CN119855892A - Detergent compositions and methods relating thereto - Google Patents
Detergent compositions and methods relating thereto Download PDFInfo
- Publication number
- CN119855892A CN119855892A CN202380063165.0A CN202380063165A CN119855892A CN 119855892 A CN119855892 A CN 119855892A CN 202380063165 A CN202380063165 A CN 202380063165A CN 119855892 A CN119855892 A CN 119855892A
- Authority
- CN
- China
- Prior art keywords
- composition
- subtilisin
- detergent
- cleaning
- amino acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38636—Preparations containing enzymes, e.g. protease or amylase containing enzymes other than protease, amylase, lipase, cellulase, oxidase or reductase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21062—Subtilisin (3.4.21.62)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01001—Alpha-amylase (3.2.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01078—Mannan endo-1,4-beta-mannosidase (3.2.1.78), i.e. endo-beta-mannanase
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Enzymes And Modification Thereof (AREA)
- Detergent Compositions (AREA)
Abstract
本文公开了一种或多种枯草杆菌蛋白酶变体、编码其的核酸以及与其生产和使用有关的组合物和方法,该一种或多种枯草杆菌蛋白酶变体包括与一种或多种参比枯草杆菌蛋白酶相比具有改善的稳定性和/或污垢去除性的一种或多种枯草杆菌蛋白酶变体。Disclosed herein are one or more subtilisin protease variants, nucleic acids encoding the same, and compositions and methods related to the production and use thereof, including one or more subtilisin protease variants having improved stability and/or stain removal compared to one or more reference subtilisin proteases.
Description
Disclosed herein are one or more subtilisin variants, nucleic acids encoding the same, and compositions and methods relating to the production and use thereof, including one or more subtilisin variants having improved stability and/or soil removal compared to one or more reference subtilisins.
Cross Reference to Related Applications
The present application claims the benefit of U.S. provisional patent application Ser. No. 63/403,332, filed on month 9, 2022, and U.S. provisional patent application Ser. No. 63/492,619, filed on month 28, 2023, which are incorporated by reference in their entireties.
Reference to an electronically submitted sequence Listing
The contents of the sequence listing, which are electronically submitted with the present application in an XML file (filename: NB42142PCT_ sequencelisting; size: 12,186 bytes; created at: 2023, 8, 22 days), form part of the present application and are hereby incorporated by reference in their entirety.
Background
Proteases (also referred to as proteases) refer to enzymes that have the ability to break down other proteins. Proteases have the ability to initiate protein catabolism for proteolysis by hydrolysis of peptide bonds linking amino acids together in peptide or polypeptide chains forming the protein. This activity of proteases as protein digestive enzymes is called proteolytic activity. There are many well known procedures for measuring proteolytic activity (Kalisz, "Microbial Proteinases [ microbial protease ]," in Fiechter (eds.), ADVANCES IN Biochemical Engineering/Biotechnology [ Biochemical engineering/Biotechnology progress ], (1988). For example, proteolytic activity may be determined by a comparative assay that analyzes the ability of each protease to hydrolyze a commercial substrate. Exemplary substrates that may be used to analyze protease or proteolytic activity include, but are not limited to, dimethyl casein (sigma C-9801), bovine collagen (sigma C-9879), bovine elastin (sigma E-1625), and Azure Keratin (Keratin Azure) (sigma-Aldrich K8500). Colorimetric assays using these substrates are well known in the art (see, e.g., WO 99/34011 and U.S. Pat. No. 6,376,450, both of which are incorporated herein by reference).
Serine proteases are enzymes with an active site serine that initiates hydrolysis of the protein peptide bond (EC number 3.4.21). Serine proteases contain a wide variety of enzymes with a wide range of specificity and biological functions, which are further divided into chymotrypsin-like (trypsin-like) and subtilisin-like based on the structure of these enzymes. Prototype subtilisins (EC numbers 3.4.21.62) were originally obtained from bacillus subtilis (Bacillus subtilis). Subtilisins and their homologs are members of the S8 peptidase family of the MEROPS classification scheme (Rawlings, N.D. et al (2016) TWENTY YEARS of the MEROPS database of proteolytic enzymes, their substrates and inhibitors [ twenty years MEROPS database of proteolytic enzymes and their substrates and inhibitors ]. Nucleic Acids Res [ nucleic acids Ind. 44, D343-D350). Members of the S8 family have catalytic triplets in their amino acid sequence in the order Asp, his and Ser. Although many variant proteases have been developed that can be used in cleaning applications, there remains a need for improved protease variants.
Disclosure of Invention
One embodiment relates to a composition comprising a combination of a subtilisin variant and at least one additional enzyme, wherein the subtilisin variant comprises one, two or more substitutions selected from the group consisting of: X96D, X103F, X Q, X115L, X34128K, X Q and X181Q, wherein these amino acid positions are according to SEQ ID NO:9, wherein the variant hybridizes to SEQ ID NO:9, and wherein the at least one additional enzyme is selected from the group consisting of acylases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, dispersons, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hexosaminidases, hyaluronidases, keratinases, laccase, lactases, ligninases, lipases, lipoxygenases, lysozymes, mannanases, metalloproteinases, nucleases (e.g., dnases and/or rnases), oxidases, oxidoreductases, pectate lyases, pectinacetylesterases, pectinases, pentosanases, perhydrolases, peroxidases, phenoloxidases, phosphatases, phospholipases, phosphodiesterases, mannanases, a xanthan lyase, a xylanacetyl esterase, a xylanase, a xyloglucanase, a xylosidase, and any combination or mixture thereof, wherein the at least one additional enzyme has increased residual activity as compared to a reference enzyme in a detergent composition lacking the subtilisin variant.
In one embodiment, the composition is a composition comprising a combination of a subtilisin variant and at least one additional enzyme, wherein the subtilisin variant comprises one, two or more amino acid substitutions selected from the group consisting of: N096D, Y103F, S Q, T L, A128K, S Q and S181Q, wherein these amino acid positions are according to SEQ ID NO:9, wherein the variant hybridizes to SEQ ID NO:9, and wherein the at least one additional enzyme is selected from the group consisting of acylases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, dispersons, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hexosaminidases, hyaluronidases, keratinases, laccase, lactases, ligninases, lipases, lipoxygenases, lysozymes, mannanases, metalloproteinases, nucleases (e.g., dnases and/or rnases), oxidases, oxidoreductases, pectate lyases, pectinacetylesterases, pectinases, pentosanases, perhydrolases, peroxidases, phenoloxidases, phosphatases, phospholipases, phosphodiesterases, mannanases, pullulanases, galactanases, mannanases, tannase, transglutaminase, xanthan lyase, xylanacetyl esterase, xylanase, xyloglucanase, xylosidase, and any combination or mixture thereof, wherein the at least one additional enzyme has increased residual activity as compared to a reference enzyme in a detergent composition lacking the subtilisin variant.
In another embodiment, the present disclosure relates to a composition comprising a combination of a subtilisin variant and at least one additional enzyme, wherein the subtilisin variant comprises at least one, two, three, four or more amino acid substitutions selected from the group consisting of: X96D, X103F, X Q, X115L, X128K, X Q and X181Q, wherein these amino acid positions are according to SEQ ID NO:9, wherein the subtilisin variant further comprises one or more additional amino acid substitutions selected from the group consisting of: X9T, X17H, X78I, X103I, X127T, X Q, X, cutinase, disperson, endo-beta-1, 4-glucanase, endo-beta-mannanase, esterase, exo-mannanase, galactanase, glucoamylase, hemicellulase, aminohexosidase, hyaluronidase, keratinase, laccase, pectinase, ligninase, lipase, lipoxygenase, lysozyme, mannanase, metalloprotease, nuclease (e.g. DNase and/or RNA), oxidase, valerase, oxidase, pentanase, oxidase, pentanase, the amino acid sequence of X9T, X17H, X N, X I, X103I, X127T, X5384Q, X, 184Q, X202 32203E, X203N, X S and X258P, wherein the variant has at least 75% identity with the amino acid sequence of SEQ ID NO 9, and wherein the at least one additional enzyme is selected from the group consisting of an acylase, an alpha-amylase, a beta-amylase, a mannanase, a metallo, a pectinase, an oxidase, a pectinase, an oxidase, a perhydrolase, a mannanase, a pectinase, an oxidase, a mannanase, a pectinase, an oxidase, a pectinase, an oxidase, a 4-glucanase, a glucanase, a glucanase, an enzyme an enzyme a enzyme a enzyme, peroxidase, phenol oxidase, phosphatase, phospholipase, phosphodiesterase, phytase, polygalacturonase, polysaccharase, protease, pullulanase, reductase, rhamnose galacturonase, beta-glucanase, tannase, transglutaminase, xanthan lyase, xylanacetyl esterase, xylanase, xyloglucanase, xylosidase, and any combination or mixture thereof, wherein the at least one additional enzyme has increased residual activity as compared to a reference enzyme in a detergent composition lacking the subtilisin variant.
In another embodiment, the present disclosure relates to a composition comprising a combination of a subtilisin variant and at least one additional enzyme, wherein the subtilisin variant comprises at least one, two, three, four or more amino acid substitutions selected from the group consisting of: X96D, X103F, X Q, X115L, X128K, X Q and X181Q, wherein these amino acid positions are according to SEQ ID NO:9, wherein the subtilisin variant further comprises one or more additional amino acid substitutions selected from the group consisting of: P009T, Q017H, T077N, T078I, Y103I, G127T, G165Q, N184Q, A202V, G203E, G N, N217S and S258P, wherein the variant has at least 75% identity with the amino acid sequence of SEQ ID NO:9 and wherein the at least one further enzyme is selected from the group consisting of acylases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, arylesterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, dispersing proteins, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, aminohexanosidases, hyaluronidases, keratinases, laccases, lactases, ligninases, lipases, lipoxygenases, lysozymes, mannanases, metalloproteinases, nucleases (e.g. DNA and RNA and/or RNA enzymes), oxidases, hydrolases, enzymes, and enzymes, and enzymes, peroxidase, phenol oxidase, phosphatase, phospholipase, phosphodiesterase, phytase, polygalacturonase, polysaccharase, protease, pullulanase, reductase, rhamnose galacturonase, beta-glucanase, tannase, transglutaminase, xanthan lyase, xylanacetyl esterase, xylanase, xyloglucanase, xylosidase, and any combination thereof, wherein the at least one additional enzyme has increased residual activity as compared to a reference enzyme in a detergent composition lacking the subtilisin variant.
Still other embodiments relate to subtilisin variants, methods for producing the variants described herein, comprising stably transforming a host cell with an expression vector comprising a polynucleotide encoding one or more of the subtilisin variants described herein. Still further embodiments relate to polynucleotides comprising a nucleic acid sequence encoding one or more subtilisin variants described herein. Also provided are compositions, e.g., enzyme compositions, comprising the subtilisin variants provided herein.
Detailed Description
In one embodiment, the present disclosure provides one or more subtilisin variants comprising one, two, three or more amino acid substitutions at positions selected from the group consisting of 96, 103, 108, 115, 128, 129 and 181, wherein the amino acid positions are numbered by corresponding to the amino acid sequence of SEQ ID NO: 9. In some embodiments, the variants provided herein exhibit one or more improved properties, such as improved stability, or improved cleaning performance, or both improved stability and improved cleaning performance, when compared to a subtilisin having the amino acid sequence of SEQ ID No. 9. The subtilisin variants provided herein may be used to prepare cleaning compositions (e.g., automatic dishwashing compositions or laundry detergent compositions) having at least one additional enzyme, wherein the at least one additional enzyme has increased residual activity as compared to a reference enzyme in a detergent composition that does not contain the subtilisin variants provided herein. In addition, the subtilisin variants and compositions provided herein may also be used in cleaning methods (e.g., dishwashing methods or laundry methods) using such variants or compositions comprising such subtilisin variants.
Unless otherwise indicated herein, one or more subtilisin variants described herein may be prepared and used by a variety of techniques for molecular biology, microbiology, protein purification, protein engineering, protein and DNA sequencing, recombinant DNA domain and industrial enzyme use and development. Undefined terms and abbreviations shall be in accordance with their conventional meaning as used in the art. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Any definitions provided herein will be explained as a whole in the context of the specification. As used herein, the singular "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Unless otherwise indicated, the nucleic acid sequence is written in the 5 'to 3' direction from left to right, and the amino acid sequence is written in the amino to carboxyl direction from left to right. Each numerical range used herein includes every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
As used herein in connection with a numerical value, the term "about" refers to a range of +/-0.5 of the numerical value, unless the term is specifically defined in the context. For example, the phrase "pH of about 6" means a pH of 5.5 to 6.5 unless the pH is specifically defined otherwise.
The nomenclature of amino acid substitutions for one or more subtilisin variants described herein uses one or more of the following positions, positions of one or more amino acid substitutions, or one or more starting amino acids, positions of one or more substituted amino acids. References to "positions" (e.g., 5, 8, 17, 22, etc.) encompass any starting amino acid that may be present at such positions, as well as any substitution that may be present at such positions. Reference to "a position of one or more amino acid substitutions" (e.g., 1S/T/G, 3G, 17T, etc.) encompasses any starting amino acid that may be present at such a position and one or more amino acids that may be substituted for such a starting amino acid. Reference to a location may be made to several forms, for example, location 003 may also be referred to as location 03 or 3. Reference to a starting or substituted amino acid may be further expressed as several starting or substituted amino acids separated by a diagonal line (foreslash) ("/"). For example, D275S/K represents substitution of position 275 with serine (S) or lysine (K), and P/S197K represents substitution of the starting amino acid proline (P) or serine (S) at position 197 with lysine (K). Reference to X as an amino acid at a position refers to any amino acid at the recited position.
The positions of the amino acid residues in a given amino acid sequence are numbered by corresponding to the amino acid sequence of SEQ ID NO. 9. That is, the amino acid sequence of SEQ ID NO. 9 serves as a reference sequence for numbering the positions of amino acid residues. For example, the amino acid sequences of one or more subtilisin variants described herein are aligned to the amino acid sequence of SEQ ID NO. 9 using an alignment algorithm as described herein, and each amino acid residue in a given amino acid sequence aligned (preferably, optimally aligned) to an amino acid residue in SEQ ID NO. 9 is conveniently numbered by reference to the digital position of the corresponding amino acid residue. Sequence alignment algorithms, such as those described herein, for example, will identify one or more positions in the subject sequence where insertions or deletions occur when compared to the query sequence (sometimes referred to as a "reference sequence"). For example, as provided in figure 1 of PCT publication No. WO 2018118917, amino acid alignments can be used to determine sequence alignments with other subtilisin amino acid sequences.
The terms "protease" (protease) and "protease" (proteinase) refer to enzymes that have the ability to break down proteins and peptides. Proteases have the ability to "proteolytically" through hydrolysis of peptide bonds that link amino acids together in the peptide or polypeptide chain that forms the protein. This activity of proteases as protein digestive enzymes is called "proteolytic activity". There are many well known procedures for measuring proteolytic activity. For example, proteolytic activity may be determined by a comparative assay that analyzes the ability of the respective protease to hydrolyze a suitable substrate. Exemplary substrates that may be used to analyze protease or proteolytic activity include, but are not limited to, dimethyl casein (sigma C-9801), bovine collagen (sigma C-9879), bovine elastin (sigma E-1625), and Azure Keratin (Keratin Azure) (sigma-Aldrich K8500). Colorimetric assays utilizing these substrates are well known in the art (see, e.g., WO 99/34011 and U.S. Pat. No. 6,376,450). The pNA peptidyl assay (see, e.g., del Mar et al, anal Biochem [ analytical biochemistry ],99:316-320,1979) can also be used to determine active enzyme concentrations. This assay measures the rate of release of p-nitroaniline when an enzyme hydrolyzes a soluble synthetic substrate such as succinyl-alanine-proline-phenylalanine-p-nitroaniline (suc-AAPF-pNA). The rate of yellow formation from the hydrolysis reaction was measured on a spectrophotometer at 405 or 410nm and was proportional to the active enzyme concentration. In addition, absorbance measurements at 280 nanometers (nm) can be used to determine the total protein concentration in the purified protein sample. The activity of the substrate divided by the protein concentration gives the enzyme specific activity.
As used herein, "Bacillus" includes all species within the genus "Bacillus" as known to those skilled in the art including, but not limited to, bacillus subtilis, bacillus licheniformis (B.lichenifonnis), bacillus lentus (B.lentus), bacillus brevis (B.brevis), bacillus stearothermophilus (B.stearothermophilus), bacillus alcaligenes (B.allophilus), bacillus amyloliquefaciens (B.amycolatopsis), bacillus clausii (B.clausii), bacillus saliolens (B.halodurans), bacillus megaterium (B.megaterium), bacillus coagulans (B.coagulens), bacillus circulans (B.circinelloides), bacillus gibsonii (B.gibsonii), bacillus pumilus (B.pumilus), bacillus species-145 and Bacillus thuringiensis (B.side). It will be appreciated that bacillus is continually undergoing taxonomic recombination. Thus, the genus is intended to include reclassified species including, but not limited to, organisms such as Bacillus stearothermophilus (now designated "Geobacillus stearothermophilus (Geobacillus stearothermophilus)") or Bacillus polymyxa (B.polymyxa) (now "Paenibacillus polymyxa (Paenibacillus polymyxa)"). The production of resistant endospores under stress environmental conditions is considered to be a defining property of bacillus, although this feature also applies to the recently named alicyclic bacillus (aliciclovir), bisbacillus (Amphibacillus), thiobacillus (Aneurinibacillus), anaerobic bacillus (Anoxybacillus), brevibacillus (brevalicacillus), linear bacillus (Filobacillus), parenchyma bacillus (Gracilibacillus), salicinia (Halobacillus), paenibacillus (Paenibacillus), salicinia (Salibacillus), thermotolerant bacillus (Thermobacillus), ureabacillus (Ureibacillus) and dendritic bacillus (Virgibacillus).
The term "vector" refers to a nucleic acid construct for introducing or transferring one or more nucleic acids into a target cell or tissue. Typically, vectors are used to introduce exogenous DNA into cells or tissues. Vectors include plasmids, cloning vectors, phages, viruses (e.g., viral vectors), cosmids, expression vectors, shuttle vectors, and the like. Typically, the vector comprises an origin of replication, a multiple cloning site and a selectable marker. Typically, the process of inserting a vector into a target cell is referred to as transformation. In some embodiments, the invention includes vectors comprising a DNA sequence encoding a serine protease polypeptide (e.g., a precursor or mature serine protease polypeptide) operably linked to a suitable pre-sequence (e.g., secretion, signal peptide sequence, etc.), which vectors are capable of effecting expression of the DNA sequence, as well as folding and translocation of the recombinant polypeptide chain, in a suitable host.
As used herein, the term "introducing" in the context of introducing a nucleic acid sequence into a cell refers to any method suitable for transferring a nucleic acid sequence into a cell. Such methods of introduction include, but are not limited to, protoplast fusion, transfection, transformation, electroporation, conjugation, and transduction. Transformation refers to the genetic alteration of a cell caused by uptake, optional genomic incorporation, and expression of genetic material (e.g., DNA).
The term "expression" refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from a nucleic acid molecule of the present disclosure. Expression may also refer to translation of mRNA into a polypeptide. Thus, the term "expression" includes any step involved in the production of a "polypeptide," including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, secretion, and the like.
The phrase "expression cassette" or "expression vector" refers to a nucleic acid construct or vector that is recombinantly or synthetically produced for expressing a nucleic acid of interest (e.g., an exogenous nucleic acid or transgene) in a target cell. Typically, the nucleic acid of interest expresses the protein of interest. Typically, an expression vector or cassette comprises a promoter nucleotide sequence that drives or promotes expression of an exogenous nucleic acid. Typically, an expression vector or cassette also includes other designated nucleic acid elements that allow transcription of a particular nucleic acid in a target cell. The recombinant expression cassette may be incorporated into a plasmid, chromosome, mitochondrial DNA, plastid DNA, virus or nucleic acid fragment. Some expression vectors have the ability to incorporate and express heterologous DNA fragments in a host cell or host cell genome. Many prokaryotic and eukaryotic expression vectors are commercially available. The selection of an appropriate expression vector for expression of a protein from among the nucleic acid sequences incorporated into the expression vector is within the knowledge of one skilled in the art.
As used herein, a nucleic acid is "operably linked" to another nucleic acid sequence when the nucleic acid is placed into a functional relationship with the other nucleic acid sequence. For example, a promoter or enhancer is operably linked to a nucleotide coding sequence if the promoter affects the transcription of the coding sequence. If the ribosome binding site is positioned so as to facilitate translation of the coding sequence, the ribosome binding site can be operatively linked to the coding sequence. Typically, an "operably linked" DNA sequence is contiguous. However, the enhancers do not have to be contiguous. Ligation is achieved by ligation at convenient restriction sites. If such sites are not present, synthetic oligonucleotide adaptors or linkers can be used in accordance with conventional practice.
The term "gene" refers to a polynucleotide (e.g., a DNA segment) that encodes a polypeptide and includes regions preceding and following the coding region. In some cases, the gene includes spacer sequences (introns) between individual coding segments (exons).
When used in reference to a cell, the term "recombinant" typically indicates that the cell has been modified by the introduction of an exogenous nucleic acid sequence, or that the cell is derived from a cell that has been so modified. For example, a recombinant cell may comprise a gene that does not exist in the same form in a native (non-recombinant) form of the cell, or a recombinant cell may comprise a native gene (found in the native form of the cell) that has been modified and reintroduced into the cell. Recombinant cells may contain nucleic acid that is endogenous to the cell that has been modified but from which the nucleic acid has not been removed, such modifications including those obtained by gene replacement, site-specific mutagenesis, and related techniques known to those of ordinary skill in the art. Recombinant DNA technology includes technology for producing recombinant DNA in vitro and transferring the recombinant DNA into cells where it can be expressed or propagated, thereby producing recombinant polypeptides. "recombination" of polynucleotides or nucleic acids (recombination and recombining) "generally refers to assembling or combining two or more nucleic acids or polynucleotide strands or fragments to produce a new polynucleotide or nucleic acid.
A nucleic acid or polynucleotide may be said to "encode" a polypeptide if it can be transcribed and/or translated to produce the polypeptide or fragment thereof in its natural state or when manipulated by methods known to those of skill in the art. The antisense strand coding sequence of such a nucleic acid may also be referred to.
The terms "host strain" and "host cell" refer to a suitable host for an expression vector comprising a DNA sequence of interest.
A "protein" or "polypeptide" comprises a polymeric sequence of amino acid residues. The terms "protein" and "polypeptide" are used interchangeably herein. Single letter and 3 letter codes for amino acids according to the definition of the IUPAC-IUB biochemical terms joint committee (Joint Commission on Biochemical Nomenclature, JCBN) are used throughout the present disclosure. The single letter X refers to any one of the twenty amino acids. It will also be appreciated that due to the degeneracy of the genetic code, a polypeptide may be encoded by more than one nucleotide sequence.
The term "pro sequence" or "propeptide sequence" refers to the amino acid sequence between a signal peptide sequence and a mature protease sequence that is necessary for proper folding and secretion of the protease, sometimes referred to as an intramolecular chaperone. Cleavage of the pro sequence or pro peptide sequence results in the production of the mature active protease. Bacterial serine proteases are commonly referred to as pre-enzymes. Examples of modified propeptides are provided, for example, in WO 2016/205710.
The terms "signal sequence" and "signal peptide" refer to sequences of amino acid residues that may be involved in secretion or targeted transport of mature or precursor forms of a protein. Typically, the signal sequence is located at the N-terminus of the precursor or mature protein sequence. The signal sequence may be endogenous or exogenous. The signal sequence is generally absent from the mature protein. Typically, after transport of a protein, the signal sequence is cleaved from the protein by a signal peptidase.
The term "mature" form of a protein, polypeptide or peptide refers to a functional form of a protein, polypeptide or peptide that lacks a signal peptide sequence and a propeptide sequence.
The term "precursor" form of a protein or peptide refers to a mature form of the protein having a pre-sequence operably linked to the amino or carbonyl terminus of the protein. The precursor may also have a "signal" sequence operably linked to the amino terminus of the prosequence. A precursor may also have additional polypeptides involved in post-translational activity (e.g., polypeptides from which cleavage leaves a mature form of the protein or peptide).
With respect to polypeptides, the term "wild-type" refers to naturally occurring polypeptides that do not include artificial substitutions, insertions, or deletions at one or more amino acid positions. Similarly, with respect to polynucleotides, the term "wild-type" refers to naturally occurring polynucleotides that do not include artificial substitutions, insertions, or deletions at one or more nucleotides. However, polynucleotides encoding wild-type polypeptides are not limited to naturally occurring polynucleotides, and encompass any polynucleotide encoding a wild-type or parent polypeptide.
With respect to polypeptides, the term "parent" includes reference to naturally occurring or wild-type polypeptides, or naturally occurring polypeptides in which an artificial substitution, insertion or deletion is made at one or more amino acid positions, which serve as the basis for introducing substitutions or additional substitutions to produce the variant enzymes provided herein. With respect to polypeptides, the term "parent" also includes any polypeptide having protease activity that serves as a starting polypeptide for alteration (e.g., substitution, addition, and/or deletion) to produce variants having one or more alterations as compared to the starting polypeptide. That is, the parent or reference polypeptide is not limited to a naturally occurring wild-type polypeptide, and encompasses any wild-type, parent or reference polypeptide. Similarly, with respect to polynucleotides, the term "parent" may refer to naturally occurring polynucleotides or polynucleotides that do include artificial substitutions, insertions, or deletions at one or more nucleotides. With respect to polynucleotides, the term "parent" also includes any polynucleotide encoding a polypeptide having protease activity that serves as a starting polynucleotide for alteration, thereby producing a variant protease having modifications such as substitutions, additions and/or deletions compared to the starting polynucleotide. That is, polynucleotides encoding wild-type, parent, or reference polypeptides are not limited to naturally occurring polynucleotides, and encompass any polynucleotide encoding a wild-type, parent, or reference polypeptide. In some embodiments, the parent polypeptide herein comprises a polypeptide having the amino acid sequence set forth in SEQ ID NO. 9.
The term "naturally occurring" refers to, for example, sequences found in nature and residues contained therein (e.g., polypeptide sequences and amino acid or nucleotide sequences contained therein and nucleotides contained therein). In contrast, the term "non-naturally occurring" refers to, for example, sequences not found in nature and residues contained therein (e.g., polypeptide sequences and amino acid or nucleotide sequences contained therein and nucleic acids contained therein).
As used herein, with respect to amino acid residue positions, "corresponding to (corresponding to or corresponds to)" or "corresponding" refers to an amino acid residue at a position recited in a protein or peptide, or an amino acid residue that is similar, homologous or identical to a residue recited in a protein or peptide. As used herein, "corresponding region" generally refers to a similar location in a related protein or reference protein.
The terms "derived from" and "obtained from" refer not only to proteins produced by or producible by the strain of the organism in question, but also to proteins encoded by DNA sequences isolated from such strains and produced in host organisms containing such DNA sequences. In addition, the term refers to proteins encoded by DNA sequences of synthetic and/or cDNA origin and having the identifying characteristics of the protein in question. For example, "proteases derived from bacillus" refers to those enzymes naturally produced by bacillus that have proteolytic activity, as well as serine proteases, such as those produced by bacillus sources but produced by other host cells transformed with nucleic acids encoding serine proteases using genetic engineering techniques.
In the context of two polynucleotide or polypeptide sequences, the term "identity" refers to the identity of the nucleotides or amino acids in the two sequences when aligned for maximum correspondence, as measured using sequence comparison or analysis algorithms described below and known in the art.
The phrase "% identity" or "percent identity" or "PID" refers to protein sequence identity. Percent identity may be determined using standard techniques known in the art. The percent amino acid identity shared by the sequences of interest can be determined by aligning the sequences to directly compare the sequence information (e.g., by using programs such as BLAST, mulce, or CLUSTAL). BLAST algorithms are described, for example, in Altschul et al, J Mol Biol [ journal of molecular biology ],215:403-410 (1990) and Karlin et al, proc NATL ACAD SCI USA [ Proc Natl Acad Sci. USA ],90:5873-5787 (1993). Percent (%) amino acid sequence identity values are determined by dividing the number of matching identical residues by the total number of residues of the "reference" sequence (including any gaps created by the program for optimal/maximum alignment). The BLAST algorithm refers to the "reference" sequence as the "query" sequence.
As used herein, "homologous protein" or "homologous protease" refers to proteins having different similarities in primary, secondary and/or tertiary structures. When proteins are aligned, protein homology may refer to the similarity of linear amino acid sequences. Homology can be determined, for example, by amino acid sequence alignment using programs such as BLAST, mulce or CLUSTAL. Homology searches for protein sequences can be performed using BLASTP and PSI-BLAST from NCBI BLAST using a threshold (E value cutoff) of 0.001. (Altschul et al, "Gapped BLAST and PSI BLAST a new generation of protein database search programs [ vacancy BLAST and PSI BLAST: new generation protein database search program ]", nucleic Acids Res [ nucleic acids research ], group 1; 25 (17): 3389-402 (1997)). The BLAST program uses several search parameters, most of which are set to default values. The NCBI BLAST algorithm finds the most relevant sequences according to biological similarity, but is not recommended for query sequences of less than 20 residues (Altschul et al, nucleic Acids Res [ nucleic acids research ],25:3389-3402,1997 and Schaffer et al, nucleic Acids Res [ nucleic acids research ],29:2994-3005,2001). Exemplary default BLAST parameters for nucleic acid sequence searches include neighbor word length threshold=11, e value cutoff=10, scoring Matrix (Scoring Matrix) =nuc.3.1 (match=1, mismatch= -3), gap open=5, and gap extension=2. Exemplary default BLAST parameters for amino acid sequence searches include word length= 3;E value cutoff=10, scoring matrix=blosum 62, gap open=11, and gap extension=1. Using this information, protein sequences can be grouped and/or phylogenetic trees constructed therefrom. Amino acid sequences can be entered in programs such as Vector NTI ADVANCE suite, and guide trees can be created using the adjacency (NJ) method (Saitou and Nei, mol Biol Evol [ molecular biology and evolution ],4:406-425,1987). The tree structure can be calculated using Kimura correction for sequence distance and ignoring positions with gaps. A program such as AlignX may display the calculated distance values in brackets after the molecular names displayed on the phylogenetic tree.
Knowledge of the homology between molecules can reveal the history of evolution of the molecules and their functional information, and if a newly sequenced protein is homologous to an already characterized protein, there is a strong indication of the biochemical function of the new protein. Two molecules are said to be homologous if they are derived from a common ancestor. Homologous molecules or homologues can be divided into two classes, paralogues and orthologues. Paralogs are homologs that exist within a species. Paralogs tend to differ in their detailed biochemical functions. Orthologs are homologs that exist within different species and have very similar or identical functions. The protein superfamily is the largest grouping (clade) of proteins from which a common ancestor can be inferred. Typically this common ancestor is based on sequence alignment and mechanical similarity. Typically, superfamilies contain several families of proteins that exhibit sequence similarity within the family. The term "protein clan" is commonly used for the protease superfamily based on the MEROPS protease classification system. As used herein, the term "subtilisin" includes any member of the S8 serine protease family as described in the MEROPS-peptidase database (Rawlings, N.D. et al (2016) TWENTY YEARS of the MEROPS database of proteolytic enzymes, their substrates and inhibitors [ twenty years MEROPS database of proteolytic enzymes and their substrates and inhibitors ]. Nucleic Acids Res [ nucleic acids research ]44, D343-D350).
The CLUSTAL W algorithm is another example of a sequence alignment algorithm (see Thompson et al, nucleic Acids Res [ nucleic acids Ind. 22:4673-4680,1994). Default parameters for the CLUSTAL W algorithm include gap open penalty = 10.0, gap extension penalty = 0.05, protein weight matrix = BLOSUM series, DNA weight matrix = IUB, delay divergent sequence% = 40, gap separation distance = 8, DNA conversion weight = 0.50, list hydrophilic residues = GPSNDQEKR, use negative matrix = off, switch special residue penalty = on, switch hydrophilic penalty = on, and switch end gap separation penalty = off. Deletions occurring at either end are included in the CLUSTAL algorithm. For example, a variant having five amino acid deletions at either end of a 500 amino acid polypeptide (or within a polypeptide) will have a percent sequence identity of 99% (495/500 identical residues x 100) relative to a "reference" polypeptide. Such variants will be encompassed by variants having "at least 99% sequence identity" to the polypeptide.
A nucleic acid or polynucleotide is "isolated" when it is at least partially or completely separated from other components, including but not limited to, for example, other proteins, nucleic acids, cells, etc. Similarly, a polypeptide, protein, or peptide is "isolated" when it is at least partially or completely separated from other components, including but not limited to, for example, other proteins, nucleic acids, cells, etc. The species isolated in the composition are more abundant than the other species on a molar basis. For example, an isolated species may comprise at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 100% (on a molar basis) of all macromolecular species present. Preferably, the species of interest is purified to substantial homogeneity (i.e., contaminant species cannot be detected in the composition by conventional detection methods). Purity and uniformity can be determined by visualization after staining using a number of techniques well known in the art, such as agarose or polyacrylamide gel electrophoresis of nucleic acid or protein samples, respectively. If desired, high resolution techniques such as High Performance Liquid Chromatography (HPLC) or the like can be used to purify the material.
The term "purified" as applied to a nucleic acid or polypeptide generally refers to a nucleic acid or polypeptide that is substantially free of other components, as determined by analytical techniques well known in the art (e.g., the purified polypeptide or polynucleotide forms discrete bands in an electrophoretic gel, chromatographic eluate, and/or medium subjected to density gradient centrifugation). For example, a nucleic acid or polypeptide that produces substantially one band in an electrophoresis gel is "purified". The purified nucleic acid or polypeptide is at least about 50% pure, typically at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5%, about 99.6%, about 99.7%, about 99.8% or more pure (e.g., percent by weight on a molar basis). In a related sense, the composition is enriched for a molecule when there is a substantial increase in the concentration of the molecule after application of the purification or enrichment technique. The term "enriched" means that a compound, polypeptide, cell, nucleic acid, amino acid, or other particular substance or component is present in the composition at a relative or absolute concentration that is greater than that in the starting composition.
The term "cleaning activity" refers to the cleaning performance achieved by a serine protease polypeptide, variant or reference subtilisin under the prevailing conditions during the proteolytic, hydrolytic, cleaning or other process of the present disclosure. In some embodiments, the cleaning performance of a serine protease or a reference subtilisin may be determined by using various assays for cleaning one or more enzyme-sensitive stains (e.g., stains caused by food, grass, blood, ink, milk, oil, and/or egg proteins) on an article or surface. The cleaning performance of one or more subtilisin variants or reference subtilisins described herein may be determined by subjecting a stain on an article or surface to one or more standard wash conditions and assessing the extent of stain removal by using various chromatographic, spectrophotometric or other quantitative methods. Exemplary cleaning assays and methods are known in the art and include, but are not limited to, those described in WO 99/34011 and US 6,605,458, as well as those included in example 2 provided below.
The term "effective amount" of one or more subtilisin variants or reference subtilisins as described herein refers to the amount of protease that achieves the desired level of enzymatic activity in a particular cleaning composition. Such effective amounts can be readily determined by one of ordinary skill in the art and are based on a number of factors, such as the particular protease used, the cleaning application, the particular composition of the cleaning composition, and whether a liquid or dry (e.g., granule, tablet, stick) composition is desired, etc.
The term "adjunct material" refers to any liquid, solid or gaseous material, or recombinant polypeptide or active fragment thereof, contained in a cleaning composition other than one or more subtilisin variants described herein. In some embodiments, the cleaning compositions of the present disclosure include one or more cleaning adjunct materials. Typically, each cleaning adjunct material is selected depending on the particular type and form of cleaning composition (e.g., liquid, granule, powder, stick, paste, spray, tablet, gel, foam, or other composition). Preferably, each cleaning adjunct material is compatible with the protease used in the composition.
Cleaning compositions and cleaning formulations include any composition suitable for cleaning, bleaching, disinfecting and/or sterilizing any object, article and/or surface. Such compositions and formulations include, but are not limited to, for example, liquid and/or solid compositions, including cleaning or detergent compositions (e.g., liquid, tablet, gel, stick, granule, and/or solid laundry cleaning or detergent compositions) and fine fabric detergent compositions, medical device cleaning compositions, hard surface cleaning compositions and formulations, such as for glass, wood, ceramic, and metal counter tops and windows, carpet cleaners, oven cleaners, fabric fresheners, fabric softeners, and textile, laundry synergistic cleaning or detergent compositions, laundry additive cleaning compositions and laundry pre-soil removal (pre-spotter) cleaning compositions, dishwashing compositions, including hand wash or manual dishwashing compositions (e.g., "hand wash" or "manual" dishwashing) and automatic dishwashing compositions (e.g., "automatic dishwashing"). The present invention may also be used in single dosage unit forms including, but not limited to, pills, tablets, caplets (gelcaps) or other single dosage units such as pre-measured powders or liquids.
As used herein, unless otherwise indicated, cleaning compositions or cleaning formulations include all-purpose or heavy duty detergents, particularly cleaning detergents, in particulate or powder form, all-purpose detergents, in liquid, particulate, gel, solid, tablet, paste or unit dosage form, particularly so-called Heavy Duty Liquid (HDL) detergents or heavy duty dry cleaning (HDD) detergents types, liquid fine fabric detergents, hand or manual dishwashing detergents, including those of the high foaming type, hand or manual dishwashing detergents, automatic dishwashing detergents, or dish or table ware detergents, including various tablet, powder, solid, particulate, liquid, gel and rinse aid types for household and institutional use, liquid cleaning and disinfecting agents, including antibacterial hand wash types, cleaning bars, mouthwashes, denture cleaners, car shampoos, carpets, bathroom cleaners, hair shampoos and/or hair rinses for humans and other animals, body washes and foam baths and metal cleaners, and cleaning aids, such as bleach additives and "stain removal bars" or pretreatment types. In some embodiments, the particulate composition is in a "compact" form, and in some embodiments, the liquid composition is in a "concentrated" form.
With respect to compositions intended for use in a cleaning medium for cleaning soiled or dirty objects, including particular woven and/or non-woven objects or articles, the term "detergent composition" or "detergent formulation" is used. In some embodiments, the detergents of the present disclosure comprise one or more subtilisin variants described herein, in addition to one or more surfactants, one or more transferases, hydrolases, oxidoreductases, builders (e.g., builder salts), bleaching agents, bleach activators, bluing agents, fluorescent dyes, caking inhibitors, masking agents, enzyme stabilizers, calcium, enzyme activators, antioxidants, and/or solubilizing agents. In some cases, the builder salt is a mixture of silicate and phosphate, preferably having more silicate (e.g., sodium metasilicate) than phosphate (e.g., sodium tripolyphosphate). Some embodiments relate to cleaning or detergent compositions that do not contain any phosphate (e.g., phosphate or phosphate builder). The detergent composition may also contain biological ingredients, such as one or more microorganisms (microorganism/microbe) or a microbial extract (as described in WO 2018060475 and US 10968556). Microorganisms may be used as the sole bioactive ingredient, but they may also be used in combination with one or more enzymes described herein. For example, the bacillus strain with accession number PTA-7543 may be used to reduce malodour, as described in WO 2012/112718. Other purposes may include in situ production of the desired biological compound, or inoculation/propagation of the locus with one or more microorganisms to competitively prevent other undesired microorganisms from propagating the same locus (competitive exclusion).
The phrase "one or more substantially boron-free compositions" or "one or more substantially boron-free detergents" refers to one or more compositions or one or more detergents, respectively, that contain trace amounts of boron (e.g., less than about 1000ppm (1 mg/kg or 1mg/L equals 1 ppm), less than about 100ppm, less than about 50ppm, less than about 10ppm, or less than about 5ppm, or less than about 1 ppm), which may be from other compositions or detergent ingredients.
The term "bleaching" refers to treating a material (e.g., fabric, laundry, pulp, etc.) or surface for a sufficient period of time and/or under suitable pH and/or temperature conditions to effect whitening (i.e., whitening) and/or cleaning of the material. Examples of chemicals suitable for bleaching include, but are not limited to, for example ClO 2、H2O2, peracids, NO 2, and the like. Bleaching agents also include enzymatic bleaching agents such as perhydrolases and aryl esterases. Another embodiment relates to a composition comprising one or more subtilisin variants described herein and one or more perhydrolases, such as, for example, perhydrolases described in WO 2005/056782, WO 2007/106293, WO 2008/0632400, WO 2008/106214, and WO 2008/106215.
The term "wash performance" of a protease (e.g., one or more subtilisin variants described herein, or recombinant polypeptides or active fragments thereof) refers to the cleaning contribution of one or more subtilisin variants described herein to a wash that provides additional cleaning performance as compared to a detergent without the addition of one or more subtilisin variants described herein to the composition. Wash performance was compared under relevant wash conditions. In some test systems, other relevant factors, such as detergent composition, suds concentration (sud concentration), water hardness, wash mechanics, time, pH and/or temperature can be controlled in a manner that mimics one or more conditions typical for home applications in some market segments (e.g., hand or manual dish washing, automatic dish washing, dish cleaning, table ware cleaning, fabric cleaning, etc.).
The phrase "relevant wash conditions" is used herein to indicate conditions actually used in the household in the hand dishwashing, automatic dishwashing or laundry detergent market segment, in particular wash temperature, time, wash mechanics, suds concentration, detergent type and water hardness.
The term "dish washing" refers to both household dish washing and industrial dish washing, and relates to both automatic dish washing (e.g., washing with a dish washing machine) and manual dish washing (e.g., washing with a hand).
The term "compact" form of the cleaning composition herein is best reflected by density and, in terms of composition, by the amount of inorganic filler salt. Inorganic filler salts are conventional ingredients of detergent compositions in powder form. In conventional detergent compositions, the filler salt is present in a substantial amount, typically from about 17% to about 35% by weight of the total composition. In contrast, in compact compositions, the filler salt is present in an amount less than about 15% of the total composition. In some embodiments, the filler salt is present in an amount of no more than about 10%, or more preferably about 5% by weight of the composition. In some embodiments, the inorganic filler salt is selected from the group consisting of alkali salts and alkaline earth metal salts of sulfate and chloride. In some embodiments, the filler salt is sodium sulfate.
Disclosed herein are one or more subtilisin variants useful in cleaning applications and cleaning methods, as well as various industrial applications. Also disclosed herein are one or more isolated, recombinant, substantially pure, or non-naturally occurring subtilisin variants. In some embodiments, one or more subtilisin variants described herein may be used in cleaning applications, and may be incorporated into a cleaning composition useful in methods of cleaning an article or surface in need thereof (e.g., an article of clothing or a textile).
In one embodiment, a subtilisin variant is provided, wherein the variant comprises two, three, four or more amino acid substitutions compared to the parent subtilisin of SEQ ID No. 0, wherein the substitutions are at positions selected from the group consisting of 96, 103, 108, 115, 128, 129 and 181, wherein the positions are numbered according to SEQ ID No. 9, and wherein the variant has at least 75% identity to the amino acid sequence of SEQ ID No. 9.
In one embodiment, a subtilisin variant is provided, wherein the variant comprises one, two, three or four or more amino acid substitutions selected from the group consisting of X96D, X103F, X108Q, X L, X128K, X129Q or X181Q, wherein the positions are numbered according to SEQ ID No. 9, and wherein the variant has at least 75% identity to the amino acid sequence of SEQ ID No. 9.
In some embodiments, the subtilisin variant further comprises one or more additional substitutions selected from the group consisting of X9T, X17H, X77N, X78I, X103I, X127T, X165Q, X184Q, X V, X203N, X E, X S and X258P, wherein these positions are numbered by corresponding to the amino acid sequence of SEQ ID NO 9.
In one embodiment, a subtilisin variant is provided, wherein the variant is selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 6, SEQ ID NO. 7, and SEQ ID NO. 8.
Another embodiment relates to one or more subtilisin variants described herein, provided that the amino acid substitution(s) is/are non-naturally occurring. Still even further embodiments relate to one or more subtilisin variants described herein, wherein the variant (i) is derived from bacillus licheniformis subtilisin, (ii) is isolated, (iii) has proteolytic activity, or (iv) comprises a combination of (i) through (iii). Yet another embodiment relates to one or more subtilisin variants described herein, wherein the variant is derived from a parent or reference polypeptide having (i) 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:9, or (ii) 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 9. In yet another embodiment, the parent comprises the amino acid sequence of SEQ ID NO. 9. Even further embodiments relate to one or more subtilisin variants described herein, wherein the variant comprises an amino acid sequence (i) having 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or less than 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO 9.
In even further embodiments, one or more subtilisin variants described herein have one or more improved properties when compared to a reference subtilisin or a parent subtilisin, wherein the improved properties are selected from improved detergent cleaning performance, improved detergent or buffer stability, and improved aged cleaning performance, and combinations thereof. The aged cleaning performance refers to the difference in stain removal measured for a sample of an aged test sample in which the enzyme is pre-incubated in detergent for an extended period of time, e.g., 3-8 weeks, at an elevated temperature, e.g., 37 ℃, compared to the "fresh" stain cleaning of the same enzyme (without pre-incubation). Thus, enzymes with improved aged cleaning performance show less difference between aged and freshly prepared samples when compared to the same evaluation with reference/parent enzyme.
In another embodiment, the parent subtilisin comprises the amino acid sequence of SEQ ID NO. 9. In yet another embodiment, the improved property is (i) improved detergent cleaning performance, wherein the variant has improved cleaning performance on blood/milk/ink stains or egg stains on woven cotton as compared to a parent subtilisin, and/or (ii) improved stability, wherein the variant has higher residual activity as compared to a parent or reference subtilisin. In yet another embodiment, detergent cleaning performance is measured according to the cleaning performance assay of example 2, and/or stability is measured according to the stability assay of example 2.
In another embodiment, the subtilisin variants provided herein exhibit reduced activity to additional enzymes in liquid detergent compositions. Thus, the additional enzyme (e.g., an alpha-amylase or mannanase) exhibits reduced degradation in the liquid detergent composition compared to the same additional enzyme (e.g., an alpha-amylase or mannanase) in the liquid detergent composition comprising a subtilisin (without one or more of the substitutions selected from X96D, X103F, X108Q, X115L, X K, X129Q or X181Q). In some embodiments, the additional enzyme (e.g., an alpha-amylase or a mannanase) exhibits reduced degradation in the liquid detergent composition compared to the same additional enzyme (e.g., an alpha-amylase or a mannanase) in a liquid detergent composition comprising subtilisin (without one or more of the subtilisin variants of SEQ ID nos. 1,2,3,4, 5, 6, 7, and 8).
In the context of oxidative, chelator, denaturant, surfactant, heat and/or pH stable protease, the term "enhanced stability" or "improved stability" refers to a protease variant that retains higher proteolytic activity over time than the reference or parent subtilisin (e.g., wild-type protease or parent protease, e.g., SEQ ID NO: 9). Autolysis has been identified as a mode of loss of subtilisin activity in liquid detergents. (action of protease autolysis: thermodynamic stabilizer and protease inhibitor in Stoner et al ,2004Protease autolysis in heavy-duty liquid detergent formulations:effects of thermodynamic stabilizers and protease inhibitors[ heavy duty liquid detergent formulation ], enzyme and Microbial Technology [ enzyme and microbiology ] 34:114-125).
With respect to protease variants, the terms "thermostable (THERMALLY STABLE)" and "thermostable (thermostable)" and "thermostability (thermostability)" refer to proteases that retain a greater amount of residual activity than a parent or reference protease after exposure to varying temperatures over a given period of time under conditions (or "stress conditions") prevalent in proteolytic, hydrolytic, cleaning or other processes. Residual activity is the amount of activity remaining after testing compared to the initial activity of the sample and can be reported as a percentage, e.g., as% residual activity. "altered temperature" encompasses an increase or decrease in temperature. In some embodiments, a variant protease provided herein retains at least about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 85%, about 90%, about 92%, about 95%, about 96%, about 97%, about 98%, or about 99% proteolytic activity after exposure to a temperature of 40 ℃ to 80 ℃ for a given period of time (e.g., at least about 5 minutes, at least about 20 minutes, at least about 60 minutes, about 90 minutes, about 120 minutes, about 180 minutes, about 240 minutes, about 300 minutes, about 360 minutes, about 420 minutes, about 480 minutes, about 540 minutes, about 600 minutes, about 660 minutes, about 720 minutes, about 780 minutes, about 840 minutes, about 900 minutes, about 960 minutes, about 1020 minutes, about 1080 minutes, about 1140 minutes, or about 1200 minutes). In some embodiments, using the methods shown in example 2, the residual activity of a variant subtilisin provided herein is higher than the residual activity of the parent or reference protease. In some embodiments, the variant subtilisins provided herein have at least 10% improved residual activity compared to the parent subtilisin when measured in a liquid detergent after 20 minutes at 37-63 degrees celsius.
The subtilisin variants provided herein are useful in the production of a variety of compositions, such as enzyme compositions and cleaning or detergent compositions. The enzyme composition comprises a subtilisin variant as provided herein. The enzyme composition may be in any form, such as a granule, a liquid formulation, or an enzyme slurry.
Enzyme granules may be produced by, for example, rotary atomization, wet granulation, dry granulation, spray drying, disk granulation, extrusion, pan coating, spheronization, rotary drum granulation, fluidized bed agglomeration, high shear granulation, fluidized bed spray coating, crystallization, precipitation, emulsion gelation, rotary disk atomization and other casting methods, and spheronization processes. The core of the particle may be the particle itself or the core of a layered particle.
The core may comprise one or more water-soluble agents or one or more water-dispersible agents including, but not limited to, sodium sulfate, sodium chloride, magnesium sulfate, zinc sulfate, and ammonium sulfate, citric acid, sugars (e.g., sucrose, lactose, dextrose, granulated sucrose, maltodextrin, and fructose), plasticizers (e.g., polyols, urea, dibutyl phthalate, and dimethyl phthalate), fibrous materials (e.g., cellulose and cellulose derivatives such as hydroxypropyl methylcellulose, carboxymethyl cellulose, and hydroxyethyl cellulose), phosphates, calcium, protease inhibitors, and combinations thereof. Suitable dispersing agents include, but are not limited to, clays, sugar pellets (combination of sugar and starch; e.g., starch-sucrose pellets-ASNP), talc, silicates, carboxymethyl cellulose, starch, and combinations thereof.
In some embodiments, the core comprises primarily sodium sulfate. In some embodiments, the core consists essentially of sodium sulfate. In a particular embodiment, the core consists solely of sodium sulfate.
In some embodiments, the core comprises a subtilisin variant as provided herein. In other embodiments, the core comprises one or more enzymes in addition to the protease. In other embodiments, the core is inert and does not contain an enzyme.
In some embodiments, the core is an enzyme powder, including UFCs containing enzymes. The enzyme powder may be spray dried and may optionally be admixed with any of the water-soluble or water-dispersible agents listed herein. The enzyme may be or may comprise a protease to be stabilised, in which case the enzyme powder should further comprise a stabiliser.
In some embodiments, the core is coated with at least one coating. In certain embodiments, the core is coated with at least two coatings. In another particular embodiment, the core is coated with at least three coatings. The materials used for the one or more coatings may be suitable for use in cleaning compositions and/or detergent compositions (see, e.g., US20100124586, WO 9932595 and US 5324649).
In some embodiments, the coating comprises one or more of inorganic salts (e.g., sodium sulfate, sodium chloride, magnesium sulfate, zinc sulfate, and ammonium sulfate), citric acid, sugars (e.g., sucrose, lactose, glucose, and fructose), plasticizers (e.g., polyols, urea, dibutyl phthalate, and dimethyl phthalate), fibrous materials (e.g., cellulose and cellulose derivatives such as hydroxypropyl methylcellulose, carboxymethyl cellulose, and hydroxyethyl cellulose), clays, sugar pellets (combinations of sugars and starches), silicates, carboxymethyl cellulose, phosphates, starches (e.g., corn starch), fats, oils (e.g., rapeseed oil and paraffin oil), lipids, vinyl polymers, vinyl copolymers, polyvinyl alcohol (PVA), plasticizers (e.g., polyols, urea, dibutyl phthalate, dimethyl phthalate, and water), anti-caking agents (e.g., talc, clays, amorphous silica, and titanium dioxide), defoamers (such as FOAMBLASTAnd EROL) And talc. Suitable components for the coating are detailed in US20100124586, WO9932595 and US 5324649.
In some embodiments, the coating comprises sugar (e.g., sucrose, lactose, glucose, granulated sucrose, maltodextrin, and fructose). In some embodiments, the coating comprises a polymer, such as polyvinyl alcohol (PVA). Suitable PVA for incorporation into one or more coatings of the multilayer particles include partially hydrolyzed, fully hydrolyzed, and moderately hydrolyzed PVA having low to high tackiness. In some embodiments, the coating comprises an inorganic salt, such as sodium sulfate.
In some embodiments, at least one coating is an enzyme coating. In some embodiments, the core is coated with at least two enzyme layers. In another embodiment, the core is coated with at least three or more enzyme layers.
In some embodiments, the enzyme particle comprises a subtilisin variant as provided herein in combination with one or more additional enzymes selected from the group consisting of: acyl transferase, alpha-amylase, beta-amylase, alpha-galactosidase, arabinosidase, aryl esterase, beta-galactosidase, carrageenase, catalase, cellobiohydrolase, cellulase, chondroitinase, cutinase, disperson, endo-beta-1, 4-glucanase, endo-beta-mannanase, esterase, exo-mannanase, galactanase, glucoamylase, hemicellulase, hexosaminidase, hyaluronidase, keratinase, laccase, lactase, ligninase, lipase, lipoxygenase, lysozyme, mannanase, metalloprotease nucleases (e.g., dnase and/or rnase), oxidases, oxidoreductases, pectate lyases, pectoacetases, pectinases, pentosanases, perhydrolases, peroxidases, phenol oxidases, phosphatases, phospholipase, phosphodiesterases, phytases, polygalacturonases, polysaccharidases, additional proteases, pullulanases, reductases, rhamnogalacturonases, beta-glucanases, tannase, transglutaminases, xanthan lyases, xylanacetylesterases, xylanases, xyloglucanases, xylosidases, and any combination or mixture thereof. Typically, at least one enzyme coating comprises at least one subtilisin variant as provided herein.
The above list of enzymes is merely an example and is not meant to be exclusive. Any enzyme may be used in the particles described herein, including wild-type, recombinant and variant enzymes of bacterial, fungal, yeast origin, as well as acid, neutral or alkaline enzymes.
Another embodiment relates to a method of cleaning a surface, wherein the method comprises contacting a surface or article in need of cleaning with an effective amount of one or more subtilisin variants as provided herein or a composition comprising one or more subtilisin variants as provided herein. In some embodiments, the surface or article in need of cleaning comprises a proteinaceous stain on the surface. In some embodiments, the surface or article in need of cleaning comprises a proteinaceous stain. The term "stain" encompasses any type of soil on the surface of an article, such as a hard surface article (e.g., cutlery), medical devices, or textiles. In some embodiments, the stain is a proteinaceous stain. As used herein, a "proteinaceous stain" is a stain or soil that contains a protein.
Further embodiments relate to methods of cleaning proteinaceous stains comprising contacting a surface or article in need of cleaning with an effective amount of one or more subtilisin variants as provided herein or a composition comprising one or more subtilisin variants as provided herein.
Another embodiment relates to a method of cleaning an egg stain, the method comprising contacting a surface or article in need of cleaning with an effective amount of one or more subtilisin variants or a composition comprising one or more such subtilisin variants as provided herein.
Another embodiment relates to a method of cleaning a BMI stain, the method comprising contacting a surface or article in need of cleaning with an effective amount of one or more subtilisin variants as provided herein or a composition comprising one or more such subtilisin variants.
One or more subtilisin variants described herein may undergo various changes, such as one or more amino acid insertions, deletions, and/or substitutions (conservative or non-conservative), including those in which such changes do not substantially alter the enzymatic activity of the variant. Similarly, the nucleic acids of the invention may also undergo various changes, such as one or more substitutions of one or more nucleotides in one or more codons such that a particular codon encodes the same or a different amino acid, resulting in silent (e.g., when the encoded amino acid is not altered by a nucleotide mutation) or non-silent changes, one or more deletions of one or more nucleotides (or codons) in the sequence, one or more additions or insertions of one or more nucleotides (or codons) in the sequence, and/or one or more truncations of one or more nucleotides (or codons) in the sequence. Many such changes in the nucleic acid sequence do not substantially alter the enzymatic activity of the resulting encoded polypeptide enzyme as compared to the polypeptide enzyme encoded by the original nucleic acid sequence. The nucleic acid sequences described herein can also be modified to include one or more codons that provide optimal expression in an expression system (e.g., a bacterial expression system), while still encoding one or more identical amino acids, if desired.
Described herein are one or more isolated, non-naturally occurring, or recombinant polynucleotides comprising a nucleic acid sequence encoding one or more subtilisin variants, or recombinant polypeptides, or active fragments thereof, described herein. The one or more nucleic acid sequences described herein may be used in the recombinant production (e.g., expression) of one or more subtilisin variants described herein, typically by expression of a plasmid expression vector comprising a sequence encoding one or more subtilisin variants described herein or fragments thereof. One embodiment provides a nucleic acid encoding one or more subtilisin variants described herein, wherein the variant is a mature form having proteolytic activity. In some embodiments, one or more subtilisin variants described herein are recombinantly expressed using a homologous propeptide sequence. In other embodiments, one or more subtilisin variants described herein are recombinantly expressed with a heterologous or native propeptide sequence (e.g., a propeptide sequence from bacillus licheniformis).
One or more of the nucleic acid sequences described herein may be produced using any suitable synthesis, manipulation, and/or isolation technique, or combination thereof. For example, one or more polynucleotides described herein may be produced using standard nucleic acid synthesis techniques, such as solid phase synthesis techniques, well known to those of skill in the art. In such techniques, fragments of up to 50 or more nucleotide bases are typically synthesized and then ligated (e.g., by enzymatic or chemical ligation methods) to form essentially any desired continuous nucleic acid sequence. The synthesis of one or more polynucleotides described herein may also be facilitated by any suitable method known in the art, including, but not limited to, chemical synthesis using classical phosphoramidite methods (see, e.g., beaucage et al, tetrahedron Letters [ tetrahedron flash ]22:1859-69 (1981)), or methods described in Matthes et al, EMBO J. [ J. European molecular biology J. ]3:801-805 (1984), as typically practiced in automated synthesis methods. One or more polynucleotides described herein may also be produced by using an automated DNA synthesizer. Can be made from various commercial sources (e.g., ATUM (DNA 2.0), new wall (Newark, CA, USA), life Technologies (Life Tech) (GeneArt), karsbad (Carlsbad, CA, USA), gold company (GenScript), ontario, canada, base Clear b.v., leiden, netherlands), integrated DNA Technologies (INTEGRATED DNA Technologies), illinois (Skokie, IL, USA), ginkgo biology studio (Ginkgo Bioworks) (genart), boston (Boston, USA), and textdesk Bioscience (Twist Bioscience), san france, CA, USA. Other techniques and related principles for synthesizing nucleic acids are described, for example, by Itakura et al, ann.Rev.biochem. [ Biochemical annual. 53:323 (1984) and Itakura et al, science [ Science ]198:1056 (1984).
Recombinant DNA techniques for modifying nucleic acids are well known in the art, such as, for example, restriction endonuclease digestion, ligation, reverse transcription and cDNA production, and polymerase chain reaction (e.g., PCR). One or more polynucleotides described herein may also be obtained by screening a cDNA library using one or more oligonucleotide probes that can hybridize to or PCR amplify a polynucleotide encoding one or more subtilisin variants, or recombinant polypeptides, or active fragments thereof, described herein. Procedures for screening and isolating cDNA clones and PCR amplification procedures are well known to those skilled in the art and are described in standard references known to those skilled in the art. One or more polynucleotides described herein can be obtained, for example, by altering a naturally occurring polynucleotide backbone (e.g., a polynucleotide backbone encoding one or more subtilisin variants or reference subtilisins described herein) by known mutagenesis procedures (e.g., site-directed mutagenesis, site-saturation mutagenesis, and in vitro recombination). A variety of methods suitable for producing modified polynucleotides described herein encoding one or more subtilisin variants described herein are known in the art, including, but not limited to, for example, site-saturation mutagenesis, scanning mutagenesis, insertion mutagenesis, deletion mutagenesis, random mutagenesis, site-directed mutagenesis and directed evolution, and various other recombinant methods.
Further embodiments relate to one or more vectors comprising one or more subtilisin variants described herein (e.g., polynucleotides encoding one or more subtilisin variants described herein), expression vectors or cassettes comprising one or more nucleic acid or polynucleotide sequences described herein, isolated, substantially pure, or recombinant DNA constructs comprising one or more nucleic acid or polynucleotide sequences described herein, isolated or recombinant cells comprising one or more polynucleotide sequences described herein, and compositions comprising one or more such vectors, nucleic acids, expression vectors, cassettes, DNA constructs, cells, cell cultures, or any combination or mixture thereof.
Some embodiments relate to one or more recombinant cells comprising one or more vectors (e.g., expression vectors or DNA constructs) described herein comprising one or more nucleic acid or polynucleotide sequences described herein. Some such recombinant cells are transformed or transfected with such at least one vector, although other methods are available and known in the art. Such cells are typically referred to as host cells. Some such cells include bacterial cells, including but not limited to bacillus cells, such as bacillus subtilis or bacillus licheniformis cells. Other embodiments relate to recombinant cells (e.g., recombinant host cells) comprising one or more subtilisins described herein.
In some embodiments, one or more vectors described herein are expression vectors or expression cassettes comprising one or more polynucleotide sequences described herein operably linked to one or more additional nucleic acid segments (e.g., a promoter operably linked to one or more polynucleotide sequences described herein) required for efficient gene expression. The vector may include a transcription terminator and/or selection gene (e.g., an antibiotic resistance gene) capable of achieving continuous culture maintenance of the plasmid-infected host cell by growth in a medium containing an antimicrobial agent.
The expression vector may be derived from plasmid or viral DNA, or in alternative embodiments, contains elements of both. Exemplary vectors include, but are not limited to, pC194, pJH101, pE194, pHP13 (see Harwood and Cutting [ eds. ], chapter 3, molecular Biological Methods for Bacillus [ methods of molecular biology for Bacillus ], john Wiley & Sons [ John Willi parent ] (1990)); suitable replicating plasmids for Bacillus subtilis include those listed on page 92). (see also, perego, "Integrational Vectors for Genetic Manipulations in Bacillus subtilis [ integration vector for genetic manipulation in Bacillus subtilis ]"; sonenshein et al, [ edit ];"Bacillus subtilis and Other Gram-Positive Bacteria:Biochemistry,Physiology and Molecular Genetics[ Bacillus subtilis and other gram positive bacteria: biochemistry, physiology and molecular genetics ] ", american Society for Microbiology [ American society of microbiology ], washington, D.C. [ Washington ] (1993), pages 615-624; and p2JM103 BBI).
To express and produce a protein of interest (e.g., one or more subtilisin variants described herein) in a cell, one or more expression vectors comprising one or more copies (and in some cases, multiple copies) of a polynucleotide encoding one or more subtilisin variants described herein are transformed into the cell under conditions suitable for expression of the variants. In some embodiments, the polynucleotide sequences encoding one or more subtilisin variants described herein (as well as other sequences included in the vectors) are integrated into the genome of the host cell, whereas in other embodiments, plasmid vectors comprising the polynucleotide sequences encoding one or more subtilisin variants described herein remain autonomous extrachromosomal elements within the cell. Some embodiments provide an extrachromosomal nucleic acid element and an import nucleotide sequence integrated into the host cell genome. The vectors described herein can be used to produce one or more subtilisin variants described herein. In some embodiments, a polynucleotide construct encoding one or more subtilisin variants described herein is present on an integration vector capable of integrating the polynucleotide encoding the variant into a host chromosome and optionally amplifying in the host chromosome. Examples of integration sites are well known to those skilled in the art. In some embodiments, transcription of a polynucleotide encoding one or more subtilisin variants described herein is accomplished by a promoter that is a wild-type promoter of the parent subtilisin. In some other embodiments, the promoter is heterologous to one or more subtilisin variants described herein, but functional in the host cell. Exemplary promoters for bacterial host cells include, but are not limited to, amyE, amyQ, amyL, pstS, sacB, pSPAC, pAprE, pVeg, pHpaII, rrnIp promoter, promoter of Bacillus stearothermophilus maltogenic amylase gene, bacillus Amyloliquefaciens (BAN) amylase gene, bacillus subtilis alkaline protease gene, bacillus clausii alkaline protease gene, bacillus pumilus xylosidase gene, bacillus thuringiensis cryIIIA, and Bacillus licheniformis alpha-amylase gene. Additional promoters include, but are not limited to, the A4 promoter, and the phage λPR or PL promoters, as well as the E.coli (E.coli) lac, trp or tac promoters.
One or more subtilisin variants described herein may be produced in host cells of any suitable microorganism, including bacteria and fungi. In some embodiments, one or more subtilisin variants described herein may be produced in gram-positive bacteria. In some embodiments, the host cell is a Bacillus species, streptomyces (Streptomyces) species, escherichia (Escherichia) species, aspergillus (Aspergillus) species, trichoderma (Trichoderma) species, pseudomonas (Pseudomonas) species, corynebacterium (Corynebacterium) species, saccharomyces (Saccharomyces) species, or Pichia (Pichia) species. In some embodiments, one or more subtilisin variants described herein are produced by a bacillus species host cell. Examples of Bacillus host cells that can be used for the production of one or more subtilisin variants described herein include, but are not limited to, bacillus licheniformis, bacillus Jie, bacillus lentus, bacillus subtilis, bacillus amyloliquefaciens, bacillus brevis, bacillus stearothermophilus, bacillus alcalophilus, bacillus coagulans, bacillus circulans, bacillus pumilus, bacillus thuringiensis, bacillus clausii, and Bacillus megaterium, as well as other organisms within the genus Bacillus. In some embodiments, a bacillus subtilis host cell is used to produce the variants described herein. USPN 5,264,366 and 4,760,025 (RE 34,606) describe various bacillus host strains that can be used to produce one or more subtilisin variants described herein, although other suitable strains can be used.
Several bacterial strains that can be used to produce one or more subtilisin variants described herein include non-recombinant (i.e., wild-type) bacillus strains, as well as variants of naturally occurring and/or recombinant strains. In some embodiments, the host strain is a recombinant strain in which a polynucleotide encoding one or more subtilisin variants described herein has been introduced into the host. In some embodiments, the host strain is a bacillus subtilis host strain, in particular a recombinant bacillus subtilis host strain. Many strains of Bacillus subtilis are known, including but not limited to, for example, 1A6 (ATCC 39085), 168 (1A 01), SB19, W23, ts85, B637, PB1753 to PB1758、PB3360、JH642、1A243(ATCC 39,087)、ATCC 21332、ATCC 6051、MI113、DE100(ATCC 39,094)、GX4931、PBT 110、 and PEP 211 strains (see, e.g., hoch et al, genetics [ Genetics ]73:215-228 (1973); see, additionally, U.S. Pat. No. 5,62; and EP 013048). The use of Bacillus subtilis as an expression host cell is well known in the art (see, e.g., palva et al, gene [ Gene ]19:81-87 (1982); fahnestock and Fischer, J. Bacteriol. [ J. Bacteriol., 165:796-804 (1986); and Wang et al, gene [ Gene ]69:39-47 (1988)).
In some embodiments, the Bacillus host cell is a Bacillus that includes mutations or deletions in at least one of the following genes degU, degS, degR and degQ. In some embodiments, the mutation is in the degU gene, and in some embodiments, the mutation is degU (Hy) 32 (see, e.g., msadek et al, J. Bacteriol. [ J. Bacteriology ]172:824-834 (1990); and Olmos et al, mol. Gen. Genet. [ molecular vs. general genetics ]253:562-567 (1997)). In some embodiments, the Bacillus host comprises a mutation or deletion in scoC4 (see, e.g., caldwell et al, J.Bacteriol. [ J.Bacteriol. ]183:7329-7340 (2001)), spoIIE (see, e.g., arigoni et al, mol. Microbiol. [ molecular microbiology ]31:1407-1415 (1999)), and/or other genes of the oppA or opp operon (see, e.g., perego et al, mol. Microbiol. [ molecular microbiology ]5:173-185 (1991)). Indeed, it is contemplated that any mutation in the opp operon that causes the same phenotype as the mutation in the oppA gene will be useful in some embodiments of the altered bacillus strains described herein. In some embodiments, these mutations occur alone, while in other embodiments, a combination of mutations is present. In some embodiments, the altered bacillus host cell strain that can be used to produce one or more subtilisin variants described herein is a bacillus host strain that already comprises a mutation in one or more of the genes described above. In addition, bacillus host cells comprising one or more mutations and/or one or more deletions of endogenous protease genes may be used. In some embodiments, the bacillus host cell comprises a deletion of the aprE and nprE genes. In other embodiments, the Bacillus host cell comprises a deletion of 5 protease genes, while in other embodiments, the Bacillus host cell comprises a deletion of 9 protease genes (see, e.g., US 2005/0202535).
The host cell is transformed with one or more nucleic acid sequences encoding one or more subtilisin variants described herein using any suitable method known in the art. Methods for introducing nucleic acids (e.g., DNA) into bacillus cells or e.coli cells using plasmid DNA constructs or vectors and transforming such plasmid DNA constructs or vectors into such cells are well known. In some embodiments, the plasmid is then isolated from an E.coli cell and transformed into a Bacillus cell. However, the use of an intervening microorganism such as E.coli is not necessary, and in some embodiments, the DNA construct or vector is introduced directly into the Bacillus host.
Exemplary methods of introducing one or more nucleic acid sequences described herein into Bacillus cells are described, for example, in Ferrari et al, "Genetics [ Genetics ]", in Hardwood et al [ editor ], bacillus [ Bacillus ], plenum Publishing Corp. [ Protein publication (1989), pages 57-72; saunders et al, J.Bacteriol. [ journal of bacteriology ],157:718-726 (1984), hoch et al, J.Bacteriol. [ journal of bacteriology ], 93:1925-1937 (1967), mann et al, current Microbiol. [ modern microbiology ],13:131-135 (1986), holubova, folia Microbiol. [ Fulidean ],30:97 (1985), chang et al, mol. Genet. Molecular and plain Genetics [ 168:11-115 (1979), vorobjeva et al, FEBIol. Lett. 263, U.S. No. 263, and Arch et al (1986), microbiol et al, vol. Lett. 1981), and Microbiol. 1981, vol. Lev. [ 1986), and Microbiol. 1981, vol. Microbiol. Lev. [ 1986). Indeed, methods such as transformation (including protoplast transformation and transfection, transduction, and protoplast fusion) are well known and suitable for use herein. Methods known in the art for transforming bacillus cells include, for example, methods such as Plasmid marker rescue transformation, which involve uptake of donor plasmids by competent cells carrying partially homologous resident plasmids (see Contente et al, plasmid [ Plasmid ]2:555-571 (1979); haima et al mol. Gen. Genet. [ molecular and general genetics ]223:185-191 (1990); weinrauch et al J. Bacteriol. [ journal of bacteriology ],154:1077-1087 (1983), and Weinrauch et al J. Bacteriol. [ journal of bacteriology ],169:1205-1211 (1987)). In this method, the input donor plasmid recombines with the homologous region of the resident "helper" plasmid during the process of mimicking chromosomal transformation.
In addition to the methods commonly used, in some embodiments, the host cell is directly transformed with a DNA construct or vector comprising nucleic acid encoding one or more subtilisin variants described herein (i.e., the intermediate cell is not used to amplify or otherwise process the DNA construct or vector prior to introduction into the host cell). Introduction of the DNA constructs or vectors described herein into a host cell includes those physical and chemical methods known in the art for introducing nucleic acid sequences (e.g., DNA sequences) into a host cell without insertion into the host genome. Such methods include, but are not limited to, calcium chloride precipitation, electroporation, naked DNA, and liposomes. In further embodiments, the DNA construct or vector is co-transformed with the plasmid without insertion of the plasmid. In further examples, selection markers are deleted from altered Bacillus strains by methods known in the art (see, stahl et al J. Bacteriol. J. Bacteriological. 158:411-418 (1984), and Palmeros et al Gene [ Gene ] 247:255-264 (2000)).
In some embodiments, the transformed cells are cultured in conventional nutrient media. Suitable specific culture conditions, such as temperature, pH, etc., are known to those skilled in the art and are described in detail in the scientific literature. Some embodiments provide a culture (e.g., a cell culture) comprising one or more subtilisin variants or nucleic acid sequences described herein.
In some embodiments, host cells transformed with one or more polynucleotide sequences encoding one or more subtilisin variants described herein are cultured in a suitable nutrient medium under conditions that allow expression of the variants, after which the resulting variants are recovered from the culture. In some embodiments, the variants produced by the cells are recovered from the culture medium by conventional procedures including, but not limited to, isolation of the host cells from the culture medium, precipitation of the protein component of the supernatant or filtrate by means of salts (e.g., ammonium sulfate), and chromatographic purification (e.g., ion exchange, gel filtration, affinity, etc.), for example, by centrifugation or filtration.
In some embodiments, one or more subtilisin variants produced by the recombinant host cell are secreted into the culture medium. Nucleic acid sequences encoding purification-promoting domains can be used to promote purification of the variants. The vector or DNA construct comprising a polynucleotide sequence encoding one or more subtilisin variants described herein may further comprise a nucleic acid sequence encoding a purification-promoting domain that promotes purification of the variant (see, e.g., kroll et al, DNA Cell Biol [ DNA Cell biology ]12:441-53 (1993)). Such purification-promoting domains include, but are not limited to, for example, metal chelating peptides, such as histidine-tryptophan modules that allow purification on immobilized metals (see Porath, protein expr. Purif. [ Protein expression and purification ]3:263-281[1992 ]), protein A domains that allow purification on immobilized immunoglobulins, and domains employed in FLAGS extension/affinity purification systems. It has also been found that the inclusion of cleavable linker sequences such as factor XA or enterokinase (e.g., sequences available from Invitrogen, san diego, california) between the purification domain and the heterologous protein can be used to facilitate purification.
Variant proteins of the invention may be produced in host cells using methods well known in the art, for example, by secretion or intracellular expression. Fermentation, separation and concentration techniques are well known in the art and conventional methods may be used to prepare concentrated, enzyme-containing solutions. The host cells may be further processed, for example, by heating or by changing the pH or salt content or by enzymatic treatment with enzymes comprising egg white lysozyme, T4 lysozyme, or as described in WO 2022047149, for example to release the enzyme or to improve cell separation. For production scale recovery, variant polypeptides may be enriched or partially purified via cell removal by flocculation with a polymer as generally described above. Alternatively, the enzyme may be enriched or purified by microfiltration and then concentrated by ultrafiltration using available membranes and equipment. However, for some applications, the enzyme need not be enriched or purified, and the whole broth culture may be lysed and used without further processing. The enzyme may then be processed into, for example, granules.
Various methods can be used to determine the production level of one or more mature subtilisin variants described herein in a host cell. Such methods include, but are not limited to, methods such as using polyclonal or monoclonal antibodies specific for proteases. Exemplary methods include, but are not limited to, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescence Immunoassay (FIA), and Fluorescence Activated Cell Sorting (FACS). These and other assays are well known in the art (see, e.g., maddox et al, J. Exp. Med. [ journal of laboratory medicine ]158:1211 (1983)).
Some other embodiments provide methods for preparing or producing one or more mature subtilisin variants described herein. Mature subtilisin variants do not include signal peptide or propeptide sequences. Some methods include preparing or producing one or more subtilisin variants described herein in a recombinant bacterial host cell, such as, for example, a bacillus cell (e.g., a bacillus cell). Other embodiments provide methods of producing one or more subtilisin variants described herein, wherein the methods comprise culturing a recombinant host cell comprising a recombinant expression vector comprising a nucleic acid sequence encoding one or more subtilisin variants described herein under conditions conducive to the production of the variants. Some such methods further comprise recovering the variant from the culture.
Further embodiments provide methods of producing one or more subtilisin variants described herein, wherein the methods comprise (a) introducing a recombinant expression vector comprising a nucleic acid encoding the variant into a population of cells (e.g., bacterial cells, such as bacillus subtilis cells), and (b) culturing the cells in a culture medium under conditions conducive to the production of the variant encoded by the expression vector. Some such methods further comprise (c) isolating the variant from the cell or from the culture medium.
Further embodiments relate to methods of improving the cleaning performance or stability of a subtilisin comprising modifying a subtilisin to comprise one or more substitutions, or a combination of substitutions, as provided herein.
Still further embodiments relate to methods of reducing the degradation potential of a subtilisin variant to a coenzyme (e.g., an alpha-amylase or mannanase) in a detergent composition, comprising modifying the subtilisin to comprise one or more substitutions or combinations of substitutions as provided herein.
Unless otherwise indicated, all component or composition levels provided herein are given with reference to the activity level of the component or composition and do not include impurities, such as residual solvents or byproducts, that may be present in commercially available sources. The enzyme component weight is based on total active protein. All percentages and ratios are by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated. The compositions described herein include cleaning compositions, such as detergent compositions. In the exemplified detergent compositions, the enzyme level is expressed by pure enzyme by weight of the total composition and the detergent ingredients are expressed by weight of the total composition unless otherwise specified.
In one embodiment, one or more subtilisin variants described herein may be used in cleaning applications, such as, for example, but not limited to, cleaning of cutlery items or table top ware items, fabrics, medical devices, and items having a hard surface (e.g., a hard surface of a table, table top, wall, furniture item, floor, ceiling). In other embodiments, one or more subtilisin variants described herein may be used in sanitizing applications, such as, but not limited to, sanitizing automatic dishwashing machines or washing machines. In one embodiment, the cleaning composition is a cleaning composition comprising one or more subtilisin variants described herein, wherein the cleaning composition is a composition selected from the group consisting of laundry detergents, fabric softening detergents, dishwashing detergents (e.g., automatic or manual dishwashing detergents), hard surface cleaning detergents, and medical device cleaning compositions.
Another embodiment relates to a composition comprising one or more subtilisin variants described herein. In some embodiments, the composition is a cleaning composition. In other embodiments, the composition is a detergent composition. In yet other embodiments, the composition is selected from the group consisting of a laundry detergent composition, an Automatic Dishwashing (ADW) composition, a hand dishwashing (manual) dishwashing detergent composition, a hard surface cleaning composition, a eyewear cleaning composition, a medical device cleaning composition, a disinfectant (e.g., malodor or microorganism) composition, and a personal care cleaning composition. In still other embodiments, the composition is a laundry detergent composition, ADW composition, or a hand wash (manual) dishwashing detergent composition. Even further embodiments relate to fabric cleaning compositions, while other embodiments relate to non-fabric cleaning compositions. In some embodiments, the cleaning composition is free of boron. In other embodiments, the cleaning composition is phosphate free. In still other embodiments, the composition comprises one or more subtilisin variants described herein and one or more excipients, auxiliary materials, and/or additional enzymes.
In one embodiment, a composition comprising a combination of a subtilisin variant and at least one additional enzyme is provided, wherein the subtilisin variant comprises one, two or more substitutions selected from the group consisting of: X96D, X103F, X Q, X L, X K, X Q or X181Q, wherein these positions are according to SEQ ID NO:9, wherein the variant hybridizes to SEQ ID NO:9, and wherein the at least one additional enzyme is selected from the group consisting of acylases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, dispersons, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hexosaminidases, hyaluronidases, keratinases, laccase, lactases, ligninases, lipases, lipoxygenases, lysozymes, mannanases, metalloproteinases, nucleases (e.g., dnases and/or rnases), oxidases, oxidoreductases, pectate lyases, pectinacetylesterases, pectinases, pentosanases, perhydrolases, peroxidases, phenoloxidases, phosphatases, phospholipases, phosphodiesterases, mannanases, galactanases, mannanases, transglutaminase, xanthan lyase, xylanacetyl esterase, xylanase, xyloglucanase, xylosidase, and any combination or mixture thereof, wherein the at least one additional enzyme has increased residual activity as compared to a reference enzyme in a detergent composition lacking the subtilisin variant.
In some embodiments, such compositions comprise subtilisin variants selected from the group consisting of SEQ ID NOs 1-8.
In another embodiment, the present disclosure provides detergent compositions (e.g., ADW compositions) comprising a surfactant and at least one subtilisin variant as provided herein. Such compositions may further comprise one or more of excipients, auxiliary materials, and/or additional enzymes.
In yet further embodiments, the compositions described herein contain phosphate, no phosphate, contain boron, no boron, or a combination thereof. In other embodiments, the composition is a boron-free composition. In some embodiments, the boron-free composition is a composition to which no borate stabilizer is added. In another embodiment, the boron-free composition is a composition containing less than 5.5% boron. In still further embodiments, the boron-free composition is a composition containing less than 4.5% boron. In yet another embodiment, the boron-free composition is a composition containing less than 3.5% boron. In yet further embodiments, the boron-free composition is a composition containing less than 2.5% boron. In even further embodiments, the boron-free composition is a composition containing less than 1.5% boron. In another embodiment, the boron-free composition is a composition containing less than 1.0% boron. In still further embodiments, the boron-free composition is a composition containing less than 0.5% boron. In other embodiments, the composition is a composition that is free or substantially free of an enzyme stabilizer or peptide inhibitor.
In another embodiment, one or more of the compositions described herein are in a form selected from the group consisting of a gel, a tablet, a powder, a granule, a solid, a liquid, a unit dose, and combinations thereof. In yet another embodiment, one or more of the compositions described herein are in a form selected from a low water compact formulation, a low water HDL or Unit Dose (UD), or a high water formulation or HDL. In some embodiments, the cleaning compositions described herein are in unit dosage form. In other embodiments, the unit dosage form is selected from the group consisting of a pill, tablet, capsule, caplet, sachet, pouch, multi-compartment pouch, and pre-measured powder or liquid. In some embodiments, the unit dosage form is designed to provide controlled release of the ingredients within a multi-compartment pouch (or other unit dosage form). Suitable unit doses and controlled release forms are described, for example, in EP 2100949, WO 02/102955, US 4,765,916, US 4,972,017, and WO 04/111178. In some embodiments, the unit dosage form is a tablet or powder contained in a water-soluble film or pouch.
Exemplary laundry detergent compositions include, but are not limited to, liquid and powder laundry detergent compositions, for example. Exemplary hard surface cleaning compositions include, but are not limited to, compositions for cleaning hard surfaces such as non-cutlery items, non-table ware items, tables, desktops, furniture items, walls, floors, and ceilings. Exemplary hard surface cleaning compositions are described in, for example, USPN 6,610,642, 6,376,450 and 6,376,450. Exemplary personal care compositions include, but are not limited to, compositions for cleaning dentures, teeth, hair, contact lenses, and skin. Exemplary components of such oral care compositions include those described in, for example, US 6,376,450.
In some embodiments, one or more subtilisin variants described herein are cleaned at low temperatures. In other embodiments, one or more of the compositions described herein are cleaned at low temperatures. In other embodiments, one or more of the compositions described herein comprise an effective amount of one or more subtilisin variants described herein, which variants are useful or effective for cleaning surfaces in need of protein stain removal.
In some embodiments, auxiliary materials are incorporated, for example, to aid or enhance cleaning performance, to treat the substrate to be cleaned, or to alter the aesthetics of the cleaning composition, as in the case of perfumes, colorants, dyes, and the like. One embodiment relates to a composition comprising one or more adjunct materials described herein and one or more subtilisin variants. Another embodiment relates to a composition comprising one or more adjunct materials described herein and one or more subtilisin variants, wherein the adjunct materials are selected from bleach catalysts, additional enzymes, enzyme stabilizers (including, for example, enzyme stabilizing systems), chelating agents (chelant), brighteners, soil release polymers, dye transfer agents, dispersants, suds suppressors, dyes, perfumes, colorants, fillers, photoactivators, fluorescers, fabric conditioners, hydrolyzable surfactants, preservatives, antioxidants, antishrinking agents, anti-wrinkle agents, bactericides, fungicides, color spot-ers, silver care agents, antitarnish agents, corrosion inhibitors, alkaline sources, solubilizing agents, carriers, processing aids, pigments, pH control agents, surfactants, builders, chelating agents (CHELATING AGENT), dye transfer inhibitors, deposition aids, catalytic materials, bleach activators, bleach boosters, hydrogen peroxide sources, preformed peracids, polymeric dispersants, clay removers/redeposition aids, structure elasticizing agents, fabric softeners, water-soluble aids, processing aids, pigments, and combinations thereof. Exemplary auxiliary materials and usage levels can be found in USPN 5,576,282、6,306,812、6,326,348、6,610,642、6,605,458、5,705,464、5,710,115、5,698,504、5,695,679、5,686,014 and 5,646,101. In embodiments where the one or more cleaning adjunct materials are incompatible with the one or more subtilisin variants described herein, methods of maintaining the adjunct materials and the one or more variants separate (i.e., without contacting each other) are used until a combination of the two components is appropriate. Such separation methods include any suitable method known in the art (e.g., capsule ingot, encapsulation, tablet, physical separation, etc.).
Some embodiments relate to cleaning additive products comprising one or more subtilisin variants described herein. In some embodiments, the additive is encapsulated in a dosage form for addition to the cleaning process. In some embodiments, the additive is encapsulated in a dosage form for addition to a cleaning process in which a peroxide source is used and an increased bleaching effect is desired.
Exemplary fillers or carriers for particulate compositions include, but are not limited to, various salts such as sulfates, carbonates, and silicates, talc, and clays. Exemplary fillers or carriers for liquid compositions include, but are not limited to, for example, water or low molecular weight primary and secondary alcohols (including polyols and glycols such as methanol, ethanol, propanol, and isopropanol). In some embodiments, the composition contains from about 5% to about 90% of such fillers or carriers. Acidic fillers may be included in such compositions to reduce the pH of the resulting solution in the cleaning process or application.
In one embodiment, one or more cleaning compositions described herein comprise an effective amount of one or more subtilisin variants described herein, alone or in combination with one or more additional enzymes. Typically, the cleaning composition comprises at least about 0.0001wt% to about 20wt%, from about 0.0001wt% to about 10wt%, from about 0.0001wt% to about 1wt%, from about 0.001wt% to about 1wt%, or from about 0.01wt% to about 0.2wt% of one or more subtilisin variants described herein. In another embodiment, one or more cleaning compositions described herein comprise from about 0.01 to about 10mg, about 0.01 to about 5mg, about 0.01 to about 2mg, about 0.01 to about 1mg, about 0.05 to about 1mg, about 0.5 to about 10mg, about 0.5 to about 5mg, about 0.5 to about 4mg, about 0.5 to about 3mg, about 0.5 to about 2mg, about 0.5 to about 1mg, about 0.1 to about 10mg, about 0.1 to about 5mg, about 0.1 to about 4mg, about 0.1 to about 3mg, about 0.1 to about 2mg, about 0.1 to about 1mg, or about 0.1 to about 0.5mg of one or more subtilisin variants/gram compositions described herein.
The cleaning compositions described herein are typically formulated such that during use in an aqueous cleaning operation, the wash water will have a pH of from about 4.0 to about 11.5, or even from about 5.0 to about 8.0, or even from about 7.5 to about 10.5. Liquid product formulations are typically formulated to have a pH of from about 3.0 to about 9.0 or even from about 3 to about 5. Particulate laundry products are typically formulated to have a pH of from about 8 to about 11. In some embodiments, the cleaning compositions of the present invention may be formulated to have an alkaline pH under wash conditions, such as a pH of from about 8.0 to about 12.0, or from about 8.5 to about 11.0, or from about 9.0 to about 11.0. In some embodiments, the cleaning compositions of the present invention may be formulated to have a neutral pH under wash conditions, such as a pH of from about 5.0 to about 8.0, or from about 5.5 to about 8.0, or from about 6.0 to about 7.5. In some embodiments, neutral pH conditions can be measured when the cleaning composition is dissolved in deionized water at 1:100 (wt: wt) at 20 ℃, measured using a conventional pH meter. Techniques for controlling the pH at recommended use levels include the use of buffers, bases, acids, and the like, and are well known to those skilled in the art.
In some embodiments, one or more subtilisin variants described herein are encapsulated to protect them from other components in the composition during storage and/or to control the availability of the variants during cleaning. In some embodiments, encapsulation enhances the performance of the variant and/or additional enzyme. In some embodiments, the encapsulating material typically encapsulates at least a portion of a subtilisin variant described herein. Typically, the encapsulating material is water-soluble and/or water-dispersible. In some embodiments, the encapsulating material has a glass transition temperature (Tg) of 0 ℃ or greater. Exemplary encapsulating materials include, but are not limited to, carbohydrates, natural or synthetic gums, chitin, chitosan, cellulose and cellulose derivatives, silicates, phosphates, borates, polyvinyl alcohol, polyethylene glycols, paraffin waxes, and combinations thereof. When the encapsulating material is a carbohydrate, it is typically selected from the group consisting of monosaccharides, oligosaccharides, and combinations thereof. In some embodiments, the encapsulating material is starch (see, e.g., EP 0922499, US 4,977,252, US 5,354,559, and US 5,935,826). In some embodiments, the encapsulating material is a microsphere made of a plastic (e.g., thermoplastic, acrylonitrile, methacrylonitrile, polyacrylonitrile, polymethacrylonitrile, and mixtures thereof). Exemplary commercial microspheres include, but are not limited to(Stockviksverken, sweden), PM 6545, PM 6550, PM 7220, PM 7228, And(PQ Corp., pa.) Fu Ji Gu, pa., valley force, pa.).
There are a variety of wash conditions, including different detergent formulations to which one or more subtilisin variants described herein may be exposed, wash water volume, wash water temperature, and length of wash time. Low detergent concentration systems involve wash water containing less than about 800ppm of detergent components. Medium detergent concentration systems involve wash water containing from about 800ppm to about 2000ppm of detergent components. High detergent concentration systems involve wash water containing greater than about 2000ppm of detergent components. In some embodiments, the "cold water wash" of the present invention utilizes a "cold water detergent" suitable for washing at temperatures ranging from about 10 ℃ to about 40 ℃, from about 20 ℃ to about 30 ℃, or from about 15 ℃ to about 25 ℃, and all other combinations ranging from about 15 ℃ to about 35 ℃ or 10 ℃ to 40 ℃.
Different geographical locations have different water hardness. Hardness is a measure of the amount of calcium (Ca 2+) and magnesium (Mg 2+) in water. Water hardness is generally described in terms of Ca 2+/Mg2+ mixed in particles per gallon (gpg). In the united states, most water is hard water, but the hardness varies. Medium hard (60-120 ppm) to hard (121-181 ppm) water has hardness minerals of 60 to 181ppm (ppm can be divided by 17.1 to convert ppm to particles/us gallons).
| Water and its preparation method | Particle/gallon | Parts per million |
| Soft and soft | Less than 1.0 | Less than 17 |
| Slightly harder | 1.0 To 3.5 | 17 To 60 |
| Medium hard | 3.5 To 7.0 | 60 To 120 |
| Hard | 7.0 To 10.5 | 120 To 180 |
| Very hard | Greater than 10.5 | Greater than 180 |
Other embodiments relate to one or more cleaning compositions comprising from about 0.00001% to about 10% by weight of the composition of one or more subtilisin variants described herein, and from about 99.999% to about 90.0% by weight of the composition of one or more adjunct materials. In another embodiment, the cleaning composition comprises from about 0.0001% to about 10%, from about 0.001% to about 5%, from about 0.001% to about 2%, or from about 0.005% to about 0.5%, by weight of the composition, of one or more subtilisin variants, and from about 99.9999% to about 90.0%, from about 99.999% to about 98%, from about 99.995% to about 99.5%, by weight of the composition, of one or more adjunct materials.
In other embodiments, the compositions described herein comprise one or more subtilisin variants described herein and one or more additional enzymes. The one or more additional enzymes are selected from the group consisting of acylases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, dispersons, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, hemicellulases, hexosaminidases, hyaluronidases, keratinases, laccases, lactases, ligninases, lipases, lipoxygenases, lysozyme, mannanases, metalloproteases, nucleases (e.g., dnases and/or RNAs), oxidases, oxidoreductases, pectate lyases, pectin acetylesterases, pectinases, pentosanases, perhydrolases, peroxidases, phenol oxidases, phosphatases, galactanases, polygalacturonases, polysaccharidases, proteases, further proteases, pullulanases, mannanases, xylanases, and combinations thereof. Some embodiments relate to combinations (i.e., "mixtures") of enzymes comprising conventional enzymes (like amylase, lipase, cutinase, mannanase and/or cellulase) that bind to one or more subtilisin variants and/or one or more additional proteases described herein.
In another embodiment, one or more compositions described herein comprise one or more subtilisin variants described herein and one or more additional proteases. In one embodiment, the additional protease is a serine protease. In another embodiment, the additional protease is not immunologically relevant (e.g., the protease does not cross-react in antibody-based assays known in the art to assess shared immune epitopes). In another embodiment, the additional protease is a protease having a different net charge (e.g., +2 to-1 relative to the parent protease). In another embodiment, the additional protease is a metalloprotease, a fungal subtilisin, or an alkaline microbial protease or a trypsin-like protease. Suitable additional proteases include those of animal, plant or microbial origin. In some embodiments, the additional protease is a microbial protease. In other embodiments, the additional protease is a chemically or genetically modified mutant. In another embodiment, the additional protease is an alkaline microbial protease or a trypsin-like protease. In other embodiments, the additional protease does not contain an epitope that cross-reacts with the subtilisin variant as measured by antibody binding or other assays available in the art. Exemplary alkaline proteases include those derived from, for example, bacillus (e.g., BPN', carlsberg), subtilisin 309, subtilisin 147, subtilisin PB92, subtilisin DY, subtilisin 168, bacillus gibsonii DSM14391 subtilisin, bacillus gibsonii AGS78407 subtilisin, bacillus pumilus subtilisin, bacillus lentus DSM5483, and Bacillus species TY-145 subtilisin, or fungal sources (e.g., such as those described in U.S. Pat. No. 8,362,222). Exemplary additional proteases include, but are not limited to, WO 92/21760、WO 95/23221、WO 2008/010925、WO 09/149200、WO 09/149144、WO 09/149145、WO 10/056640、WO 10/056653、WO 2010/0566356、WO 11/072099、WO 2011/13022、WO 11/140364、WO 12/151534、WO 2015/038792、WO 2015/089447、WO 2015/089441、WO 2017/215925/ U.S. published application No. 2008/0090747、US 5,801,039、US 5,340,735、US 5,500,364、US 5,855,625、RE 34,606、US 5,955,340、US 5,700,676 US 6,312,936、US 6,482,628、US 8,530,219、 U.S. provisional application Nos. 62/180673 and 62/161077, PCT application Nos. PCT/US2015/021813、PCT/US2015/055900、PCT/US2015/057497、PCT/US2015/057492、PCT/US2015/057512、PCT/US2015/057526、PCT/US2015/057520、PCT/US2015/057502、PCT/US2016/022282、WO 2016074925、WO 2020178102、WO 2022106400、WO 2016203064、EP3380599、WO 2017215925、WO 201948495、WO 2020221578 and WO 2016203064, Those described in US7294499, WO 2016/097354 and PCT/US16/32514, and metalloproteases described in WO 1999014341、WO 1999033960、WO 1999014342、WO 1999034003、WO 2007044993、WO 2009058303、WO 2009058661、WO 2014071410、WO 2014194032、WO 2014194034、WO 2014194054 and WO 2014/194117. Exemplary additional proteases include, but are not limited to, trypsin (e.g., of porcine or bovine origin) and Fusarium (Fusarium) protease described in WO 89/06270. Exemplary commercial proteases include, but are not limited toMAXACALTM、MAXAPEMTM、 Oxp, PURAMAX TM、EXCELLASETM、PREFERENZTM protease (e.g., P100, P110, P280, P300), EFFECTENZ TM protease (e.g., P1000, P1050, P2000), EXCELLENZ TM protease (e.g., P1000),And PURAFAST TM (DuPont/Danisco/Jenery (Genencor)); ULTRA、 Variants(s), 16L、 ULTRA、 DURAZYMTM、 LIQUANASE PROGRESS And(Novozymes), BLAP TM and BLAP TM variants (Henkel), LAVERGY TM PRO 104L (Basf), KAP (Bacillus alcaligenes subtilisin (Kao)) and(AB enzyme preparation Co., ltd.).
Another embodiment relates to a composition comprising one or more subtilisin variants described herein and one or more lipases. In some embodiments, the composition comprises from about 0.00001% to about 10%, about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, or about 0.005% to about 0.5% lipase by weight of the composition. Exemplary lipases may be chemically or genetically modified mutants. exemplary lipases include, but are not limited to, those of bacterial or fungal origin, such as, for example, humicola lanuginosa (H.lanuginosa) lipase (see, for example, EP 258068 and EP 305116), thermomyces lanuginosus (T.lanuginosa) lipase (see, for example, WO 2014/059360 and WO 2015/010009), rhizomucor miehei (Rhizomucor miehei) lipase (see, for example, EP 238023), candida (Candida) lipase such as, for example, candida antarctica (C.antarctica) lipase (such as Candida antarctica lipase A or B) (see, for example, EP 214761), and Candida antarctica lipase A or B, Pseudomonas lipases such as Pseudomonas alcaligenes and Pseudomonas pseudoalcaligenes lipases (see, e.g., EP 218272), pseudomonas cepacia (P.cepacia) lipases (see, e.g., EP 331376), pseudomonas stutzeri (P.stutzeri) lipases (see, e.g., GB 1,372,034), pseudomonas fluorescens (P.fluoscens) lipases, bacillus lipases (e.g., bacillus subtilis lipases (Dartois et al, biochem. Biophys. Acta [ journal of biochemistry & biophysics ]1131:253-260 (1993)) Bacillus stearothermophilus lipase (see, e.g., JP 64/744992), and Bacillus pumilus lipase (see, e.g., WO 91/16422)). Exemplary cloned lipases include, but are not limited to, penicillium sambacii (Penicillium camembertii) lipase (see Yamaguchi et al, gene [ Gene ]103:61-67 (1991)), geotrichum candidum (Geotrichum candidum) lipase (see Schimada et al, J.biochem. [ J.Biochem., 106:383-388 (1989)), and various Rhizopus (Rhizopus) lipases, such as Rhizopus delbrueckii (R.delete) lipase (see Hass et al, gene [ Gene ]109:117-113 (1991)), and the like, rhizopus niveus lipase (Kugimiya et al, biosci. Biotech. Biochem [ bioscience, biotechnology and biochemistry ]56:716-719 (1992)) and Rhizopus oryzae (R.oryzae) lipase. Other lipolytic enzymes (e.g., cutinases) may also be used in one or more of the compositions described herein, including but not limited to cutinases derived from Pseudomonas mendocina (Pseudomonas mendocina) (see WO 88/09367) and/or Fusarium pisiformis (Fusarium solani pisi) (see WO 90/09446), for example. Exemplary commercial LIPASEs include, but are not limited to, M1 LIPASE TM、LUMA FASTTM、LIPOMAXTM and PREFERENZ TM L100 (dupont); And ULTRA (Norwechat), and LIPASE P TM (Tianye pharmaceutical Co., ltd.).
Still further embodiments relate to compositions comprising one or more subtilisin variants described herein and one or more amylases. In one embodiment, the composition comprises from about 0.00001% to about 10%, about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, or about 0.005% to about 0.5% amylase by weight of the composition. Any amylase (e.g., an alpha amylase and/or a beta amylase) suitable for use in alkaline solutions may be used for inclusion in such compositions. Exemplary amylases may be chemically or genetically modified mutants. Exemplary amylases include, but are not limited to, those of bacterial or fungal origin, such as, for example, the amylases described in GB 1,296,839、WO 9100353、WO 9402597、WO 94183314、WO 9510603、WO 9526397、WO 9535382、WO 9605295、WO 9623873、WO 9623874、WO 9630481、WO 9710342、WO 9741213、WO 9743424、WO 9813481、WO 9826078、WO 9902702、WO 9909183、WO 9919467、WO 9923211、WO 9929876、WO 9942567、WO 9943793、WO 9943794、WO 9946399、WO 0029560、WO 0060058、WO 0060059、WO 0060060、WO 0114532、WO 0134784、WO 0164852、WO 0166712、WO 0188107、WO 0196537、WO 02092797、WO 0210355、WO 0231124、WO 2004055178、WO 2004113551、WO 2005001064、WO 2005003311、WO 2005018336、WO 2005019443、WO 2005066338、WO 2006002643、WO 2006012899、WO 2006012902、WO 2006031554、WO 2006063594、WO 2006066594、WO 2006066596、WO 2006136161、WO 2008000825、WO 2008088493、WO 2008092919、WO 2008101894、WO 2008/112459、WO 2009061380、WO 2009061381、WO 2009100102、WO 2009140504、WO 2009149419、WO 2010/059413、WO 2010088447、WO 2010091221、WO 2010104675、WO 2010115021、WO 10115028、WO 2010117511、WO 2011076123、WO 2011076897、WO 2011080352、WO 2011080353、WO 2011080354、WO 2011082425、WO 2011082429、WO 2011087836、WO 2011098531、WO 2013063460、WO 2013184577、WO 2014099523、WO 2014164777、WO 2015077126、WO 2022/175435 and WO 2018184004. Exemplary commercial amylases include, but are not limited to STAINZYME STAINZYME AMPLIFY STAINZYME And BAN TM (Norwechat Co., ltd );EFFECTENZTMS1000、POWERASETM、PREFERENZTMS100、PREFERENZTMS110、PREFERENZTMS210、EXCELLENZTMS2000、AndP (DuPont). In some embodiments, subtilisin variants provided herein may be combined with one or more amylases and variants thereof, and combinations of the one or more amylases and variants thereof, the one or more amylases selected from the group consisting of AA707, AA560, AAI10, bspAmy, SP722, and CspAmy1.
Still further embodiments relate to compositions comprising one or more subtilisin variants described herein and one or more cellulases. In one embodiment, the composition comprises from about 0.00001% to about 10%, 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, or about 0.005% to about 0.5% cellulase by weight of the composition. Any suitable cellulase may be used in the compositions described herein. Exemplary cellulases may be chemically or genetically modified mutants. Exemplary cellulases include, but are not limited to, those of bacterial or fungal origin, such as those described, for example, in WO 2005054475, WO 2005056787, US 7,449,318, US 7,833,773, US 4,435,307;EP 0495257, and U.S. provisional application No. 62/296,678. Exemplary commercial cellulases include, but are not limited to AndPREMUM (Norwechat Co.); REVITALENZ TM100、REVITALENZTM/220, and2000 (DuPont Co.) and KAC-500 (B) TM (Huawang Kogyo Co.). In some embodiments, the cellulase is incorporated as part or fragment of a mature wild-type or variant cellulase in which a portion of the N-terminus is deleted (see, e.g., US 5,874,276).
Even further embodiments relate to compositions comprising one or more subtilisin variants described herein and one or more mannanases. In one embodiment, the composition comprises from about 0.00001% to about 10%, about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, or about 0.005% to about 0.5% mannanase enzyme by weight of the composition. Exemplary mannanases may be chemically or genetically modified mutants. Exemplary mannanases include, but are not limited to, those of bacterial or fungal origin, such as those described in, for example, WO 2016/007929;USPN 6,566,114, 6,602,842, and 6,440,991, and U.S. provisional application Nos. 62/251516, 62/278383, and 62/278387. Exemplary commercial mannanases include, but are not limited to(Norwechat corporation) and EFFECTENZ TMM 1000、EFFECTENZTM M2000,M 100、 (AB enzyme preparation Co.) and PURABRITE TM (DuPont).
Still further embodiments relate to compositions comprising one or more subtilisin variants described herein and one or more nucleases (e.g., dnases or rnases). In one embodiment, the composition comprises from about 0.00001% to about 10%, about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, or about 0.005% to about 0.5% nuclease by weight of the composition. Exemplary nucleases include, but are not limited to, those described in WO 2015181287, WO 2015155350, WO 2016162556, WO 2017162836, WO 2017060475 (e.g., ,SEQ ID NO:21)、WO 2018184816、WO 2018177936、WO 2018177938、WO 2018/185269、WO 2018185285、WO 2018177203、WO 2018184817、WO 2019084349、WO 2019084350、WO 2019081721、WO 2018076800、WO 2018185267、WO 2018185280、WO 2018206553 and WO 2020099490. Other nucleases that can be used in combination with subtilisin variants provided herein in the compositions and methods provided herein include those :Nijland R,Hall MJ,Burgess JG(2010)Dispersal of Biofilms by Secreted,Matrix Degrading,Bacterial DNase[ described below disperse biofilms by secretion, matrix degradation, bacterial dnase ]. PLoS ONE [ public Science library: complex ]5 (12) and Whitchurch,C.B.,Tolker-Nielsen,T.,Ragas,P.C.,Mattick,J.S.(2002)Extracellular DNA required for bacterial biofilm formation[ bacterial biofilm formation.
Still even further embodiments relate to compositions comprising one or more subtilisin variants described herein and one or more peroxidases and/or oxidases. In one embodiment, the composition comprises from about 0.00001% to about 10%, about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, or about 0.005% to about 0.5% peroxidase or oxidase enzyme by weight of the composition. The peroxidase may be used in combination with hydrogen peroxide or a source thereof (e.g., percarbonate, perborate, or persulfate), and the oxidase may be used in combination with oxygen. Peroxidases and oxidases, alone or in combination with builders, are used in "solution bleaching" (i.e. preventing transfer of textile dye from one dyed fabric to another when the fabrics are washed together in a wash liquor) (see for example WO 94/12621 and WO 95/01426). Exemplary peroxidases and/or oxidases may be chemically or genetically modified mutants. Exemplary peroxidases/oxidases include, but are not limited to, those of plant, bacterial or fungal origin.
Another embodiment relates to a composition comprising one or more subtilisin variants described herein and one or more perhydrolases, such as, for example, perhydrolases described in WO 2005/056782, WO 2007/106293, WO 2008/0632400, WO 2008/106214, and WO 2008/106215.
Another embodiment relates to a composition comprising one or more subtilisin variants described herein, and an engineered polysaccharide biopolymer having cleaning/whitening improvement or textile surface modification benefits.
In yet another embodiment, the one or more subtilisin variants described herein and the one or more additional enzymes contained in the one or more compositions described herein may each independently vary to about 10% by weight of the composition, with the balance of the cleaning composition being one or more adjunct materials.
In some embodiments, one or more of the compositions described herein may be used as a detergent additive, wherein the additive is in solid or liquid form. Such additive products are intended to supplement and/or enhance the performance of conventional detergent compositions and may be added at any stage of the cleaning process. In some embodiments, the density of the laundry detergent composition ranges from about 400 to about 1200 g/liter, while in other embodiments it ranges from about 500 to about 950 g/liter of the composition measured at 20 ℃.
Some embodiments relate to laundry detergent compositions comprising one or more subtilisin variants described herein and one or more adjunct materials selected from surfactants, enzyme stabilizers, builder compounds, polymeric compounds, bleaching agents, additional enzymes, suds suppressors, dispersants, lime-soap dispersants, soil suspending agents, anti-redeposition agents, corrosion inhibitors and combinations thereof. In some embodiments, the laundry composition further comprises a softener.
Further embodiments relate to a manual dishwashing composition comprising one or more subtilisin variants described herein and one or more adjunct materials selected from surfactants, organic polymeric compounds, suds boosters, group II metal ions, solvents, hydrotropes, and additional enzymes.
Other embodiments relate to one or more of the compositions described herein, wherein the composition is a compact particulate fabric cleaning composition for colored fabric washing or to provide softening through the wash volume, or a Heavy Duty Liquid (HDL) fabric cleaning composition. Exemplary fabric cleaning compositions and/or methods of preparation are described in USPN 6,610,642 and 6,376,450. Other exemplary cleaning compositions are described, for example, in USPN 6,605,458;6,294,514;5,929,022;5,879,584;5,691,297;5,565,145;5,574,005;5,569,645;5,565,422;5,516,448;5,489,392; and 5,486,303, 4,968,451, 4,597,898, 4,561,998, 4,550,862, 4,537,706, 4,515,707, and 4,515,705.
In some embodiments, the cleaning composition comprises an acidified particle or an aminocarboxylic acid builder. Examples of aminocarboxylic acid builders include aminocarboxylic acids, salts and derivatives thereof. In some embodiments, the aminocarboxylic acid builder may be methylglycine diacetic acid (MGDA), GLDA (glutamic acid-N, N-diacetic acid), iminodisuccinic acid (IDS), carboxymethyl inulin and salts and derivatives thereof, aspartic acid-N-monoacetic acid (ASMA), aspartic acid-N, N-diacetic acid (ASDA), aspartic acid-N-monopropionic Acid (ASMP), iminodiacetic acid (IDA), N- (2-sulfomethyl) aspartic acid (SMAS), N- (2-sulfoethyl) aspartic acid (SEAS), N- (2-sulfomethyl) glutamic acid (SMGL), N- (2-sulfoethyl) glutamic acid (SEGL), IDA (iminodiacetic acid) and salts and derivatives thereof such as N-methyliminodiacetic acid (MIDA), alpha-alanine-N, N-diacetic acid (alpha-serine-32 DA), N-isoglycine (N-32), N-isoglycine (N, N-isoglycine) (N, 34-isoglycine) (N, N-isoglycine) (MIDA), n-diacetic acid (ANDA), sulfanilic acid-N, N-diacetic acid (SLDA), taurine-N, N-diacetic acid (TUDA) and sulfomethyl-N, N-diacetic acid (SMDA), and alkali metal salts and derivatives thereof. In some embodiments, the acidified particles have a weight geometric mean particle size of from about 400 μ to about 1200 μ and a bulk density of at least 550g/L. In some embodiments, the acidified particles comprise at least about 5% builder.
In some embodiments, the acidified particles may comprise any acid, including organic acids and mineral acids. The organic acid may have one or two carboxyl groups and in some cases may have up to 15 carbons, particularly up to 10 carbons, such as formic acid, acetic acid, propionic acid, capric acid, oxalic acid, succinic acid, adipic acid, maleic acid, fumaric acid, sebacic acid, malic acid, lactic acid, glycolic acid, tartaric acid, and glyoxylic acid. In some embodiments, the acid is citric acid. Mineral acids include hydrochloric acid and sulfuric acid. In some cases, the acidified particles are highly active particles comprising high levels of an aminocarboxylic acid builder. Sulfuric acid has also been found to further contribute to the stability of the final particles.
Further embodiments relate to cleaning compositions comprising one or more subtilisin variants and one or more surfactants and/or surfactant systems, wherein the surfactants are selected from nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, zwitterionic surfactants, semi-polar nonionic surfactants, and mixtures thereof. In some embodiments, the surfactant is present at a level of from about 0.1% to about 60%, by weight of the cleaning composition, while in alternative embodiments the level is from about 1% to about 50%, and in still other embodiments the level is from about 5% to about 40%.
In some embodiments, one or more compositions described herein comprise one or more detergent builders or builder systems. In one embodiment, the composition comprises from at least about 0.1% or more, or from about 0.1% to about 90%, from about 0.1% to about 80%, from about 3% to about 60%, from about 5% to about 40%, or from about 10% to about 50% by weight of the composition of builder. Exemplary builders include, but are not limited to, alkali metal, ammonium salts of polyphosphates and alkanolammonium salts, alkali metal silicates, alkaline earth and alkali metal carbonates, aluminosilicates, polycarboxylate compounds, ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3, 5-trihydroxybenzene-2, 4, 6-trisulfonic acid, and carboxymethyl oxy succinic acid, ammonium salts and substituted ammonium salts of polyacetic acid, such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, polycarboxylates, such as mellitic acid, succinic acid, citric acid, oxydisuccinic acid, polymaleic acid, benzene 1,3, 5-tricarboxylic acid, carboxymethyl oxy succinic acid, and soluble salts thereof. In some such compositions, the builder forms water-soluble hardness ion complexes (e.g., chelating builders), such as citrates and polyphosphates, e.g., sodium tripolyphosphate hexahydrate, potassium tripolyphosphate, and mixed sodium and potassium tripolyphosphates. Exemplary builders are described, for example, in EP 2100949. In some embodiments, the builder includes phosphate builders and non-phosphate builders. In some embodiments, the builder is a phosphate builder. In some embodiments, the builder is a non-phosphate builder. In some embodiments, the builder comprises a mixture of phosphate and non-phosphate builders. Exemplary phosphate builders include, but are not limited to, mono-, di-, tri-or oligomeric phosphates, including alkali metal salts, including sodium salts, of these compounds. In some embodiments, the builder may be Sodium Tripolyphosphate (STPP). In addition, the composition may comprise carbonate and/or citrate. Other suitable non-phosphate builders include the homopolymers and copolymers of polycarboxylic acids and partially or fully neutralized salts thereof, monomeric polycarboxylic acids and hydroxycarboxylic acids and salts thereof. In some embodiments, salts of the above compounds include ammonium and/or alkali metal salts, i.e., lithium, sodium and potassium salts, including sodium salts. Suitable polycarboxylic acids include acyclic, cycloaliphatic, heterocyclic and aromatic carboxylic acids, wherein in some embodiments they may contain at least two carboxyl groups, which are in each case separated from one another, in some cases by no more than two carbon atoms.
In some embodiments, one or more compositions described herein comprise one or more chelating agents. In one embodiment, the composition comprises from about 0.1% to about 15% or about 3% to about 10% chelating agent by weight of the composition. Exemplary chelating agents include, but are not limited to, for example, copper, iron, manganese, and mixtures thereof.
In some embodiments, one or more of the compositions described herein comprise one or more deposition aids. Exemplary deposition aids include, but are not limited to, polyethylene glycol, polypropylene glycol, polycarboxylates, soil release polymers such as, for example, polyterephthalic acid, clays such as, for example, kaolinite, montmorillonite, attapulgite, illite, bentonite, and halloysite, and mixtures thereof.
In other embodiments, one or more of the compositions described herein comprise one or more anti-redeposition agents or nonionic surfactants (which may prevent redeposition of soil) (see, e.g., EP 2100949). For example, in ADW compositions, nonionic surfactants can be used for surface modification purposes (especially for flakes) to avoid filming and staining and to improve gloss. These nonionic surfactants can also be used to prevent redeposition of soil. In some embodiments, the nonionic surfactant can be an ethoxylated nonionic surfactant, an epoxy-terminated poly (alkoxylated) alcohol, and an amine oxide surfactant.
In some embodiments, one or more compositions described herein comprise one or more dye transfer inhibitors. Exemplary polymeric dye transfer inhibition agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones, polyvinylimidazoles, and mixtures thereof. In one embodiment, the composition comprises from about 0.0001% to about 10%, from about 0.01% to about 5%, or from about 0.1% to about 3%, by weight of the composition, of the dye transfer inhibiting agent.
In some embodiments, one or more compositions described herein comprise one or more silicates. Exemplary silicates include, but are not limited to, sodium silicate, e.g., sodium disilicate, sodium metasilicate, and crystalline phyllosilicates. In some embodiments, silicate is present at a level of from about 1% to about 20% or about 5% to about 15% by weight of the composition.
In some still further embodiments, one or more compositions described herein comprise one or more dispersants. Exemplary water-soluble organic materials include, but are not limited to, acids or salts thereof, such as homo-or co-polymers, wherein the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by no more than two carbon atoms.
In some further embodiments, one or more compositions described herein comprise one or more enzyme stabilizers. In some embodiments, the enzyme stabilizer is a water-soluble source of calcium and/or magnesium ions. In some embodiments, the enzyme stabilizing agent includes oligosaccharides, polysaccharides, and inorganic divalent metal salts (including alkaline earth metal salts, such as calcium salts). In some embodiments, the enzymes used herein are stabilized by the water-soluble sources of zinc (II), calcium (II), and/or magnesium (II) ions, as well as other metal ions (e.g., barium (II), scandium (II), iron (II), manganese (II), aluminum (III), tin (II), cobalt (II), copper (II), nickel (II), and vanadyl (IV)) present in the finished compositions that provide such ions to the enzymes. Chlorides and sulphates may also be used in some embodiments. Exemplary oligosaccharides and polysaccharides (e.g., dextrins) are described, for example, in WO 07/145964. In some embodiments, reversible protease inhibitors may also be used, for example, in boron-containing compounds (e.g., borates, 4-formylphenylboronic acids, and phenylboronic acid derivatives (e.g., those described in WO 96/41859)) and/or peptide aldehydes (e.g., as further described in WO 2009/118375 and WO 2013004636).
As previously described (WO 199813458, WO 2011036153, US 20140228274), peptide aldehydes can be used as protease stabilizers in detergent formulations. Examples of peptide aldehyde stabilizers are peptide aldehydes, ketones or halomethyl ketones, and may be "N-terminated", for example having a ureido, urethane or urea moiety, or "bis N-terminated", for example having a carbonyl, ureido, oxamide, thiourea, dithiooxamide or thiooxamide moiety (EP 2358877 B1). The molar ratio of these inhibitors to protease may be from 0.1:1 to 100:1, for example 0.5:1-50:1, 1:1-25:1 or 2:1-10:1. Other examples of protease stabilizers are benzophenone or benzoic acid aniline derivatives, which may contain a carboxyl group (US 7,968,508 B2). The molar ratio of these stabilizers to protease is preferably in the range from 1:1 to 1000:1, in particular from 1:1 to 500:1, particularly preferably from 1:1 to 100:1, most particularly preferably from 1:1 to 20:1.
In some embodiments, one or more compositions described herein comprise one or more bleaching agents, bleach activators, and/or bleach catalysts. In some embodiments, one or more of the compositions described herein comprise one or more inorganic and/or organic bleaching compounds. Exemplary inorganic bleaching agents include, but are not limited to, perhydrate salts such as perborates, percarbonates, perphosphates, persulfates, and persilicates. In some embodiments, the inorganic perhydrate salt is an alkali metal salt. In some embodiments, inorganic perhydrate salts are included that are crystalline solids without additional protection, but in some other embodiments, the salts are coated. Bleach activators are typically organic peracid precursors that enhance bleaching during cleaning at temperatures of 60 ℃ and below. Exemplary bleach activators include compounds that under perhydrolysis conditions give aliphatic peroxycarboxylic acids having from about 1 to about 10 carbon atoms or from about 2 to about 4 carbon atoms, and/or optionally substituted peroxybenzoic acids. Exemplary bleach activators are described, for example, in EP 2100949. Exemplary bleach catalysts include, but are not limited to, manganese triazacyclononane and related complexes, as well as cobalt, copper, manganese, and iron complexes. Further exemplary bleach catalysts are described, for example, in US 4,246,612;US 5,227,084;US 4,810,410;WO 99/06521, and EP 2100949.
In some embodiments, one or more of the compositions described herein comprise one or more catalytic metal complexes. In some embodiments, a metal-containing bleach catalyst may be used. In some embodiments, the metal bleach catalyst comprises a catalytic system comprising a transition metal cation having defined bleach catalytic activity (e.g., copper, iron, titanium, ruthenium, tungsten, molybdenum or manganese cations), an auxiliary metal cation having little or no bleach catalytic activity (e.g., zinc or aluminum cations), and chelates having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediamine tetraacetic acid, ethylenediamine tetra (methylenephosphonic acid), and water-soluble salts thereof (see, e.g., U.S. Pat. No. 4,430,243). In some embodiments, one or more of the compositions described herein are catalyzed by means of a manganese compound. Such compounds and usage levels are described, for example, in US 5,576,282. In further embodiments, cobalt bleach catalysts may be used and included in one or more of the compositions described herein. A variety of cobalt bleach catalysts are described, for example, in USPN 5,597,936 and 5,595,967.
In some further embodiments, one or more of the compositions described herein comprise a transition metal complex of a Macropolycyclic Rigid Ligand (MRL). As a practical matter and not by way of limitation, in some embodiments, the compositions and cleaning methods described herein are adjusted to provide an active MRL on the order of at least one part per million in the wash liquor of from about 0.005ppm to about 25ppm, from about 0.05ppm to about 10ppm, or from about 0.1ppm to about 5 ppm. Exemplary MRLs include, but are not limited to, cross-bridged special super-rigid ligands such as, for example, 5, 12-diethyl-1, 5,8, 12-tetraazabicyclo (6.6.2) hexadecane. Exemplary metallic MRLs are described, for example, in WO 2000/32601 and U.S. Pat. No. 6,225,464.
In another embodiment, one or more of the compositions described herein comprise one or more metal care agents. In some embodiments, the composition comprises from about 0.1% to about 5% by weight of the composition of the metal care agent. Exemplary metal conditioning agents include, for example, aluminum, stainless steel, and nonferrous metals (e.g., silver and copper). Further exemplary metal care agents are described, for example, in EP 2100949, WO 94/26860 and WO 94/26859. In some compositions, the metal care agent is a zinc salt.
In some embodiments, the cleaning composition is a Heavy Duty Liquid (HDL) composition comprising one or more subtilisin variants described herein. The HDL liquid laundry detergent may comprise a cleansing surfactant (10% -40%) comprising an anionic cleansing surfactant selected from the group consisting of linear or branched or random chain, substituted or unsubstituted alkyl sulfates, alkyl sulfonates, alkyl alkoxylated sulfates, alkyl phosphates, alkyl phosphonates, alkyl carboxylates, and/or mixtures thereof, and optionally a nonionic surfactant selected from the group consisting of linear or branched or random chain, substituted or unsubstituted alkyl alkoxylated alcohols, such as C 8-C18 alkyl ethoxylated alcohols and/or C 6-C12 alkylphenol alkoxylates, optionally wherein the weight ratio of anionic cleansing surfactant (hydrophilic index (HIc) from 6.0 to 9) to nonionic cleansing surfactant is greater than 1:1. Suitable detersive surfactants also include cationic detersive surfactants (selected from alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl tertiary sulfonium compounds, and/or mixtures thereof), zwitterionic and/or amphoteric detersive surfactants (selected from alkanolamine sulfobetaines), amphoteric surfactants, semi-polar nonionic surfactants, and mixtures thereof.
In another embodiment, the cleaning composition is a liquid or gel detergent (which is not a unit dose), which may be aqueous, typically containing at least 20% and up to 95% water by weight, such as up to about 70% water by weight, up to about 65% water by weight, up to about 55% water by weight, up to about 45% water by weight, or up to about 35% water by weight. Other types of liquids (including, but not limited to, alkanols, amines, diols, ethers, and polyols) may be included in the aqueous liquid or gel. The aqueous liquid or gel detergent may comprise from 0 to 30% of an organic solvent. The liquid or gel detergent may be non-aqueous.
The composition may optionally comprise a surface-active enhancing polymer consisting of amphiphilic alkoxylated grease cleaning polymers selected from the group consisting of alkoxylated polymers having branched hydrophilic and hydrophobic properties, such as alkoxylated polyalkyleneimines (in the range of 0.05wt% to 10 wt%) and/or random graft polymers typically comprising a hydrophilic backbone comprising monomers selected from the group consisting of unsaturated C 1-C6 carboxylic acids, ethers, alcohols, aldehydes, ketones, esters, sugar units, alkoxy units, maleic anhydride, saturated polyols (e.g. glycerol) and mixtures thereof, and one or more hydrophobic side chains selected from the group consisting of C 4-C25 alkyl groups, polypropylene, polybutenes, vinyl esters of saturated C 2-C6 monocarboxylic acids, C 1-C6 alkyl esters of acrylic or methacrylic acids and mixtures thereof.
The composition may comprise additional polymers such as soil release polymers including, for example, anionically end capped polyesters such as SRP1, polymers comprising at least one monomer unit selected from the group consisting of saccharides, dicarboxylic acids, polyols, and combinations thereof in random or block configuration, ethylene terephthalate-based polymers and copolymers thereof such as Repel-o-tex SF, SF-2, and SRP6, texcare SRA, SRA300, SRN100, SRN170, SRN240, SRN300, and SRN325, marloquest SL, anti-redeposition polymers (0.1 wt% to 10wt% including, for example, carboxylate polymers such as polymers comprising at least one monomer selected from the group consisting of acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid, methylenemalonic acid, and any mixtures thereof, vinylpyrrolidone homopolymers, and/or polyethylene glycol-based polymers having a molecular weight in the range of 500 to 100,000Da, such as alkyl cellulose, including, such as, random alkyl cellulose (carboxylate, alkyl cellulose, and alkyl cellulose, such as, alkyl cellulose, alkyl carboxylate, and/or cellulose methacrylate, and mixtures thereof.
The composition may further comprise saturated or unsaturated fatty acids, preferably saturated or unsaturated C 12-C24 fatty acids (0-10 wt.%), deposition aids in random or block configuration including, for example, polysaccharides, cellulosic polymers, polydiallyl dimethyl ammonium halide (DADMAC), and copolymers of DADMAC with vinylpyrrolidone, acrylamide, imidazole, halogenated imidazolines, and mixtures thereof, cationic guar gum, cationic celluloses such as cationic hydroxyethyl cellulose, cationic starch, cationic polyacrylamide, and mixtures thereof.
The composition may further comprise dye transfer inhibitors, examples of which include manganese phthalocyanine, peroxidase, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles and/or mixtures thereof, chelating agents, examples of which include ethylenediamine tetraacetic acid (EDTA), diethylenetriamine pentamethylenephosphonic acid (DTPMP), hydroxyethanediphosphonic acid (HEDP), ethylenediamine N, N' -disuccinic acid (EDDS), methylglycine diacetic acid (MGDA), diethylenetriamine pentaacetic acid (DTPA), propylenediamine tetraacetic acid (PDT A), 2-hydroxypyridine-N-oxide (HPNO), or methylglycine diacetic acid (MGDA), glutamic acid N, N-dicarboxymethyl glutamic acid tetrasodium salt (GLDA), nitrilotriacetic acid (NTA), 4, 5-dihydroxyisophthalic acid, citric acid and any salts thereof, N-hydroxyethylethylethylenediamine triacetic acid (HEDTA), hexamethylenephosphonic acid (HEDTA), ethylenediamine tetraacetic acid (DHEA), and derivatives thereof.
The composition may further comprise silicone-based or fatty acid-based foam inhibitors, enzyme stabilizers, shading dyes, calcium and magnesium cations, visual signal transduction components, defoamers (0.001 wt% to about 4.0 wt%) and/or structurants/thickeners (0.01 wt% -5 wt%) selected from the group consisting of diglycerides, triglycerides, ethylene glycol distearate, microcrystalline cellulose, cellulose-based materials, ultrafine cellulose, biopolymers, xanthan gum, gellan gum, and mixtures thereof.
In some embodiments, the cleaning composition is a heavy duty powder (HDD) composition comprising one or more subtilisin variants described herein. The HDD powder laundry detergent may comprise a detersive surfactant comprising an anionic detersive surfactant selected from the group consisting of linear or branched or random chain, substituted or unsubstituted alkyl sulphates, alkyl sulphonates, alkyl alkoxylated sulphates, alkyl phosphates, alkyl phosphonates, alkyl carboxylates and/or mixtures thereof, a nonionic detersive surfactant selected from the group consisting of linear or branched or random chain, substituted or unsubstituted C 8-C18 alkyl ethoxylates and/or C 6-C12 alkylphenol alkoxylates, a cationic detersive surfactant selected from the group consisting of alkyl pyridinium compounds, Alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl tertiary sulfonium compounds and mixtures thereof), zwitterionic and/or amphoteric cleaning surfactants (selected from alkanolamine sulfobetaines), amphoteric surfactants, semi-polar nonionic surfactants and mixtures thereof, builders (phosphate-free builders, such as zeolite builders, examples of which include zeolite a, zeolite X, zeolite P and zeolite MAP in the range of from 0 to less than 10 wt.%), phosphate builders, such as sodium tripolyphosphate in the range of from 0 to less than 10 wt.%, citric acid, citrate and nitrilotriacetic acid or salts thereof in the range of less than 15 wt.%, silicates (sodium or potassium or sodium metasilicate or layered silicate (SKS-6) in the range of from 0 to less than 10 wt.%), carbonates (sodium and/or sodium bicarbonate in the range of from 0 to less than 10 wt.%), and bleaching agents (photobleaches, such as zinc sulfonate) Sulfonated aluminum phthalocyanines, xanthene dyes and mixtures thereof), hydrophobic or hydrophilic bleach activators (e.g., dodecanoyloxy benzene sulfonate, decanoyloxy benzoic acid or salts thereof, 3, 5-trimethylhexanoyloxy benzene sulfonate, tetraacetyl ethylenediamine-TAED, and nonanyloxy benzene sulfonate-NOBS, nitrile quaternary ammonium salts (nitrile quats), and mixtures thereof), hydrogen peroxide sources (inorganic perhydrate salts such as mono-or tetrahydrated sodium salts of perborates, percarbonates, persulfates, perphosphates, or persilicates), preformed hydrophilic and/or hydrophobic peracids (selected from the group consisting of percarboxylic acids and salts, Percarbonic acid and salts, periminoacids and salts, peroxymonosulfuric acid and salts, and mixtures thereof), and/or bleach catalysts (e.g., imine bleach boosters such as imine cations and polyions, imine zwitterions, modified amines, modified amine oxides, N-sulfonylimines, N-phosphonoimines, N-acylimines, thiadiazole dioxides, perfluorinated imines, cyclic sugar ketones, and mixtures thereof), metal-containing bleach catalysts (e.g., copper, iron, titanium, ruthenium, tungsten, molybdenum or manganese cations, and auxiliary metal cations such as zinc or aluminum, and chelates such as ethylenediamine tetraacetic acid, ethylenediamine tetra (methylenephosphonic acid), and water-soluble salts thereof).
The composition may further comprise additional detergent ingredients including perfume microcapsules, starch encapsulated perfume accords, enzyme stabilizers, toners, additional polymers (including fabric integrity and cationic polymers), dye-locking ingredients, fabric softeners, brighteners (e.g., c.i. fluorescent brighteners), flocculants, chelants, alkoxylated polyamines, fabric deposition aids, and/or cyclodextrins.
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a detergent composition selected from the group consisting of laundry detergents, soap bars, fabric softening detergents, dishwashing detergents, medical device detergents, and hard surface cleaning detergents.
In some embodiments, the present invention relates to detergent compositions comprising at least two proteases in combination with one or more additional cleaning composition components, such as, but not limited to, the liquid laundry compositions described in WO 2022106404.
In some embodiments, one or more subtilisin variants described herein may be part of or added to a liquid laundry detergent composition, such as, but not limited to, the liquid laundry compositions described in US11046919B2、WO 2021/223552、WO 2022/167251、WO 2022/074037、WO 2021/123184、WO 2021/037895、WO 2022/10372、WO 2020/264077、WO 2022/106404 and/or WO 2017/54983, concentrated liquid laundry compositions (US 10683474B 2), water-soluble unit dose articles comprising fatty alkyl ester alkoxylated nonionic surfactant and alkoxylated alcohol nonionic surfactant (US 20220162523 A1), liquid laundry detergent compositions comprising improved alkylbenzenesulfonate surfactant (WO 2021/108307), liquid laundry detergent compositions comprising benzyl benzoate (WO 2020/223959), and/or water-soluble unit dose articles comprising an amphiphilic graft polymer and polyester terephthalate (WO 2019/032557).
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a liquid laundry detergent composition comprising an alkyl ether carboxylic acid, betaine, anionic surfactant, nonionic surfactant for providing a softening benefit (WO 2013/087286).
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a liquid laundry detergent composition comprising a sulfite radical scavenger, a protease stabilizer/inhibitor, or a combination thereof (WO 2022/157311).
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a liquid laundry detergent composition as described in US20210317387A1, WO 2021/219296, WO 2021/127662, WO 2021/04685, US11208619, US 20220186144.
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a liquid laundry detergent composition comprising a dispersant protein variant, such as, but not limited to, the liquid laundry detergent composition described in US20210317387 A1.
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a liquid laundry detergent composition that is an overbased textile detergent, such as, but not limited to, the liquid laundry detergent composition described in WO 2021/219296.
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a liquid laundry detergent composition that is a low density unit dose detergent having encapsulated perfume, such as, but not limited to, the detergent compositions described in WO 2021/127662.
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a liquid laundry detergent composition comprising polyethylene glycol and an organic acid, such as, but not limited to, the detergent compositions described in WO 2021/04685.
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a detergent composition comprising polyethylene glycol and an organic acid, such as, but not limited to, the detergent compositions described in WO 2021/04685.
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a detergent composition that is active on protein stains, such as, but not limited to, the detergent composition described in US 11208619.
In some embodiments, the cleaning composition comprising one or more subtilisin variants described herein is a detergent composition comprising a soil release polymer, such as, but not limited to, the detergent composition described in US 20220186144.
Examples of laundry detergent compositions include those provided in the following examples or in the following tables:
in some embodiments, the cleaning composition is an ADW detergent composition comprising one or more subtilisin variants described herein. The ADW detergent composition may comprise two or more nonionic surfactants selected from ethoxylated nonionic surfactants, alcohol alkoxylated surfactants, epoxy-capped poly (alkoxylated) and amine oxide surfactants, present in an amount of 0-10% by weight, and in the range of 5% -60% by weight, builders including phosphate builders (mono-, di-, tri-, or oligomeric phosphates), sodium tripolyphosphate-STPP or phosphate-free builders (amino acid based compounds such as MGDA (methyl-glycine-diacetic acid) and salts and derivatives thereof, GLDA (glutamic acid-N, N-diacetic acid) and salts and derivatives thereof, IDS (iminodisuccinic acid) and salts and derivatives thereof, carboxymethyl inulin and salts and derivatives and mixtures thereof, nitrilotriacetic acid (NTA), diethylenetriamine pentaacetic acid (DTPA), and B-alanine diacetic acid (B-ADA) and salts thereof, homopolymers and copolymers of polycarboxylic acids and partially or completely neutralized salts thereof, monomeric polycarboxylic acids and hydroxycarboxylic acids and salts thereof, which are in the range of 0.5% to 50% by weight, sulphonated/carboxylated polymers which provide dimensional stability to the product, which are in the range of about 0.1% to about 50% by weight, drying assistants which are in the range of about 0.1% to about 10% by weight, which are selected from polyesters, in particular from polyesters, optionally having 3 to 6 functional groups (in particular acids, which are advantageous for polycondensation, Alcohol or ester functional groups), polycarbonate-, polyurethane-, and/or polyurea-polyorganosiloxane compounds or reactive cyclic carbonates thereof and urea-type precursor compounds thereof, silicate salts (sodium or potassium silicate, such as sodium disilicate, sodium metasilicate, and crystalline phyllosilicates) in the range of from about 1% to about 20% by weight, inorganic bleaching agents (e.g., perhydrate salts such as perborate, percarbonate, perphosphate, persulfate, and persilicate), and organic bleaching agents (e.g., organic peroxy acids, including diacyl and tetraacyl peroxides, especially diperoxydodecanedioic acid, Diperoxydetradecylic acid, and diperoxydischiadic acid), bleach activator-organic peracid precursors in the range of from about 0.1% to about 10% by weight, bleach catalysts (selected from manganese triazacyclononane and related complexes, co, cu, mn, and Fe bipyridinamines and related complexes, and cobalt (III) pentaaminoacetate and related complexes), metal care agents (selected from benzotriazole, metal salts and complexes, and silicates) in the range of about 0.1% -5% by weight, enzymes (acyltransferases) in the range of about 0.01-5.0mg active enzyme/gram ADW detergent composition, alpha-amylase, beta-amylase, alpha-galactosidase, arabinosidase, aryl esterase, beta-galactosidase, carrageenase, catalase, cellobiohydrolase, cellulase, chondroitinase, cutinase, dispersing protein, endo-beta-1, 4-glucanase, endo-beta-mannanase, esterase, exo-mannanase, galactanase, glucoamylase, hemicellulase, hexosaminidase, hyaluronidase, keratinase, laccase, lactase, ligninase, lipase, lipoxygenase, mannanase, nuclease, oxidase, oxidoreductase, pectate lyase, pectoacetase, pectinase, Pectinase, pentosanase, peroxidase, phenol oxidase, phosphatase, phospholipase, phytase, polyesterase, polygalacturonase, additional proteases, pullulanase, reductase, rhamnogalacturonase, beta-glucanase, tannase, transglutaminase, xanthan lyase, xylanacetyl esterase, xylanase, xyloglucanase, xylosidase, and mixtures thereof), and an enzyme stabilizer component (selected from oligosaccharides, polysaccharides, and inorganic divalent metal salts).
Exemplary ADW compositions are provided in the table below.
Further embodiments relate to compositions and methods for treating fabrics (e.g., desizing textiles) using one or more subtilisin variants described herein. Fabric treatment methods are well known in the art (see, e.g., US 6,077,316). For example, the feel and appearance of a fabric may be improved by a method comprising contacting the fabric with a variant described herein in solution. The fabric may be treated with the solution under pressure.
One or more subtilisin variants described herein may be applied during or after weaving of the textile, during a desizing stage, or in one or more additional fabric processing steps. During the weaving of the textile, the threads are exposed to considerable mechanical strains. Prior to weaving on a mechanical loom, the warp yarns are typically coated with a sizing starch or starch derivative to increase their tensile strength and prevent breakage. One or more subtilisin variants described herein may be used during or after braiding to remove sized starch or starch derivatives. After weaving, variants can be used to remove the size coat before further processing the fabric to ensure uniform and wash-resistant results. One or more subtilisin variants described herein may be used alone or in combination with other desizing chemicals and/or desizing enzymes to desize fabrics, including cotton-containing fabrics, as a detergent additive, such as in an aqueous composition. The amylase may also be used in combination with subtilisin variants in compositions and methods for producing a stone-worn look on indigo-dyed denim fabric and clothing. For garment production, the fabric may be cut and sewn into a garment or garment, which is then finished. In particular, for the production of denim, different enzymatic finishing processes have been developed. Finishing of jeans garments typically begins with an enzymatic desizing step in which the garment is subjected to proteolytic enzymes to provide softness to the fabric and to make the cotton easier to carry out subsequent enzymatic finishing steps. One or more subtilisin variants described herein may be used in a process for finishing denim apparel (e.g., "bio-sanding"), enzymatic desizing, and providing softness and/or finishing to fabrics.
The present disclosure also provides methods for cleaning a surface of an article, comprising contacting the article with at least one subtilisin variant (or a composition comprising such a subtilisin variant) provided herein. In some embodiments, the article may have a proteinaceous stain on its surface, for example. In some embodiments, the proteinaceous stain may comprise an egg or egg-based stain, such as french caramel pudding, baked cheese, BMI, or other protein-containing substance.
Non-limiting examples of the compositions and methods disclosed herein are as follows:
1. A composition comprising a combination of a subtilisin variant and at least one additional enzyme, wherein the subtilisin variant comprises one, two or more amino acid substitutions selected from the group consisting of: X96D, X103F, X Q, X115L, X34128K, X Q and X181Q, wherein said amino acid positions are according to SEQ ID NO:9, wherein the variant hybridizes to SEQ ID NO:9, and wherein the at least one additional enzyme is selected from the group consisting of acylases, alpha-amylases, beta-amylases, alpha-galactosidases, arabinosidases, aryl esterases, beta-galactosidases, carrageenases, catalases, cellobiohydrolases, cellulases, chondroitinases, cutinases, dispersons, endo-beta-1, 4-glucanases, endo-beta-mannanases, esterases, exo-mannanases, galactanases, glucoamylases, galactocellulases, hexosaminidases, hyaluronidases, keratinases, laccase, lactases, ligninases, lipases, lipoxygenases, lysozyme, mannanases, metalloproteinases, nucleases (e.g., dnases and/or rnases), oxidases, oxidoreductases, pectate lyases, pectinacetylesterases, pectinases, pentosanases, perhydrolases, peroxidases, phenoloxidases, phosphatases, phosphodiesterases, elevating enzymes, glucuronidases, galactanases, mannanases, transglutaminase, xanthan lyase, xylanacetyl esterase, xylanase, xyloglucanase, xylosidase, and any combination or mixture thereof, wherein the at least one additional enzyme has increased residual activity as compared to a reference enzyme in a detergent composition lacking the subtilisin variant.
A composition comprising a combination of a subtilisin variant and at least one additional enzyme, wherein said subtilisin variant comprises one, two or more amino acid substitutions compared to the parent subtilisin, wherein said substitutions are selected from the group consisting of: X96D, X103F, X Q, X L, X57128K, X Q and X181Q, wherein the amino acid position of the variant is determined by a sequence that hybridizes to SEQ ID NO:9, wherein the variant corresponds to the amino acid sequence of SEQ ID NO:9, and wherein the at least one additional enzyme is selected from the group consisting of an acyltransferase, an alpha-amylase, a beta-amylase, an alpha-galactosidase, an arabinosidase, an aryl esterase, a beta-galactosidase, a carrageenan enzyme, a catalase, a cellobiohydrolase, a cellulase, a chondroitinase, a cutinase, a disperson, an endo-beta-1, 4-glucanase, an endo-beta-mannanase, an esterase, an exo-mannanase, a galactanase, a glucoamylase, a hemicellulase, an hexosaminidase, a hyaluronidase, a keratinase, a laccase, a lactase, a ligninase, a lipase, a lipoxygenase, a lysozyme, a mannanase, a metalloprotease, a nuclease (e.g., dnase and/or rnase), an oxidase, an oxidoreductase, a pectate lyase, a pectinacetylesterase, a pectinase, a pentosanase, a perhydrolase, a peroxidase, a phenoloxidase, a phosphatase, a phospho, a phospholipase, a phosphodiesterase, a glucuronidase, a galactanase, a lactonase, a phytase, a proteinase, a phytase, pullulanase, reductase, rhamnogalacturonase, beta-glucanase, tannase, transglutaminase, xanthan lyase, xylanacetyl esterase, xylanase, xyloglucanase, xylosidase, and any combination or mixture thereof, wherein the at least one additional enzyme has increased residual activity as compared to a reference enzyme in a detergent composition lacking the subtilisin variant.
2. The composition of embodiment 1 or 1b, wherein the subtilisin variant comprises one, two or more amino acid substitutions selected from the group consisting of N096D, Y103F, S108Q, T L, A128K, S Q and S181Q.
3. The composition of any of the preceding claims, wherein the subtilisin variant further comprises one or more additional amino acid substitutions selected from the group consisting of X9T, X17H, X77N, X78I, X103I, X127T, X165Q, X184Q, X V, X203E, X N, X217S and X258P, wherein the positions are numbered according to SEQ ID No. 9.
4. The composition of embodiment 3 wherein the one or more additional amino acid substitutions of the subtilisin is selected from the group consisting of P009T, Q017H, T077N, T078I, Y103I, G127T, G165Q, N Q, A V, G203E, G203N, N S and S258P.
5. The composition of embodiment 1, wherein the subtilisin variant is selected from the group consisting of SEQ ID NOs 1-8.
6. The composition of any one of the preceding claims, wherein the subtilisin variant comprises an amino acid sequence having 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or less than 100% amino acid sequence identity to SEQ ID No. 9.
7. The composition of any of the preceding claims, wherein the at least one additional enzyme is selected from the group consisting of alpha-amylase, mannanase, cellulase, nuclease, polyesterase, protease, xanthan lyase, and any combination thereof.
8. The composition of any one of the preceding claims, wherein the at least one additional enzyme is an alpha-amylase.
9. The composition of any one of the preceding claims, wherein the at least one additional enzyme is mannanase.
10. A composition according to any preceding claim, wherein the composition is a detergent composition selected from the group consisting of laundry detergents, fabric softening detergents, dishwashing detergents (e.g. automatic or hand dishwashing detergents), medical device detergents and hard surface cleaning detergents.
11. A cleaning method comprising contacting a surface or article in need of cleaning with an effective amount of the composition of examples 1-10, and optionally further comprising rinsing the surface or article after contacting the surface or article with the composition of examples 1-10.
12. The method of embodiment 11, wherein the article is a cutlery, fabric or medical device.
Example 1
Stability of coenzyme in laundry detergents in the presence of protease
In the presence of various subtilisins, the in-detergent enzymatic activity of coenzymes (amylase and mannanase) was evaluated. Commercial proteaseP300 (International flavor and fragrance corporation (IFF)) and ProgressThe effect of 100L (NoveXin Co.) was compared with that of the experimental protease samples variants 1, 2, 3, 4, 5, 6, 7 and 8 (SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7 and 8, respectively). The liquid laundry detergent used in the stability assay is test detergent a. The composition of the test detergent a is shown in table 1.
The experimental proteases SEQ ID NOs 1, 2, 3, 4, 5, 6, 7 and 8 were prepared by concentrating the culture supernatant of the Bacillus licheniformis strain by ultrafiltration and diafiltration with water.
The stability of coenzymes (e.g., amylase and mannanase variants) in the presence of one or more proteases is measured by adding the enzymes to the detergent at inclusion levels of 0.06wt% protease, 0.007wt% amylase and 0.003wt% mannanase based on active protein. The detergent/enzyme samples were incubated in a sealed container at 37 ℃ for the indicated storage time. At each time point, samples were removed from the incubator, mixed (by spinning) at room temperature, and a small amount was removed for enzyme activity analysis.
Amylase activity
By measuring the release of reducing sugars by amylase on amylopectin substratesAmylase activity of 12L amylase (Norwegian Co.). For the amylopectin assay, a reagent solution of 50mM MOPS pH 7.15, 50mM NaCl, 2.5mM CaCl 2 (MOPS buffer) and 0.125% amylopectin (amylopectin stock solution) in water was used (sigma: A-8515). The detergent/enzyme samples were diluted in MOPS buffer and added to a microtiter plate (MTP) containing a stock solution of amylopectin. Plates were incubated with agitation for 30 minutes at 40 ℃. Reducing sugars produced during the reaction were determined using the BCA assay (Pierce: 23225) and measured at 562nm using a SpectraMax plate reader.
By using CERALPHA HR substrate (Megazyme): R-AMHR 4) testPrime 100L (Norwestine) amylase activity. The detergent/enzyme samples were diluted in MOPS buffer and added to MTP containing CERALPHA HR substrates. Plates were incubated for 2 min at room temperature and the reaction quenched by addition of 200mM borate (pH 10.2). Amylase activity was measured at 405nm using a SpectraMax plate reader.
Mannanase activity
Test by measuring the Release of reducing sugar by mannanase on Locust Bean Gum (LBG) substrateMannanase activity of M100 (International flavor and fragrance Co., USA). For the LBG assay, 100mM HEPES pH 8.2, 0.005% Tween-80 (HEPES buffer) and 0.5% LBG stock solution (sigma: G0753) in 50mM Tris HCl pH 7.15 were used as reagent solutions. The detergent/enzyme samples were diluted in HEPES buffer and added to MTP containing LBG stock solution. Plates were incubated at 40 ℃ for 20 minutes with stirring. Reducing sugars produced during the reaction were determined using the BCA assay (Pierce: 23225) and measured at 562nm using a SpectraMax plate reader.
Residual Activity of enzyme
The residual activity percentages of amylase and mannanase in test detergent a were determined by comparing the activities at the indicated time points (weeks 1 and 4) with the activities at time=0 or without incubation.
Residual activities of M100 mannanase and of the indicated protease such as
Table 2 shows the results.
Residual activity of the Stainzyme 12L amylase added to the detergent in combination with the indicated protease is shown in table 3.
The residual activity of AMPLIFY PRIME L of amylase added to the detergent in combination with the indicated protease is shown in Table 4.
The results shown in tables 2, 3 and 4 demonstrate the benefit of the experimental protease in that variants 1-8 (SEQ ID NOS: 1-8) increase residual activity of commercially relevant amylase and mannanase coenzyme in liquid detergents over a period of at least 4 weeks as compared to commercial protease PREFERENZ P300 (International perfume Co., USA) and Progress UNO 100L (NoveXin Co.).
Time course studies of mannanase stability in different protease combinations in HDL detergents using test detergent A. Examination of commercial mannanasesDetergent stability of M100 and PspMan138 variant mannanase TL1219 (SEQ ID NO:10, U.S. provisional application 63/403332, filed on 9.2.2022). The following inclusion levels based on active protein were used in the detergent, 0.06 wt% protease, 0.007 wt% amylase and 0.003 wt% mannanase. Samples were incubated at 37 ℃ and after the indicated storage time, the percentage of residual mannanase activity was determined as described above.
Table 5 shows mannanases in the presence of various proteasesResidual activity percentage (%) of M100 and PspMan138 variant mannanase TL1219 (TL 1219).
At the position ofIn the presence of P300 proteaseThe mannanase TL1219 has a higher residual activity% compared to the M100 mannanase. This suggests that TL1219 mannanase is more stable in the presence of commercially relevant proteases. And in proteaseMannanase TL1219 also shows a higher% residual activity in the presence of protease variant 2 (SEQ ID NO: 2) than in the presence of P300. The results demonstrate that protease variant 2 and commercialP300.
Claims (12)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202263403332P | 2022-09-02 | 2022-09-02 | |
| US63/403,332 | 2022-09-02 | ||
| US202363492619P | 2023-03-28 | 2023-03-28 | |
| US63/492,619 | 2023-03-28 | ||
| PCT/US2023/073063 WO2024050346A1 (en) | 2022-09-02 | 2023-08-29 | Detergent compositions and methods related thereto |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN119855892A true CN119855892A (en) | 2025-04-18 |
Family
ID=88146819
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202380063165.0A Pending CN119855892A (en) | 2022-09-02 | 2023-08-29 | Detergent compositions and methods relating thereto |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP4581119A1 (en) |
| JP (1) | JP2025530749A (en) |
| CN (1) | CN119855892A (en) |
| WO (1) | WO2024050346A1 (en) |
Family Cites Families (244)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1296839A (en) | 1969-05-29 | 1972-11-22 | ||
| GB1372034A (en) | 1970-12-31 | 1974-10-30 | Unilever Ltd | Detergent compositions |
| GB2048606B (en) | 1979-02-28 | 1983-03-16 | Barr & Stroud Ltd | Optical scanning system |
| US4302544A (en) | 1979-10-15 | 1981-11-24 | University Of Rochester | Asporogenous mutant of B. subtilis for use as host component of HV1 system |
| DK187280A (en) | 1980-04-30 | 1981-10-31 | Novo Industri As | RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY |
| GR76237B (en) | 1981-08-08 | 1984-08-04 | Procter & Gamble | |
| US4450235A (en) | 1982-04-21 | 1984-05-22 | Cpc International Inc. | Asporogenic mutant of bacillus subtilis useful as a host in a host-vector system |
| US4760025A (en) | 1984-05-29 | 1988-07-26 | Genencor, Inc. | Modified enzymes and methods for making same |
| DE3480411D1 (en) | 1983-07-06 | 1989-12-14 | Gist Brocades Nv | Molecular cloning and expression in industrial microorganism species |
| US5763257A (en) | 1984-05-29 | 1998-06-09 | Genencor International, Inc. | Modified subtilisins having amino acid alterations |
| US5972682A (en) | 1984-05-29 | 1999-10-26 | Genencor International, Inc. | Enzymatically active modified subtilisins |
| DK154572C (en) | 1985-08-07 | 1989-04-24 | Novo Industri As | ENZYMATIC DETERGENT ADDITIVE, DETERGENT AND METHOD FOR WASHING TEXTILES |
| JPH0697997B2 (en) | 1985-08-09 | 1994-12-07 | ギスト ブロカデス ナ−ムロ−ゼ フエンノ−トチヤツプ | New enzymatic detergent additive |
| DK122686D0 (en) | 1986-03-17 | 1986-03-17 | Novo Industri As | PREPARATION OF PROTEINS |
| US4810414A (en) | 1986-08-29 | 1989-03-07 | Novo Industri A/S | Enzymatic detergent additive |
| GB8629837D0 (en) | 1986-12-13 | 1987-01-21 | Interox Chemicals Ltd | Bleach activation |
| US4972017A (en) | 1987-03-24 | 1990-11-20 | The Clorox Company | Rinse soluble polymer film composition for wash additives |
| US4765916A (en) | 1987-03-24 | 1988-08-23 | The Clorox Company | Polymer film composition for rinse release of wash additives |
| WO1988009367A1 (en) | 1987-05-29 | 1988-12-01 | Genencor, Inc. | Cutinase cleaning composition |
| DE3854249T2 (en) | 1987-08-28 | 1996-02-29 | Novonordisk As | Recombinant Humicola Lipase and Process for the Production of Recombinant Humicola Lipases. |
| WO1989006270A1 (en) | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Enzymatic detergent |
| JP3079276B2 (en) | 1988-02-28 | 2000-08-21 | 天野製薬株式会社 | Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same |
| US4977252A (en) | 1988-03-11 | 1990-12-11 | National Starch And Chemical Investment Holding Corporation | Modified starch emulsifier characterized by shelf stability |
| WO1990009446A1 (en) | 1989-02-17 | 1990-08-23 | Plant Genetic Systems N.V. | Cutinase |
| JP3086249B2 (en) | 1989-06-29 | 2000-09-11 | ジェネンコー インターナショナル インコーポレイテッド | Mutant α-amylase derived from bacteria having high heat, acid and / or alkali stability |
| DE59101948D1 (en) | 1990-04-14 | 1994-07-21 | Kali Chemie Ag | ALKALINE BACILLUS LIPASES, FOR CODING DNA SEQUENCES FOR THAT, AND BACILLI, WHICH PRODUCE THESE LIPASES. |
| US5354559A (en) | 1990-05-29 | 1994-10-11 | Grain Processing Corporation | Encapsulation with starch hydrolyzate acid esters |
| SG52693A1 (en) | 1991-01-16 | 1998-09-28 | Procter & Gamble | Detergent compositions with high activity cellulase and softening clays |
| GB9108136D0 (en) | 1991-04-17 | 1991-06-05 | Unilever Plc | Concentrated detergent powder compositions |
| US5340735A (en) | 1991-05-29 | 1994-08-23 | Cognis, Inc. | Bacillus lentus alkaline protease variants with increased stability |
| US5324649A (en) | 1991-10-07 | 1994-06-28 | Genencor International, Inc. | Enzyme-containing granules coated with hydrolyzed polyvinyl alcohol or copolymer thereof |
| ATE444356T1 (en) | 1992-07-23 | 2009-10-15 | Novozymes As | MUTATED -G(A)-AMYLASE, DETERGENT AND DISHWASHING DETERGENT |
| KR100303620B1 (en) | 1992-12-01 | 2001-11-22 | 피아 스타르 | Enrichment of enzyme reaction |
| PL177935B1 (en) | 1993-05-08 | 2000-01-31 | Henkel Kgaa | Agent for protecting silver ii against corrosion |
| CA2162460A1 (en) | 1993-05-08 | 1994-11-24 | Juergen Haerer | Corrosion inhibitors for silver (i) |
| DK77393D0 (en) | 1993-06-29 | 1993-06-29 | Novo Nordisk As | ENZYMER ACTIVATION |
| BR9407767A (en) | 1993-10-08 | 1997-03-18 | Novo Nordisk As | Enzyme & -amylase variant use the same DNA vector expression construct the recombinant cell processes to produce a hybrid & -amylase hybrid and to prepare a variant of a detergent & -amylase additive and detergent compositions |
| DE4342680A1 (en) | 1993-12-15 | 1995-06-22 | Pfeiffer Erich Gmbh & Co Kg | Discharge device for media |
| US5861271A (en) | 1993-12-17 | 1999-01-19 | Fowler; Timothy | Cellulase enzymes and systems for their expressions |
| US5691295A (en) | 1995-01-17 | 1997-11-25 | Cognis Gesellschaft Fuer Biotechnologie Mbh | Detergent compositions |
| ES2364774T3 (en) | 1994-02-24 | 2011-09-14 | HENKEL AG & CO. KGAA | IMPROVED AND DETERGENT ENZYMES THAT CONTAIN THEM. |
| ES2302330T3 (en) | 1994-02-24 | 2008-07-01 | Henkel Kommanditgesellschaft Auf Aktien | IMPROVED AND DETERGENT ENZYMES THAT CONTAIN THEM. |
| DK0753057T3 (en) | 1994-03-29 | 2006-01-30 | Novozymes As | Alkaline Bacillus amylase |
| DE69527793T2 (en) | 1994-06-17 | 2003-01-02 | Genencor International, Inc. | PLANT CELL WALL CLEANING METHODS OF COMPOSITION CONTAINING HEMICELLULASE ENZYME AND THEIR USE IN CLEANING METHODS |
| CA2194571C (en) | 1994-06-17 | 2009-02-24 | Jan Metske Van Der Laan | Novel amylolytic enzymes derived from the b. licheniformis .alpha.-amylase, having improved characteristics |
| NZ291984A (en) | 1994-08-11 | 1998-04-27 | Genencor Int | Bleach-containing cleaning composition comprising a mutant alpha-amylase and optionally a mutant protease |
| ATE432342T1 (en) | 1995-02-03 | 2009-06-15 | Novozymes As | A METHOD FOR DESIGNING ALPHA-AMYLASE MUTANTS WITH PREDETERMINED PROPERTIES |
| AR000862A1 (en) | 1995-02-03 | 1997-08-06 | Novozymes As | VARIANTS OF A MOTHER-AMYLASE, A METHOD TO PRODUCE THE SAME, A DNA STRUCTURE AND A VECTOR OF EXPRESSION, A CELL TRANSFORMED BY SUCH A DNA STRUCTURE AND VECTOR, A DETERGENT ADDITIVE, DETERGENT COMPOSITION, A COMPOSITION FOR AND A COMPOSITION FOR THE ELIMINATION OF |
| EP0815193A1 (en) | 1995-03-24 | 1998-01-07 | Genencor International Inc. | An improved laundry detergent composition comprising amylase |
| EP0832174B1 (en) | 1995-06-13 | 2002-05-08 | Novozymes A/S | 4-substituted-phenyl-boronic acids as enzyme stabilizers |
| EP0839224A1 (en) | 1995-07-19 | 1998-05-06 | Novo Nordisk A/S | Treatment of fabrics |
| US5576282A (en) | 1995-09-11 | 1996-11-19 | The Procter & Gamble Company | Color-safe bleach boosters, compositions and laundry methods employing same |
| NZ319118A (en) | 1995-09-13 | 2000-01-28 | Genencor Int | Thermophilic alkaliphilic bacteria derived from the genus Thermopallium |
| JP4290763B2 (en) | 1996-04-30 | 2009-07-08 | ノボザイムス アクティーゼルスカブ | α-Amylase mutant |
| US6211134B1 (en) | 1996-05-14 | 2001-04-03 | Genecor International, Inc. | Mutant α-amylase |
| US5763385A (en) | 1996-05-14 | 1998-06-09 | Genencor International, Inc. | Modified α-amylases having altered calcium binding properties |
| EP0929638A1 (en) | 1996-09-24 | 1999-07-21 | The Procter & Gamble Company | Liquid detergents containing proteolytic enzyme and protease inhibitors |
| EP0939801A1 (en) | 1996-09-26 | 1999-09-08 | Novo Nordisk A/S | An enzyme with amylase activity |
| EP0942994B1 (en) | 1996-12-09 | 2005-04-20 | Genencor International, Inc. | H mutant alpha-amylase enzymes |
| JP4376320B2 (en) | 1997-03-07 | 2009-12-02 | ザ、プロクター、エンド、ギャンブル、カンパニー | Improved process for producing cross-linked macropolycyclic molecules |
| US6008026A (en) | 1997-07-11 | 1999-12-28 | Genencor International, Inc. | Mutant α-amylase having introduced therein a disulfide bond |
| GB2327947A (en) | 1997-08-02 | 1999-02-10 | Procter & Gamble | Detergent tablet |
| US6080568A (en) | 1997-08-19 | 2000-06-27 | Genencor International, Inc. | Mutant α-amylase comprising modification at residues corresponding to A210, H405 and/or T412 in Bacillus licheniformis |
| GB9719637D0 (en) | 1997-09-15 | 1997-11-19 | Genencor Int Bv | Proteases from gram-positive organisms |
| GB9719636D0 (en) | 1997-09-15 | 1997-11-19 | Genencor Int Bv | Proteases from gram-positive organisms |
| KR20010015754A (en) | 1997-10-13 | 2001-02-26 | 한센 핀 베네드, 안네 제헤르, 웨이콥 마리안느 | α-AMYLASE MUTANTS |
| MA24811A1 (en) | 1997-10-23 | 1999-12-31 | Procter & Gamble | WASHING COMPOSITIONS CONTAINING MULTISUBSTITUTED PROTEASE VARIANTS |
| JP4426094B2 (en) | 1997-10-30 | 2010-03-03 | ノボザイムス アクティーゼルスカブ | α-amylase mutant |
| US5935826A (en) | 1997-10-31 | 1999-08-10 | National Starch And Chemical Investment Holding Corporation | Glucoamylase converted starch derivatives and their use as emulsifying and encapsulating agents |
| JP4246384B2 (en) | 1997-11-21 | 2009-04-02 | ノボザイムス アクティーゼルスカブ | Protease variants and compositions |
| BR9813768A (en) | 1997-12-20 | 2000-10-10 | Genencor Int | Granule, and, process of producing a granule. |
| EP1042501B2 (en) | 1997-12-24 | 2011-03-30 | Genencor International, Inc. | Method for assaying the wash performance of an enzyme. |
| GB9727464D0 (en) | 1997-12-30 | 1998-02-25 | Genencor Int Bv | Proteases from gram positive organisms |
| GB9727471D0 (en) | 1997-12-30 | 1998-02-25 | Genencor Int Bv | Proteases from gram positive organisms |
| EP1054957A1 (en) | 1998-02-18 | 2000-11-29 | Novo Nordisk A/S | Alkaline bacillus amylase |
| CN103352033B (en) | 1998-02-27 | 2016-05-11 | 诺维信公司 | Maltogenic alpha-amylase variants |
| CA2320813A1 (en) | 1998-02-27 | 1999-09-02 | Novo Nordisk A/S | Amylolytic enzyme variants |
| AR020058A1 (en) | 1998-03-09 | 2002-04-10 | Novozymes As | ALMIDON GLUCOSE SYRUP ENZYMATIC PREPARATION |
| MXPA00012241A (en) | 1998-06-10 | 2002-06-04 | Novozymes As | Novel mannanases. |
| US6376450B1 (en) | 1998-10-23 | 2002-04-23 | Chanchal Kumar Ghosh | Cleaning compositions containing multiply-substituted protease variants |
| US6197565B1 (en) | 1998-11-16 | 2001-03-06 | Novo-Nordisk A/S | α-Amylase variants |
| JP2002531457A (en) | 1998-11-30 | 2002-09-24 | ザ、プロクター、エンド、ギャンブル、カンパニー | Method for producing cross-linked tetraaza macrocycles |
| ES2286012T3 (en) | 1999-03-30 | 2007-12-01 | Novozymes A/S | ALFA-AMYLASE VARIANTS. |
| AU781258B2 (en) | 1999-03-31 | 2005-05-12 | Novozymes A/S | Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same |
| JP4750284B2 (en) | 1999-03-31 | 2011-08-17 | ノボザイムス アクティーゼルスカブ | Polypeptides having alkaline α-amylase activity and nucleic acids encoding them |
| WO2001014532A2 (en) | 1999-08-20 | 2001-03-01 | Novozymes A/S | Alkaline bacillus amylase |
| EP1980614A3 (en) | 1999-11-10 | 2009-04-08 | Novozymes A/S | Fungamyl-like Alpha-Amylase Variants |
| AU3724801A (en) | 2000-03-03 | 2001-09-12 | Novozymes A/S | Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same |
| WO2001066712A2 (en) | 2000-03-08 | 2001-09-13 | Novozymes A/S | Variants with altered properties |
| AU2001258229A1 (en) | 2000-05-12 | 2001-11-26 | Novozymes A/S | Alpha-amylase variants with altered 1,6-activity |
| AU2001273880A1 (en) | 2000-06-14 | 2001-12-24 | Novozymes A/S | Pre-oxidized alpha-amylase |
| EP2204446A1 (en) | 2000-08-01 | 2010-07-07 | Novozymes A/S | Alpha-amylase mutants with altered properties |
| US6440991B1 (en) | 2000-10-02 | 2002-08-27 | Wyeth | Ethers of 7-desmethlrapamycin |
| AU2002210380A1 (en) | 2000-10-13 | 2002-04-22 | Novozymes A/S | Alpha-amylase variant with altered properties |
| DE60234523D1 (en) | 2001-05-15 | 2010-01-07 | Novozymes As | ALPHA AMYLASE VERSION WITH CHANGED PROPERTIES |
| GB0114847D0 (en) | 2001-06-18 | 2001-08-08 | Unilever Plc | Water soluble package and liquid contents thereof |
| JP4550587B2 (en) | 2002-12-17 | 2010-09-22 | ノボザイムス アクティーゼルスカブ | Thermostable α-amylase |
| DE10260903A1 (en) * | 2002-12-20 | 2004-07-08 | Henkel Kgaa | New perhydrolases |
| US7294499B2 (en) | 2003-01-30 | 2007-11-13 | Novozymes A/S | Subtilases |
| EP1618182B1 (en) | 2003-04-30 | 2013-07-10 | Genencor International, Inc. | NOVEL BACILLUS mHKcel CELLULASE |
| ATE387487T1 (en) | 2003-05-23 | 2008-03-15 | Procter & Gamble | DETERGENT COMPOSITION FOR USE IN A TEXTILE WASHER OR DISHWASHER |
| WO2005003311A2 (en) | 2003-06-25 | 2005-01-13 | Novozymes A/S | Enzymes for starch processing |
| ATE549403T1 (en) | 2003-06-25 | 2012-03-15 | Novozymes As | ENZYMES FOR STARCH PROCESSING |
| EP1675941B1 (en) | 2003-06-25 | 2013-05-22 | Novozymes A/S | Polypeptides having alpha-amylase activity and polynucleotides encoding same |
| US20070264700A1 (en) | 2003-08-22 | 2007-11-15 | Novozymes A/S | Fungal Alpha-Amylase Variants |
| WO2005018336A1 (en) | 2003-08-22 | 2005-03-03 | Novozymes A/S | Process for preparing a dough comprising a starch-degrading glucogenic exo-amylase of family 13 |
| WO2005047511A2 (en) | 2003-11-06 | 2005-05-26 | Genencor International, Inc. | Bacterial expression of protease inhibitors and variants thereof |
| US7595182B2 (en) | 2003-12-03 | 2009-09-29 | Meiji Seika Kaisha, Ltd., | Endoglucanase STCE and cellulase preparation containing the same |
| EP2664670B1 (en) | 2003-12-03 | 2015-05-06 | Danisco US Inc. | Perhydrolase |
| US7754460B2 (en) | 2003-12-03 | 2010-07-13 | Danisco Us Inc. | Enzyme for the production of long chain peracid |
| ES2539955T3 (en) | 2003-12-08 | 2015-07-07 | Meiji Seika Pharma Co., Ltd. | Surfactant-tolerant cellulase and its modification procedure |
| WO2005066338A1 (en) | 2004-01-08 | 2005-07-21 | Novozymes A/S | Amylase |
| DE102004029475A1 (en) * | 2004-06-18 | 2006-01-26 | Henkel Kgaa | New enzymatic bleaching system |
| JP4955546B2 (en) | 2004-07-05 | 2012-06-20 | ノボザイムス アクティーゼルスカブ | Α-Amylase variants with altered properties |
| AU2005269082A1 (en) | 2004-08-02 | 2006-02-09 | Novozymes A/S | Creation of diversity in polypeptides |
| US20080032024A1 (en) | 2004-08-02 | 2008-02-07 | Lars Beier | Maltogenic Alpha-Amylase Variants |
| EP2258837A1 (en) | 2004-09-10 | 2010-12-08 | Novozymes North America, Inc. | Methods for preventing, removing, reducing, or disrupting biofilm |
| US7659101B2 (en) | 2004-12-15 | 2010-02-09 | Novozymes A/S | Alkaline Bacillus amylase |
| WO2006066596A2 (en) | 2004-12-22 | 2006-06-29 | Novozymes A/S | Hybrid enzymes consisting of an endo-amylase first amino acid sequence and a carbohydrate -binding module as second amino acid sequence |
| EP1831360A2 (en) | 2004-12-23 | 2007-09-12 | Novozymes A/S | Alpha-amylase variants |
| WO2006136161A2 (en) | 2005-06-24 | 2006-12-28 | Novozymes A/S | Amylases for pharmaceutical use |
| RU2433182C2 (en) | 2005-10-12 | 2011-11-10 | Джененкор Интернэшнл, Инк. | Application and obtaining of stable in storing neutral metaloproteinase |
| WO2007044968A2 (en) | 2005-10-12 | 2007-04-19 | Genencor International, Inc. | Stable, durable granules with active agents |
| BRPI0708504A8 (en) | 2006-03-02 | 2017-03-01 | Danisco Us Inc Genecor Div | surface active bleach and dynamic ph |
| US20080004201A1 (en) | 2006-06-05 | 2008-01-03 | Jean-Pol Boutique | Enzyme stabilizer |
| WO2008000825A1 (en) | 2006-06-30 | 2008-01-03 | Novozymes A/S | Bacterial alpha-amylase variants |
| US20080090747A1 (en) | 2006-07-18 | 2008-04-17 | Pieter Augustinus | Protease variants active over a broad temperature range |
| CN101563451B (en) | 2006-12-21 | 2012-09-05 | 丹尼斯科美国公司 | Compositions and uses for an alpha-amylase polypeptide of bacillus species 195 |
| CN101600794A (en) | 2007-02-01 | 2009-12-09 | 诺维信公司 | Alpha-amylases and uses thereof |
| US8021863B2 (en) | 2007-02-19 | 2011-09-20 | Novozymes A/S | Polypeptides with starch debranching activity |
| WO2008106215A1 (en) | 2007-02-27 | 2008-09-04 | Danisco Us, Inc. | Cleaning enzymes and malodor prevention |
| BRPI0808096A2 (en) | 2007-02-27 | 2014-07-22 | Danisco Us Inc | CLEANING ENZYMS AND FRAGRANCE PRODUCTION. |
| DE102007011236A1 (en) | 2007-03-06 | 2008-09-11 | Henkel Ag & Co. Kgaa | Carboxyl-bearing benzophenone or benzoic acid anilide derivatives as enzyme stabilizers |
| RU2009137386A (en) | 2007-03-09 | 2011-04-20 | ДАНИСКО ЮЭс ИНК., ДЖЕНЕНКОР ДИВИЖН (US) | AMILASE VARIANTS OF BACILLUS ALKALYPHIC SPECIES, COMPOSITIONS CONTAINING AMILASE OPTIONS AND METHODS OF APPLICATION |
| JP5498951B2 (en) | 2007-10-31 | 2014-05-21 | ダニスコ・ユーエス・インク | Use and production of neutral metalloproteases stabilized against citric acid |
| CA2704311C (en) | 2007-11-01 | 2018-02-13 | Danisco Us Inc. | Production of thermolysin and variants thereof, and use in liquid detergents |
| AU2008325249B2 (en) | 2007-11-05 | 2013-10-10 | Danisco Us Inc. | Alpha-amylase variants with altered properties |
| DK2215202T4 (en) | 2007-11-05 | 2025-01-02 | Danisco Us Inc | VARIANTS OF BACILLUS sp. TS-23 ALPHA-AMYLASE WITH ALTERED PROPERTIES |
| MX2010008359A (en) | 2008-02-04 | 2010-08-30 | Danisco Us Inc | Ts23 alpha-amylase variants with altered properties. |
| EP2100947A1 (en) | 2008-03-14 | 2009-09-16 | The Procter and Gamble Company | Automatic dishwashing detergent composition |
| WO2009118375A2 (en) | 2008-03-26 | 2009-10-01 | Novozymes A/S | Stabilized liquid enzyme compositions |
| CN102027004A (en) | 2008-05-16 | 2011-04-20 | 诺维信公司 | Polypeptides having alpha-amylase activity and polynucleotides encoding same |
| DK2578680T3 (en) | 2008-06-06 | 2016-08-15 | Danisco Us Inc | COMPOSITIONS AND METHODS OF COMPREHENSIVE MICROBIAL PROTEASE VARIETIES |
| BRPI0913367A2 (en) | 2008-06-06 | 2015-08-04 | Danisco Us Inc | Bacillus subtilis variant alpha-amylases and methods of use |
| CN101816070A (en) | 2008-07-11 | 2010-08-25 | 松下电器产业株式会社 | Current suppressing element, memory element, and method for manufacturing them |
| CN106399280B (en) | 2008-11-11 | 2020-12-22 | 丹尼斯科美国公司 | Bacillus subtilisin proteases comprising one or more combinable mutations |
| CN103396904B (en) | 2008-11-11 | 2015-12-23 | 宝洁公司 | Comprise composition and the method for serine protease variants |
| WO2010056634A1 (en) | 2008-11-11 | 2010-05-20 | Danisco Us Inc. | Compositions and methods comprising a subtilisin variant |
| CN102209776B (en) | 2008-11-13 | 2013-11-27 | 诺维信公司 | detergent composition |
| EP2358878B1 (en) | 2008-11-20 | 2014-10-15 | Novozymes Inc. | Polypeptides having amylolytic enhancing activity and polynucleotides encoding same |
| WO2010088447A1 (en) | 2009-01-30 | 2010-08-05 | Novozymes A/S | Polypeptides having alpha-amylase activity and polynucleotides encoding same |
| WO2010091221A1 (en) | 2009-02-06 | 2010-08-12 | Novozymes A/S | Polypeptides having alpha-amylase activity and polynucleotides encoding same |
| DK2414514T3 (en) | 2009-04-01 | 2015-08-24 | Danisco Us Inc | FORMATIONS AND PROCEDURES COMPREHENSIVE Alpha- amylase variants WITH CHANGED PROPERTIES |
| WO2010117511A1 (en) | 2009-04-08 | 2010-10-14 | Danisco Us Inc. | Halomonas strain wdg195-related alpha-amylases, and methods of use, thereof |
| FI121851B (en) | 2009-07-08 | 2011-05-13 | Ab Enzymes Oy | A fungal-derived protease and its use |
| EP2279804A1 (en) | 2009-07-28 | 2011-02-02 | Koninklijke Philips Electronics N.V. | Washing and sterilizing unit |
| KR20120090991A (en) | 2009-09-25 | 2012-08-17 | 노보자임스 에이/에스 | Detergent composition |
| BR112012014082B1 (en) | 2009-12-09 | 2020-12-15 | Danisco Us Inc | isolated protease variant and its production method, isolated nucleic acid, expression vector, recombinant host cell, composition and method for cleaning an item or surface in need of cleaning |
| US20120252086A1 (en) | 2009-12-22 | 2012-10-04 | Novozymes A/S | Compositions Comprising Boosting Polypeptide And Starch Degrading Enzyme And Uses Thereof |
| US20130071913A1 (en) | 2009-12-22 | 2013-03-21 | Novozymes A/S | Use of amylase variants at low temperature |
| RU2012133453A (en) | 2010-01-04 | 2014-02-20 | Новозимс А/С | ALPHA AMILASE |
| US9896673B2 (en) | 2010-02-10 | 2018-02-20 | Novozymes A/S | Compositions of high stability alpha amylase variants |
| WO2011140316A1 (en) | 2010-05-06 | 2011-11-10 | The Procter & Gamble Company | Consumer products with protease variants |
| CN103476921A (en) | 2011-02-15 | 2013-12-25 | 诺维信生物股份有限公司 | Odor reduction in cleaning machines and cleaning methods |
| RU2718648C2 (en) | 2011-05-05 | 2020-04-10 | ДАНИСКО ЮЭс ИНК. | Compositions and methods, including versions of serine protease |
| JP6306504B2 (en) | 2011-07-01 | 2018-04-04 | ノボザイムス アクティーゼルスカブ | Liquid detergent composition |
| RU2635355C2 (en) | 2011-07-01 | 2017-11-13 | Новозимс А/С | Composition with stabilised subtitlisin |
| CN103917642A (en) | 2011-10-28 | 2014-07-09 | 丹尼斯科美国公司 | Variant into maltohexaose alpha-amylase variant |
| ES2622374T3 (en) | 2011-12-12 | 2017-07-06 | Unilever N.V. | Compositions for washing clothes |
| DK2825643T4 (en) | 2012-06-08 | 2025-10-06 | Danisco Us Inc | Variant alpha-amylases with improved activity towards starch polymers |
| EP2906691B1 (en) | 2012-10-12 | 2021-01-27 | Danisco US Inc. | Compositions and methods comprising a lipolytic enzyme variant |
| CN104781400A (en) | 2012-11-05 | 2015-07-15 | 丹尼斯科美国公司 | Compositions and methods comprising thermolysin protease variants |
| WO2014099523A1 (en) | 2012-12-21 | 2014-06-26 | Danisco Us Inc. | Alpha-amylase variants |
| ES2882517T5 (en) | 2013-03-11 | 2025-07-28 | Danisco Us Inc | Alpha-amylase conbinatorial variants |
| US20160108388A1 (en) | 2013-05-29 | 2016-04-21 | Danisco Us Inc. | Novel metalloproteases |
| CN105492603B (en) | 2013-05-29 | 2022-06-03 | 丹尼斯科美国公司 | Novel metalloproteases |
| EP3004314B1 (en) | 2013-05-29 | 2018-06-20 | Danisco US Inc. | Novel metalloproteases |
| WO2014194117A2 (en) | 2013-05-29 | 2014-12-04 | Danisco Us Inc. | Novel metalloproteases |
| MX371497B (en) | 2013-07-19 | 2020-01-31 | Danisco Us Inc | COMPOSITIONS AND METHODS THAT INCLUDE A LIPOLYTIC ENZYME VARIANT. |
| JP6678108B2 (en) | 2013-09-12 | 2020-04-08 | ダニスコ・ユーエス・インク | Compositions and methods comprising LG12-family protease variants |
| WO2015077126A1 (en) | 2013-11-20 | 2015-05-28 | Danisco Us Inc. | Variant alpha-amylases having reduced susceptibility to protease cleavage, and methods of use, thereof |
| TR201906371T4 (en) | 2013-12-13 | 2019-05-21 | Danisco Inc | Serine proteases of Bacillus species. |
| DK3553173T3 (en) | 2013-12-13 | 2021-08-23 | Danisco Us Inc | SERINE PROTEASES OF BACILLUS GIBSONII-CLADE |
| CN112899086A (en) | 2014-04-11 | 2021-06-04 | 诺维信公司 | Detergent composition |
| DK3149144T3 (en) | 2014-05-28 | 2019-10-14 | Novozymes As | Polypeptide with DNase activity to reduce static electricity |
| BR112017000505A2 (en) | 2014-07-11 | 2018-06-12 | Danisco Us Inc | paenibacillus and bacillus spp. |
| WO2016069557A1 (en) * | 2014-10-27 | 2016-05-06 | Danisco Us Inc. | Serine proteases of bacillus species |
| DE102014223296A1 (en) | 2014-11-14 | 2016-05-19 | Henkel Ag & Co. Kgaa | Detergents and cleaners containing at least two proteases |
| CN107002059A (en) | 2014-12-19 | 2017-08-01 | 诺维信公司 | Protease variants and polynucleotides encoding them |
| CN107567489A (en) | 2015-04-10 | 2018-01-09 | 诺维信公司 | The purposes of laundry process, DNA enzymatic and detergent composition |
| HUE036591T2 (en) | 2015-06-05 | 2018-08-28 | Procter & Gamble | Compacted liquid laundry detergent composition |
| EP3310913A1 (en) | 2015-06-17 | 2018-04-25 | Danisco US Inc. | Proteases with modified propeptide regions |
| WO2017054983A1 (en) | 2015-10-01 | 2017-04-06 | Unilever Plc | Liquid laundry detergent composition |
| EP3359658A2 (en) | 2015-10-07 | 2018-08-15 | Novozymes A/S | Polypeptides |
| CA2996749C (en) | 2015-10-28 | 2023-10-10 | Novozymes A/S | Detergent composition comprising amylase and protease variants |
| EP3380599B1 (en) | 2015-11-25 | 2019-03-06 | Unilever N.V. | A liquid detergent composition |
| EP3433347B1 (en) | 2016-03-23 | 2020-05-06 | Novozymes A/S | Use of polypeptide having dnase activity for treating fabrics |
| CN109477112B (en) * | 2016-05-31 | 2024-09-06 | 丹尼斯科美国公司 | Protease variants and uses thereof |
| DE102016210628A1 (en) | 2016-06-15 | 2017-12-21 | Henkel Ag & Co. Kgaa | Bacillus gibsonii protease and variants thereof |
| CN109996859B (en) | 2016-09-29 | 2021-11-30 | 诺维信公司 | Spore-containing particles |
| CN106484910A (en) | 2016-10-24 | 2017-03-08 | 深圳有麦科技有限公司 | A kind of data asynchronous refresh method and its system |
| CN110312795B (en) | 2016-12-21 | 2024-07-23 | 丹尼斯科美国公司 | Protease variants and uses thereof |
| CN110662836B (en) | 2017-03-31 | 2024-04-12 | 丹尼斯科美国公司 | α-Amylase combination variants |
| WO2018177936A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
| WO2018177938A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
| CN110651040A (en) | 2017-03-31 | 2020-01-03 | 诺维信公司 | Polypeptides with DNase activity |
| MX2019011764A (en) | 2017-04-06 | 2019-11-28 | Novozymes As | Cleaning compositions and uses thereof. |
| ES2763561T3 (en) | 2017-04-06 | 2020-05-29 | Novozymes As | Cleaning compositions and their uses |
| EP3607037A1 (en) | 2017-04-06 | 2020-02-12 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018185280A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| EP3607042A1 (en) | 2017-04-06 | 2020-02-12 | Novozymes A/S | Cleaning compositions and uses thereof |
| CN110662829B (en) | 2017-04-06 | 2022-03-01 | 诺维信公司 | Cleaning compositions and their uses |
| EP3621452A1 (en) | 2017-05-09 | 2020-03-18 | Novozymes A/S | Animal chew toy with dental care composition |
| EP3441412A1 (en) | 2017-08-11 | 2019-02-13 | The Procter & Gamble Company | Water-soluble unit dose article comprising an amphiphilic graft polymer and a polyester terephthalate |
| EP3679133B1 (en) | 2017-09-05 | 2024-11-06 | Henkel AG & Co. KGaA | Performance-enhanced protease variants i |
| HUE057832T2 (en) | 2017-10-27 | 2022-06-28 | Procter & Gamble | Detergent compositions comprising polypeptide variants |
| BR112020008251A2 (en) | 2017-10-27 | 2020-11-17 | Novozymes A/S | dnase variants |
| EP3814467A1 (en) | 2018-06-26 | 2021-05-05 | The Procter & Gamble Company | Liquid laundry detergent composition |
| WO2020099491A1 (en) | 2018-11-14 | 2020-05-22 | Novozymes A/S | Oral care composition comprising a polypeptide having dnase activity |
| EP3702452A1 (en) | 2019-03-01 | 2020-09-02 | Novozymes A/S | Detergent compositions comprising two proteases |
| DE102019111075A1 (en) | 2019-04-29 | 2020-10-29 | Henkel Ag & Co. Kgaa | Improved cleaning performance against protein-sensitive soiling VI |
| WO2020223959A1 (en) | 2019-05-09 | 2020-11-12 | The Procter & Gamble Company | Stable anti-mite liquid laundry detergent composition comprising benzyl benzoate |
| CA3138778C (en) | 2019-06-28 | 2023-12-12 | The Procter & Gamble Company | Cleaning composition |
| US11208619B2 (en) | 2019-08-22 | 2021-12-28 | Henkel IP & Holding GmbH | Unit dose detergent products with effect on protein stains |
| EP4022019A1 (en) | 2019-08-27 | 2022-07-06 | Novozymes A/S | Detergent composition |
| US10927324B1 (en) | 2019-08-28 | 2021-02-23 | Henkel IP & Holding GmbH | Unit-dose detergent compositions containing polyethylene glycol and an organic acid |
| WO2021108307A1 (en) | 2019-11-27 | 2021-06-03 | The Procter & Gamble Company | Improved alkylbenzenesulfonate surfactants |
| US11427794B2 (en) | 2019-12-19 | 2022-08-30 | Henkel Ag & Co. Kgaa | Low density unit dose detergents based on butyl cellosolve with encapsulated fragrance |
| MX2022007361A (en) | 2019-12-19 | 2022-07-19 | Novozymes As | Alpha-amylase variants. |
| EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
| DE102020205400A1 (en) | 2020-04-29 | 2021-11-04 | Henkel Ag & Co. Kgaa | Highly alkaline laundry detergent with protease |
| WO2021223222A1 (en) | 2020-05-08 | 2021-11-11 | The Procter & Gamble Company | Liquid laundry detergent composition |
| EP4162016A1 (en) | 2020-06-05 | 2023-04-12 | The Procter & Gamble Company | Detergent compositions containing a branched surfactant |
| RS20200817A1 (en) | 2020-07-10 | 2022-01-31 | Inst Biosens Istrazivacko Razvojni Inst Za Informacione Tehnologije Biosistema | System and method for intelligent soil sampling |
| CN116323935A (en) | 2020-08-27 | 2023-06-23 | 丹尼斯科美国公司 | Enzymes and enzyme compositions for cleaning |
| CA3186910A1 (en) * | 2020-08-28 | 2022-03-03 | Rolf Thomas Lenhard | Protease variants with improved solubility |
| WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
| WO2022106404A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of proteases |
| WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
| EP4001391A1 (en) | 2020-11-20 | 2022-05-25 | The Procter & Gamble Company | Water-soluble unit dose article comprising a fatty alkyl ester alkoxylate non-ionic surfactant and an alkoxylated alcohol non-ionic surfactant |
| US12084633B2 (en) | 2020-12-15 | 2024-09-10 | Henkel Ag & Co. Kgaa | Unit dose laundry detergent compositions containing soil release polymers |
| EP4032966A1 (en) | 2021-01-22 | 2022-07-27 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
| EP4039806A1 (en) | 2021-02-04 | 2022-08-10 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability |
| JP2024508766A (en) | 2021-02-22 | 2024-02-28 | ベーアーエスエフ・エスエー | amylase variant |
-
2023
- 2023-08-29 JP JP2025512640A patent/JP2025530749A/en active Pending
- 2023-08-29 CN CN202380063165.0A patent/CN119855892A/en active Pending
- 2023-08-29 EP EP23776207.5A patent/EP4581119A1/en active Pending
- 2023-08-29 WO PCT/US2023/073063 patent/WO2024050346A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| JP2025530749A (en) | 2025-09-17 |
| WO2024050346A1 (en) | 2024-03-07 |
| EP4581119A1 (en) | 2025-07-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240279632A1 (en) | Subtilisin variants having improved stability | |
| EP3636662B1 (en) | Novel metalloproteases | |
| US20230028935A1 (en) | Subtilisin variants having improved stability | |
| CN118679252A (en) | Subtilisin variants and methods of use | |
| CN114174504A (en) | Subtilisin variants and methods of use | |
| CN118679251A (en) | Subtilisin variants and methods of use | |
| CN118715318A (en) | Subtilisin variants and uses thereof | |
| CN120712348A (en) | Subtilisin variants and methods of use | |
| US12415996B2 (en) | Subtilisin variants | |
| US20210363470A1 (en) | Subtilisin variants | |
| CN119855892A (en) | Detergent compositions and methods relating thereto | |
| CN120112635A (en) | Subtilisin variants and methods related thereto | |
| CN120303400A (en) | Subtilisin variants and methods of use | |
| CN120677237A (en) | Subtilisin variants and methods of use | |
| CN120569471A (en) | Subtilisin variants and methods of use | |
| WO2025085351A1 (en) | Subtilisin variants and methods of use |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |