CN118913242A - Method and device for estimating relative pose and scale of multi-camera system - Google Patents
Method and device for estimating relative pose and scale of multi-camera system Download PDFInfo
- Publication number
- CN118913242A CN118913242A CN202410878189.8A CN202410878189A CN118913242A CN 118913242 A CN118913242 A CN 118913242A CN 202410878189 A CN202410878189 A CN 202410878189A CN 118913242 A CN118913242 A CN 118913242A
- Authority
- CN
- China
- Prior art keywords
- camera
- scale
- formula
- matrix
- generalized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
- G01C21/1656—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with passive imaging devices, e.g. cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
-
- G—PHYSICS
- G04—HOROLOGY
- G04R—RADIO-CONTROLLED TIME-PIECES
- G04R20/00—Setting the time according to the time information carried or implied by the radio signal
- G04R20/02—Setting the time according to the time information carried or implied by the radio signal the radio signal being sent by a satellite, e.g. GPS
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manufacturing & Machinery (AREA)
- Navigation (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及相机定位技术领域,尤其涉及一种多相机系统相对位姿和尺度的估计方法及装置。The present invention relates to the field of camera positioning technology, and in particular to a method and device for estimating relative posture and scale of a multi-camera system.
背景技术Background Art
从两个相邻的视图估计相对姿态是多视图几何问题的基础,多视图几何问题已经应用于许多领域,如视觉测程法(Visual Odometry,VO)、运动恢复结构(Structure-from-Motion,SfM)、同步定位和建图(Simultaneous Localization and Mapping,SLAM)。多相机机系统由固定在一个系统上的多个独立相机组成。它具有视场大、度量尺度估计精度大、相对姿态估计精度高等优点。因此,大量的学者研究了如何提高相对姿态估计算法的准确性、鲁棒性和效率。Estimating relative pose from two adjacent views is the basis of multi-view geometry problem, which has been applied in many fields, such as Visual Odometry (VO), Structure-from-Motion (SfM), Simultaneous Localization and Mapping (SLAM). A multi-camera system consists of multiple independent cameras fixed on a system. It has the advantages of large field of view, high accuracy of metric scale estimation, and high accuracy of relative pose estimation. Therefore, a large number of scholars have studied how to improve the accuracy, robustness and efficiency of relative pose estimation algorithms.
多相机系统和单相机系统的最大的不同之处在于,多相机系统的光线不能相交于一个点,因此不符合针孔模型,之前关于多相机系统的研究大多数基于多相机系统内部的尺度是已知,这在一定程度上限制了多相机系统的应用。The biggest difference between a multi-camera system and a single-camera system is that the light rays of a multi-camera system cannot intersect at a single point, and therefore do not conform to the pinhole model. Most of the previous research on multi-camera systems is based on the fact that the internal scale of the multi-camera system is known, which to some extent limits the application of multi-camera systems.
因此,需要针对多相机系统内部尺度信息未知时,用于估算其相对位姿和尺度的方法。Therefore, a method is needed to estimate the relative pose and scale of a multi-camera system when the internal scale information is unknown.
发明内容Summary of the invention
本发明提供一种多相机系统相对位姿和尺度的估计方法及装置,用以解决现有技术中针对多相机系统位姿估计时内部尺度信息未知时存在的缺陷。The present invention provides a method and device for estimating the relative pose and scale of a multi-camera system, so as to solve the defects existing in the prior art when the internal scale information is unknown during the pose estimation of the multi-camera system.
第一方面,本发明提供一种多相机系统相对位姿和尺度的估计方法,包括:In a first aspect, the present invention provides a method for estimating relative pose and scale of a multi-camera system, comprising:
对多相机系统和IMU进行时间同步和空间同步,得到同步多相机惯导系统;Perform time and space synchronization on the multi-camera system and IMU to obtain a synchronized multi-camera inertial navigation system;
获取所述同步多相机惯导系统中的相机对应点对,由所述相机对应点对确定广义相机模型,将垂直方向上的IMU旋转矩阵代入所述广义相机模型,得到约束的广义相机模型;Obtaining camera corresponding point pairs in the synchronous multi-camera inertial navigation system, determining a generalized camera model from the camera corresponding point pairs, substituting the IMU rotation matrix in the vertical direction into the generalized camera model to obtain a constrained generalized camera model;
利用最小二乘法使所述约束的广义相机模型中代数误差最小,建立目标优化函数,将所述目标优化函数转换为多项式方程;Minimize the algebraic error in the constrained generalized camera model by using the least square method, establish a target optimization function, and convert the target optimization function into a polynomial equation;
采用特征值法求解所述多项式方程的相对旋转角,得到相机平移向量和尺度。The relative rotation angle of the polynomial equation is solved by the eigenvalue method to obtain the camera translation vector and scale.
根据本发明提供的一种多相机系统相对位姿和尺度的估计方法,对多相机系统和IMU进行时间同步和空间同步,得到同步多相机惯导系统,包括:According to a method for estimating relative position and scale of a multi-camera system provided by the present invention, the multi-camera system and the IMU are synchronized in time and space to obtain a synchronized multi-camera inertial navigation system, including:
根据北斗的BIC观测值解算钟差调制为PPS信号,由所述PPS为多个相机的传感器提供时间同步;The clock error is calculated based on the BIC observation value of BeiDou and modulated into a PPS signal, and the PPS provides time synchronization for sensors of multiple cameras;
以多相机系统中任一相机为参考框架,确定相机参考坐标系,基于所述相机参考坐标系,采用视觉-惯性标定工具箱Kalibr对其余相机坐标系和IMU坐标系进行标定。Taking any camera in the multi-camera system as the reference frame, the camera reference coordinate system is determined. Based on the camera reference coordinate system, the visual-inertial calibration toolbox Kalibr is used to calibrate the remaining camera coordinate systems and the IMU coordinate system.
根据本发明提供的一种多相机系统相对位姿和尺度的估计方法,获取所述同步多相机惯导系统中的相机对应点对,由所述相机对应点对确定广义相机模型,将垂直方向上的IMU旋转矩阵代入所述广义相机模型,得到约束的广义相机模型,包括:According to a method for estimating relative pose and scale of a multi-camera system provided by the present invention, corresponding point pairs of cameras in the synchronous multi-camera inertial navigation system are obtained, a generalized camera model is determined by the corresponding point pairs of cameras, and an IMU rotation matrix in the vertical direction is substituted into the generalized camera model to obtain a constrained generalized camera model, including:
基于Plücker直线获取所述相机对应点对(xki,xk'j,Rk,Rk',tk,tk'),xki表示在i时刻相机k得到的图像的归一化之后的坐标,xk'j表示在j时刻相机k'得到的图像的归一化之后的坐标,相机k相对于参考框架的旋转矩阵和平移向量分别为Rk和tk,相机k'相对于参考框架的旋转矩阵和平移向量分别为Rk'和tk';Obtain the camera corresponding point pair (x ki ,x k'j ,R k ,R k' ,t k ,t k' ) based on the Plücker line, where x ki represents the normalized coordinates of the image obtained by camera k at time i, x k'j represents the normalized coordinates of the image obtained by camera k' at time j, the rotation matrix and translation vector of camera k relative to the reference frame are R k and t k respectively, and the rotation matrix and translation vector of camera k' relative to the reference frame are R k' and t k' respectively;
假设参考框架从第i时刻到j时刻的旋转矩阵为R,平移向量为t,尺度为s,尺度未知的广义相机模型表示为:Assuming that the rotation matrix of the reference frame from time i to time j is R, the translation vector is t, and the scale is s, the generalized camera model with unknown scale is expressed as:
公式(1)重新表示为:Formula (1) can be reformulated as:
公式(2)中的本质矩阵为E=[t]×R;The essential matrix in formula (2) is E = [t] × R;
假设i时刻IMU提供的旋转矩阵为Rimu,j时刻IMU提供的旋转矩阵为R'imu,则公式(2)重新表达为:Assuming that the rotation matrix provided by the IMU at time i is R imu and the rotation matrix provided by the IMU at time j is R' imu , then formula (2) can be re-expressed as:
其中Ry可以表示为:Where R y can be expressed as:
公式(3)中的Iki和Ik′j可以表示为:I ki and I k′j in formula (3) can be expressed as:
公式(3)中的fki和fk′j可以表示为:f ki and f k′j in formula (3) can be expressed as:
将公式(6)和公式(5)代入公式(3)中得到约束的广义相机模型:Substituting formula (6) and formula (5) into formula (3) yields the constrained generalized camera model:
根据本发明提供的一种多相机系统相对位姿和尺度的估计方法,利用最小二乘法使所述约束的广义相机模型中代数误差最小,建立目标优化函数,包括:According to a method for estimating relative pose and scale of a multi-camera system provided by the present invention, the least squares method is used to minimize the algebraic error in the constrained generalized camera model, and a target optimization function is established, including:
假设存在n对特征点对,n>5,根据最小二乘原理使得代数误差最小,可以得到目标函数:Assuming there are n pairs of feature points, n>5, the algebraic error is minimized according to the least squares principle, and the objective function can be obtained:
公式(8)中的同时C=M*MT In formula (8) At the same time, C=M*M T
公式(8)可以转化为求解矩阵C的最小特征值问题:Formula (8) can be transformed into the problem of solving the minimum eigenvalue of matrix C:
定义矩阵C的特征值为λ,根据5阶展开式,可以得到:Define the eigenvalue of matrix C as λ. According to the fifth-order expansion, we can get:
det(C-λI)=f5λ5+f4λ4+f3λ3+f2λ2+f1λ+f0 (11)det(C-λI)=f 5 λ 5 +f 4 λ 4 +f 3 λ 3 +f 2 λ 2 +f 1 λ+f 0 (11)
根据特征值的性质det(C-λI)=0,可以得到:According to the property of eigenvalue det(C-λI)=0, we can get:
-λ5+f4λ4+f3λ3+f2λ2+f1λ+f0=0 (12)-λ 5 +f 4 λ 4 +f 3 λ 3 +f 2 λ 2 +f 1 λ+f 0 =0 (12)
假设λ为矩阵C的最小特征值,根据最小值的性质得到对公式(12)求偏导数,得到:Assume that λ is the minimum eigenvalue of matrix C, and according to the property of the minimum value, we get Taking partial derivatives of formula (12), we get:
令α=1+y2,公式(12)乘α6,公式(12)乘α7,得到Let α=1+y 2 , multiply formula (12) by α 6 , multiply formula (12) by α 7 , and we get
其中β=α2λ。Where β = α 2 λ.
根据本发明提供的一种多相机系统相对位姿和尺度的估计方法,将所述目标优化函数转换为多项式方程,包括:According to a method for estimating relative pose and scale of a multi-camera system provided by the present invention, the objective optimization function is converted into a polynomial equation, including:
将公式(14)的第一个方程乘以β3、β2和β,公式(14)的第二个方程乘以β4、β3、β2和β,可以得到如下方程:By multiplying the first equation of formula (14) by β 3 , β 2 and β, and multiplying the second equation of formula (14) by β 4 , β 3 , β 2 and β, the following equations can be obtained:
根据本发明提供的一种多相机系统相对位姿和尺度的估计方法,采用特征值法求解所述多项式方程的相对旋转角,得到相机平移向量和尺度,包括:According to a method for estimating relative position and scale of a multi-camera system provided by the present invention, the relative rotation angle of the polynomial equation is solved by an eigenvalue method to obtain a camera translation vector and scale, including:
结合公式(14)和公式(15)得到9个方程和9个单项式,表示为:Combining formula (14) and formula (15) we get 9 equations and 9 monomials, expressed as:
B9×9J9×1=0 (16)B 9×9 J 9×1 =0 (16)
公式(16)中的矩阵B和矩阵J可以表示为:The matrix B and matrix J in formula (16) can be expressed as:
J=[β8 β7 β6 β5 β4 β3 β2 β 1]T (18)J=[β 8 β 7 β 6 β 5 β 4 β 3 β 2 β 1] T (18)
矩阵B中只含有未知数y,令z=1/y,公式(16)重新表示为:The matrix B contains only the unknown number y. Let z = 1/y, and formula (16) can be re-expressed as:
(z16B0+z15B1+z14B2+…+B16)J=0 (19)(z 16 B 0 +z 15 B 1 +z 14 B 2 +…+B 16 )J=0 (19)
未知数z即为矩阵G的特征值,矩阵G的表达形式为:The unknown number z is the eigenvalue of the matrix G, and the expression of the matrix G is:
求解矩阵G的特征值从而可以得到未知数z,其倒数为变量y,将y带入矩阵C中,矩阵C对应特征值向量为提取出对应的平移向量和尺度。Solving the eigenvalue of matrix G can get the unknown number z, whose reciprocal is the variable y. Substitute y into matrix C, and the eigenvalue vector corresponding to matrix C is Extract the corresponding translation vector and scale.
第二方面,本发明还提供一种多相机系统相对位姿和尺度的估计装置,包括:In a second aspect, the present invention further provides a device for estimating relative pose and scale of a multi-camera system, comprising:
同步模块,用于对多相机系统和IMU进行时间同步和空间同步,得到同步多相机惯导系统;A synchronization module is used to synchronize the time and space of the multi-camera system and the IMU to obtain a synchronized multi-camera inertial navigation system;
建立模块,用于获取所述同步多相机惯导系统中的相机对应点对,由所述相机对应点对确定广义相机模型,将垂直方向上的IMU旋转矩阵代入所述广义相机模型,得到约束的广义相机模型;Establish a module for obtaining camera corresponding point pairs in the synchronous multi-camera inertial navigation system, determining a generalized camera model from the camera corresponding point pairs, substituting the IMU rotation matrix in the vertical direction into the generalized camera model, and obtaining a constrained generalized camera model;
优化模块,用于利用最小二乘法使所述约束的广义相机模型中代数误差最小,建立目标优化函数,将所述目标优化函数转换为多项式方程;An optimization module, configured to minimize the algebraic error in the constrained generalized camera model by using a least squares method, establish a target optimization function, and convert the target optimization function into a polynomial equation;
估计模块,用于采用特征值法求解所述多项式方程的相对旋转角,得到相机平移向量和尺度。The estimation module is used to solve the relative rotation angle of the polynomial equation by using an eigenvalue method to obtain a camera translation vector and a scale.
第三方面,本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述多相机系统相对位姿和尺度的估计方法。In a third aspect, the present invention also provides an electronic device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, a method for estimating the relative pose and scale of a multi-camera system as described in any one of the above-mentioned methods is implemented.
第四方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述多相机系统相对位姿和尺度的估计方法。In a fourth aspect, the present invention further provides a non-transitory computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, implements a method for estimating relative pose and scale of a multi-camera system as described in any one of the above.
第五方面,本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述多相机系统相对位姿和尺度的估计方法。In a fifth aspect, the present invention also provides a computer program product, comprising a computer program, which, when executed by a processor, implements a method for estimating relative pose and scale of a multi-camera system as described in any one of the above.
本发明提供的多相机系统相对位姿和尺度的估计方法及装置,通过将IMU和相机进行时空同步,相邻时刻的相对旋转矩阵的自由度从3减小到1,利用最小二乘使得代数误差最小建立优化函数,将代价函数转换为只含有两个未知数的两个多项式方程,最后,用特征值法求解相对旋转角,有效解决多相机系统在内部尺度信息未知时估算相对位姿和尺度的问题。The method and device for estimating the relative posture and scale of a multi-camera system provided by the present invention synchronize the IMU and the camera in time and space, reduce the degree of freedom of the relative rotation matrix at adjacent moments from 3 to 1, use least squares to minimize the algebraic error to establish an optimization function, convert the cost function into two polynomial equations containing only two unknowns, and finally use the eigenvalue method to solve the relative rotation angle, thereby effectively solving the problem of estimating the relative posture and scale of the multi-camera system when the internal scale information is unknown.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明提供的多相机系统相对位姿和尺度的估计方法的流程示意图;FIG1 is a schematic flow chart of a method for estimating relative pose and scale of a multi-camera system provided by the present invention;
图2是本发明提供的多相机系统成像模型图;FIG2 is a diagram of an imaging model of a multi-camera system provided by the present invention;
图3是本发明提供的当垂线方已知时的多相机系统成像模型图;FIG3 is a diagram of a multi-camera system imaging model provided by the present invention when the vertical line is known;
图4是本发明提供的多相机系统相对位姿和尺度的估计装置的结构示意图;FIG4 is a schematic diagram of the structure of a device for estimating relative pose and scale of a multi-camera system provided by the present invention;
图5是本发明提供的电子设备的结构示意图。FIG. 5 is a schematic diagram of the structure of an electronic device provided by the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
针对现有技术存在的局限性,本发明提出一种从2D-2D信息中估计多相机系统的相对位姿和尺度的方法。In view of the limitations of the prior art, the present invention proposes a method for estimating the relative pose and scale of a multi-camera system from 2D-2D information.
图1是本发明实施例提供的多相机系统相对位姿和尺度的估计方法的流程示意图,如图1所示,包括:FIG1 is a flow chart of a method for estimating relative pose and scale of a multi-camera system provided by an embodiment of the present invention. As shown in FIG1 , the method includes:
步骤100:对多相机系统和IMU进行时间同步和空间同步,得到同步多相机惯导系统;Step 100: Performing time synchronization and space synchronization on the multi-camera system and the IMU to obtain a synchronized multi-camera inertial navigation system;
步骤200:获取所述同步多相机惯导系统中的相机对应点对,由所述相机对应点对确定广义相机模型,将垂直方向上的IMU旋转矩阵代入所述广义相机模型,得到约束的广义相机模型;Step 200: Obtain camera corresponding point pairs in the synchronous multi-camera inertial navigation system, determine a generalized camera model based on the camera corresponding point pairs, substitute the IMU rotation matrix in the vertical direction into the generalized camera model, and obtain a constrained generalized camera model;
步骤300:利用最小二乘法使所述约束的广义相机模型中代数误差最小,建立目标优化函数,将所述目标优化函数转换为多项式方程;Step 300: using the least square method to minimize the algebraic error in the constrained generalized camera model, establishing a target optimization function, and converting the target optimization function into a polynomial equation;
步骤400:采用特征值法求解所述多项式方程的相对旋转角,得到相机平移向量和尺度。Step 400: using the eigenvalue method to solve the relative rotation angle of the polynomial equation to obtain the camera translation vector and scale.
可以理解的是,随着惯性测量单元的普及,越来越多的动平台同时安装了惯性测量单元(Inertial Measurement Unit,IMU)和相机。首先将IMU和相机进行时空同步,主要包括时间上的同步和空间上的同步。IMU可以提供垂直方向信息,因此坐标系可以在共同的方向上对齐。相邻时刻的相对旋转矩阵的自由度(Degrees Of Freedom,DOF)从3减小到1。首先,利用最小二乘使得代数误差最小建立优化函数。然后,将代价函数转换为只含有两个未知数的两个多项式方程。最后,用特征值法求解相对旋转角,对应的特征向量即为平移向量。It is understandable that with the popularity of inertial measurement units, more and more moving platforms are equipped with inertial measurement units (IMU) and cameras at the same time. First, the IMU and the camera are synchronized in time and space, mainly including time synchronization and space synchronization. The IMU can provide vertical direction information, so the coordinate system can be aligned in a common direction. The degrees of freedom (DOF) of the relative rotation matrix at adjacent moments is reduced from 3 to 1. First, the optimization function is established by using least squares to minimize the algebraic error. Then, the cost function is converted into two polynomial equations containing only two unknowns. Finally, the eigenvalue method is used to solve the relative rotation angle, and the corresponding eigenvector is the translation vector.
具体地,实现流程包括:Specifically, the implementation process includes:
第一步,惯导和相机的时空同步处理。The first step is the spatiotemporal synchronization of the inertial navigation system and the camera.
(1)时间同步:(1) Time synchronization:
时间同步是为了将惯导和相机2个传感器的时间统一到同一个高精度时间系统中。本发明实施例根据北斗的B1C观测值解算的钟差调制成PPS信号,为传感器提供时间同步。将GNSS的时间戳打入IMU数据中,虽然惯导的时间可能和GNSS的时间不能完全同步使其对应到整秒上,但可以通过插值进行推算。相机传感器同步是可以通过GNSS时间控制相机的触发,使得每一帧图片上都有对应的时间戳。Time synchronization is to unify the time of the two sensors, the inertial navigation and the camera, into the same high-precision time system. The embodiment of the present invention modulates the clock difference calculated according to the B1C observation value of Beidou into a PPS signal to provide time synchronization for the sensor. The GNSS timestamp is entered into the IMU data. Although the inertial navigation time may not be completely synchronized with the GNSS time to correspond to the whole second, it can be calculated through interpolation. Camera sensor synchronization can control the triggering of the camera through the GNSS time, so that each frame of the picture has a corresponding timestamp.
(2)空间同步(2) Spatial synchronization
对于多相机系统,需要选择一个参考框架。为了方便可以将参考框架建立在某一个相机上,假设多系统中建立在1号相机上。对于参考框架(1号相机坐标系)和IMU坐标系的转化,可以直接采用开源的Kalibr方案及软件对IMU和相机进行标定即可,Kalibr是一种视觉-惯性标定工具箱。For a multi-camera system, you need to select a reference frame. For convenience, you can establish the reference frame on a certain camera. Assume that it is established on camera No. 1 in the multi-camera system. For the conversion between the reference frame (camera No. 1 coordinate system) and the IMU coordinate system, you can directly use the open source Kalibr solution and software to calibrate the IMU and camera. Kalibr is a visual-inertial calibration toolbox.
第二步,惯导/视觉融合定位。The second step is inertial navigation/vision fusion positioning.
多相机系统与单相机系统最大的不同是,多相机系统的所有光线并不能相交于同一个点,即不符合针孔相机模型。在表示广义相机模型时,通常采用Plücker直线表示。Plücker直线是一个6×1的列向量,该向量的前三行表示射线的方向,后三行表示对应的线的力矩。The biggest difference between a multi-camera system and a single-camera system is that all rays of a multi-camera system cannot intersect at the same point, which means that it does not conform to the pinhole camera model. When representing the generalized camera model, the Plücker line is usually used. The Plücker line is a 6×1 column vector, the first three rows of which represent the direction of the ray, and the last three rows represent the moment of the corresponding line.
假设在多相机系统中有一对应点对(xki,xk'j,Rk,Rk',tk,tk')。xki表示在i时刻相机k得到的图像的归一化之后的坐标。xk'j表示在j时刻相机k'得到的图像的归一化之后的坐标。相机k相对于参考框架的旋转矩阵和平移向量分别为Rk和tk。相机k'相对于参考框架的旋转矩阵和平移向量分别为Rk'和tk'。Assume that there is a pair of corresponding points (x ki ,x k'j ,R k ,R k' ,t k ,t k' ) in a multi-camera system. x ki represents the normalized coordinates of the image obtained by camera k at time i. x k'j represents the normalized coordinates of the image obtained by camera k' at time j. The rotation matrix and translation vector of camera k relative to the reference frame are R k and t k respectively. The rotation matrix and translation vector of camera k' relative to the reference frame are R k' and t k' respectively.
如图2所示,假设参考框架从第i时刻到j时刻的旋转矩阵为R,平移向量为t,尺度为s。尺度未知的时候广义相机模型可以表示为:As shown in Figure 2, assume that the rotation matrix of the reference frame from time i to time j is R, the translation vector is t, and the scale is s. When the scale is unknown, the generalized camera model can be expressed as:
公式(1)可以重新表示为:Formula (1) can be reformulated as:
公式(2)中的本质矩阵为E=[t]×R;The essential matrix in formula (2) is E = [t] × R;
IMU提供的俯仰角和横滚角精度要优于偏航角精度,因此本发明利用IMU提供的俯仰角(θx)和横滚角(θz)将相机对齐到垂直方向上。假设i时刻IMU提供的旋转矩阵为Rimu,j时刻IMU提供的旋转矩阵为R'imu。公式(2)可以重新的表达为:The pitch and roll angles provided by the IMU are more accurate than the yaw angles, so the present invention uses the pitch angle (θ x ) and roll angle (θ z ) provided by the IMU to align the camera in the vertical direction. Assume that the rotation matrix provided by the IMU at time i is R imu , and the rotation matrix provided by the IMU at time j is R' imu . Formula (2) can be re-expressed as:
其中Ry可以表示为:Where R y can be expressed as:
公式(3)中的Iki和Ik′j可以表示为:I ki and I k′j in formula (3) can be expressed as:
公式(3)中的fki和fk′j可以表示为:f ki and f k′j in formula (3) can be expressed as:
将公式(6)和公式(5)代入公式(3)中可以得到:Substituting formula (6) and formula (5) into formula (3) yields:
(1)建立目标函数:(1) Establish the objective function:
假设存在n(n>5)对特征点对,根据最小二乘原理使得代数误差最小,可以得到目标函数:Assuming that there are n (n>5) pairs of feature points, the algebraic error is minimized according to the least squares principle, and the objective function can be obtained:
公式(8)中的同时C=M*MT;In formula (8) At the same time, C = M*M T ;
公式(8)可以转化为求解矩阵C的最小特征值问题:Formula (8) can be transformed into the problem of solving the minimum eigenvalue of matrix C:
定义矩阵C的特征值为λ,根据5阶展开式,可以得到:Define the eigenvalue of matrix C as λ. According to the fifth-order expansion, we can get:
det(C-λI)=f5λ5+f4λ4+f3λ3+f2λ2+f1λ+f0 (11)det(C-λI)=f 5 λ 5 +f 4 λ 4 +f 3 λ 3 +f 2 λ 2 +f 1 λ+f 0 (11)
根据特征值的性质det(C-λI)=0,可以得到:According to the property of eigenvalue det(C-λI)=0, we can get:
-λ5+f4λ4+f3λ3+f2λ2+f1λ+f0=0 (12)-λ 5 +f 4 λ 4 +f 3 λ 3 +f 2 λ 2 +f 1 λ+f 0 =0 (12)
为了方便描述,假设λ为矩阵C的最小特征值,根据最小值的性质得到对公式(12)求偏导数,得到:For the convenience of description, assume that λ is the minimum eigenvalue of the matrix C. According to the property of the minimum value, we can get Taking partial derivatives of formula (12), we get:
令α=1+y2,公式(12)乘α6,公式(12)乘α7,得到Let α=1+y 2 , multiply formula (12) by α 6 , multiply formula (12) by α 7 , and we get
其中β=α2λ。Where β = α 2 λ.
(2)多项式特征求解器:(2) Polynomial feature solver:
公式(14)包含2个方程和6个单项式,为了使方程的个数和单项式的个数相等,将公式(14)的第一个方程乘以β3,β2,β,公式(14)的第二个方程乘以β4,β3,β2,β,可以得到如下方程:Formula (14) contains 2 equations and 6 monomials. In order to make the number of equations equal to the number of monomials, the first equation of formula (14) is multiplied by β 3 , β 2 , β, and the second equation of formula (14) is multiplied by β 4 , β 3 , β 2 , β, and the following equations can be obtained:
结合公式(14)和公式(15)得到9个方程和9个单项式,表示为:Combining formula (14) and formula (15) we get 9 equations and 9 monomials, expressed as:
B9×9J9×1=0 (16)B 9×9 J 9×1 =0 (16)
公式(16)中的矩阵B和矩阵J可以表示为:The matrix B and matrix J in formula (16) can be expressed as:
矩阵B中只含有未知数y,令z=1/y,公式(16)重新表示为:The matrix B contains only the unknown number y. Let z = 1/y, and formula (16) can be re-expressed as:
(z16B0+z15B1+z14B2+…+B16)J=0 (19)(z 16 B 0 +z 15 B 1 +z 14 B 2 +…+B 16 )J=0 (19)
未知数z即为矩阵G的特征值,矩阵G的表达形式为:The unknown number z is the eigenvalue of the matrix G, and the expression of the matrix G is:
求解矩阵G的特征值从而可以得到未知数z,其倒数为变量y,将y带入矩阵C中,矩阵C对应特征值向量为最后提取出对应的平移向量和尺度,调整之后的系统成像模型如图3所示。Solving the eigenvalue of matrix G can get the unknown number z, whose reciprocal is the variable y. Substitute y into matrix C, and the eigenvalue vector corresponding to matrix C is Finally, the corresponding translation vector and scale are extracted, and the adjusted system imaging model is shown in FIG3 .
下面对本发明提供的多相机系统相对位姿和尺度的估计装置进行描述,下文描述的多相机系统相对位姿和尺度的估计装置与上文描述的多相机系统相对位姿和尺度的估计方法可相互对应参照。The following is a description of the relative pose and scale estimation device for a multi-camera system provided by the present invention. The relative pose and scale estimation device for a multi-camera system described below and the relative pose and scale estimation method for a multi-camera system described above can refer to each other.
图4是本发明实施例提供的多相机系统相对位姿和尺度的估计装置的结构示意图,如图4所示,包括:同步模块41、建立模块42、优化模块43和估计模块44,其中:FIG4 is a schematic diagram of the structure of a device for estimating relative pose and scale of a multi-camera system provided by an embodiment of the present invention. As shown in FIG4 , the device comprises: a synchronization module 41, an establishment module 42, an optimization module 43 and an estimation module 44, wherein:
同步模块41用于对多相机系统和IMU进行时间同步和空间同步,得到同步多相机惯导系统;建立模块42用于获取所述同步多相机惯导系统中的相机对应点对,由所述相机对应点对确定广义相机模型,将垂直方向上的IMU旋转矩阵代入所述广义相机模型,得到约束的广义相机模型;优化模块43用于利用最小二乘法使所述约束的广义相机模型中代数误差最小,建立目标优化函数,将所述目标优化函数转换为多项式方程;估计模块44用于采用特征值法求解所述多项式方程的相对旋转角,得到相机平移向量和尺度。The synchronization module 41 is used to perform time synchronization and space synchronization on the multi-camera system and the IMU to obtain a synchronized multi-camera inertial navigation system; the establishment module 42 is used to obtain the corresponding point pairs of cameras in the synchronized multi-camera inertial navigation system, determine the generalized camera model based on the corresponding point pairs of cameras, substitute the IMU rotation matrix in the vertical direction into the generalized camera model to obtain a constrained generalized camera model; the optimization module 43 is used to minimize the algebraic error in the constrained generalized camera model by using the least squares method, establish a target optimization function, and convert the target optimization function into a polynomial equation; the estimation module 44 is used to solve the relative rotation angle of the polynomial equation by using the eigenvalue method to obtain the camera translation vector and scale.
图5示例了一种电子设备的实体结构示意图,如图5所示,该电子设备可以包括:处理器(processor)510、通信接口(Communications Interface)520、存储器(memory)530和通信总线540,其中,处理器510,通信接口520,存储器530通过通信总线540完成相互间的通信。处理器510可以调用存储器530中的逻辑指令,以执行多相机系统相对位姿和尺度的估计方法,该方法包括:对多相机系统和IMU进行时间同步和空间同步,得到同步多相机惯导系统;获取所述同步多相机惯导系统中的相机对应点对,由所述相机对应点对确定广义相机模型,将垂直方向上的IMU旋转矩阵代入所述广义相机模型,得到约束的广义相机模型;利用最小二乘法使所述约束的广义相机模型中代数误差最小,建立目标优化函数,将所述目标优化函数转换为多项式方程;采用特征值法求解所述多项式方程的相对旋转角,得到相机平移向量和尺度。FIG5 illustrates a schematic diagram of the physical structure of an electronic device. As shown in FIG5 , the electronic device may include: a processor 510, a communication interface 520, a memory 530 and a communication bus 540, wherein the processor 510, the communication interface 520 and the memory 530 communicate with each other through the communication bus 540. The processor 510 may call the logic instructions in the memory 530 to execute a method for estimating the relative pose and scale of a multi-camera system, the method comprising: performing time synchronization and space synchronization on the multi-camera system and the IMU to obtain a synchronized multi-camera inertial navigation system; obtaining a pair of camera corresponding points in the synchronized multi-camera inertial navigation system, determining a generalized camera model from the pair of camera corresponding points, substituting the IMU rotation matrix in the vertical direction into the generalized camera model to obtain a constrained generalized camera model; using the least squares method to minimize the algebraic error in the constrained generalized camera model, establishing a target optimization function, and converting the target optimization function into a polynomial equation; using the eigenvalue method to solve the relative rotation angle of the polynomial equation to obtain a camera translation vector and scale.
此外,上述的存储器530中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, the logic instructions in the above-mentioned memory 530 can be implemented in the form of a software functional unit and can be stored in a computer-readable storage medium when it is sold or used as an independent product. Based on such an understanding, the technical solution of the present invention, in essence, or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk and other media that can store program codes.
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的多相机系统相对位姿和尺度的估计方法,该方法包括:对多相机系统和IMU进行时间同步和空间同步,得到同步多相机惯导系统;获取所述同步多相机惯导系统中的相机对应点对,由所述相机对应点对确定广义相机模型,将垂直方向上的IMU旋转矩阵代入所述广义相机模型,得到约束的广义相机模型;利用最小二乘法使所述约束的广义相机模型中代数误差最小,建立目标优化函数,将所述目标优化函数转换为多项式方程;采用特征值法求解所述多项式方程的相对旋转角,得到相机平移向量和尺度。On the other hand, the present invention also provides a computer program product, which includes a computer program. The computer program can be stored on a non-transitory computer-readable storage medium. When the computer program is executed by a processor, the computer can execute the method for estimating the relative posture and scale of a multi-camera system provided by the above methods. The method includes: performing time synchronization and spatial synchronization on the multi-camera system and the IMU to obtain a synchronized multi-camera inertial navigation system; obtaining camera corresponding point pairs in the synchronized multi-camera inertial navigation system, determining a generalized camera model from the camera corresponding point pairs, substituting the IMU rotation matrix in the vertical direction into the generalized camera model to obtain a constrained generalized camera model; using the least squares method to minimize the algebraic error in the constrained generalized camera model, establishing a target optimization function, and converting the target optimization function into a polynomial equation; using the eigenvalue method to solve the relative rotation angle of the polynomial equation to obtain the camera translation vector and scale.
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的多相机系统相对位姿和尺度的估计方法,该方法包括:对多相机系统和IMU进行时间同步和空间同步,得到同步多相机惯导系统;获取所述同步多相机惯导系统中的相机对应点对,由所述相机对应点对确定广义相机模型,将垂直方向上的IMU旋转矩阵代入所述广义相机模型,得到约束的广义相机模型;利用最小二乘法使所述约束的广义相机模型中代数误差最小,建立目标优化函数,将所述目标优化函数转换为多项式方程;采用特征值法求解所述多项式方程的相对旋转角,得到相机平移向量和尺度。On the other hand, the present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, is implemented to execute the method for estimating the relative posture and scale of a multi-camera system provided by the above-mentioned methods, the method comprising: performing time and space synchronization on the multi-camera system and the IMU to obtain a synchronized multi-camera inertial navigation system; obtaining camera corresponding point pairs in the synchronized multi-camera inertial navigation system, determining a generalized camera model from the camera corresponding point pairs, substituting the IMU rotation matrix in the vertical direction into the generalized camera model to obtain a constrained generalized camera model; using the least squares method to minimize the algebraic error in the constrained generalized camera model, establishing a target optimization function, and converting the target optimization function into a polynomial equation; using the eigenvalue method to solve the relative rotation angle of the polynomial equation to obtain the camera translation vector and scale.
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Ordinary technicians in this field can understand and implement it without paying creative labor.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the description of the above implementation methods, those skilled in the art can clearly understand that each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware. Based on this understanding, the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410878189.8A CN118913242A (en) | 2024-07-02 | 2024-07-02 | Method and device for estimating relative pose and scale of multi-camera system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410878189.8A CN118913242A (en) | 2024-07-02 | 2024-07-02 | Method and device for estimating relative pose and scale of multi-camera system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN118913242A true CN118913242A (en) | 2024-11-08 |
Family
ID=93311297
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410878189.8A Pending CN118913242A (en) | 2024-07-02 | 2024-07-02 | Method and device for estimating relative pose and scale of multi-camera system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN118913242A (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3086285A1 (en) * | 2015-04-22 | 2016-10-26 | Thomson Licensing | Method of camera calibration for a multi-camera system and apparatus performing the same |
| CN117237457A (en) * | 2023-09-18 | 2023-12-15 | 武汉大学 | Robust initialization method and system for non-overlapping multi-vision odometer |
| CN117953012A (en) * | 2024-01-30 | 2024-04-30 | 哈尔滨工业大学 | Relative pose estimation method and system based on improved multi-camera 17-point method |
-
2024
- 2024-07-02 CN CN202410878189.8A patent/CN118913242A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3086285A1 (en) * | 2015-04-22 | 2016-10-26 | Thomson Licensing | Method of camera calibration for a multi-camera system and apparatus performing the same |
| CN117237457A (en) * | 2023-09-18 | 2023-12-15 | 武汉大学 | Robust initialization method and system for non-overlapping multi-vision odometer |
| CN117953012A (en) * | 2024-01-30 | 2024-04-30 | 哈尔滨工业大学 | Relative pose estimation method and system based on improved multi-camera 17-point method |
Non-Patent Citations (2)
| Title |
|---|
| LIU, Y (LIU, YONG): "Online Self-Calibration Initialization for Multi-Camera Visual-Inertial SLAM", IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 14 June 2019 (2019-06-14), pages 192 - 199 * |
| 齐新磊: "多相机系统的标定及其相对位姿估计算法研究", 中国优秀硕士学位论文全文数据库, 15 February 2024 (2024-02-15) * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11704833B2 (en) | Monocular vision tracking method, apparatus and non-transitory computer-readable storage medium | |
| CN110296691B (en) | IMU calibration-fused binocular stereo vision measurement method and system | |
| US6438507B1 (en) | Data processing method and processing device | |
| KR100855657B1 (en) | Magnetic Position Estimation System and Method of Mobile Robot Using Monocular Zoom Camera | |
| CN110009681A (en) | A monocular visual odometry pose processing method based on IMU assistance | |
| CN110880189A (en) | Combined calibration method and combined calibration device thereof and electronic equipment | |
| JP2013187862A (en) | Image data processing device, image data processing method, and program for image data processing | |
| CN106885585B (en) | Integrated calibration method of satellite-borne photogrammetry system based on light beam adjustment | |
| CN113436267B (en) | Visual inertial navigation calibration method, device, computer equipment and storage medium | |
| CN112581544B (en) | Camera calibration method without public view field based on parameter optimization | |
| CN110345921A (en) | Stereoscopic fields of view vision measurement and vertical axial aberration and axial aberration bearing calibration and system | |
| CN113034615B (en) | Equipment calibration method and related device for multi-source data fusion | |
| CN113587934A (en) | Robot, indoor positioning method and device and readable storage medium | |
| CN106500729B (en) | A kind of smart phone self-test calibration method without controlling information | |
| WO2024164812A1 (en) | Multi-sensor fusion-based slam method and device, and medium | |
| US8509522B2 (en) | Camera translation using rotation from device | |
| CN108594255A (en) | A kind of laser ranging auxiliary optical image association error compensation method and system | |
| CN118967795B (en) | Visual inertial navigation tight coupling SLAM method based on four-eye panoramic camera | |
| CN112629565B (en) | Method, device and equipment for calibrating rotation relation between camera and inertial measurement unit | |
| CN112857328B (en) | Calibration-free photogrammetry method | |
| WO2025123816A1 (en) | Method, apparatus and device for calibrating extrinsic parameters between radar and camera, and storage medium | |
| CN116091546B (en) | Observation construction method in push-scan mode of optical camera | |
| CN118913242A (en) | Method and device for estimating relative pose and scale of multi-camera system | |
| Kunz et al. | Stereo self-calibration for seafloor mapping using AUVs | |
| CN114485574B (en) | Three-line array image POS-assisted ground positioning method based on Kalman filter model |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |