CN110007325B - Rapid frame synchronization method for satellite-based enhanced L5 signal - Google Patents
Rapid frame synchronization method for satellite-based enhanced L5 signal Download PDFInfo
- Publication number
- CN110007325B CN110007325B CN201910298729.4A CN201910298729A CN110007325B CN 110007325 B CN110007325 B CN 110007325B CN 201910298729 A CN201910298729 A CN 201910298729A CN 110007325 B CN110007325 B CN 110007325B
- Authority
- CN
- China
- Prior art keywords
- data
- frame
- bit
- decoding
- original
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/35—Constructional details or hardware or software details of the signal processing chain
- G01S19/37—Hardware or software details of the signal processing chain
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
技术领域technical field
本发明属于卫星导航领域,涉及一种信号的帧同步方法。The invention belongs to the field of satellite navigation, and relates to a signal frame synchronization method.
背景技术Background technique
目前,卫星导航技术在各个领域得到了广泛应用,已成为国家发展中的重要环节,但由于技术和系统的局限性,在某些高精度应用场合无法满足需求。星基增强系统(Satellite-Based Augmentation System,以下简称SBAS)拥有精度高、范围广和成本低的特性,成为各国家卫星导航发展重要技术方向。At present, satellite navigation technology has been widely used in various fields and has become an important link in the development of the country. However, due to the limitations of technology and systems, it cannot meet the needs in some high-precision applications. Satellite-Based Augmentation System (SBAS) has the characteristics of high precision, wide range and low cost, and has become an important technical direction for the development of satellite navigation in various countries.
SBAS是由大量分布广泛的监测站(位置已知)对导航卫星进行监测,获得原始测量数据并发送到主控站。主控站计算星历误差、卫星钟差、电离层延迟等多种修正信息,通过上行注入站到地球同步轨道(Geostationary Earth Orbit,以下简称GEO)卫星,最后修正信息播发给广大用户,提高定位精度。SBAS is to monitor the navigation satellite by a large number of widely distributed monitoring stations (the location is known), obtain the original measurement data and send it to the main control station. The main control station calculates various correction information such as ephemeris error, satellite clock error, ionospheric delay, etc., and injects it to the Geostationary Earth Orbit (GEO) satellite through the uplink injection station. Finally, the correction information is broadcast to the majority of users to improve positioning. precision.
2016年美国发布《IWG星基增强系统L5接口控制文件(SBAS ICD)草案》,增加了L5信号,实现L1和L5双频跟踪,能够有效修正电离层延迟误差,提供相应的完好性保护,确保系统的可用性和连续性。In 2016, the United States released the "IWG Satellite-Based Augmentation System L5 Interface Control Document (SBAS ICD) Draft", adding L5 signals to achieve L1 and L5 dual-frequency tracking, which can effectively correct ionospheric delay errors, provide corresponding integrity protection, and ensure that System availability and continuity.
SBAS L5信号电文的一帧长250位。一帧开始4比特是帧标识,然后是6比特的信息类型编号和216比特的数据区域,最后是24位的CRC校验。SBAS L5信号的导航电文帧格式如图1所示。One frame of SBAS L5 signal message is 250 bits long. The first 4 bits of a frame are the frame identification, followed by the 6-bit information type number and the 216-bit data area, and finally the 24-bit CRC check. The navigation message frame format of SBAS L5 signal is shown in Figure 1.
SBAS L5信号电文的帧标识采用分布式排列。一个完整的24位帧标识,按照01011100 0110 1001 0011 1010的顺序依次分布在6帧的前四位。The frame identification of SBAS L5 signal message adopts distributed arrangement. A complete 24-bit frame identifier is distributed in the first four bits of the 6 frames in the order of 01011100 0110 1001 0011 1010.
对250bps的原始导航电文采用1/2编码率的前向纠错码(Forward ErrorCorrection,简称FEC),生成为500bps的数据流。具体电路见图2所示。又经过曼彻斯特编码(Manchester Encoded)变为速率为1000bps的数据流,与扩频码合成后,通过载波调制发射出去。The forward error correction code (Forward Error Correction, referred to as FEC) of 1/2 coding rate is used for the original navigation message of 250bps, and a data stream of 500bps is generated. The specific circuit is shown in Figure 2. After Manchester Encoded (Manchester Encoded), it becomes a data stream with a rate of 1000bps, and after being synthesized with a spread spectrum code, it is transmitted through carrier modulation.
但是,传统特征字符匹配法面对SBAS L5电文帧标识的分布式特性,存在数据位需求量大和识别率低的不足。However, the traditional feature character matching method faces the distributed characteristics of SBAS L5 message frame identification, and has the shortcomings of large demand for data bits and low recognition rate.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术的不足,本发明提供一种基于CRC校验的帧头搜索方法,可以快速准确的完成帧同步。In order to overcome the deficiencies of the prior art, the present invention provides a frame header search method based on CRC check, which can quickly and accurately complete frame synchronization.
本发明解决其技术问题所采用的技术方案包括以下步骤:The technical scheme adopted by the present invention to solve its technical problem comprises the following steps:
1)SBAS L5接收机通过载波获取的数据,先经过曼彻斯特译码,产生第一次的译码数据;1) The data obtained by the SBAS L5 receiver through the carrier is first decoded by Manchester to generate the first decoded data;
2)经过曼彻斯特译码后的数据,用维特比译码算法来对FEC进行解码,生成原始导航电文数据;2) The data after Manchester decoding is used to decode the FEC with the Viterbi decoding algorithm to generate the original navigation message data;
3)在原始导航电文数据中找到帧标识的位置或者偏移量;3) Find the position or offset of the frame identifier in the original navigation message data;
4)根据帧头在原始数据中的偏移量,调整接收机内部的历元计数,使导航电文一帧起始位置的历元计数等于0。4) Adjust the epoch count inside the receiver according to the offset of the frame header in the original data, so that the epoch count at the starting position of one frame of the navigation message is equal to 0.
所述的步骤3)采用特征字符匹配的方法找到帧标识的位置或者偏移量。The step 3) uses the method of feature character matching to find the position or offset of the frame identification.
所述的步骤3)包括以下步骤:Described step 3) comprises the following steps:
步骤3.1)获取维特比译码后的500位原始数据序列;Step 3.1) obtain 500 original data sequences after Viterbi decoding;
步骤3.2)在500位原始数据序列中匹配第n种的4位帧标识,如果n大于6则结束步骤3);Step 3.2) Match the nth 4-bit frame identification in the 500-bit original data sequence, if n is greater than 6, end step 3);
步骤3.3)如果找到第n种帧标识并且偏移量小于250则跳转到步骤3.4),否则n值加1并跳转到步骤3.2);Step 3.3) If the nth frame identifier is found and the offset is less than 250, then jump to step 3.4), otherwise add 1 to the n value and jump to step 3.2);
步骤3.4)进行CRC校验判断;Step 3.4) carry out CRC verification and judgment;
步骤3.5)如果CRC校验正确则找到帧头,否则跳转到步骤3.3)在余下的原始数据继续搜索帧头;Step 3.5) If the CRC check is correct, then find the frame header, otherwise jump to step 3.3) and continue to search for the frame header in the remaining original data;
步骤3.6)计算出帧头在500位原始数据中的位置。Step 3.6) Calculate the position of the frame header in the 500-bit original data.
所述的步骤4)包括以下步骤:Described step 4) comprises the following steps:
步骤4.1)获取2400位数据,进行曼彻斯特译码获取1200位数据;Step 4.1) obtain 2400 bits of data, carry out Manchester decoding to obtain 1200 bits of data;
步骤4.2)对1200位数据进行维特比译码;Step 4.2) 1200 bits of data are carried out Viterbi decoding;
步骤4.3)在600位数据中基于CRC方法搜索帧头;Step 4.3) in 600 bits of data, search frame header based on CRC method;
步骤4.4)找到帧头就跳到步骤4.8),否则继续搜索;Step 4.4) Jump to step 4.8) if the frame header is found, otherwise continue to search;
步骤4.5)对1200位错位处理,进行VCP译码;Step 4.5) to 1200 bit dislocation processing, carry out VCP decoding;
步骤4.6)找到帧头就跳到步骤4.8),否则跳转到步骤4.7);如果是第二次取反的数据位搜索则结束步骤4);Step 4.6) jump to step 4.8) if the frame header is found, otherwise jump to step 4.7); if it is the second inverted data bit search, then end step 4);
步骤4.7)对2400位的数据取反处理,重复以上步骤4.1)~4.6);Step 4.7) Invert the 2400-bit data, and repeat the above steps 4.1) to 4.6);
步骤4.8)完成历元调整,使一帧开始的位置历元计数为0。Step 4.8) Complete the epoch adjustment so that the position epoch count at the beginning of a frame is 0.
本发明的有益效果是:算法流程简单,存储空间和运算速度得到提升,误判率趋近于0,能够满足工程需要。The beneficial effects of the invention are: the algorithm flow is simple, the storage space and the operation speed are improved, the misjudgment rate is close to 0, and the engineering needs can be met.
附图说明Description of drawings
图1是SBAS L5电文格式;Figure 1 is the SBAS L5 message format;
图2是L5 FEC寄存器值;Figure 2 is the L5 FEC register value;
图3是导航接收机的帧同步过程框图;Fig. 3 is the frame synchronization process block diagram of the navigation receiver;
图4是基于CRC校验的搜索帧头算法流程图;Fig. 4 is the search frame header algorithm flow chart based on CRC check;
图5是SBAS L5帧同步工程实现流程图。Figure 5 is a flow chart of the realization of the SBAS L5 frame synchronization project.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步说明,本发明包括但不仅限于下述实施例。The present invention will be further described below with reference to the accompanying drawings and embodiments, and the present invention includes but is not limited to the following embodiments.
本发明提供的SBAS L5的帧同步过程如图3所示,接收机通过载波获取的数据需要经过曼彻斯特译码、维特比译码、帧头搜索和历元调整4个过程。The frame synchronization process of SBAS L5 provided by the present invention is shown in Figure 3. The data obtained by the receiver through the carrier needs to undergo four processes: Manchester decoding, Viterbi decoding, frame header search and epoch adjustment.
a)曼彻斯特译码a) Manchester decoding
SBAS L5接收机通过载波获取的数据,先经过曼彻斯特译码,产生第一次的译码数据。曼彻斯特译码规则按照通用的10为0、01为1的规则执行。The data obtained by the SBAS L5 receiver through the carrier is first decoded by Manchester to generate the first decoded data. The Manchester decoding rule is executed according to the general rule that 10 is 0 and 01 is 1.
b)维特比译码b) Viterbi decoding
经过曼彻斯特译码后的数据,用维特比译码算法来对FEC进行解码,生成原始的导航电文数据。维特比译码采用码率为1/2,生成多项式G1(171)G2(133)的参数来完成软件译码。After Manchester decoding, the FEC is decoded by the Viterbi decoding algorithm to generate the original navigation message data. The Viterbi decoding adopts the code rate of 1/2 and generates the parameters of the polynomial G1 (171) G2 (133) to complete the software decoding.
c)搜索帧头c) Search frame header
在原始的导航电文数据串中找到帧标识的位置或者偏移量,一般采用特征字符匹配的方法。To find the position or offset of the frame identification in the original navigation text data string, the method of matching characteristic characters is generally adopted.
传统的特征字符法针对SBAS L5的分布式帧头,最少需要获取6帧的原始数据即6秒1500位数据。考虑到帧标识的边界,至少需要1504位数据,才能包含完整的6个帧标识。由于分布式4比特帧标识,在1500位的原始导航电文数据序列中会遇到很多的误判断,算法的复杂度大幅提升。For the distributed frame header of SBAS L5, the traditional characteristic character method requires at least 6 frames of original data, that is, 1500-bit data in 6 seconds. Considering the boundaries of the frame IDs, at least 1504 bits of data are required to contain the complete 6 frame IDs. Due to the distributed 4-bit frame identification, many misjudgments will be encountered in the 1500-bit original navigation message data sequence, and the complexity of the algorithm is greatly increased.
本发明采用基于CRC校验的帧标识搜索方法,只要导航电文数据序列存在一个完整的帧,就能准确找到帧标识。考虑到边界情况,最少需要数据位是500位。The invention adopts the frame identification search method based on CRC check, so long as there is a complete frame of the navigation message data sequence, the frame identification can be accurately found. Taking into account edge cases, the minimum required data bits is 500 bits.
为了确保CRC校验可以准确的识别出一整帧数据,对CRC校验的漏检率,即不同的数据有相同的校验进行分析。In order to ensure that the CRC check can accurately identify a whole frame of data, the missed detection rate of the CRC check, that is, different data have the same check, is analyzed.
对于一般的(n,k)形式通用的CRC编码,k为待编码的二进制序列长度,n是编码后的二进制序列长度,则r=n-k为生成多项式的次数。For general CRC coding in the form of (n, k), k is the length of the binary sequence to be coded, n is the length of the coded binary sequence, then r=n-k is the order of the generator polynomial.
给定长度为k的信息序列mi(i=1~k)可以表示为以下多项式:A given information sequence mi ( i =1∼k) of length k can be expressed as the following polynomial:
m(x)=mk+mk-1x+mk-2x2+…m1xk-1 (1)m(x)=m k +m k-1 x+m k-2 x 2 +…m 1 x k-1 (1)
生成多项式g(x)可表示为以下多项式:The generator polynomial g(x) can be expressed as the following polynomial:
多项式m(x)xr除以生成多项式g(x),得到余式R(x)如下:The polynomial m(x) x r is divided by the generator polynomial g(x), and the remainder R(x) is obtained as follows:
R(x)=pr+pr-1x+pr-2x2+…p1xr-1 (3)R(x)=pr +pr -1 x+pr -2 x 2 +...p 1 x r -1 (3)
则p1p2…pr构成CRC校验码序列。Then p 1 p 2 ... pr constitute the CRC check code sequence.
对于k待编码数据序列,将有2k种不同的表达式,而对于r次的生成多项式最多表示2r个不同的余式。那么理论上将有2k/2r=2k-r个不同的数据序列共享一个余式,存在误判的概率。k-r的数值越大,发生误判的数据序列就越多,但是发生误判的概率只和r的值有关为1/2r。For the k data sequence to be encoded, there will be 2k different expressions, and for a generator polynomial of degree r at most 2r different remainders. Then theoretically, there will be 2 k /2 r = 2 kr different data sequences sharing a remainder, and there is a probability of misjudgment. The larger the value of kr is, the more data sequences will be misjudged, but the probability of misjudgment is only related to the value of r, which is 1/2 r .
L5导航电文采用(250,226)的形式,其生成多项式为:The L5 navigation message takes the form of (250, 226), and its generator polynomial is:
其中,in,
所以L5帧头搜索产生错误判断的概率是1/224,趋近于0,完全满足工程实际需求。Therefore, the probability of wrong judgment generated by L5 frame header search is 1/2 24 , which is close to 0, which fully meets the actual needs of the project.
搜索帧头的具体流程如图4所示。The specific process of searching the frame header is shown in Fig. 4 .
步骤1:获取维特比译码后的500位原始数据序列。Step 1: Obtain the 500-bit original data sequence after Viterbi decoding.
步骤2:在500位数据序列中匹配第n种的4位帧标识,如果n大于6,跳转到步骤7。Step 2: Match the nth 4-bit frame identifier in the 500-bit data sequence, if n is greater than 6, jump to step 7.
步骤3:如果找到第n种帧标识并且偏移量小于250则跳转到步骤4,否则n+1并跳转到步骤2。Step 3: If the nth frame identifier is found and the offset is less than 250, then jump to step 4, otherwise n+1 and jump to step 2.
步骤4:进行CRC校验判断。Step 4: Carry out CRC check and judgment.
步骤5:如果CRC校验正确则找到帧头,否则跳转到步骤3在余下的原始数据继续搜索帧头Step 5: If the CRC check is correct, find the frame header, otherwise jump to step 3 to continue searching for the frame header in the remaining original data
步骤6:计算出帧头在500位原始数据中的位置。Step 6: Calculate the position of the frame header in the 500-bit raw data.
步骤7:结束。Step 7: End.
d)调整历元。d) Adjust the epoch.
根据帧头在原始数据中的偏移量,调整接收机内部的历元计数。使导航电文一帧起始位置的历元计数等于0。The epoch count inside the receiver is adjusted according to the offset of the frame header in the raw data. Make the epoch count at the start of one frame of the navigation message equal to 0.
导航接收机跟踪环路算法一般采用科斯塔斯鉴相器。因为它对I和Q信号的180度相位反转不敏感,所以导航数据位可能会出现反转。输入维特比译码器的位流起始G0G1位置不确定产生的错位现象,导致译码结果不正确。The navigation receiver tracking loop algorithm generally uses the Costas phase detector. Because it is insensitive to the 180-degree phase reversal of the I and Q signals, the navigation data bits may be reversed. The misalignment caused by the uncertainty of the starting G0G1 position of the bit stream input to the Viterbi decoder leads to incorrect decoding results.
鉴于实际工程应用中导航电文数据出现的两种不确定性,需要分四种情况来依次搜索帧头。(1)数据位不反转维特比译码G0G1不产生错位;(2)数据位不反转维特比译码G0G1产生错位;(3)数据位反转维特比译码G0G1不产生错位;(4)数据位反转维特比译码G0G1产生错位。In view of the two kinds of uncertainties in the navigation message data in practical engineering applications, it is necessary to search for the frame headers in sequence in four cases. (1) Viterbi decoding G0G1 without data bit reversal does not produce misalignment; (2) Viterbi decoding G0G1 without data bit reversal produces misalignment; (3) Data bit reversal Viterbi decoding G0G1 does not produce misalignment; ( 4) Data bit inversion Viterbi decoding G0G1 produces dislocation.
考虑到译码中的数据位损失和工程中数据储存的边界对齐特性,选取2400位数据来完成帧同步。经过曼彻斯特和维特比译码后理想情况下有600位数据,大于500位的最小数据要求。Considering the loss of data bits in decoding and the boundary alignment characteristics of data storage in engineering, 2400 bits of data are selected to complete frame synchronization. Ideally, there are 600 bits of data after Manchester and Viterbi decoding, which is greater than the minimum data requirement of 500 bits.
工程实现具体流程如图5所示,步骤如下:The specific process of project realization is shown in Figure 5, and the steps are as follows:
步骤1:获取2400位数据,进行曼彻斯特译码获取1200位数据;Step 1: Obtain 2400-bit data, perform Manchester decoding to obtain 1200-bit data;
步骤2:对1200位数据进行维特比译码;Step 2: perform Viterbi decoding on the 1200-bit data;
步骤3:在600位数据中基于CRC方法搜索帧头;Step 3: Search the frame header based on the CRC method in the 600-bit data;
步骤4:找到帧头就跳到步骤8,否则继续搜索;Step 4: Skip to step 8 when the frame header is found, otherwise continue to search;
步骤5:对1200位错位处理,进行VCP译码;Step 5: Perform VCP decoding on 1200-bit dislocation processing;
步骤6:找到帧头就跳到步骤8,否则跳转到步骤7。如果是第二次取反的数据位搜索,跳转到步骤9;Step 6: Go to Step 8 if the frame header is found, otherwise go to Step 7. If it is the second inverted data bit search, go to step 9;
步骤7:对2400位的数据取反处理,重复以上1-6步骤;Step 7: Invert the 2400-bit data, and repeat the above steps 1-6;
步骤8:完成历元调整,使一帧开始的位置历元计数是0;Step 8: Complete the epoch adjustment so that the position epoch count at the beginning of a frame is 0;
步骤9:结束。Step 9: End.
实施效果:Implementation Effect:
本发明所描述的帧同步方法已经在TI DSP 6657平台用C语言来编程实现。以下表格是对帧同步过程中的关键模块时间进行测量。The frame synchronization method described in the present invention has been implemented by programming in C language on the TI DSP 6657 platform. The following table measures the key block times during frame synchronization.
运行6次帧同步,时间统计如下表1所示:
表1 6次帧同步所消耗的时间(单位是纳秒)Table 1 Time consumed by 6 frame synchronizations (unit is nanoseconds)
帧同步中的关键函数或者功能模块做时间统计如表2所示:The key functions or function modules in frame synchronization do time statistics as shown in Table 2:
表2关键函数和模块时间测量(单位是纳秒)Table 2. Key functions and module time measurements (in nanoseconds)
帧同步后对译码函数的时间统计结果如表3所示:The time statistics of the decoding function after frame synchronization are shown in Table 3:
表3帧同步后译码函数时间测量(单位是纳秒)Table 3 Decoding function time measurement after frame synchronization (unit is nanoseconds)
通过表1、表2、表3的对比分析:Through the comparative analysis of Table 1, Table 2 and Table 3:
(1)接收模拟源SBAS L5信号的电文数据,帧同步全部成功,验证了本专利帧同步的准确性和可实现性。(1) The telegram data of the analog source SBAS L5 signal is received, and the frame synchronization is all successful, which verifies the accuracy and achievability of the frame synchronization of the patent.
(2)1200位曼彻斯特译码大约是2400位曼彻斯特译码时间的一半。但是当2400位曼彻斯特译码出现首位丢弃的时候,时间会从280US延长到425US。(2) 1200-bit Manchester decoding is about half the time of 2400-bit Manchester decoding. But when the 2400-bit Manchester decoding occurs when the first bit is discarded, the time will be extended from 280US to 425US.
(3)六次帧同步过程中,最好的是两次找到帧头,耗时大约30MS。最差是4次找到帧头,大约耗时60MS。(3) In the six frame synchronization process, it is best to find the frame header twice, which takes about 30MS. The worst is to find the frame header 4 times, which takes about 60MS.
(4)600位维特比大约是1200位维特比时间的一半。(4) 600-bit Viterbi is about half the time of 1200-bit Viterbi.
(5)维特比译码是帧同步中耗时最长的过程。(5) Viterbi decoding is the longest process in frame synchronization.
通过以上对比分析,可以看出本发明的优势之处:Through the above comparative analysis, it can be seen that the advantages of the present invention are:
(1)本发明提出的基于CRC的帧同步方法只需要2400位的电文就可以完成帧同步,比传统的6000位原始数据,快3.5秒实现帧同步。(1) The CRC-based frame synchronization method proposed by the present invention only needs 2400-bit telegrams to complete frame synchronization, which is 3.5 seconds faster than traditional 6000-bit original data to achieve frame synchronization.
(2)本发明提出SBAS L5信号的帧同步方法,比起6个字符的帧头匹配算法,算法流程更加简单,存储空间和运算速度约有2倍提升。(2) The present invention proposes a frame synchronization method for SBAS L5 signals. Compared with the frame header matching algorithm of 6 characters, the algorithm flow is simpler, and the storage space and operation speed are improved by about 2 times.
(3)本发明提出SBAS L5信号的帧同步方法,误判断的概率是1/224趋近于0,满足工程需要。(3) The present invention proposes a frame synchronization method for the SBAS L5 signal, and the probability of misjudgment is 1/224 close to 0, which meets engineering needs.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910298729.4A CN110007325B (en) | 2019-04-15 | 2019-04-15 | Rapid frame synchronization method for satellite-based enhanced L5 signal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910298729.4A CN110007325B (en) | 2019-04-15 | 2019-04-15 | Rapid frame synchronization method for satellite-based enhanced L5 signal |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110007325A CN110007325A (en) | 2019-07-12 |
| CN110007325B true CN110007325B (en) | 2022-09-13 |
Family
ID=67171777
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910298729.4A Active CN110007325B (en) | 2019-04-15 | 2019-04-15 | Rapid frame synchronization method for satellite-based enhanced L5 signal |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110007325B (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110927749B (en) * | 2019-12-03 | 2021-06-22 | 中国电子科技集团公司第五十四研究所 | A Fast Frame Synchronization Method for GPS Navigation Messages |
| CN115276892A (en) * | 2021-04-30 | 2022-11-01 | 上海华为技术有限公司 | A signal generation method, a signal processing method and related equipment |
| CN113131967B (en) * | 2021-06-17 | 2021-08-31 | 北京全路通信信号研究设计院集团有限公司 | CDMA security coding and decoding method and system |
| CN113541914B (en) * | 2021-07-05 | 2022-05-24 | 中国人民解放军国防科技大学 | A CNAV-2 Message Frame Synchronization Method Based on Association Rules |
| CN115499093B (en) * | 2022-08-01 | 2024-05-24 | 北京北方联星科技有限公司 | SBAS signal non-decoding frame synchronization method based on FEC coding |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9287921B2 (en) * | 2013-11-04 | 2016-03-15 | Samsung Electronics Co., Ltd | Method and apparatus for frame synchronization in a positioning system |
| CN104698479B (en) * | 2015-02-16 | 2017-03-01 | 清华大学 | The coding/decoding method of navigation message and decoding apparatus |
| CN105589082A (en) * | 2015-12-17 | 2016-05-18 | 湖南中森通信科技有限公司 | Viterbi decoding device and method of Beidou navigation system |
| CN106571862B (en) * | 2016-10-31 | 2019-08-27 | 深圳市德赛微电子技术有限公司 | A kind of rapid frame synchronization method of GPS receiver |
| CN106814374A (en) * | 2016-12-23 | 2017-06-09 | 湖南北云科技有限公司 | A kind of reception device and method of GPS L5 signals |
| CN107037457A (en) * | 2017-03-28 | 2017-08-11 | 上海双微导航技术有限公司 | A kind of satellite-based enhancing receiver based on Inmarsat systems |
-
2019
- 2019-04-15 CN CN201910298729.4A patent/CN110007325B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN110007325A (en) | 2019-07-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110007325B (en) | Rapid frame synchronization method for satellite-based enhanced L5 signal | |
| EP3715913B1 (en) | Apparatus and method for synchronization of global navigation satellite system signal synchronization in a noisy environment | |
| KR100931442B1 (en) | Use of Bit Decision Determination to Improve DSP Demodulation of SPS Data | |
| US8780958B2 (en) | Hybrid bit extraction for global position receiver | |
| US8631309B2 (en) | Forward error correction with extended effective block size | |
| CN100508440C (en) | Method and device for parallel processing of decoding and cyclic redundancy check when receiving mobile radio signals | |
| WO2013153512A1 (en) | Branch metric computation for trellis decoding of scrambled convolutional codes | |
| US11448772B2 (en) | Transmission of satellite navigation message into multiple pages encoded for optimal retrieval at receiver in a fully interchangeable way | |
| CN102545914B (en) | BCH (Broadcast Channel) encoding and decoding method and device | |
| CN112698366B (en) | Frame synchronization method for satellite positioning receiver | |
| RU2538331C2 (en) | Serial turbo code soft decoder | |
| US20030007580A1 (en) | Blind transport format detection system and method | |
| EP4270794A3 (en) | Method and apparatus for binary signal reception, clock data recovery, and soft decoding | |
| US10742236B2 (en) | Methods, systems and computer-readable media for decoding cyclic code | |
| CN111224741B (en) | BCH code decoding method for satellite navigation, decoder and satellite navigation receiver | |
| US9621189B2 (en) | Method and apparatus for identification and compensation for inversion of input bit stream in Ldpc decoding | |
| US7430196B2 (en) | Transmission systems | |
| Yin et al. | Performance analysis of L2 and L5 CNAV broadcast ephemeris for orbit calculation | |
| CN113572483B (en) | Viterbi decoding method and apparatus | |
| RU2608872C1 (en) | Method of encoding and decoding block code using viterbi algorithm | |
| WO2017216058A1 (en) | Technique for transmitting and receiving gnss navigation messages | |
| RU2725699C1 (en) | Method for soft decoding of noise-immune code | |
| FI113114B (en) | Procedure for encoding and decoding a digital message | |
| RU2428801C1 (en) | Device of code cycle synchronisation with soft decisions | |
| RU2419966C2 (en) | Method to decode noiseless cascade codes by most valid symbols of external code |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |