corresponding digital enterprises;

基于过滤算法对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤:Filter the historical service resource data of industry support and the historical demand data of corresponding digital enterprises based on the filtering algorithm:

建立一个长度为m的数组,选取个哈希函数对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据中的每组数据进行遍历,并将遍历结果保存在数组中;Create an array of length m and select A hash function traverses each set of data in the historical service resource data of industry support and the historical demand data of the corresponding digital enterprise, and saves the traversal results in an array;

在通过哈希函数遍历过程中,当存在两组数据的遍历结果相同时,对这两组数据中的每位数据进行对比;In the process of traversing through the hash function, when there are two sets of data with the same traversal results, each bit of the two sets of data is compared;

当对比结果一致时,设定当前两组数据为相同数据,基于任务资源到达时间,删除后到达的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;When the comparison results are consistent, the two sets of data are set to be the same data. Based on the arrival time of the task resources, the historical service resource data of the industry support and the historical demand data of the corresponding digital enterprises that arrived later are deleted;

遍历结束后,汇总遍历过程中保存在数组中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据,得到过滤后的历史服务资源数据和对应的历史需求数据。After the traversal is completed, the historical service resource data of industry support and the historical demand data of corresponding digital enterprises stored in the array during the traversal process are summarized to obtain filtered historical service resource data and corresponding historical demand data.

本发明通过使用过滤算法对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤,通过建立数组和选取多个哈希函数的方式对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据中的每组数据进行过滤,提高了服务资源数据和对应的需求数据的准确性。The present invention filters the historical service resource data of industry support and the historical demand data of corresponding digital enterprises by using a filtering algorithm, and filters each group of data in the historical service resource data of industry support and the historical demand data of corresponding digital enterprises by establishing an array and selecting multiple hash functions, thereby improving the accuracy of the service resource data and the corresponding demand data.

优选地,所述基于得到的预处理后的历史服务资源数据和对应的历史需求数据,通过数据分析处理方式建立资源决策模型包括以下步骤:Preferably, the step of establishing a resource decision model by means of data analysis and processing based on the obtained pre-processed historical service resource data and the corresponding historical demand data comprises the following steps:

S31、时间成本分析;S31. Time cost analysis;

计算从接收到历史需求数据后到调度预处理后的历史服务资源数据完成需求所需要的时间,计算公式如下所示:Calculate the time required from receiving historical demand data to scheduling pre-processed historical service resource data to complete the demand. The calculation formula is as follows:

;

其中,表示从接收到历史需求数据后到调度预处理后的历史服务资源数据完成需求所需要的时间,表示需求任务数目,表示服务资源数目,表示第个任务选择第个服务资源的决策变量,设定当时,表示第个任务选择第个服务资源,设定当时,表示第个任务不选择第个服务资源,表示第个服务资源的执行时间;in, It indicates the time required from receiving the historical demand data to scheduling the pre-processed historical service resource data to complete the demand. Indicates the number of required tasks, Indicates the number of service resources. Indicates Select the task The decision variables of service resources are set When Select the task service resources, set When Do not select the task service resources, Indicates The execution time of each service resource;

S32、生产成本分析;S32. Production cost analysis;

计算从接收到历史需求数据后到完成需求所需要的生产成本,计算公式如下所示:Calculate the production cost from receiving historical demand data to completing the demand. The calculation formula is as follows:

;

其中,表示从接收到历史需求数据后到完成需求所需要的生产成本,表示第个服务资源的生产成本;in, It represents the production cost required to complete the demand after receiving the historical demand data. Indicates The production cost of each service resource;

S33、服务质量分析;S33, service quality analysis;

计算从接收到历史需求数据后到完成需求后的合格率,计算公式如下所示:Calculate the pass rate from receiving historical demand data to completing the demand. The calculation formula is as follows:

;

其中,表示从接收到历史需求数据后到完成需求后的合格率,表示第个服务资源生产合格率;in, It indicates the qualified rate from receiving the historical demand data to completing the demand. Indicates Production qualification rate of each service resource;

S34、建立资源决策模型。S34. Establish a resource decision-making model.

优选地,所述建立资源决策模型包括以下步骤:Preferably, the establishing of the resource decision model comprises the following steps:

资源决策模型计算公式如下:The resource decision model calculation formula is as follows:

;

其中,表示资源决策模型,表示资源决策权值。in, represents the resource decision model, Indicates the resource decision weight.

本发明通过使用数据分析处理方式建立资源决策模型,对预处理后的历史服务资源数据和对应的历史需求数据进行时间成本分析、生产成本分析以及服务质量分析的方式建立资源决策模型,保证了建立资源决策模型的准确性。The present invention establishes a resource decision model by using data analysis and processing methods, and establishes the resource decision model by performing time cost analysis, production cost analysis and service quality analysis on pre-processed historical service resource data and corresponding historical demand data, thereby ensuring the accuracy of establishing the resource decision model.

优选地,所述基于建立的资源决策模型,通过使用粒子群优化算法对建立的资源决策模型进行训练包括以下步骤:Preferably, the training of the established resource decision model by using a particle swarm optimization algorithm based on the established resource decision model comprises the following steps:

S41、粒子群优化算法参数初始化;S41, particle swarm optimization algorithm parameter initialization;

设定群体规模,最大迭代次数,粒子随机位置、粒子速度以及惯性因子Set the group size and maximum number of iterations , random position of particles , particle speed and the inertia factor ;

S42、计算每个粒子的适应度;S42, calculating the fitness of each particle;

每个粒子适应度计算公式如下:The fitness calculation formula for each particle is as follows:

;

其中,表示粒子适应度;in, represents the particle fitness;

S43、单个粒子最佳位置的更新;S43, updating of the best position of a single particle;

对于计算的每个粒子,将其当前位置的适应度与其经过的最佳位置的适应度做比较,若当前位置的适应度大于其经过的最佳位置的适应度,则将当前位置作为当前的最佳位置,若当前位置的适应度小于或等于其经过的最佳位置的适应度,则不改变当前的最佳位置For each particle calculated, the fitness of its current position is compared with the best position it has passed. If the fitness of the current position is greater than the best position it has passed, The current position is taken as the current best position. , if the fitness of the current position is less than or equal to the best position it has passed The fitness of , then the current best position will not be changed ;

S44、群体最佳位置的更新;S44, updating of the optimal position of the group;

对于计算的每个粒子,将其当前位置的适应度与其种群中粒子经过的最佳位置的适应度做比较,若当前位置的适应度大于其种群中粒子经过的最佳位置的适应度,则将当前位置作为当前的最佳位置,若当前位置的适应度小于或等于其种群中粒子经过的最佳位置的适应度,则不改变当前的最佳位置For each particle calculated, the fitness of its current position is compared with the best position that the particle in its population has passed. If the fitness of the current position is greater than the best position that the particle in the population has passed through, The current position is taken as the current best position. , if the fitness of the current position is less than or equal to the best position that the particle in its population has passed The fitness of , then the current best position will not be changed ;

S45、更新惯性因子,基于更新的惯性因子更新所有粒子的位置与速度;S45, updating the inertia factor, and updating the positions and velocities of all particles based on the updated inertia factor;

S46、重复步骤S42-S45,直至达到最大迭代次数,输出最佳位置对应的惯性因子;S46, repeating steps S42-S45 until the maximum number of iterations is reached, and outputting the inertia factor corresponding to the optimal position;

设定输出的最佳位置对应的惯性因子为训练后的资源决策模型中的资源决策权值。The inertia factor corresponding to the optimal position of the output is set as the resource decision weight in the trained resource decision model.

优选地,所述单个粒子最佳位置的更新包括以下步骤:Preferably, the updating of the optimal position of a single particle comprises the following steps:

单个粒子速度更新公式如下:The formula for updating the velocity of a single particle is as follows:

;

其中,表示粒子在第次迭代过程中的速度,表示粒子在第次迭代过程中的速度,表示惯性因子,表示粒子在第次迭代过程中的位置,表示加速常数,表示区间[0,1]内的随机数,表示粒子的个体极值,表示全体粒子的全局极值;in, Represents particles In the The speed during the iteration, Represents particles In the The speed during the iteration, represents the inertia factor, Represents particles In the The position during the iteration, , is the acceleration constant, , represents a random number in the interval [0,1], Represents particles The individual extreme value of Represents the global extreme value of all particles;

单个粒子位置更新公式如下:The formula for updating the position of a single particle is as follows:

;

其中,表示粒子在第次迭代过程中的位置。in, Represents particles In the The position during the iteration.

本发明通过使用粒子群优化算法对建立的资源决策模型进行训练,通过对单个粒子最佳位置的更新方式、设置迭代次数以及设置适应度的方式,寻找到最优的资源决策模型,进一步提高了资源决策模型的准确性。The present invention trains the established resource decision model by using a particle swarm optimization algorithm, finds the optimal resource decision model by updating the optimal position of a single particle, setting the number of iterations, and setting the fitness, thereby further improving the accuracy of the resource decision model.

优选地,所述基于得到的训练后的资源决策模型对实时收集的服务资源数据以及对应的需求数据进行服务资源分配管理包括以下步骤:Preferably, the performing service resource allocation management on the service resource data collected in real time and the corresponding demand data based on the obtained trained resource decision model comprises the following steps:

将实时收集的服务资源数据的生产成本、时间成本以及生产合格率输入训练后的资源决策模型,输出实时收集的服务资源数据对应的资源决策值;Input the production cost, time cost and production qualification rate of the service resource data collected in real time into the trained resource decision model, and output the resource decision value corresponding to the service resource data collected in real time;

设定资源决策值阈值,当输出实时收集的服务资源数据对应的资源决策值大于资源决策值阈值时,安排实时收集的服务资源数据执行对应的需求数据;A resource decision value threshold is set, and when the resource decision value corresponding to the service resource data collected in real time is greater than the resource decision value threshold, the service resource data collected in real time is arranged to execute the corresponding demand data;

当输出实时收集的服务资源数据对应的资源决策值小于或者等于资源决策值阈值时,安排对应的需求数据进行等待。When the resource decision value corresponding to the service resource data collected in real time is outputted and is less than or equal to the resource decision value threshold, the corresponding demand data is arranged to wait.

本发明还公开一种基于产业扶持的数字化企业服务资源管理系统,包括:数据收集模块、数据处理模块、模型建立模块、模型优化模块以及资源决策模块;The present invention also discloses a digital enterprise service resource management system based on industry support, comprising: a data collection module, a data processing module, a model building module, a model optimization module and a resource decision module;

所述数据收集模块用于收集服务资源数据以及对应的需求数据;The data collection module is used to collect service resource data and corresponding demand data;

所述数据处理模块用于对收集到的服务资源数据以及对应的需求数据进行处理;The data processing module is used to process the collected service resource data and corresponding demand data;

所述模型建立模块用于根据处理后的服务资源数据以及对应的需求数据建立资源决策模型;The model building module is used to build a resource decision model based on the processed service resource data and the corresponding demand data;

所述模型优化模块用于通过粒子群优化算法对资源决策模型进行优化;The model optimization module is used to optimize the resource decision model through a particle swarm optimization algorithm;

所述资源决策模块用于计算服务资源数据对应的资源决策值。The resource decision module is used to calculate the resource decision value corresponding to the service resource data.

(三)有益效果(III) Beneficial effects

与现有技术相比,本发明提供了一种基于产业扶持的数字化企业服务资源管理系统及方法,具备以下有益效果:Compared with the prior art, the present invention provides a digital enterprise service resource management system and method based on industry support, which has the following beneficial effects:

1、该发明通过产业扶持的历史服务资源数据以及对应数字化企业的历史需求数据构建样本集,并对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行预处理的方式保证收集的服务资源数据和需求数据的准确性,同时通过数据分析处理方式建立资源决策模型,并通过粒子群优化算法对建立的资源决策模型进行训练,得到训练后的资源决策模型,最后通过训练后的资源决策模型,提高了服务资源管理的效率和准确性。1. The invention constructs a sample set through the historical service resource data of industry support and the historical demand data of corresponding digital enterprises, and pre-processes the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set to ensure the accuracy of the collected service resource data and demand data. At the same time, a resource decision model is established through data analysis and processing, and the established resource decision model is trained through a particle swarm optimization algorithm to obtain a trained resource decision model. Finally, the trained resource decision model is used to improve the efficiency and accuracy of service resource management.

2、该发明通过使用过滤算法对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤,通过建立数组和选取多个哈希函数的方式对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据中的每组数据进行过滤,提高了服务资源数据和对应的需求数据的准确性。2. The invention filters the historical service resource data of industry support and the historical demand data of corresponding digital enterprises by using a filtering algorithm, and filters each group of data in the historical service resource data of industry support and the historical demand data of corresponding digital enterprises by establishing an array and selecting multiple hash functions, thereby improving the accuracy of the service resource data and the corresponding demand data.

3、该发明通过使用数据分析处理方式建立资源决策模型,对预处理后的历史服务资源数据和对应的历史需求数据进行时间成本分析、生产成本分析以及服务质量分析的方式建立资源决策模型,保证了建立资源决策模型的准确性。3. The invention establishes a resource decision model by using data analysis and processing methods, and establishes a resource decision model by performing time cost analysis, production cost analysis, and service quality analysis on the pre-processed historical service resource data and the corresponding historical demand data, thereby ensuring the accuracy of the established resource decision model.

4、该发明通过使用粒子群优化算法对建立的资源决策模型进行训练,通过对单个粒子最佳位置的更新方式、设置迭代次数以及设置适应度的方式,寻找到最优的资源决策模型,进一步提高了资源决策模型的准确性。4. The invention trains the established resource decision model by using a particle swarm optimization algorithm, finds the optimal resource decision model by updating the optimal position of a single particle, setting the number of iterations, and setting the fitness, thereby further improving the accuracy of the resource decision model.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明的数字化企业服务资源管理方法流程结构示意图。FIG. 1 is a schematic diagram of the flow structure of the digital enterprise service resource management method of the present invention.

具体实施方式DETAILED DESCRIPTION

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

实施例1Example 1

请参阅图1,本实施例公开一种基于产业扶持的数字化企业服务资源管理方法,具体包括以下步骤:Referring to FIG. 1 , this embodiment discloses a digital enterprise service resource management method based on industry support, which specifically includes the following steps:

S1、收集产业扶持的历史服务资源数据以及对应数字化企业的历史需求数据,并基于收集到的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据构建样本集;S1. Collect historical service resource data of industry support and historical demand data of corresponding digital enterprises, and build a sample set based on the collected historical service resource data of industry support and historical demand data of corresponding digital enterprises;

S2、对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行预处理,得到预处理后的历史服务资源数据和对应的历史需求数据;S2. Preprocess the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set to obtain the preprocessed historical service resource data and the corresponding historical demand data;

对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行预处理包括以下步骤:Preprocessing the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set includes the following steps:

S21、对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤,得到过滤后的历史服务资源数据和对应的历史需求数据;S21. Filter the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set to obtain filtered historical service resource data and corresponding historical demand data;

S211、建立数据标准并过滤异常产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;S211. Establish data standards and filter historical service resource data for abnormal industry support and historical demand data for corresponding digital enterprises;

设定产业扶持的历史服务资源数据和对应数字化企业的历史需求数据的长度标准,对超过长度标准的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行删除,对低于长度标准的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据的末尾加0进行补齐;Set the length standard of the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises, delete the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises that exceed the length standard, and add zeros to the end of the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises that are less than the length standard;

S212、过滤并去除重复的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;S212, filtering and removing duplicate historical service resource data of industry support and historical demand data of corresponding digital enterprises;

基于过滤算法对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤:Filter the historical service resource data of industry support and the historical demand data of corresponding digital enterprises based on the filtering algorithm:

建立一个长度为m的数组,选取个哈希函数对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据中的每组数据进行遍历,并将遍历结果保存在数组中;Create an array of length m and select A hash function traverses each set of data in the historical service resource data of industry support and the historical demand data of the corresponding digital enterprise, and saves the traversal results in an array;

在通过哈希函数遍历过程中,当存在两组数据的遍历结果相同时,对这两组数据中的每位数据进行对比;In the process of traversing through the hash function, when there are two sets of data with the same traversal results, each bit of the two sets of data is compared;

当对比结果一致时,设定当前两组数据为相同数据,基于任务资源到达时间,删除后到达的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;When the comparison results are consistent, the two sets of data are set to be the same data. Based on the arrival time of the task resources, the historical service resource data of the industry support and the historical demand data of the corresponding digital enterprises that arrived later are deleted;

遍历结束后,汇总遍历过程中保存在数组中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据,得到过滤后的历史服务资源数据和对应的历史需求数据;After the traversal is completed, the historical service resource data of the industry support and the historical demand data of the corresponding digital enterprises stored in the array during the traversal process are summarized to obtain the filtered historical service resource data and the corresponding historical demand data;

S22、设定过滤后的历史服务资源数据和对应的历史需求数据为预处理后的历史服务资源数据和对应的历史需求数据;S22, setting the filtered historical service resource data and the corresponding historical demand data as the pre-processed historical service resource data and the corresponding historical demand data;

S3、基于得到的预处理后的历史服务资源数据和对应的历史需求数据,通过数据分析处理方式建立资源决策模型;S3, based on the obtained pre-processed historical service resource data and the corresponding historical demand data, a resource decision model is established through data analysis and processing;

基于得到的预处理后的历史服务资源数据和对应的历史需求数据,通过数据分析处理方式建立资源决策模型包括以下步骤:Based on the obtained pre-processed historical service resource data and the corresponding historical demand data, establishing a resource decision model through data analysis and processing includes the following steps:

S31、时间成本分析;S31. Time cost analysis;

计算从接收到历史需求数据后到调度预处理后的历史服务资源数据完成需求所需要的时间,计算公式如下所示:Calculate the time required from receiving historical demand data to scheduling pre-processed historical service resource data to complete the demand. The calculation formula is as follows:

;

其中,表示从接收到历史需求数据后到调度预处理后的历史服务资源数据完成需求所需要的时间,表示需求任务数目,表示服务资源数目,表示第个任务选择第个服务资源的决策变量,设定当时,表示第个任务选择第个服务资源,设定当时,表示第个任务不选择第个服务资源,表示第个服务资源的执行时间;in, It indicates the time required from receiving the historical demand data to scheduling the pre-processed historical service resource data to complete the demand. Indicates the number of required tasks, Indicates the number of service resources. Indicates Select the task The decision variables of service resources are set When Select the task service resources, set When Do not select the task service resources, Indicates The execution time of each service resource;

S32、生产成本分析;S32. Production cost analysis;

计算从接收到历史需求数据后到完成需求所需要的生产成本,计算公式如下所示:Calculate the production cost from receiving historical demand data to completing the demand. The calculation formula is as follows:

;

其中,表示从接收到历史需求数据后到完成需求所需要的生产成本,表示第个服务资源的生产成本;in, It represents the production cost required to complete the demand after receiving the historical demand data. Indicates The production cost of each service resource;

S33、服务质量分析;S33, service quality analysis;

计算从接收到历史需求数据后到完成需求后的合格率,计算公式如下所示:Calculate the pass rate from receiving historical demand data to completing the demand. The calculation formula is as follows:

;

其中,表示从接收到历史需求数据后到完成需求后的合格率,表示第个服务资源生产合格率;in, It indicates the qualified rate from receiving the historical demand data to completing the demand. Indicates Production qualification rate of each service resource;

S34、建立资源决策模型;S34. Establish resource decision-making model;

资源决策模型计算公式如下:The resource decision model calculation formula is as follows:

;

其中,表示资源决策模型,表示资源决策权值;in, represents the resource decision model, Indicates resource decision weight;

S4、基于建立的资源决策模型,通过使用粒子群优化算法对建立的资源决策模型进行训练,并得到训练后的资源决策模型;S4, based on the established resource decision model, the established resource decision model is trained by using a particle swarm optimization algorithm, and a trained resource decision model is obtained;

基于建立的资源决策模型,通过使用粒子群优化算法对建立的资源决策模型进行训练包括以下步骤:Based on the established resource decision model, training the established resource decision model by using the particle swarm optimization algorithm includes the following steps:

S41、粒子群优化算法参数初始化;S41, particle swarm optimization algorithm parameter initialization;

设定群体规模,最大迭代次数,粒子随机位置、粒子速度以及惯性因子Set the group size and maximum number of iterations , random position of particles , particle speed and the inertia factor ;

S42、计算每个粒子的适应度;S42, calculating the fitness of each particle;

每个粒子适应度计算公式如下:The fitness calculation formula for each particle is as follows:

;

其中,表示粒子适应度;in, represents the particle fitness;

S43、单个粒子最佳位置的更新;S43, updating of the best position of a single particle;

单个粒子速度更新公式如下:The formula for updating the velocity of a single particle is as follows:

;

其中,表示粒子在第次迭代过程中的速度,表示粒子在第次迭代过程中的速度,表示惯性因子,表示粒子在第次迭代过程中的位置,表示加速常数,表示区间[0,1]内的随机数,表示粒子的个体极值,表示全体粒子的全局极值;in, Represents particles In the The speed during the iteration, Represents particles In the The speed during the iteration, represents the inertia factor, Represents particles In the The position during the iteration, , is the acceleration constant, , represents a random number in the interval [0,1], Represents particles The individual extreme value of Represents the global extreme value of all particles;

单个粒子位置更新公式如下:The formula for updating the position of a single particle is as follows:

;

其中,表示粒子在第次迭代过程中的位置;in, Represents particles In the The position during the iteration;

对于计算的每个粒子,将其当前位置的适应度与其经过的最佳位置的适应度做比较,若当前位置的适应度大于其经过的最佳位置的适应度,则将当前位置作为当前的最佳位置,若当前位置的适应度小于或等于其经过的最佳位置的适应度,则不改变当前的最佳位置For each particle calculated, the fitness of its current position is compared with the best position it has passed. If the fitness of the current position is greater than the best position it has passed, The current position is taken as the current best position. , if the fitness of the current position is less than or equal to the best position it has passed The fitness of , then the current best position will not be changed ;

S44、群体最佳位置的更新;S44, updating of the optimal position of the group;

对于计算的每个粒子,将其当前位置的适应度与其种群中粒子经过的最佳位置的适应度做比较,若当前位置的适应度大于其种群中粒子经过的最佳位置的适应度,则将当前位置作为当前的最佳位置,若当前位置的适应度小于或等于其种群中粒子经过的最佳位置的适应度,则不改变当前的最佳位置For each particle calculated, the fitness of its current position is compared with the best position that the particle in its population has passed. If the fitness of the current position is greater than the best position that the particle in the population has passed through, The current position is taken as the current best position. , if the fitness of the current position is less than or equal to the best position that the particle in its population has passed The fitness of , then the current best position will not be changed ;

S45、更新惯性因子,基于更新的惯性因子更新所有粒子的位置与速度;S45, updating the inertia factor, and updating the positions and velocities of all particles based on the updated inertia factor;

惯性因子更新公式如下:The inertia factor update formula is as follows:

;

其中,表示开始迭代时的惯性因子,表示最终迭代时的惯性因子,表示当前迭代次数,表示最大迭代次数;in, represents the inertia factor at the beginning of iteration, represents the inertia factor at the final iteration, Indicates the current iteration number, Indicates the maximum number of iterations;

S46、重复步骤S42-S45,直至达到最大迭代次数,输出最佳位置对应的惯性因子;S46, repeating steps S42-S45 until the maximum number of iterations is reached, and outputting the inertia factor corresponding to the optimal position;

设定输出的最佳位置对应的惯性因子为训练后的资源决策模型中的资源决策权值;The inertia factor corresponding to the optimal position of the output is set as the resource decision weight in the trained resource decision model;

S5、基于得到的训练后的资源决策模型对实时收集的服务资源数据以及对应的需求数据进行服务资源分配管理;S5. Perform service resource allocation management on the service resource data collected in real time and the corresponding demand data based on the trained resource decision model;

基于得到的训练后的资源决策模型对实时收集的服务资源数据以及对应的需求数据进行服务资源分配管理包括以下步骤:Performing service resource allocation management on the service resource data collected in real time and the corresponding demand data based on the trained resource decision model includes the following steps:

将实时收集的服务资源数据的生产成本、时间成本以及生产合格率输入训练后的资源决策模型,输出实时收集的服务资源数据对应的资源决策值;Input the production cost, time cost and production qualification rate of the service resource data collected in real time into the trained resource decision model, and output the resource decision value corresponding to the service resource data collected in real time;

设定资源决策值阈值,当输出实时收集的服务资源数据对应的资源决策值大于资源决策值阈值时,安排实时收集的服务资源数据执行对应的需求数据;A resource decision value threshold is set, and when the resource decision value corresponding to the service resource data collected in real time is greater than the resource decision value threshold, the service resource data collected in real time is arranged to execute the corresponding demand data;

当输出实时收集的服务资源数据对应的资源决策值小于或者等于资源决策值阈值时,安排对应的需求数据进行等待;When the resource decision value corresponding to the service resource data collected in real time is outputted and is less than or equal to the resource decision value threshold, the corresponding demand data is arranged to wait;

实施例2Example 2

本实施例还公开一种基于产业扶持的数字化企业服务资源管理系统,包括:数据收集模块、数据处理模块、模型建立模块、模型优化模块以及资源决策模块;This embodiment also discloses a digital enterprise service resource management system based on industry support, including: a data collection module, a data processing module, a model building module, a model optimization module and a resource decision module;

所述数据收集模块用于收集服务资源数据以及对应的需求数据;The data collection module is used to collect service resource data and corresponding demand data;

所述数据处理模块用于对收集到的服务资源数据以及对应的需求数据进行处理;The data processing module is used to process the collected service resource data and corresponding demand data;

所述模型建立模块用于根据处理后的服务资源数据以及对应的需求数据建立资源决策模型;The model building module is used to build a resource decision model based on the processed service resource data and the corresponding demand data;

所述模型优化模块用于通过粒子群优化算法对资源决策模型进行优化;The model optimization module is used to optimize the resource decision model through a particle swarm optimization algorithm;

所述资源决策模块用于计算服务资源数据对应的资源决策值。The resource decision module is used to calculate the resource decision value corresponding to the service resource data.

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that various changes, modifications, substitutions and variations may be made to the embodiments without departing from the principles and spirit of the present invention, and that the scope of the present invention is defined by the appended claims and their equivalents.

Claims (4)

1.一种基于产业扶持的数字化企业服务资源管理方法,其特征在于,包括以下步骤:1. A digital enterprise service resource management method based on industry support, characterized in that it includes the following steps: S1、收集产业扶持的历史服务资源数据以及对应数字化企业的历史需求数据,并基于收集到的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据构建样本集;S1. Collect historical service resource data of industry support and historical demand data of corresponding digital enterprises, and build a sample set based on the collected historical service resource data of industry support and historical demand data of corresponding digital enterprises; S2、对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行预处理,得到预处理后的历史服务资源数据和对应的历史需求数据;S2. Preprocess the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set to obtain the preprocessed historical service resource data and the corresponding historical demand data; 所述对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行预处理包括以下步骤:The preprocessing of the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set includes the following steps: S21、对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤,得到过滤后的历史服务资源数据和对应的历史需求数据;S21. Filter the historical service resource data of industry support and the historical demand data of corresponding digital enterprises in the constructed sample set to obtain filtered historical service resource data and corresponding historical demand data; S22、设定过滤后的历史服务资源数据和对应的历史需求数据为预处理后的历史服务资源数据和对应的历史需求数据;S22, setting the filtered historical service resource data and the corresponding historical demand data as the pre-processed historical service resource data and the corresponding historical demand data; 所述对构建的样本集中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤,得到过滤后的历史服务资源数据和对应的历史需求数据包括以下步骤:The filtering of the historical service resource data of the industry support and the historical demand data of the corresponding digital enterprises in the constructed sample set to obtain the filtered historical service resource data and the corresponding historical demand data includes the following steps: S211、建立数据标准并过滤异常产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;S211. Establish data standards and filter historical service resource data for abnormal industry support and historical demand data for corresponding digital enterprises; 设定产业扶持的历史服务资源数据和对应数字化企业的历史需求数据的长度标准,对超过长度标准的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行删除,对低于长度标准的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据的末尾加0进行补齐;Set the length standard of the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises, delete the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises that exceed the length standard, and add zeros to the end of the historical service resource data of industry support and the historical demand data of the corresponding digital enterprises that are less than the length standard; S212、过滤并去除重复的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;S212, filtering and removing duplicate historical service resource data of industry support and historical demand data of corresponding digital enterprises; 基于过滤算法对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据进行过滤:Filter the historical service resource data of industry support and the historical demand data of corresponding digital enterprises based on the filtering algorithm: 建立一个长度为m的数组,选取个哈希函数对产业扶持的历史服务资源数据和对应数字化企业的历史需求数据中的每组数据进行遍历,并将遍历结果保存在数组中;Create an array of length m and select A hash function traverses each set of data in the historical service resource data of industry support and the historical demand data of the corresponding digital enterprise, and saves the traversal results in an array; 在通过哈希函数遍历过程中,当存在两组数据的遍历结果相同时,对这两组数据中的每位数据进行对比;In the process of traversing through the hash function, when there are two sets of data with the same traversal results, each bit of the two sets of data is compared; 当对比结果一致时,设定当前两组数据为相同数据,基于任务资源到达时间,删除后到达的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据;When the comparison results are consistent, the two sets of data are set to be the same data. Based on the arrival time of the task resources, the historical service resource data of the industry support and the historical demand data of the corresponding digital enterprises that arrived later are deleted; 遍历结束后,汇总遍历过程中保存在数组中的产业扶持的历史服务资源数据和对应数字化企业的历史需求数据,得到过滤后的历史服务资源数据和对应的历史需求数据;After the traversal is completed, the historical service resource data of the industry support and the historical demand data of the corresponding digital enterprises stored in the array during the traversal process are summarized to obtain the filtered historical service resource data and the corresponding historical demand data; S3、基于得到的预处理后的历史服务资源数据和对应的历史需求数据,通过数据分析处理方式建立资源决策模型;S3, based on the obtained pre-processed historical service resource data and the corresponding historical demand data, a resource decision model is established through data analysis and processing; 所述基于得到的预处理后的历史服务资源数据和对应的历史需求数据,通过数据分析处理方式建立资源决策模型包括以下步骤:The method of establishing a resource decision model by means of data analysis and processing based on the obtained pre-processed historical service resource data and the corresponding historical demand data comprises the following steps: S31、时间成本分析;S31. Time cost analysis; 计算从接收到历史需求数据后到调度预处理后的历史服务资源数据完成需求所需要的时间,计算公式如下所示:Calculate the time required from receiving historical demand data to scheduling pre-processed historical service resource data to complete the demand. The calculation formula is as follows: ; 其中,表示从接收到历史需求数据后到调度预处理后的历史服务资源数据完成需求所需要的时间,表示需求任务数目,表示服务资源数目,表示第个任务选择第个服务资源的决策变量,设定当=1时,表示第个任务选择第个服务资源,设定当=0时,表示第个任务不选择第个服务资源,表示第个服务资源的执行时间;in, It indicates the time required from receiving the historical demand data to scheduling the pre-processed historical service resource data to complete the demand. Indicates the number of required tasks, Indicates the number of service resources. Indicates Select the task The decision variables of service resources are set =1, indicating the Select the task service resources, set =0, indicating the Do not select the task service resources, Indicates The execution time of each service resource; S32、生产成本分析;S32. Production cost analysis; 计算从接收到历史需求数据后到完成需求所需要的生产成本,计算公式如下所示:Calculate the production cost from receiving historical demand data to completing the demand. The calculation formula is as follows: ; 其中,表示从接收到历史需求数据后到完成需求所需要的生产成本,表示第个服务资源的生产成本;in, It represents the production cost required to complete the demand after receiving the historical demand data. Indicates The production cost of each service resource; S33、服务质量分析;S33, service quality analysis; 计算从接收到历史需求数据后到完成需求后的合格率,计算公式如下所示:Calculate the pass rate from receiving historical demand data to completing the demand. The calculation formula is as follows: ; 其中,表示从接收到历史需求数据后到完成需求后的合格率,表示第个服务资源生产合格率;in, It indicates the qualified rate from receiving the historical demand data to completing the demand. Indicates Production qualification rate of each service resource; S34、建立资源决策模型;S34. Establish resource decision-making model; 所述建立资源决策模型包括以下步骤:The establishment of the resource decision model comprises the following steps: 资源决策模型计算公式如下:The resource decision model calculation formula is as follows: ; 其中,表示资源决策模型,表示资源决策权值;in, represents the resource decision model, Indicates resource decision weight; S4、基于建立的资源决策模型,通过使用粒子群优化算法对建立的资源决策模型进行训练,并得到训练后的资源决策模型;S4, based on the established resource decision model, the established resource decision model is trained by using a particle swarm optimization algorithm, and a trained resource decision model is obtained; S5、基于得到的训练后的资源决策模型对实时收集的服务资源数据以及对应的需求数据进行服务资源分配管理;S5. Perform service resource allocation management on the service resource data collected in real time and the corresponding demand data based on the trained resource decision model; 所述基于得到的训练后的资源决策模型对实时收集的服务资源数据以及对应的需求数据进行服务资源分配管理包括以下步骤:The service resource allocation management of the service resource data and the corresponding demand data collected in real time based on the trained resource decision model includes the following steps: 将实时收集的服务资源数据的生产成本、时间成本以及生产合格率输入训练后的资源决策模型,输出实时收集的服务资源数据对应的资源决策值;Input the production cost, time cost and production qualification rate of the service resource data collected in real time into the trained resource decision model, and output the resource decision value corresponding to the service resource data collected in real time; 设定资源决策值阈值,当输出实时收集的服务资源数据对应的资源决策值大于资源决策值阈值时,安排实时收集的服务资源数据执行对应的需求数据;A resource decision value threshold is set, and when the resource decision value corresponding to the service resource data collected in real time is greater than the resource decision value threshold, the service resource data collected in real time is arranged to execute the corresponding demand data; 当输出实时收集的服务资源数据对应的资源决策值小于或者等于资源决策值阈值时,安排对应的需求数据进行等待。When the resource decision value corresponding to the service resource data collected in real time is outputted and is less than or equal to the resource decision value threshold, the corresponding demand data is arranged to wait. 2.根据权利要求1所述的一种基于产业扶持的数字化企业服务资源管理方法,其特征在于,所述基于建立的资源决策模型,通过使用粒子群优化算法对建立的资源决策模型进行训练包括以下步骤:2. According to the method for digital enterprise service resource management based on industry support in claim 1, it is characterized in that the resource decision model established based on the established resource decision model is trained by using a particle swarm optimization algorithm, comprising the following steps: S41、粒子群优化算法参数初始化;S41, particle swarm optimization algorithm parameter initialization; 设定群体规模,最大迭代次数,粒子随机位置、粒子速度以及惯性因子Set the group size and maximum number of iterations , random position of particles , particle speed and the inertia factor ; S42、计算每个粒子的适应度;S42, calculating the fitness of each particle; 每个粒子适应度计算公式如下:The fitness calculation formula for each particle is as follows: ; 其中,表示粒子适应度;in, represents the particle fitness; S43、单个粒子最佳位置的更新;S43, updating of the best position of a single particle; 对于计算的每个粒子,将其当前位置的适应度与其经过的最佳位置的适应度做比较,若当前位置的适应度大于其经过的最佳位置的适应度,则将当前位置作为当前的最佳位置,若当前位置的适应度小于或等于其经过的最佳位置的适应度,则不改变当前的最佳位置For each particle calculated, the fitness of its current position is compared with the best position it has passed. If the fitness of the current position is greater than the best position it has passed, The current position is taken as the current best position. , if the fitness of the current position is less than or equal to the best position it has passed The fitness of , then the current best position will not be changed ; S44、群体最佳位置的更新;S44, updating of the optimal position of the group; 对于计算的每个粒子,将其当前位置的适应度与其种群中粒子经过的最佳位置的适应度做比较,若当前位置的适应度大于其种群中粒子经过的最佳位置的适应度,则将当前位置作为当前的最佳位置,若当前位置的适应度小于或等于其种群中粒子经过的最佳位置的适应度,则不改变当前的最佳位置For each particle calculated, the fitness of its current position is compared with the best position that the particle in its population has passed. If the fitness of the current position is greater than the best position that the particle in the population has passed through, The current position is taken as the current best position. , if the fitness of the current position is less than or equal to the best position that the particle in its population has passed The fitness of , then the current best position will not be changed ; S45、更新惯性因子,基于更新的惯性因子更新所有粒子的位置与速度;S45, updating the inertia factor, and updating the positions and velocities of all particles based on the updated inertia factor; S46、重复步骤S42-S45,直至达到最大迭代次数,输出最佳位置对应的惯性因子;S46, repeating steps S42-S45 until the maximum number of iterations is reached, and outputting the inertia factor corresponding to the optimal position; 设定输出的最佳位置对应的惯性因子为训练后的资源决策模型中的资源决策权值。The inertia factor corresponding to the optimal position of the output is set as the resource decision weight in the trained resource decision model. 3.根据权利要求2所述的一种基于产业扶持的数字化企业服务资源管理方法,其特征在于,所述单个粒子最佳位置的更新包括以下步骤:3. According to the method for managing digital enterprise service resources based on industry support in claim 2, it is characterized in that the updating of the optimal position of a single particle comprises the following steps: 单个粒子速度更新公式如下:The formula for updating the velocity of a single particle is as follows: ; 其中,表示粒子在第次迭代过程中的速度,表示粒子在第次迭代过程中的速度,表示惯性因子,表示粒子在第次迭代过程中的位置,表示加速常数,表示区间[0,1]内的随机数,表示粒子的个体极值,表示全体粒子的全局极值;in, Represents particles In the The speed during the iteration, Represents particles In the The speed during the iteration, represents the inertia factor, Represents particles In the The position during the iteration, , is the acceleration constant, , represents a random number in the interval [0,1], Represents particles The individual extreme value of Represents the global extreme value of all particles; 单个粒子位置更新公式如下:The formula for updating the position of a single particle is as follows: ; 其中,表示粒子在第次迭代过程中的位置。in, Represents particles In the The position during the iteration. 4.一种实现权利要求1-3任一项所述的基于产业扶持的数字化企业服务资源管理方法的系统,其特征在于,包括:数据收集模块、数据处理模块、模型建立模块、模型优化模块以及资源决策模块;4. A system for implementing the digital enterprise service resource management method based on industry support as described in any one of claims 1 to 3, characterized in that it comprises: a data collection module, a data processing module, a model building module, a model optimization module and a resource decision module; 所述数据收集模块用于收集服务资源数据以及对应的需求数据;The data collection module is used to collect service resource data and corresponding demand data; 所述数据处理模块用于对收集到的服务资源数据以及对应的需求数据进行处理;The data processing module is used to process the collected service resource data and corresponding demand data; 所述模型建立模块用于根据处理后的服务资源数据以及对应的需求数据建立资源决策模型;The model building module is used to build a resource decision model based on the processed service resource data and the corresponding demand data; 所述模型优化模块用于通过粒子群优化算法对资源决策模型进行优化;The model optimization module is used to optimize the resource decision model through a particle swarm optimization algorithm; 所述资源决策模块用于计算服务资源数据对应的资源决策值。The resource decision module is used to calculate the resource decision value corresponding to the service resource data.
CN202411179727.0A 2024-08-27 2024-08-27 A digital enterprise service resource management system and method based on industry support Active CN118691331B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411179727.0A CN118691331B (en) 2024-08-27 2024-08-27 A digital enterprise service resource management system and method based on industry support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411179727.0A CN118691331B (en) 2024-08-27 2024-08-27 A digital enterprise service resource management system and method based on industry support

Publications (2)

Publication Number Publication Date
CN118691331A CN118691331A (en) 2024-09-24
CN118691331B true CN118691331B (en) 2024-11-01

Family

ID=92772202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411179727.0A Active CN118691331B (en) 2024-08-27 2024-08-27 A digital enterprise service resource management system and method based on industry support

Country Status (1)

Country Link
CN (1) CN118691331B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314120A (en) * 2020-01-23 2020-06-19 福州大学 Adaptive management framework of cloud software service resources based on iterative QoS model
CN113256094A (en) * 2021-05-17 2021-08-13 安徽帅尔信息科技有限公司 Service resource allocation method based on improved particle swarm optimization

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9373960B2 (en) * 2013-03-13 2016-06-21 Oracle International Corporation Computerized system and method for distributed energy resource scheduling
CN115330123A (en) * 2022-07-11 2022-11-11 浙江大学 Cloud platform order allocation optimization method based on improved particle swarm optimization
CN115914392A (en) * 2022-11-14 2023-04-04 北京邮电大学 Computing power network resource scheduling method and system
CN115495202B (en) * 2022-11-17 2023-04-07 成都盛思睿信息技术有限公司 Real-time elastic scheduling method for big data task under heterogeneous cluster
CN117076882A (en) * 2023-08-11 2023-11-17 厦门快快网络科技有限公司 Dynamic prediction management method for cloud service resources
CN118228850A (en) * 2023-08-29 2024-06-21 无锡锡简科技有限公司 Intelligent configuration method and system for industrial design project resources

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314120A (en) * 2020-01-23 2020-06-19 福州大学 Adaptive management framework of cloud software service resources based on iterative QoS model
CN113256094A (en) * 2021-05-17 2021-08-13 安徽帅尔信息科技有限公司 Service resource allocation method based on improved particle swarm optimization

Also Published As

Publication number Publication date
CN118691331A (en) 2024-09-24

Similar Documents

Publication Publication Date Title
CN110503256B (en) Short-term load prediction method and system based on big data technology
CN113569117B (en) Cloud platform system and method based on industrial internet big data service
CN106056211B (en) Neuron computing unit, neuron computing module and artificial neural networks core
CN106056212A (en) Artificial neural network calculating core
Canali et al. A fog computing service placement for smart cities based on genetic algorithms
CN114861906B (en) Method for establishing lightweight multi-exit point model based on neural architecture search
CN110288824A (en) Analysis method of morning and evening peak congestion status and propagation mechanism based on Granger causality road network
CN110188473A (en) A method for identifying the importance of power backbone communication network nodes
CN105471647A (en) Power communication network fault positioning method
CN106101196A (en) A kind of cloud rendering platform task scheduling system based on probabilistic model and method
CN115019209A (en) A method and system for state detection of power towers based on deep learning
CN110287256A (en) A parallel processing system and processing method of power grid data based on cloud computing
CN116244647A (en) Unmanned aerial vehicle cluster running state estimation method
CN113780371A (en) Insulator state edge recognition method based on edge computing and deep learning
CN118691331B (en) A digital enterprise service resource management system and method based on industry support
CN114760341B (en) A remote operation and maintenance platform and method for intelligent management and control of industrial Internet equipment
CN117478379A (en) Cloud-edge collaborative attack identification method, system, computer equipment and storage medium
CN112486667B (en) Method and device for accurately processing data based on edge calculation
CN115643558A (en) Data processing method, device, electronic device and storage medium
CN115242458A (en) An interpretable approach to SHAP-based 1D-CNN network traffic classification model
CN110656385B (en) A neural network-based prediction method for the average diameter of electrospinning fibers
Wang et al. Design and implementation of an industry data analysis model based on cloud computing
CN113051490A (en) Newly added interest point prediction model training method and device and newly added interest point prediction method and device
CN114781894A (en) Traffic resource distribution method, system and medium based on confidence graph convolution network
CN118626274B (en) Big data storage method based on abnormal data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant