CN119300414A - A double-channel planar gate silicon carbide LDMOS and a preparation method thereof - Google Patents
A double-channel planar gate silicon carbide LDMOS and a preparation method thereof Download PDFInfo
- Publication number
- CN119300414A CN119300414A CN202411380760.XA CN202411380760A CN119300414A CN 119300414 A CN119300414 A CN 119300414A CN 202411380760 A CN202411380760 A CN 202411380760A CN 119300414 A CN119300414 A CN 119300414A
- Authority
- CN
- China
- Prior art keywords
- barrier layer
- silicon carbide
- etching
- region
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种双沟道平面栅碳化硅LDMOS及其制备方法。The invention relates to a double-channel planar gate silicon carbide LDMOS and a preparation method thereof.
背景技术Background Art
LDMOS(Laterally Diffused Metal Oxide Semiconductor),即横向扩散金属氧化物半导体,是一种特殊类型的功率MOSFET(金属氧化物半导体场效应晶体管),广泛应用于射频和微波功率放大器中。LDMOS结合了双极型晶体管和MOSFET的优点,提供了高增益、高耐久性和良好的热稳定性能。LDMOS (Laterally Diffused Metal Oxide Semiconductor), or laterally diffused metal oxide semiconductor, is a special type of power MOSFET (metal oxide semiconductor field effect transistor) widely used in RF and microwave power amplifiers. LDMOS combines the advantages of bipolar transistors and MOSFETs, providing high gain, high durability and good thermal stability.
LDMOS的应用非常广泛,包括CDMA、W-CDMA、TETRA、数字地面电视等需要宽频率范围、高线性度和高使用寿命的领域。随着技术的不断进步,LDMOS的性能也在不断提升,例如飞利浦的第五代LDMOS技术就提供了更高的功率密度和效率;而现有的LDMOS的导通电阻还是比较大,沟道之间存在干扰,使得导电能力降低。LDMOS is widely used in fields that require wide frequency range, high linearity and long service life, such as CDMA, W-CDMA, TETRA, and digital terrestrial television. With the continuous advancement of technology, the performance of LDMOS is also constantly improving. For example, Philips' fifth-generation LDMOS technology provides higher power density and efficiency; however, the on-resistance of existing LDMOS is still relatively large, and there is interference between channels, which reduces the conductivity.
发明内容Summary of the invention
本发明要解决的技术问题,在于提供一种双沟道平面栅碳化硅LDMOS及其制备方法,在横向功率器件中进行双沟道结构设计,降低器件的导通电阻。The technical problem to be solved by the present invention is to provide a dual-channel planar gate silicon carbide LDMOS and a preparation method thereof, to perform a dual-channel structure design in a lateral power device and to reduce the on-resistance of the device.
第一方面,本发明提供了一种双沟道平面栅碳化硅LDMOS的制备方法,包括如下步骤:In a first aspect, the present invention provides a method for preparing a double-channel planar gate silicon carbide LDMOS, comprising the following steps:
步骤1、在碳化硅衬底上形成阻挡层,刻蚀阻挡层形成通孔,对碳化硅衬底进行离子注入,形成第一沟道区,离子注入能量为230-330kev;Step 1, forming a barrier layer on a silicon carbide substrate, etching the barrier layer to form a through hole, and performing ion implantation on the silicon carbide substrate to form a first channel region, wherein the ion implantation energy is 230-330 keV;
步骤2、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,对碳化硅衬底进行离子注入,形成第一N型源区,离子注入能量为10-330kev;Step 2, removing the original barrier layer, re-forming the barrier layer, etching the barrier layer to form a through hole, and performing ion implantation on the silicon carbide substrate to form a first N-type source region, wherein the ion implantation energy is 10-330kev;
步骤3、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,对碳化硅衬底以及第一N型源区进行离子注入,形成隔离区,离子注入能量为130-230kev;Step 3, removing the original barrier layer, re-forming the barrier layer, etching the barrier layer to form a through hole, and performing ion implantation on the silicon carbide substrate and the first N-type source region to form an isolation region, wherein the ion implantation energy is 130-230kev;
步骤4、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,对碳化硅衬底进行离子注入,形成第二沟道区,离子注入能量为10-130kev;Step 4, removing the original barrier layer, re-forming the barrier layer, etching the barrier layer to form a through hole, and performing ion implantation on the silicon carbide substrate to form a second channel region, wherein the ion implantation energy is 10-130kev;
步骤5、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,对碳化硅衬底以及第一N型源区进行离子注入,形成P型阱区,离子注入能量为10-130kev;Step 5: remove the original barrier layer, re-form the barrier layer, etch the barrier layer to form a through hole, perform ion implantation on the silicon carbide substrate and the first N-type source region to form a P-type well region, and the ion implantation energy is 10-130kev;
步骤6、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,对碳化硅衬底进行离子注入,形成第二N型源区,离子注入能量为10-130kev;Step 6: remove the original barrier layer, re-form the barrier layer, etch the barrier layer to form a through hole, and perform ion implantation on the silicon carbide substrate to form a second N-type source region, with the ion implantation energy being 10-130kev;
步骤7、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,刻蚀碳化硅衬底至所述隔离区上侧面,淀积金属,形成体二极管金属层;Step 7, removing the original barrier layer, re-forming the barrier layer, etching the barrier layer to form a through hole, etching the silicon carbide substrate to the upper side of the isolation region, depositing metal, and forming a body diode metal layer;
步骤8、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,淀积形成栅介质层;Step 8, removing the original barrier layer, re-forming the barrier layer, etching the barrier layer to form a through hole, and depositing to form a gate dielectric layer;
步骤9、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,淀积金属,形成栅极金属层;Step 9, removing the original barrier layer, re-forming the barrier layer, etching the barrier layer to form a through hole, depositing metal, and forming a gate metal layer;
步骤10、去除原阻挡层,重新形成阻挡层,刻蚀阻挡层形成通孔,淀积金属,分别形成源极金属层和漏极金属层,去除阻挡层,完成制备。Step 10: remove the original barrier layer, re-form the barrier layer, etch the barrier layer to form a through hole, deposit metal to form a source metal layer and a drain metal layer respectively, remove the barrier layer, and complete the preparation.
第二方面,本发明提供了一种双沟道平面栅碳化硅LDMOS,所述碳化硅VDMOS采用第一方面所述的一种双沟道平面栅碳化硅LDMOS的制备方法制备得到。In a second aspect, the present invention provides a dual-channel planar gate silicon carbide LDMOS, wherein the silicon carbide VDMOS is prepared by the method for preparing a dual-channel planar gate silicon carbide LDMOS according to the first aspect.
本发明的优点在于:The advantages of the present invention are:
一、本发明在N型LDMOS器件的基础上构建了双沟道,通过构建低阻第一沟道,可以有效将器件导通电流分流在器件顶部和内部,降低器件的导通电阻;1. The present invention constructs a dual channel based on an N-type LDMOS device. By constructing a low-resistance first channel, the device on-current can be effectively shunted to the top and inside of the device, thereby reducing the on-resistance of the device;
二,本发明在器件源极金属正下方构建了体二极管金属层,可以在器件未导通时将源极的电子通过其流到P型隔离区进而流到第一N型源区,通过第二沟道形成与漏极的寄生体二极管;Second, the present invention constructs a body diode metal layer just below the source metal of the device, through which electrons from the source can flow to the P-type isolation region and then to the first N-type source region when the device is not turned on, and a parasitic body diode with the drain is formed through the second channel;
三、本发明的栅极结构分布在源极的左右两侧,左侧栅极控制器件表层的第二沟道区,右侧栅极控制器件的第一沟道;3. The gate structure of the present invention is distributed on the left and right sides of the source, the left gate controls the second channel region on the surface of the device, and the right gate controls the first channel of the device;
四、本发明采用P型碳化硅衬底,可以有效抑制器件的衬底漏电;Fourth, the present invention adopts a P-type silicon carbide substrate, which can effectively suppress the substrate leakage of the device;
五、在第一沟道区和第二沟道区设置了P型隔离区,可以有效抑制器件第二沟道和第二沟道之间的相互干扰,提高各沟道的导电能力。5. P-type isolation regions are set in the first channel region and the second channel region, which can effectively suppress the mutual interference between the second channel of the device and the second channel and improve the conductivity of each channel.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
下面参照附图结合实施例对本发明作进一步的说明。The present invention will be further described below in conjunction with embodiments with reference to the accompanying drawings.
图1为本发明一种双沟道平面栅碳化硅LDMOS的原理图。FIG1 is a schematic diagram of a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图2为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图一。FIG. 2 is a cross-sectional view of a process of a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图3为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图二。FIG. 3 is a second cross-sectional view of a process of manufacturing a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图4为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图三。FIG. 4 is a third cross-sectional view of a process of a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图5为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图四。FIG. 5 is a fourth cross-sectional view of a process of a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图6为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图五。FIG. 6 is a fifth cross-sectional view of a process of manufacturing a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图7为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图六。FIG. 7 is a sixth cross-sectional view of a process of manufacturing a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图8为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图七。FIG8 is a seventh cross-sectional view of a process of manufacturing a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图9为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图八。FIG. 9 is a cross-sectional view eight of a process of manufacturing a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图10为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图九。FIG. 10 is a ninth cross-sectional view of a process of manufacturing a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图11为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图十。FIG. 11 is a cross-sectional view of the tenth process of a dual-channel planar gate silicon carbide LDMOS according to the present invention.
图12为本发明一种双沟道平面栅碳化硅LDMOS的工序剖视图十一。FIG. 12 is a cross-sectional view eleven of a process of manufacturing a dual-channel planar gate silicon carbide LDMOS according to the present invention.
具体实施方式DETAILED DESCRIPTION
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。In order to facilitate understanding of the present application, the present application will be described more fully below with reference to the relevant drawings. Embodiments of the present application are provided in the drawings. However, the present application can be implemented in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the disclosure of the present application more thorough and comprehensive.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which this application belongs. The terms used herein in the specification of this application are only for the purpose of describing specific embodiments and are not intended to limit this application.
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...接触”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层、掺杂类型和/或部分,这些元件、部件、区、层、掺杂类型和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层、掺杂类型或部分与另一个元件、部件、区、层、掺杂类型或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层、掺杂类型或部分可表示为第二元件、部件、区、层或部分。It should be understood that when an element or layer is referred to as "on ...", "adjacent to ...", "connected to" or "coupled to" other elements or layers, it can be directly on, adjacent to, connected to or coupled to other elements or layers, or there can be intervening elements or layers. On the contrary, when an element is referred to as "directly on ...", "in contact with ...", "directly connected to" or "directly coupled to" other elements or layers, there is no intervening element or layer. It should be understood that although the terms first, second, third, etc. can be used to describe various elements, components, regions, layers, doping types and/or parts, these elements, components, regions, layers, doping types and/or parts should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, doping type or part from another element, component, region, layer, doping type or part. Therefore, without departing from the teachings of the present invention, the first element, component, region, layer, doping type or part discussed below can be represented as a second element, component, region, layer or part.
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可以用于描述图中所述的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所述的取向以外,空间关系术语还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。此外,器件也可以包括另外地取向(譬如,旋转90度或其它取向),并且在此使用的空间描述语相应地被解释。Spatially relative terms such as "under," "beneath," "below," "under," "above," "above," and the like may be used herein to describe the relationship of one element or feature described in the figures to other elements or features. It should be understood that, in addition to the orientations described in the figures, spatially relative terms also include different orientations of the device in use and operation. For example, if the device in the accompanying drawings is flipped, an element or feature described as "under other elements" or "under it" or "under it" will be oriented as being "above" the other elements or features. Thus, the exemplary terms "under" and "under" may include both upper and lower orientations. In addition, the device may also include additional orientations (e.g., rotated 90 degrees or other orientations), and the spatial descriptors used herein are interpreted accordingly.
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中,术语“和/或”包括相关所列项目的任何及所有组合。When used herein, the singular forms "a", "an", and "said/the" may also include plural forms, unless the context clearly indicates otherwise. It should also be understood that the terms "include/comprise" or "have" and the like specify the presence of stated features, wholes, steps, operations, components, parts, or combinations thereof, but do not exclude the possibility of the presence or addition of one or more other features, wholes, steps, operations, components, parts, or combinations thereof. At the same time, in this specification, the term "and/or" includes any and all combinations of the relevant listed items.
如图1至12所示,本申请实施例通过提供一种双沟道平面栅碳化硅LDMOS的制备方法,包括如下步骤:As shown in FIGS. 1 to 12 , the present application embodiment provides a method for preparing a double-channel planar gate silicon carbide LDMOS, comprising the following steps:
步骤1、在碳化硅衬底101上形成阻挡层113,刻蚀阻挡层113形成通孔,对碳化硅衬底101进行离子注入,形成第一沟道区103,离子注入能量为230-330kev;Step 1, forming a barrier layer 113 on the silicon carbide substrate 101, etching the barrier layer 113 to form a through hole, and performing ion implantation on the silicon carbide substrate 101 to form a first channel region 103, wherein the ion implantation energy is 230-330 keV;
步骤2、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,对碳化硅衬底101进行离子注入,形成第一N型源区102,离子注入能量为10-330kev;Step 2, removing the original barrier layer 113, re-forming the barrier layer 113, etching the barrier layer 113 to form a through hole, and performing ion implantation on the silicon carbide substrate 101 to form a first N-type source region 102, wherein the ion implantation energy is 10-330 keV;
步骤3、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,对碳化硅衬底101以及第一N型源区102进行离子注入,形成隔离区104,离子注入能量为130-230kev;Step 3, removing the original barrier layer 113, re-forming the barrier layer 113, etching the barrier layer 113 to form a through hole, and performing ion implantation on the silicon carbide substrate 101 and the first N-type source region 102 to form an isolation region 104, wherein the ion implantation energy is 130-230 keV;
步骤4、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,对碳化硅衬底101进行离子注入,形成第二沟道区105,离子注入能量为10-130kev;Step 4, removing the original barrier layer 113, re-forming the barrier layer 113, etching the barrier layer 113 to form a through hole, and performing ion implantation on the silicon carbide substrate 101 to form a second channel region 105, wherein the ion implantation energy is 10-130 keV;
步骤5、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,对碳化硅衬底101以及第一N型源区102进行离子注入,形成P型阱区106,离子注入能量为10-130kev;Step 5, removing the original barrier layer 113, re-forming the barrier layer 113, etching the barrier layer 113 to form a through hole, and performing ion implantation on the silicon carbide substrate 101 and the first N-type source region 102 to form a P-type well region 106, with the ion implantation energy being 10-130 keV;
步骤6、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,对碳化硅衬底101进行离子注入,形成第二N型源区107,离子注入能量为10-130kev;Step 6: remove the original barrier layer 113, re-form the barrier layer 113, etch the barrier layer 113 to form a through hole, perform ion implantation on the silicon carbide substrate 101 to form a second N-type source region 107, and the ion implantation energy is 10-130kev;
步骤7、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,刻蚀碳化硅衬底101至所述隔离区104上侧面,淀积金属,形成体二极管金属层108;Step 7, removing the original barrier layer 113, re-forming the barrier layer 113, etching the barrier layer 113 to form a through hole, etching the silicon carbide substrate 101 to the upper side of the isolation region 104, depositing metal, and forming a body diode metal layer 108;
步骤8、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,淀积形成栅介质层109;Step 8, removing the original barrier layer 113, re-forming the barrier layer 113, etching the barrier layer 113 to form a through hole, and depositing to form a gate dielectric layer 109;
步骤9、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,淀积金属,形成栅极金属层111;Step 9, removing the original barrier layer 113, re-forming the barrier layer 113, etching the barrier layer 113 to form a through hole, depositing metal, and forming a gate metal layer 111;
步骤10、去除原阻挡层113,重新形成阻挡层113,刻蚀阻挡层113形成通孔,淀积金属,分别形成源极金属层110和漏极金属层112,去除阻挡层,完成制备。Step 10, remove the original barrier layer 113, re-form the barrier layer 113, etch the barrier layer 113 to form a through hole, deposit metal to form a source metal layer 110 and a drain metal layer 112 respectively, remove the barrier layer, and complete the preparation.
如图1所示,上述制造方法得到的平面栅碳化硅LDMOS,包括:As shown in FIG1 , the planar gate silicon carbide LDMOS obtained by the above manufacturing method comprises:
碳化硅衬底101,Silicon carbide substrate 101,
第一N型源区102,所述第一N型源区102下侧面连接至所述碳化硅衬底101上侧面;A first N-type source region 102 , wherein the lower side of the first N-type source region 102 is connected to the upper side of the silicon carbide substrate 101 ;
第一沟道区103,所述第一沟道区103下侧面连接至所述碳化硅衬底101上侧面,所述第一沟道区103外侧面连接至所述第一N型源区102内侧面;A first channel region 103 , wherein a lower side of the first channel region 103 is connected to an upper side of the silicon carbide substrate 101 , and an outer side of the first channel region 103 is connected to an inner side of the first N-type source region 102 ;
隔离区104,所述隔离区104下侧面分别连接所述第一沟道区103以及第一N型源区102;所述隔离区104外侧面连接所述第一N型源区102内侧面;An isolation region 104, wherein the lower side of the isolation region 104 is connected to the first channel region 103 and the first N-type source region 102 respectively; and the outer side of the isolation region 104 is connected to the inner side of the first N-type source region 102;
第二沟道区105,所述第二沟道区105下侧面连接至所述隔离区104上侧面,所述第二沟道区105左侧面连接至所述第一N型源区102;A second channel region 105 , wherein a lower side of the second channel region 105 is connected to an upper side of the isolation region 104 , and a left side of the second channel region 105 is connected to the first N-type source region 102 ;
P型阱区106,所述P型阱区106下侧面连接至所述隔离区104,所述P型阱区106左侧面连接至所述第二沟道区105右侧面,所述P型阱区106右侧面连接至所述第一N型源区102;所述P型阱区106内设有第一穿孔(图中未示);A P-type well region 106, wherein the lower side of the P-type well region 106 is connected to the isolation region 104, the left side of the P-type well region 106 is connected to the right side of the second channel region 105, and the right side of the P-type well region 106 is connected to the first N-type source region 102; a first through hole (not shown) is provided in the P-type well region 106;
第二N型源区107,所述第二N型源区107设于所述第一穿孔内,所述第二N型源区107下侧面连接至所述隔离区104上侧面,所述第二N型源区107内设有第二穿孔(图中未示);A second N-type source region 107, wherein the second N-type source region 107 is disposed in the first through hole, wherein the lower side of the second N-type source region 107 is connected to the upper side of the isolation region 104, and wherein a second through hole (not shown) is disposed in the second N-type source region 107;
体二极管金属层108,所述体二极管金属层108设于所述第二穿孔内,所述体二极管金属层108下侧面连接至所述隔离区104;A body diode metal layer 108, wherein the body diode metal layer 108 is disposed in the second through hole, and a lower side of the body diode metal layer 108 is connected to the isolation region 104;
栅介质层109,所述栅介质层109连接至所述P型阱区106,所述栅介质层109内设有第三穿孔(图中未示);A gate dielectric layer 109 , wherein the gate dielectric layer 109 is connected to the P-type well region 106 , and a third through hole (not shown) is disposed in the gate dielectric layer 109 ;
源极金属层110,所述源极金属层110设于所述第三穿孔,所述源极金属层110下侧面分别连接至所述第二N型源区107上侧面以及体二极管金属层108上侧面;A source metal layer 110, wherein the source metal layer 110 is disposed in the third through hole, and the lower side of the source metal layer 110 is respectively connected to the upper side of the second N-type source region 107 and the upper side of the body diode metal layer 108;
栅极金属层111,所述栅极金属层111连接至所述栅介质层109;A gate metal layer 111, wherein the gate metal layer 111 is connected to the gate dielectric layer 109;
以及,漏极金属层112,所述漏极金属层112连接至所述第一N型源区102。and a drain metal layer 112 , wherein the drain metal layer 112 is connected to the first N-type source region 102 .
本实施例中,优选地,所述第一沟道区103的掺杂浓度以及第二沟道区105的掺杂浓度均大于所述隔离区104的掺杂浓度;所述第一沟道区103的掺杂浓度大于所述第二沟道区105的掺杂浓度。In this embodiment, preferably, the doping concentration of the first channel region 103 and the doping concentration of the second channel region 105 are both greater than the doping concentration of the isolation region 104 ; the doping concentration of the first channel region 103 is greater than the doping concentration of the second channel region 105 .
本实施例中,优选地,所述第二沟道区105的厚度大于第一沟道区103的厚度,所述第二沟道区105的厚度大于所述隔离区104的厚度;所述第一沟道区105的厚度等于所述隔离区104的厚度。In this embodiment, preferably, the thickness of the second channel region 105 is greater than the thickness of the first channel region 103 , the thickness of the second channel region 105 is greater than the thickness of the isolation region 104 ; and the thickness of the first channel region 105 is equal to the thickness of the isolation region 104 .
本实施例中,优选地,所述碳化硅衬底101为P型,所述第一沟道区103和第二沟道区105均为N型,所述隔离区104为P型。In this embodiment, preferably, the silicon carbide substrate 101 is of P type, the first channel region 103 and the second channel region 105 are both of N type, and the isolation region 104 is of P type.
所述栅介质层109为二氧化硅,碳化硅衬底101的掺杂浓度为1-5e17cm-3,第一沟道区103为N型掺杂1-3e18cm-3,第一N型源区102的掺杂浓度为5-8e18cm-3,P型隔离区104的掺杂浓度为1-3e17cm-3,第二沟道区105为掺杂浓度为5-9e17 cm-3,第二N型源区107的掺杂浓度为5-8e18cm-3,源极金属层110、栅极金属层111、漏极金属层及体二极管金属层108可以为铝、镍、钛的一种或几种的合金;The gate dielectric layer 109 is silicon dioxide, the doping concentration of the silicon carbide substrate 101 is 1-5e17cm -3 , the first channel region 103 is N-type doped 1-3e18cm -3 , the doping concentration of the first N-type source region 102 is 5-8e18cm -3 , the doping concentration of the P-type isolation region 104 is 1-3e17cm -3 , the second channel region 105 is doped 5-9e17 cm -3 , the doping concentration of the second N-type source region 107 is 5-8e18cm -3 , the source metal layer 110 , the gate metal layer 111 , the drain metal layer and the body diode metal layer 108 can be one or more alloys of aluminum, nickel and titanium;
其中,P型碳化硅衬底101是为了抑制器件的反向漏电,由于第二沟道区105的导电路径更长,第一沟道区103和第一N型源区102的掺杂浓度是为了降低第二沟道区105的导通电阻,实现对器件体内较好的分流,P型隔离区104的掺杂浓度是为了保证对第一沟道区103和第二沟道区105隔离的同时,不影响器件的导电沟道,避免增加导通电阻,第一沟道区103和第二N型源区107是为了实现器件导通电阻和耐压的折衷,第二N型源区107和第一N型源区102还有与漏极金属层112和源极金属层110形成欧姆接触的作用;Among them, the P-type silicon carbide substrate 101 is to suppress the reverse leakage of the device. Since the conductive path of the second channel region 105 is longer, the doping concentration of the first channel region 103 and the first N-type source region 102 is to reduce the on-resistance of the second channel region 105 and achieve better shunting in the device body. The doping concentration of the P-type isolation region 104 is to ensure that the first channel region 103 and the second channel region 105 are isolated while not affecting the conductive channel of the device to avoid increasing the on-resistance. The first channel region 103 and the second N-type source region 107 are to achieve a compromise between the on-resistance and withstand voltage of the device. The second N-type source region 107 and the first N-type source region 102 also have the function of forming ohmic contact with the drain metal layer 112 and the source metal layer 110.
器件的P型碳化硅衬底101厚度为300-500nm,这是为了保证器件后续结构制备的支撑性,第一沟道区103厚度为300nm,这是预留了P型隔离区104与其形成空间电荷区对导电沟道导通电阻的影响,P型隔离区104厚度为300nm,这是掺杂浓度和厚度综合考虑后,实现隔离功能和避免对导电影响的折衷,第二沟道区105厚度为400nm,这是由于第二沟道区105的掺杂浓度较低,为了降低P型隔离区104对其影响进行的设计,第一N型源区102厚度为1000nm,这是为了降低第二沟道区105的导通电阻,实现两个沟道的更好分流,第二N型源区107的厚度与第二沟道区105相等;The thickness of the P-type silicon carbide substrate 101 of the device is 300-500nm, which is to ensure the support of the subsequent structure preparation of the device. The thickness of the first channel region 103 is 300nm, which is to reserve the influence of the P-type isolation region 104 and the space charge region formed therewith on the on-resistance of the conductive channel. The thickness of the P-type isolation region 104 is 300nm, which is a compromise between achieving the isolation function and avoiding the influence on the conductivity after comprehensive consideration of the doping concentration and thickness. The thickness of the second channel region 105 is 400nm, which is due to the low doping concentration of the second channel region 105. In order to reduce the influence of the P-type isolation region 104 on it, the design is carried out. The thickness of the first N-type source region 102 is 1000nm, which is to reduce the on-resistance of the second channel region 105 and achieve better shunting of the two channels. The thickness of the second N-type source region 107 is equal to that of the second channel region 105.
传统LDMOS中,由于栅控厚度有限,器件电流主要分布在器件顶部,本发明在N型LDMOS器件的基础上构建了双沟道,通过构建低阻第一沟道区103,可以有效将器件导通电流分流在器件顶部和内部,降低器件的导通电阻;In the traditional LDMOS, due to the limited gate thickness, the device current is mainly distributed at the top of the device. The present invention constructs a double channel based on the N-type LDMOS device. By constructing a low-resistance first channel region 103, the device conduction current can be effectively shunted at the top and inside of the device, thereby reducing the on-resistance of the device.
在器件源极金属层110正下方构建了体二极管金属层108,可以在器件未导通时将源极的电子通过其流到P型隔离区104进而流到第一N型源区102,通过第二沟道区105形成与漏极的寄生体二极管,完成器件未导通时的续流;A body diode metal layer 108 is constructed directly below the device source metal layer 110, through which electrons from the source can flow to the P-type isolation region 104 and then to the first N-type source region 102 when the device is not turned on, and a parasitic body diode with the drain is formed through the second channel region 105 to complete the freewheeling when the device is not turned on;
器件的栅极结构分布在源极的左右两侧,左侧栅极控制器件表层的第二沟道区105,右侧栅极控制器件的第一沟道区103,两个栅极由同一个驱动信号控制,避免了驱动的复杂型。The gate structure of the device is distributed on the left and right sides of the source. The left gate controls the second channel region 105 on the surface of the device, and the right gate controls the first channel region 103 of the device. The two gates are controlled by the same driving signal, avoiding the complexity of the driving.
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。Although the specific implementation modes of the present invention are described above, those skilled in the art should understand that the specific implementation modes described are only illustrative and are not intended to limit the scope of the present invention. Equivalent modifications and changes made by those skilled in the art in accordance with the spirit of the present invention should be included in the scope of protection of the claims of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202411380760.XA CN119300414A (en) | 2024-09-30 | 2024-09-30 | A double-channel planar gate silicon carbide LDMOS and a preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202411380760.XA CN119300414A (en) | 2024-09-30 | 2024-09-30 | A double-channel planar gate silicon carbide LDMOS and a preparation method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN119300414A true CN119300414A (en) | 2025-01-10 |
Family
ID=94158530
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202411380760.XA Pending CN119300414A (en) | 2024-09-30 | 2024-09-30 | A double-channel planar gate silicon carbide LDMOS and a preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN119300414A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110127602A1 (en) * | 2009-12-02 | 2011-06-02 | Alpha And Omega Semiconductor Incorporated | Dual Channel Trench LDMOS Transistors and BCD Process with Deep Trench Isolation |
| US20210043775A1 (en) * | 2017-12-29 | 2021-02-11 | Brandenburgische Technische Universität Cottbus-Senftenberg | Two-channel semiconductor component |
| CN112420846A (en) * | 2020-12-04 | 2021-02-26 | 重庆邮电大学 | A lateral superjunction thin-layer SOI-LDMOS device with surface and bulk double channels |
| CN114512535A (en) * | 2022-04-18 | 2022-05-17 | 泰科天润半导体科技(北京)有限公司 | A kind of manufacturing method of dual-channel SiC lateral LDMOS power device |
| CN223219400U (en) * | 2024-09-30 | 2025-08-12 | 泰科天润半导体科技(北京)有限公司 | Double-channel planar gate silicon carbide LDMOS |
-
2024
- 2024-09-30 CN CN202411380760.XA patent/CN119300414A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110127602A1 (en) * | 2009-12-02 | 2011-06-02 | Alpha And Omega Semiconductor Incorporated | Dual Channel Trench LDMOS Transistors and BCD Process with Deep Trench Isolation |
| US20210043775A1 (en) * | 2017-12-29 | 2021-02-11 | Brandenburgische Technische Universität Cottbus-Senftenberg | Two-channel semiconductor component |
| CN112420846A (en) * | 2020-12-04 | 2021-02-26 | 重庆邮电大学 | A lateral superjunction thin-layer SOI-LDMOS device with surface and bulk double channels |
| CN114512535A (en) * | 2022-04-18 | 2022-05-17 | 泰科天润半导体科技(北京)有限公司 | A kind of manufacturing method of dual-channel SiC lateral LDMOS power device |
| CN223219400U (en) * | 2024-09-30 | 2025-08-12 | 泰科天润半导体科技(北京)有限公司 | Double-channel planar gate silicon carbide LDMOS |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN114122123B (en) | Silicon carbide split gate MOSFET with integrated high-speed freewheeling diode and preparation method | |
| JP5693851B2 (en) | Semiconductor device | |
| CN118762998A (en) | A method for preparing a low on-resistance planar gate silicon carbide VDMOS | |
| CN114843332A (en) | Low-power-consumption high-reliability half-packaged trench gate MOSFET device and preparation method thereof | |
| CN119789457B (en) | High-voltage-resistant field plate terminal planar gate silicon carbide VDMOS and preparation method thereof | |
| WO2019242100A1 (en) | Gallium oxide semiconductor electronic device with vertical structure and manufacturing method therefor | |
| CN115579397A (en) | Double-level trench gate silicon carbide MOSFET and its preparation method | |
| CN115148799B (en) | RF LDMOS device and manufacturing method thereof | |
| CN119835978B (en) | Groove gate silicon carbide VDMOS of groove source electrode and preparation method | |
| CN118841327A (en) | Preparation method of planar gate silicon carbide VDMOS for separating current paths | |
| WO2022121306A1 (en) | High-voltage ldmos device having asymmetric structure and preparation method therefor | |
| CN119789458B (en) | Low-resistance separation trench gate silicon carbide VDMOS and preparation method thereof | |
| CN223219400U (en) | Double-channel planar gate silicon carbide LDMOS | |
| CN118553617A (en) | Preparation method of trench gate silicon carbide VDMOS with internal current sharing | |
| CN118571759A (en) | Preparation method of low-on-resistance planar gate silicon carbide VDMOS | |
| CN118899224A (en) | A method for preparing a planar gate silicon carbide VDMOS with reduced gate-drain capacitance | |
| CN118352237A (en) | Preparation method of partitioned doped high-voltage-resistant trench silicon carbide VDMOS | |
| CN117894684A (en) | A method for manufacturing a low on-resistance three-gate vertical silicon carbide MOSFET | |
| CN119698020B (en) | A planar gate silicon carbide VDMOS with integrated JBS and a preparation method thereof | |
| CN118712229A (en) | A method for preparing silicon carbide VDMOS with integrated Schottky diode | |
| CN114678277B (en) | Split-gate planar MOSFET with center-injected P+ shielding region and method of making the same | |
| CN118053761B (en) | Preparation method of trench gate silicon carbide MOSFET for inhibiting gate breakdown | |
| CN118737835A (en) | A deep-base trench gate silicon carbide VDMOS and a preparation method thereof | |
| CN118398496A (en) | Manufacturing method of silicon carbide trench double-gate MOSFET | |
| CN118675998A (en) | Preparation method of lateral pressure-resistant planar gate silicon carbide MOSFET |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |