CN118747778A - A method and system for automatically generating color mapping for two-dimensional scalar fields - Google Patents
A method and system for automatically generating color mapping for two-dimensional scalar fields Download PDFInfo
- Publication number
- CN118747778A CN118747778A CN202410747363.5A CN202410747363A CN118747778A CN 118747778 A CN118747778 A CN 118747778A CN 202410747363 A CN202410747363 A CN 202410747363A CN 118747778 A CN118747778 A CN 118747778A
- Authority
- CN
- China
- Prior art keywords
- color
- scalar field
- hue
- colors
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/904—Browsing; Visualisation therefor
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Image Generation (AREA)
Abstract
本发明提供了一种面向二维标量场的自动颜色映射生成方法及系统,获取标量场数据,对标量场数据进行拟合并分区,在各个区间,选择控制点的数量和位置;初步设置各控制点的颜色,并对初步设置方案进行评估,根据评估结果,构建硬约束条件,在硬约束条件下,对初步设置方案进行优化,得到最终的颜色映射生成方案。本发明将标量数据的值范围分割为有意义的区间,并将每个区间与发散颜色映射关联起来,以确保高对比度,同时也保持这些颜色映射的原色之间显著的名称距离,从而自动为给定的数据集或数据系列生成在各种可视化任务和分布中有效的颜色映射。
The present invention provides an automatic color mapping generation method and system for a two-dimensional scalar field, which obtains scalar field data, fits and partitions the scalar field data, selects the number and position of control points in each interval, preliminarily sets the color of each control point, and evaluates the preliminary setting scheme, builds hard constraints based on the evaluation results, optimizes the preliminary setting scheme under the hard constraints, and obtains the final color mapping generation scheme. The present invention divides the value range of scalar data into meaningful intervals, and associates each interval with a divergent color map to ensure high contrast, while also maintaining a significant name distance between the primary colors of these color maps, thereby automatically generating color maps that are effective in various visualization tasks and distributions for a given data set or data series.
Description
技术领域Technical Field
本发明属于数据驱动的颜色映射的自动创建领域,具体涉及一种面向二维标量场的自动颜色映射生成方法及系统。The present invention belongs to the field of automatic creation of data-driven color mapping, and in particular relates to an automatic color mapping generation method and system for a two-dimensional scalar field.
背景技术Background Art
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.
二维标量场的可视化在科学和信息可视化领域中是至关重要的。这个过程通常涉及到使用一个颜色映射来将一个二维标量场中的每个值与一个特定的颜色关联起来。标量场可视化分析的主要任务包括准确解释数据值,根据其值范围确定区域,并揭示隐藏在数据中的结构。这些任务的成功在很大程度上取决于颜色映射的选择。然而,为给定的可视化手动寻找最合适的颜色映射是一个复杂而耗时的过程,即使对该领域的专家来说也是如此。Visualization of two-dimensional scalar fields is of vital importance in the field of scientific and information visualization. This process usually involves using a color map to associate each value in a two-dimensional scalar field with a specific color. The main tasks of visual analysis of scalar fields include accurately interpreting data values, identifying regions based on their value ranges, and revealing structures hidden in the data. The success of these tasks depends heavily on the choice of color map. However, manually finding the most appropriate color map for a given visualization is a complex and time-consuming process, even for experts in the field.
为了简化颜色映射过程,常用的数据分析工具提供了一些预定义的颜色映射,如Rainbow和Viridis等,供用户选择。除了这些颜色映射,还有像Smart等人(S.Smart,K.Wu,and D.A.Szafir.Color crafting:Automating the construction of designer qualitycolor ramps.IEEE Transactions on Visualization and Computer Graphics,26(1):1215–1225,Jan 2020.)提出的ColorCrafter这样的工具可以根据分析任务或美学创建和优化颜色映射。为了融合特定应用语义,Nardini等人(P.Nardini,M.Chen,F.Samsel,R.Bujack,M.and G.Scheuermann.The making of continuouscolormaps.IEEE transactions on visualization and computer graphics,27(6):3048–3063,2019.)提出的CCC-tool工具允许用户交互式地创建和编辑一个颜色映射,该颜色映射可用于具有相似特征的各种数据集。然而,创建这样的颜色映射通常会忽略可视化的特定数据,导致颜色映射可能不适合多样的应用领域、数据特征和任务。为了解决这个问题,一种方法是使用Samsel等人(F.Samsel,S.Klaassen,and D.H.Rogers.Colormoves:Real-time inter-active colormap construction for scientificvisualization.IEEE Computer Graphics and Applications,38(1):20–29,Jan 2018.)提出的ColorMoves工具,手动调整选定的颜色映射,以匹配特定数据集的特征,例如特定的数据值。另外,调整过程也可以根据数据属性,如直方图或空间变化,进行自动化。尽管有了这些努力,但现有的技术都不能自动为给定的数据集或数据系列生成在各种可视化任务和分布中有效的颜色映射。To simplify the color mapping process, commonly used data analysis tools provide some predefined color mappings, such as Rainbow and Viridis, for users to choose from. In addition to these color mappings, there are tools such as ColorCrafter proposed by Smart et al. (S. Smart, K. Wu, and DASzafir. Color crafting: Automating the construction of designer quality color ramps. IEEE Transactions on Visualization and Computer Graphics, 26(1): 1215–1225, Jan 2020.) that can create and optimize color mappings based on analysis tasks or aesthetics. In order to integrate specific application semantics, Nardini et al. (P. Nardini, M. Chen, F. Samsel, R. Bujack, M. and G.Scheuermann.The making of continuous colormaps.IEEE transactions on visualization and computer graphics, 27(6):3048–3063, 2019.) The CCC-tool tool proposed by allows users to interactively create and edit a color map that can be used for various datasets with similar characteristics. However, the creation of such color maps usually ignores the specific data of the visualization, resulting in color maps that may not be suitable for diverse application domains, data features, and tasks. To address this issue, one approach is to use the ColorMoves tool proposed by Samsel et al. (F.Samsel, S.Klaassen, and DHRogers.Colormoves: Real-time inter-active colormap construction for scientific visualization.IEEE Computer Graphics and Applications, 38(1):20–29, Jan 2018.) to manually adjust the selected color map to match the characteristics of a specific dataset, such as specific data values. Alternatively, the adjustment process can also be automated based on data attributes, such as histograms or spatial variations. Despite these efforts, no existing techniques can automatically generate color maps for a given dataset or data series that are effective across a variety of visualization tasks and distributions.
在数据感知的颜色映射领域,已有几种颜色映射来强调连续数据的特征。同时,Braun等人(D.Braun,K.Ebell,V.Schemann,L.Pelchmann,S.Crewell,R.Borgo,and T.vonLandesberger.Color coding of large value ranges applied to meteorologicaldata.In 2022IEEE Visualization and Visual Analytics(VIS),pp.125–129,Oct2022.)提出了专门的嵌套颜色映射来表示跨越较大值范围的数据,利用颜色的色调来表示指数,顺序的亮度梯度来表示尾数。In the field of data-aware color mapping, there are several color mappings to emphasize the characteristics of continuous data. At the same time, Braun et al. (D. Braun, K. Ebell, V. Schemann, L. Pelchmann, S. Crewell, R. Borgo, and T. von Landesberger. Color coding of large value ranges applied to meteorological data. In 2022 IEEE Visualization and Visual Analytics (VIS), pp. 125–129, Oct 2022.) proposed a special nested color mapping to represent data spanning a large value range, using the hue of the color to represent the exponent and the sequential brightness gradient to represent the mantissa.
C.Ware等人(C.Ware,T.L.Turton,R.Bujack,F.Samsel,P.Shrivastava,andD.H.Rogers.Measuring and modeling the feature detection threshold functionsof colormaps.IEEE Transactions on Visualization and Computer Graphics,25(9):2777–2790,Sep.2019.)提出了一个改进的CIELAB版本,调节CIELAB颜色距离计算公式中a*和b*项的权重,基于对比灵敏度(使图案在不同的空间频率下可见所需的对比度)来评估颜色图用于特征检测的有效性。C.Ware et al. (C.Ware, TLTurton, R.Bujack, F.Samsel, P.Shrivastava, and D.H.Rogers.Measuring and modeling the feature detection threshold functionsof colormaps.IEEE Transactions on Visualization and Computer Graphics, 25(9):2777–2790, Sep.2019.) proposed an improved version of CIELAB, which adjusts the weights of the a * and b * terms in the CIELAB color distance calculation formula and evaluates the effectiveness of the color map for feature detection based on contrast sensitivity (the contrast required to make the pattern visible at different spatial frequencies).
Schulze-Wollgast等人(P.Schulze-Wollgast,C.Tominski,andH.Schumann.Enhancing visual exploration by appropriate color coding.InInternational Conference in Central Europe on Computer Graphics andVisualization,2005.)使用自动或数据驱动的颜色映射转换方法来调整现有的颜色,以更好地匹配数据的潜在含义,这些方法利用从数据集中提取的统计元数据来相应地修改颜色映射。此外,Eisemann等人(M.Eisemann,G.Albuquerque,and M.Magnor.Data DrivenColor Mapping.In S.Miksch and G.Santucci,eds.,EuroVA 2011:InternationalWorkshop on Visual Analytics.The Eurographics Association,2011.)利用可调节的插值方案的数据驱动颜色映射变换技术,这允许用户在增强区分数据点的能力和高亮显示异常值之间切换焦点。Schulze-Wollgast et al. (P. Schulze-Wollgast, C. Tominski, and H. Schumann. Enhancing visual exploration by appropriate color coding. In International Conference in Central Europe on Computer Graphics and Visualization, 2005.) use automatic or data-driven color mapping conversion methods to adjust existing colors to better match the potential meaning of the data, and these methods use statistical metadata extracted from the data set to modify the color mapping accordingly. In addition, Eisemann et al. (M. Eisemann, G. Albuquerque, and M. Magnor. Data Driven Color Mapping. In S. Miksch and G. Santucci, eds., EuroVA 2011: International Workshop on Visual Analytics. The Eurographics Association, 2011.) use data-driven color mapping transformation technology with adjustable interpolation schemes, which allows users to switch focus between enhancing the ability to distinguish data points and highlighting outliers.
Zeng等人(Q.Zeng,Y.Zhao,Y.Wang,J.Zhang,Y.Cao,C.Tu,I.Viola,andY.Wang.Data-driven colormap adjustment for exploring spatial variations inscalar fields.IEEE Transactions on Visualization and Computer Graphics,28(12):4902–4917,Dec 2022.)提出了一种突出二维连续标量数据特征的优化方法,通过将色彩图调整表述为一个目标函数,可以灵活支持交互功能。Elmqvist等人(N.Elmqvist,P.Dragicevic,and J.-D.Fekete.Color lens:Adaptive color scale optimization forvisual exploration.IEEE Transactions on Visualization and Computer Graphics,17(6):795–807,June 2011.)提出的ColorLens使用用户指定的镜头内的值范围来可视化具有较大值范围的连续数据的局部颜色映射。Zhou等人(L.Zhou,M.Rivinius,C.R.Johnson,and D.Weiskopf.Photographic highdynamic-range scalarvisualization.IEEE Transactions on Visualization and Computer Graphics,26(6):2156–2167,June 2020.)提出了一种感知驱动的方法,该方法将颜色映射数据与感知驱动的值范围转换和闪烁相结合,以突出高动态标量数据中的高值。Zeng et al. (Q. Zeng, Y. Zhao, Y. Wang, J. Zhang, Y. Cao, C. Tu, I. Viola, and Y. Wang. Data-driven colormap adjustment for exploring spatial variations in scalar fields. IEEE Transactions on Visualization and Computer Graphics, 28(12): 4902–4917, Dec 2022.) proposed an optimization method to highlight the features of two-dimensional continuous scalar data, which can flexibly support interactive features by formulating color map adjustment as an objective function. Elmqvist et al. (N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Color lens: Adaptive color scale optimization for visual exploration. IEEE Transactions on Visualization and Computer Graphics, 17(6): 795–807, June 2011.) proposed ColorLens to visualize local color maps of continuous data with a large value range using a user-specified value range within the lens. Zhou et al. (L. Zhou, M. Rivinius, C. R. Johnson, and D. Weiskopf. Photographic high dynamic-range scalar visualization. IEEE Transactions on Visualization and Computer Graphics, 26(6): 2156–2167, June 2020.) proposed a perceptually driven method that combines color mapping data with perceptually driven value range conversion and flickering to highlight high values in high dynamic scalar data.
然而,这些方法都不能即时为给定二维标量场生成良好的颜色映射,从而自动适应连续标量数据的特征并支持易于使用的修改。However, none of these methods can generate a good color map for a given 2D scalar field on the fly, automatically adapt to the characteristics of continuous scalar data and support easy-to-use modifications.
综上所述,目前尚未有方法可以自动为给定的数据集或数据系列生成在各种可视化任务和分布中有效的颜色映射,同时支持易于使用的修改。In summary, there is currently no method that can automatically generate color maps for a given dataset or data series that are effective across a variety of visualization tasks and distributions while supporting easy-to-use modifications.
发明内容Summary of the invention
本发明为了解决上述问题,提出了一种面向二维标量场的自动颜色映射生成方法及系统,本发明将标量数据的值范围分割为有意义的区间,并将每个区间与发散颜色映射关联起来,以确保高对比度,同时也保持这些颜色映射的原色之间显著的名称距离,从而自动为给定的数据集或数据系列生成在各种可视化任务和分布中有效的颜色映射。In order to solve the above problems, the present invention proposes an automatic color mapping generation method and system for two-dimensional scalar fields. The present invention divides the value range of scalar data into meaningful intervals and associates each interval with a divergent color mapping to ensure high contrast while also maintaining a significant name distance between the original colors of these color mappings, thereby automatically generating a color mapping that is effective in various visualization tasks and distributions for a given data set or data series.
根据一些实施例,本发明采用如下技术方案:According to some embodiments, the present invention adopts the following technical solutions:
一种面向二维标量场的自动颜色映射生成方法,包括以下步骤:An automatic color map generation method for a two-dimensional scalar field comprises the following steps:
获取标量场数据,对标量场数据进行拟合并分区,在各个区间,选择控制点的数量和位置;Obtain scalar field data, fit and partition the scalar field data, and select the number and position of control points in each interval;
初步设置各控制点的颜色,并对初步设置方案进行评估,根据评估结果,构建硬约束条件,在硬约束条件下,对初步设置方案进行优化,得到最终的颜色映射生成方案。The color of each control point is preliminarily set, and the preliminary setting scheme is evaluated. According to the evaluation results, hard constraints are constructed. Under the hard constraints, the preliminary setting scheme is optimized to obtain the final color mapping generation scheme.
作为可选择的实施方式,对标量场数据进行拟合并分区的具体过程包括:采用高斯混合模型拟合标量场的直方图,并将其划分为不同的区间,将控制点的位置对应到高斯分量的平均值上;计算标量值x进入高斯分量所表示的值范围的概率;根据k个高斯分量的混合,计算在x位置的组合概率。As an optional implementation, the specific process of fitting and partitioning the scalar field data includes: using a Gaussian mixture model to fit the histogram of the scalar field and divide it into different intervals, corresponding the position of the control point to the average value of the Gaussian component; calculating the probability that the scalar value x enters the value range represented by the Gaussian component; and calculating the combined probability at the x position based on a mixture of k Gaussian components.
作为进一步的,计算标量值x进入高斯分量所表示的值范围的概率的具体过程包括:As a further step, the specific process of calculating the probability that the scalar value x enters the value range represented by the Gaussian component includes:
其中,μ为高斯分量的平均值,σ为标准差;Among them, μ is the mean value of the Gaussian component and σ is the standard deviation;
计算在x位置的组合概率的具体过程包括:The specific process of calculating the combined probability at position x includes:
其中θ=(θ1,...θk)=((w1,μ1,σ1),...,(wk,μk,σk)),是包含k个高斯分量的参数集,gj是x由特定分量j生成的概率。where θ=(θ 1 , ...θ k )=((w 1 , μ 1 , σ 1 ), ... , (w k , μ k , σ k )), is a parameter set containing k Gaussian components, and g j is the probability that x is generated by a specific component j.
作为可选择的实施方式,在各个区间,选择控制点的位置的具体过程包括:As an optional implementation, in each interval, the specific process of selecting the position of the control point includes:
采用EM算法迭代优化,得到一组控制点的最优解,所述最优解为:The EM algorithm is used for iterative optimization to obtain the optimal solution for a set of control points, which is:
其中,xi是直方图的第i个位置,h(xi)是位置xi处的密度,求解目标是最大化和h(xi)的似然程度。Where xi is the i-th position of the histogram, h( xi ) is the density at position xi , and the solution goal is to maximize and the likelihood of h( xi ).
作为可选择的实施方式,在各个区间,选择控制点的数量的过程包括:使用最小描述长度方法确定高斯分量的个数k,公式如下:As an optional implementation, in each interval, the process of selecting the number of control points includes: using the minimum description length method to determine the number k of Gaussian components, the formula is as follows:
其中,L是参数的数量,n是数据集的大小,τ是模型保真度和复杂度之间的权重。Where L is the number of parameters, n is the size of the dataset, and τ is the weight between model fidelity and complexity.
作为可选择的实施方式,初步设置各控制点的颜色为将色调范围[0,360]分割为m-1个间隔,并从色轮中以逆时针方向采样色调值,得到m-1种颜色,设置每种颜色的色度为定值,以确保明显的颜色区别;As an optional implementation, the color of each control point is initially set by dividing the hue range [0,360] into m-1 intervals, sampling the hue value from the color wheel in a counterclockwise direction, obtaining m-1 colors, and setting the chromaticity of each color to a fixed value to ensure obvious color distinction;
引入灰色颜色作为第一种颜色,并将其与之前获得的m-1种颜色合并,形成完整的集合。Introduce the gray color as the first color and merge it with the m-1 colors obtained previously to form a complete set.
作为可选择的实施方式,对初步设置方案进行评估的过程中,从对比敏感度、名称距离、最小可觉差约束以及色调约束上进行评估,其中,最小可觉差约束为最小可觉差大于设定阈值,色调约束为限制相邻颜色的色调必须是在色轮上的顺时针方向。As an optional implementation, during the evaluation of the preliminary setting scheme, evaluation is performed from the perspectives of contrast sensitivity, name distance, minimum noticeable difference constraint, and hue constraint, wherein the minimum noticeable difference constraint is that the minimum noticeable difference is greater than a set threshold, and the hue constraint is that the hues of adjacent colors must be in the clockwise direction on the color wheel.
作为可选择的实施方式,构建硬约束条件的过程包括:验证每个颜色对之间的色差距离是否满足最小可觉差约束,如果不满足,再次调整当前调色板中的颜色;As an optional implementation, the process of constructing the hard constraint condition includes: verifying whether the color difference distance between each color pair satisfies the minimum perceptible difference constraint, and if not, adjusting the colors in the current palette again;
确保被扰动的颜色仍然满足其在色轮上相邻颜色的色调约束,否则,交换这两种相邻的颜色,同时保持它们的色度和亮度。Make sure the perturbed color still satisfies the hue constraint of its adjacent color on the color wheel, otherwise swap the two adjacent colors while maintaining their hue and brightness.
作为可选择的实施方式,对初步设置方案进行优化的过程包括:利用模拟退火算法进行优化求解,随机在m-1种颜色中选择一种,然后对其色调和色度值引入小的随机扰动,所述随机扰动的步长遵循高斯分布;As an optional implementation, the process of optimizing the preliminary setting scheme includes: using a simulated annealing algorithm to perform optimization and solution, randomly selecting one of m-1 colors, and then introducing a small random perturbation to its hue and chroma value, wherein the step length of the random perturbation follows a Gaussian distribution;
将扰动的色调和色度值分别截断为区间[0,360]和[0,100]。The perturbed hue and chroma values are truncated to the interval [0,360] and [0,100], respectively.
一种面向二维标量场的自动颜色映射生成系统,包括:An automatic color map generation system for two-dimensional scalar fields, comprising:
控制点确定模块,被配置为获取标量场数据,对标量场数据进行拟合并分区,在各个区间,选择控制点的数量和位置;A control point determination module is configured to obtain scalar field data, fit and partition the scalar field data, and select the number and position of control points in each interval;
优化调整模块,被配置为初步设置各控制点的颜色,并对初步设置方案进行评估,根据评估结果,构建硬约束条件,在硬约束条件下,对初步设置方案进行优化,得到最终的颜色映射生成方案。The optimization and adjustment module is configured to preliminarily set the color of each control point and evaluate the preliminary setting plan. According to the evaluation result, hard constraints are constructed. Under the hard constraints, the preliminary setting plan is optimized to obtain the final color mapping generation plan.
一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成上述方法中的步骤。A computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed by a processor, the steps in the above method are completed.
一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成上述方法中的步骤。An electronic device comprises a memory and a processor, and computer instructions stored in the memory and executed on the processor. When the computer instructions are executed by the processor, the steps in the above method are completed.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明能够自动生成颜色映射定制的二维标量场可视化,可以揭示数据集中隐藏的结构,使用户能够在可视化中识别结构,同时准确地读取数据值,并识别具有特定值范围的区域;1. The present invention can automatically generate a two-dimensional scalar field visualization with customized color mapping, which can reveal the hidden structure in the data set, allowing users to identify the structure in the visualization, accurately read the data values, and identify areas with specific value ranges;
2、本发明采用了一个定制的模拟退火优化算法,其中产生的颜色映射是可命名的,并满足鉴别能力和感知约束。2. The present invention employs a customized simulated annealing optimization algorithm, in which the generated color mapping is nameable and satisfies the discrimination ability and perceptual constraints.
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, preferred embodiments are given below and described in detail with reference to the accompanying drawings.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings in the specification, which constitute a part of the present invention, are used to provide a further understanding of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations on the present invention.
图1是一种实施例的关于二维标量场的基于自动分布的颜色映射的流程图;FIG1 is a flowchart of an automatic distribution-based color mapping for a two-dimensional scalar field according to an embodiment;
图2是在一个示例数据集上运行本发明算法的流程图,其中的(a)从二维标量场数据开始,(b)以数据为中心的方式确定直方图中控制点的数量和位置,(c)通过优化过程得到控制点的颜色,(d)最终通过插值创建一个连续的颜色映射;FIG2 is a flowchart of running the algorithm of the present invention on an example data set, wherein (a) starting from two-dimensional scalar field data, (b) determining the number and location of control points in the histogram in a data-centric manner, (c) obtaining the colors of the control points through an optimization process, and (d) finally creating a continuous color map through interpolation;
图3是比较不同高斯分量个数对医学数据集特征的影响。其中的(a)描述最小描述长度(MDL)与分量个数之间关系的曲线;(b)、(c)、(d)分别描述可视化和使用的颜色映射,颜色映射是同一个灰度色阶结合不同数量的高斯分量拟合输入数据集的直方图得到的控制点生成的;Figure 3 compares the effects of different numbers of Gaussian components on the characteristics of medical datasets. (a) is a curve describing the relationship between the minimum description length (MDL) and the number of components; (b), (c), and (d) respectively describe the color mapping used for visualization. The color mapping is generated by fitting the control points of the histogram of the input dataset with the same grayscale combined with different numbers of Gaussian components;
图4是比较没有(a)和有(b)色调约束生成的结果;Figure 4 compares the results generated without (a) and with (b) hue constraints;
图5是初始化m种颜色,并将它们插值到一个颜色映射中。其中的(a):P0的初始m-1种颜色是逆时针顺序均匀采样得到,亮度值在30和80之间交替。此外,将添加与最后一种颜色色调相同但色度为零的颜色作为第一个颜色来完成该设置。(b):颜色映射是通过在CIELAB颜色空间中在相邻的控制点颜色之间线性插值来创建的。Figure 5 is to initialize m colors and interpolate them into a color map. (a) The initial m-1 colors of P 0 are uniformly sampled in counterclockwise order, with brightness values alternating between 30 and 80. In addition, a color with the same hue as the last color but zero chroma is added as the first color to complete the setting. (b) The color map is created by linearly interpolating between adjacent control point colors in the CIELAB color space.
图6是一种实施例定制的模拟退火算法的伪代码。FIG. 6 is a pseudo code of a simulated annealing algorithm customized according to an embodiment.
具体实施方式DETAILED DESCRIPTION
下面结合附图与实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed descriptions are all illustrative and intended to provide further explanation of the present invention. Unless otherwise specified, all technical and scientific terms used herein have the same meanings as those commonly understood by those skilled in the art to which the present invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terms used herein are only for describing specific embodiments and are not intended to limit exemplary embodiments according to the present invention. As used herein, unless the context clearly indicates otherwise, the singular form is also intended to include the plural form. In addition, it should be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates the presence of features, steps, operations, devices, components and/or combinations thereof.
在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。In the absence of conflict, the embodiments in this application and the features in the embodiments may be combined with each other.
实施例一Embodiment 1
一种面向二维标量场的自动颜色映射生成方法,包括:An automatic color map generation method for a two-dimensional scalar field, comprising:
获取标量场数据,对标量场数据进行拟合并分区,在各个区间,选择控制点的数量和位置;Obtain scalar field data, fit and partition the scalar field data, and select the number and position of control points in each interval;
初步设置各控制点的颜色,并对初步设置方案进行评估,根据评估结果,构建硬约束条件,在硬约束条件下,对初步设置方案进行优化,得到最终的颜色映射生成方案。The color of each control point is preliminarily set, and the preliminary setting scheme is evaluated. According to the evaluation results, hard constraints are constructed. Under the hard constraints, the preliminary setting scheme is optimized to obtain the final color mapping generation scheme.
本实施例中,对标量场数据进行拟合并分区的具体过程包括:采用高斯混合模型拟合标量场的直方图,并将其划分为不同的区间,将控制点的位置对应到高斯分量的平均值上;计算标量值x进入高斯分量所表示的值范围的概率;根据k个高斯分量的混合,计算在x位置的组合概率。In this embodiment, the specific process of fitting and partitioning the scalar field data includes: using a Gaussian mixture model to fit the histogram of the scalar field, and dividing it into different intervals, corresponding the position of the control point to the average value of the Gaussian component; calculating the probability that the scalar value x enters the value range represented by the Gaussian component; based on the mixture of k Gaussian components, calculating the combination probability at the x position.
本实施例中,初步设置各控制点的颜色为将色调范围[0,360]分割为m-1个间隔,并从色轮中以逆时针方向采样色调值,得到m-1种颜色,设置每种颜色的色度为定值,以确保明显的颜色区别;In this embodiment, the color of each control point is initially set by dividing the hue range [0,360] into m-1 intervals, sampling the hue value from the color wheel in a counterclockwise direction, obtaining m-1 colors, and setting the chromaticity of each color to a fixed value to ensure obvious color distinction;
引入灰色颜色作为第一种颜色,并将其与之前获得的m-1种颜色合并,形成完整的集合。Introduce the gray color as the first color and merge it with the m-1 colors obtained previously to form a complete set.
对初步设置方案进行评估的过程中,从对比敏感度、名称距离、最小可觉差约束以及色调约束上进行评估,其中,最小可觉差约束为最小可觉差大于设定阈值,色调约束为限制相邻颜色的色调必须是在色轮上的顺时针方向。In the process of evaluating the preliminary setting scheme, the contrast sensitivity, name distance, minimum noticeable difference constraint and hue constraint are evaluated. The minimum noticeable difference constraint is that the minimum noticeable difference is greater than the set threshold, and the hue constraint is that the hues of adjacent colors must be in the clockwise direction on the color wheel.
构建硬约束条件的过程包括:验证每个颜色对之间的色差距离是否满足最小可觉差约束,如果不满足,再次调整当前调色板中的颜色;The process of constructing hard constraints includes: verifying whether the color difference distance between each color pair meets the minimum perceptible difference constraint, and if not, adjusting the colors in the current palette again;
确保被扰动的颜色仍然满足其在色轮上相邻颜色的色调约束,否则,交换这两种相邻的颜色,同时保持它们的色度和亮度。Make sure the perturbed color still satisfies the hue constraint of its adjacent color on the color wheel, otherwise swap the two adjacent colors while maintaining their hue and brightness.
对初步设置方案进行优化的过程包括:利用模拟退火算法进行优化求解,随机在m-1种颜色中选择一种,然后对其色调和色度值引入小的随机扰动,所述随机扰动的步长遵循高斯分布;The process of optimizing the preliminary setting scheme includes: using a simulated annealing algorithm to perform optimization and solution, randomly selecting one of m-1 colors, and then introducing a small random perturbation to its hue and chroma value, wherein the step size of the random perturbation follows a Gaussian distribution;
将扰动的色调和色度值分别截断为区间[0,360]和[0,100]。The perturbed hue and chroma values are truncated to the interval [0,360] and [0,100], respectively.
实施例二Embodiment 2
一种面向二维标量场的基于分布的自动颜色映射生成方法,如图1所示,包括以下步骤:A distribution-based automatic color mapping generation method for a two-dimensional scalar field, as shown in FIG1 , comprises the following steps:
(1)分析标量场数据,以基于分布的方式为颜色映射选择控制点的数量和位置;(1) Analyze the scalar field data to select the number and location of control points for color mapping in a distribution-based manner;
(2)在优化过程中设置控制点的颜色生成经过插值的连续颜色映射。(2) Setting the colors of the control points during the optimization process generates an interpolated continuous color map.
本实施例的步骤(1)中,分析标量场数据,以基于分布的方式为颜色映射选择控制点的数量和位置包括以下步骤,如图2的(a)、(b)所示,图3展示了将控制点设置方法应用于所示的CT图像的一个例子:In step (1) of this embodiment, analyzing the scalar field data to select the number and positions of control points for color mapping in a distribution-based manner includes the following steps, as shown in (a) and (b) of FIG. 2 . FIG. 3 shows an example of applying the control point setting method to the CT image shown:
(1-1)采用高斯混合模型(GMM)来拟合标量场的直方图,并将其划分为不同的区间,GMM能够直观地将值范围与直方图的特征对齐。通过将控制点的位置对应到高斯分量的平均值上,可以识别和强调在整个值范围内的潜在簇;(1-1) A Gaussian mixture model (GMM) is used to fit the histogram of the scalar field and divide it into different intervals. GMM can intuitively align the value range with the characteristics of the histogram. By corresponding the position of the control point to the average value of the Gaussian component, potential clusters in the entire value range can be identified and emphasized;
(1-2)采用Expectation-Maximization(EM)算法迭代优化,得到一组控制点的最优解;(1-2) Using the Expectation-Maximization (EM) algorithm for iterative optimization, we can obtain the optimal solution for a set of control points.
(1-3)使用最小描述长度(MDL)技术来确定高斯分量的个数k,模型保真度为数据的对数似然值,模型复杂度为自由参数的数量。(1-3) The minimum description length (MDL) technique is used to determine the number of Gaussian components k, the model fidelity is the log-likelihood of the data, and the model complexity is the number of free parameters.
本实施例的步骤(1-1)中,采用高斯混合模型(GMM)来拟合标量场的直方图主要包括以下步骤:In step (1-1) of this embodiment, using a Gaussian mixture model (GMM) to fit the histogram of the scalar field mainly includes the following steps:
(1-1-1)将控制点的位置对应到高斯分量的平均值上;(1-1-1) Correspond the position of the control point to the average value of the Gaussian component;
(1-1-2)计算标量值x进入高斯分量所表示的值范围的概率;(1-1-2) Calculate the probability that the scalar value x falls into the value range represented by the Gaussian component;
(1-1-3)根据k个高斯分量的混合,计算在x位置的组合概率。(1-1-3) Based on the mixture of k Gaussian components, calculate the combined probability at position x.
在本实施例中,步骤(1-1-2)中的概率由以下公式定义:In this embodiment, the probability in step (1-1-2) is defined by the following formula:
其中,μ为高斯分量的平均值,σ为标准差。Where μ is the mean value of the Gaussian component and σ is the standard deviation.
在本实施例中,步骤(1-1-3)中的组合概率由以下公式定义:In this embodiment, the combined probability in step (1-1-3) is defined by the following formula:
其中θ=(θ1,...θk)=((w1,μ1,σ1),...,(wk,μk,σk)),是包含k个高斯分量的参数集,gi是x由特定分量j生成的概率。where θ=(θ 1 , ...θ k )=((w 1 , μ 1 , σ 1 ), ... , (w k , μ k , σ k )), is a parameter set containing k Gaussian components, and gi is the probability that x is generated by a specific component j.
在本实施例中,步骤(1-2)中,采用Expectation-Maximization(EM)算法迭代优化,得到一组控制点的最优解的公式如下:In this embodiment, in step (1-2), the Expectation-Maximization (EM) algorithm is used for iterative optimization to obtain the formula for the optimal solution of a set of control points as follows:
其中,xi是直方图的第i个位置,h(xi)是位置xi处的密度,求解目标是最大化和h(xi)的似然程度。Where xi is the i-th position of the histogram, h( xi ) is the density at position xi , and the solution goal is to maximize and the likelihood of h( xi ).
在本实施例中,步骤(1-3)中,使用最小描述长度(MDL)技术来确定高斯分量的个数k的公式如下:In this embodiment, in step (1-3), the formula for determining the number k of Gaussian components using the minimum description length (MDL) technique is as follows:
其中,L是参数的数量,即k×3(权重w,均值μ,协方差σ),n是数据集的大小,τ是模型保真度和复杂度之间的权重。这种方式可以平衡模型拟合性和复杂性,从而产生拟合底层数据分布的最优控制点数量。Where L is the number of parameters, i.e., k×3 (weight w, mean μ, covariance σ), n is the size of the dataset, and τ is the weight between model fidelity and complexity. This approach can balance model fit and complexity, resulting in the optimal number of control points that fit the underlying data distribution.
在本实施例中,步骤(2)中,在优化过程中设置控制点的颜色生成经过插值的连续颜色映射主要包括以下步骤,图2的(c)、(d)为该过程的示意图:In this embodiment, in step (2), setting the color of the control point in the optimization process to generate an interpolated continuous color mapping mainly includes the following steps, and Figure 2 (c) and (d) are schematic diagrams of the process:
(2-1)给定颜色映射中m个控制点的颜色,对其进行评分;(2-1) Given the colors of m control points in the color map, score them;
(2-2)在有了初步方案后,使用一个定制的模拟退火算法根据评分不断地调整初步方案,以解决约束优化问题。(2-2) After obtaining the preliminary plan, a customized simulated annealing algorithm is used to continuously adjust the preliminary plan based on the score to solve the constrained optimization problem.
在本实施例中,步骤(2-1)中,给定颜色映射中m个控制点的颜色,对其进行评分主要包括以下步骤:In this embodiment, in step (2-1), given the colors of m control points in the color map, scoring them mainly includes the following steps:
(2-1-1)对比敏感度:为了确保颜色映射中的颜色具有足够的鉴别能力,调节CIELAB颜色距离计算公式中a*和b*项的权重,可以更准确地对着色后的标量场中的高频特征进行符合人类感知的建模;(2-1-1) Contrast sensitivity: To ensure that the colors in the color map have sufficient discriminability, the weights of the a * and b * terms in the CIELAB color distance calculation formula are adjusted to more accurately model the high-frequency features in the colored scalar field in accordance with human perception;
(2-1-2)名称距离:颜色的可命名性建立了人类的视觉感知和象征性认知之间的联系,通过引入名称距离项来提高颜色映射的认知能力;(2-1-2) Name distance: The nameability of color establishes the connection between human visual perception and symbolic cognition. The cognitive ability of color mapping is improved by introducing the name distance term.
(2-1-3)为了确保颜色映射的鉴别能力,定义最小可觉差(JND)约束;(2-1-3) In order to ensure the discriminability of color mapping, the just noticeable difference (JND) constraint is defined;
(2-1-4)通过限制相邻颜色ci和cj的色调必须是在色轮上的顺时针方向,从而引入一个色调约束。如图4的(b)所示,应用色调顺序约束时的优化结果生成了一个比图4的(a)更清晰的颜色映射。更具体地说,没有色调约束的情况下插值可能会产生招致误解的颜色映射。例如,图4的(a)的颜色映射中的两个标记区域具有相似的颜色,但对应的值差异很大,导致了误导性的解释。相比之下,通过施加色调约束而生成的可视化并没有此问题。(2-1-4) A hue constraint is introduced by restricting the hues of adjacent colors c i and c j to be in the clockwise direction on the color wheel. As shown in Figure 4(b), the optimization result when the hue order constraint is applied generates a clearer color map than Figure 4(a). More specifically, interpolation without a hue constraint may produce misleading color maps. For example, the two marked areas in the color map of Figure 4(a) have similar colors, but the corresponding values are very different, leading to misleading interpretations. In contrast, the visualization generated by imposing a hue constraint does not have this problem.
具体的,步骤(2-1-1)中,对比敏感度的函数被定义为:Specifically, in step (2-1-1), the function of contrast sensitivity is defined as:
其中,ΔE是修改后的CIELAB空间中的色差度量,被定义为:Where ΔE is the color difference measure in the modified CIELAB space and is defined as:
在本实施例中,权重为ωa=ωb=0.1。Δs是沿着颜色映射的标准化距离。给定颜色映射的最终对比敏感度定义为所有颜色对之间的对比敏感度之和:In this embodiment, the weights are ωa = ωb = 0.1. Δs is the normalized distance along the color map. The final contrast sensitivity for a given color map is defined as the sum of the contrast sensitivities between all color pairs:
其中P为m个控制点的颜色构成的调色板。Where P is a palette consisting of the colors of m control points.
在本实施例中,步骤(2-1-2)中,名称距离项的定义为:In this embodiment, in step (2-1-2), the name distance item is defined as:
其中,ND是一个介于0到1之间的值,Tc是颜色c对应的名称统计量。颜色的最终名称差得分定义为所有颜色对之间的最小距离:Where ND is a value between 0 and 1, and T c is the name statistic corresponding to color c. The final name difference score of a color is defined as the minimum distance between all color pairs:
由于这两项的范围不同,需要平衡它们以获得良好的优化结果,平衡权重为λ,目标函数定义为:Since the ranges of these two items are different, they need to be balanced to obtain good optimization results. The balance weight is λ, and the objective function is defined as:
在本实施例中,步骤(2-1-3)中,最小可觉差(JND)约束为:In this embodiment, in step (2-1-3), the just noticeable difference (JND) constraint is:
其中,η为JND阈值,默认设置为3.0。Here, η is the JND threshold, which is set to 3.0 by default.
在本实施例中,骤(2-1-4)中,色调约束为:In this embodiment, in step (2-1-4), the hue constraint is:
其中,HO(ci,cj)=Hue(cj)-Hue(ci),Hue(ci)表示颜色ci的色调值。Wherein, HO( ci , cj )=Hue( cj )-Hue( ci ), and Hue( ci ) represents the hue value of color c i .
在本实施例中,步骤(2-2)中,使用一个定制的模拟退火算法来解决约束优化问题如图6所示,其主要包括三个组件:P的初始化;从P中选择邻域解Q;在硬约束下细化Q。具体来说主要包括以下步骤:In this embodiment, in step (2-2), a customized simulated annealing algorithm is used to solve the constrained optimization problem as shown in FIG6 , which mainly includes three components: initialization of P; selection of neighborhood solution Q from P; refinement of Q under hard constraints. Specifically, it mainly includes the following steps:
(2-2-1)生成初始解P0;(2-2-1) Generate the initial solution P 0 ;
(2-2-2)生成一个新的解决方案Q;(2-2-2) Generate a new solution Q;
(2-2-3)根据最小可觉差约束和色调约束改进Q,使其满足这两个约束条件。(2-2-3) Improve Q based on the minimum noticeable difference constraint and hue constraint so that it satisfies these two constraints.
在本实施例中,步骤(2-2-1)中,生成初始解P0主要包括以下步骤:In this embodiment, in step (2-2-1), generating the initial solution P 0 mainly includes the following steps:
(2-2-1-1)将色调范围[0,360]分割为m-1个间隔,并从色轮中以逆时针方向采样色调值,得到m-1种颜色。设置每种颜色的色度为100,确保明显的颜色区别;(2-2-1-1) Divide the hue range [0,360] into m-1 intervals and sample the hue value from the color wheel in a counterclockwise direction to obtain m-1 colors. Set the chroma of each color to 100 to ensure obvious color distinction;
(2-2-1-2)引入灰色颜色(色度=0)作为第一种颜色(背景色),并将其与之前获得的m-1种颜色合并,形成完整的集合。对于这一组m种颜色,指定最后一种颜色的亮度为30,并设置其余颜色的亮度在30和80之间交替。如图5的(a)所示,最后一种颜色和第一种颜色具有相同色调(红色),但它们不同的色度值会导致不同的颜色名称。(2-2-1-2) Introduce gray color (chroma = 0) as the first color (background color), and merge it with the previously obtained m-1 colors to form a complete set. For this set of m colors, specify the brightness of the last color as 30, and set the brightness of the remaining colors to alternate between 30 and 80. As shown in Figure 5 (a), the last color and the first color have the same hue (red), but their different chroma values result in different color names.
在本实施例中,步骤(2-2-2)中,生成一个新的解决方案Q主要包括以下步骤:In this embodiment, in step (2-2-2), generating a new solution Q mainly includes the following steps:
(2-2-2-1)随机在上述m-1种颜色中选择一种,然后对其色调和色度值引入小的随机扰动。这些扰动的步长遵循高斯分布,标准差分别为7.2和2.5。在整个过程中,保持所有颜色的亮度不变,同时明确地保证不选择第一种颜色(灰色背景色)进行扰动;(2-2-2-1) Randomly select one of the m-1 colors above, and then introduce small random perturbations to its hue and chroma values. The step sizes of these perturbations follow a Gaussian distribution with standard deviations of 7.2 and 2.5, respectively. Throughout the process, keep the brightness of all colors unchanged, while explicitly ensuring that the first color (gray background color) is not selected for perturbation;
(2-2-2-2)为了防止值超出范围,将扰动的色调和色度值分别截断为区间[0,360]和[0,100]。(2-2-2-2) To prevent the values from exceeding the range, the disturbed hue and chroma values are truncated to the intervals [0,360] and [0,100] respectively.
在本实施例中,步骤(2-2-3)中,根据最小可觉差约束和色调约束改进Q,使其满足这两个约束条件主要包括以下步骤:In this embodiment, in step (2-2-3), improving Q according to the minimum perceptible difference constraint and the hue constraint so as to satisfy these two constraints mainly includes the following steps:
(2-2-3-1)验证每个颜色对之间的CIEDE2000距离是否满足JND约束。如果违反了它,再次调整当前调色板中的颜色;(2-2-3-1) Verify whether the CIEDE2000 distance between each color pair satisfies the JND constraint. If it is violated, adjust the colors in the current palette again;
(2-2-3-2)确保被扰动的颜色仍然满足其在色轮上相邻颜色的色调约束。否则,交换这两种相邻的颜色,同时保持它们的色度和亮度。(2-2-3-2) Make sure the perturbed color still satisfies the hue constraint of its adjacent color on the color wheel. Otherwise, swap the two adjacent colors while maintaining their chroma and brightness.
上述实施例中各个参数的取值仅为示例,并不限定于上述具体数值。The values of the various parameters in the above embodiments are only examples and are not limited to the above specific values.
实施例三Embodiment 3
一种面向二维标量场的自动颜色映射生成系统,包括:An automatic color map generation system for two-dimensional scalar fields, comprising:
控制点确定模块,被配置为获取标量场数据,对标量场数据进行拟合并分区,在各个区间,选择控制点的数量和位置;A control point determination module is configured to obtain scalar field data, fit and partition the scalar field data, and select the number and position of control points in each interval;
优化调整模块,被配置为初步设置各控制点的颜色,并对初步设置方案进行评估,根据评估结果,构建硬约束条件,在硬约束条件下,对初步设置方案进行优化,得到最终的颜色映射生成方案。The optimization and adjustment module is configured to preliminarily set the color of each control point and evaluate the preliminary setting plan. According to the evaluation result, hard constraints are constructed. Under the hard constraints, the preliminary setting plan is optimized to obtain the final color mapping generation plan.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to the flowchart and/or block diagram of the method, device (system), and computer program product according to the embodiment of the present invention. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the process and/or box in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,本领域技术人员不需要付出创造性劳动所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made by those skilled in the art within the spirit and principle of the present invention without creative labor shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410747363.5A CN118747778A (en) | 2024-06-11 | 2024-06-11 | A method and system for automatically generating color mapping for two-dimensional scalar fields |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410747363.5A CN118747778A (en) | 2024-06-11 | 2024-06-11 | A method and system for automatically generating color mapping for two-dimensional scalar fields |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN118747778A true CN118747778A (en) | 2024-10-08 |
Family
ID=92918718
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410747363.5A Pending CN118747778A (en) | 2024-06-11 | 2024-06-11 | A method and system for automatically generating color mapping for two-dimensional scalar fields |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN118747778A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120510231A (en) * | 2025-07-22 | 2025-08-19 | 山东大学 | Color table extraction neural network model construction and color table extraction method and system |
-
2024
- 2024-06-11 CN CN202410747363.5A patent/CN118747778A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120510231A (en) * | 2025-07-22 | 2025-08-19 | 山东大学 | Color table extraction neural network model construction and color table extraction method and system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112287958B (en) | Classifying colors of objects in digital images | |
| US10497155B2 (en) | Data visualization methods | |
| CN109272016B (en) | Target detection method, device, terminal equipment and computer readable storage medium | |
| US8970593B2 (en) | Visualization and representation of data clusters and relations | |
| Hristova et al. | Style-aware robust color transfer | |
| Veras et al. | Discriminability tests for visualization effectiveness and scalability | |
| CN110196935B (en) | A method and system for generating palette based on data distribution | |
| CN112750162B (en) | Target identification positioning method and device | |
| US8559714B2 (en) | Post processing for improved generation of intrinsic images | |
| Grabli et al. | Density measure for line-drawing simplification | |
| CN118747778A (en) | A method and system for automatically generating color mapping for two-dimensional scalar fields | |
| US20160110857A1 (en) | Dynamic Binning for Diversification and Defect Discovery | |
| CN118570058A (en) | Image stitching method and system based on adaptive multi-scale transformation | |
| CN108875842A (en) | A kind of Financial Time Series Forecasting method, server and device | |
| CN115690217A (en) | Tree position determining method, medium and computing device | |
| CN110222742B (en) | Point cloud segmentation method, device, storage medium and equipment based on layered multi-echo | |
| CN119379940B (en) | Geographic information processing method, device, equipment and storage medium | |
| CN114155440B (en) | Automatic detection method and system for non-agriculturalization of cultivated land | |
| Sudheera et al. | Detection of dental plaque using enhanced K-means and silhouette methods | |
| CN119095224A (en) | A LED intelligent adjustment method and system based on full spectrum analysis | |
| CN113345052A (en) | Classified data multi-view visualization coloring method and system based on similarity significance | |
| Rogowitz et al. | Integrating human-and computer-based approaches to feature extraction and analysis | |
| CN120411297B (en) | Feature significance-based intelligent color mapping method, device, equipment and storage medium | |
| Werner et al. | Saliency-guided object candidates based on gestalt principles | |
| Liu et al. | Quick2insight: A user-friendly framework for interactive rendering of biological image volumes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |