CN110046910B - Method and equipment for judging the legitimacy of transactions conducted by customers through electronic payment platforms - Google Patents
Method and equipment for judging the legitimacy of transactions conducted by customers through electronic payment platforms Download PDFInfo
- Publication number
- CN110046910B CN110046910B CN201811522367.4A CN201811522367A CN110046910B CN 110046910 B CN110046910 B CN 110046910B CN 201811522367 A CN201811522367 A CN 201811522367A CN 110046910 B CN110046910 B CN 110046910B
- Authority
- CN
- China
- Prior art keywords
- customer
- customers
- data
- group
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/01—Customer relationship services
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/018—Certifying business or products
- G06Q30/0185—Product, service or business identity fraud
Landscapes
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Finance (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
提供一种获取与特定客户相关的客户群体的方法,包括获取多个客户中的所述特定客户;获取与多个客户中的每个客户相关的客户相关数据,所述客户相关数据至少包括表示所述多个客户中的每个客户与其他客户之间的关系的客户关系数据和所述客户的客户特征数据;获取预定义的扩展规则数据;以及基于所述客户相关数据和所述扩展规则数据确定所述多个客户中与所述特定客户相关的一个或多个客户,以获取与所述特定客户相关的客户群体。由此,能够在识别的个体可疑客户的基础上进一步获取与其相关的客户群体,从而在扩大审理客户覆盖量的同时提高审理效率。
Provided is a method of obtaining a customer group associated with a particular client, comprising obtaining said particular client among a plurality of clients; obtaining client-related data associated with each of the plurality of clients, said client-related data comprising at least Customer relationship data of the relationship between each customer and other customers in the plurality of customers and customer characteristic data of the customer; obtaining predefined extended rule data; and based on the customer-related data and the extended rule The data determines one or more customers related to the specific customer among the plurality of customers, so as to obtain a customer group related to the specific customer. In this way, on the basis of the identified individual suspicious customers, relevant customer groups can be further obtained, thereby increasing the trial efficiency while expanding the coverage of trial clients.
Description
技术领域technical field
本发明涉及互联网技术领域,尤其涉及在多个客户中识别与特定客户相互关联的一个或多个客户。The invention relates to the technical field of the Internet, and in particular to identifying one or more customers associated with a specific customer among multiple customers.
背景技术Background technique
随着互联网技术的不断发展,其应用到各个领域中,衍生出了如互联网金融这样的新的技术领域。如支付宝等的电子支付平台依托互联网技术能够实现资金支付、转账等,大大方便了人们的生活。With the continuous development of Internet technology, it is applied to various fields, and new technical fields such as Internet finance have been derived. Electronic payment platforms such as Alipay rely on Internet technology to realize fund payment and transfer, which greatly facilitates people's lives.
然而,在为人们的生活提供方便的同时,这些电子支付平台同样存在隐患。例如,某些客户可能希望利用电子支付平台来实现某些具有非法目的的交易,因此,如何判断客户通过电子支付平台所进行的交易的合法性是重要的议题。However, while providing convenience for people's lives, these electronic payment platforms also have hidden dangers. For example, some customers may wish to use the electronic payment platform to achieve certain transactions with illegal purposes. Therefore, how to judge the legitimacy of the transactions conducted by customers through the electronic payment platform is an important issue.
当前,通过对支付平台的所有客户进行筛查,识别个体可疑客户,然后人为地对这些可疑客户进行逐一审理来识别非法交易的客户。At present, through screening all customers of the payment platform, identifying individual suspicious customers, and then artificially examining these suspicious customers one by one to identify customers with illegal transactions.
发明内容Contents of the invention
期望提供一种能够在识别的个体可疑客户的基础上进一步获取与其相关的客户群体,从而扩大客户覆盖量同时提高审理效率的手段。It is expected to provide a method that can further obtain relevant customer groups on the basis of identified individual suspicious customers, thereby expanding customer coverage and improving trial efficiency.
根据一个实施例,提供一种获取与特定客户相关的客户群体的方法,包括获取表示多个客户中的所述特定客户的数据;获取与多个客户中的每个客户相关的客户相关数据,所述客户相关数据至少包括表示所述多个客户中的每个客户与其他客户之间的关系的客户关系数据和所述客户的客户特征数据;获取预定义的扩展规则数据;以及基于所述客户相关数据和所述扩展规则数据确定所述多个客户中与所述特定客户相关的一个或多个客户,以获取与所述特定客户相关的客户群体。According to one embodiment, there is provided a method of acquiring a customer group related to a specific customer, comprising acquiring data representing the specific customer among a plurality of customers; acquiring customer-related data related to each customer in the plurality of customers, The customer-related data at least includes customer relationship data representing the relationship between each customer in the plurality of customers and other customers and customer characteristic data of the customer; acquiring predefined extended rule data; and based on the The customer-related data and the extended rule data determine one or more customers related to the specific customer among the plurality of customers, so as to obtain a customer group related to the specific customer.
当前对使用电子支付平台进行交易的客户进行的个体可疑客户识别和审理方式没有考虑所识别的个体可疑客户与其他客户的关联,仅仅对个体可疑客户进行审理,这使得审理的样本数量有限。而实际上,进行交易的客户之间并不是孤立的,他们之间往往具有某种相关性,尤其是在进行某些非法目的的交易,如洗钱时,各个客户之间存在很强的资金和/或非资金关系。发明人认识到这种客户之间的强相关性,借助根据本发明的各个实施例,在获取的个体可疑客户的基础上根据客户相关数据和预定义的扩展规则两者获取与其具有强相关性的其他客户,将所获取的个体可疑客户和与其具有强相关性的客户作为一个整体推送给审理者,从而可能在审理过程中,对这样具有强相关性的客户群体进行审理,这样不仅能够提高审理效率,还易于在审理中获得完整的证据链,再者,借助这种群体审理方式,还能够扩大审理客户的覆盖范围,增加非法交易审理的防守半径。The current individual suspicious customer identification and trial methods for customers who use electronic payment platforms for transactions do not take into account the relationship between the identified individual suspicious customers and other customers, and only trial individual suspicious customers, which makes the number of trial samples limited. In fact, customers who conduct transactions are not isolated, and they often have certain correlations, especially when conducting transactions for certain illegal purposes, such as money laundering, there is a strong relationship between funds and funds among various customers. /or non-financial relationship. The inventors have recognized the strong correlation between such customers, and with the help of various embodiments of the present invention, on the basis of the obtained individual suspicious customers, according to both the customer-related data and the predefined expansion rules, the strong correlation with them is acquired other customers, push the obtained individual suspicious customers and customers with strong correlation to the examiner as a whole, so that it is possible to conduct a trial on such a strong correlation customer group during the trial process, which can not only improve The efficiency of the trial is also easy to obtain a complete chain of evidence in the trial. Moreover, with the help of this group trial method, it can also expand the coverage of trial clients and increase the defense radius of illegal transaction trials.
根据进一步的实施例,基于所述客户相关数据和所述扩展规则数据确定所述多个客户中与所述一个或多个客户中的每个客户相关的另外一个或多个客户;并且将所述另外一个或多个客户包括在与所述特定客户相关的客户群体中。According to a further embodiment, determining another one or more customers of the plurality of customers related to each of the one or more customers based on the customer-related data and the expanded rule data; and The other one or more customers are included in the customer group related to the specific customer.
由此,能够在首次获取的与特定客户相关的客户群体中的一个或多个客户的基础上,进一步获取与该一个或多个客户具有强相关性的客户,将该进一步获取的客户也加入与该特定客户相关的客户群体中,从而进一步扩大要被审理客户的覆盖范围,增加非法交易审理的防守半径。如果需要,可以进行多层这样的扩展。Thus, on the basis of one or more customers in the customer group related to a specific customer acquired for the first time, further customers with strong correlation with the one or more customers can be obtained, and the further acquired customers can also be added Among the customer groups related to the specific customer, the coverage of customers to be tried is further expanded, and the defense radius of the illegal transaction trial is increased. Multiple layers of such extensions can be made if desired.
根据进一步的实施例,使用基于机器学习的评分模型基于获取的与所述特定客户相关的客户群体中的每个客户的客户相关数据对所述客户群体中的每个客户进行评分;并且,基于所述评分,对所述客户群体中的客户进行排序。According to a further embodiment, each customer in the customer group is scored based on the obtained customer-related data of each customer in the customer group related to the specific customer using a machine learning-based scoring model; and, based on The scoring is used to sort the customers in the customer group.
由此,使用该基于机器学习的评分模型进行评分然后排序,能够增加评分的准确度,便于在所获取的与特定客户具有强相关性的客户群体中区分按照需要对客户排序,例如能够将进行非法交易的可能性高的客户排在前面。Therefore, using the scoring model based on machine learning to score and then sort can increase the accuracy of scoring, and facilitate the distinction and sorting of customers among the acquired customer groups that have strong correlations with specific customers. Customers with a high possibility of illegal transactions are ranked first.
根据进一步的实施例,根据一组参考客户中的每个参考客户的客户相关数据确定表示所述参考客户的多个客户特征的特征数据;并且,使用所述参考客户的特征数据训练所述基于机器学习的评分模型。According to a further embodiment, characteristic data representative of a plurality of customer characteristics of a set of reference customers is determined based on customer-related data for each of the reference customers; and, using the characteristic data of the reference customers to train the Scoring models for machine learning.
由此,能够实现在评分排序前对基于机器学习的评分模型进行有针对性的训练。In this way, it is possible to carry out targeted training on the scoring model based on machine learning before ranking the scores.
根据进一步的实施例,根据所述客户群体中的每个客户的客户相关数据确定表示所述客户的多个客户特征的特征数据;使用基于机器学习的评分模型基于表示所述客户的多个客户特征的所述特征数据对所述客户群体中的每个客户进行评分;并且基于所述每个客户的评分,对所述客户群体中的客户进行排序。这提供了使用上述训练的评分模型进行评分的具体实施例。According to a further embodiment, the characteristic data representing a plurality of customer characteristics of said customer is determined according to the customer-related data of each customer in said customer group; The feature data of the feature scores each customer in the customer group; and based on the score of each customer, ranks the customers in the customer group. This provides a specific example of scoring using the scoring model trained above.
根据进一步的实施例,所述扩展规则数据包括通过基于所述多个客户中的每个客户的客户相关数据对所述多个客户进行数据挖掘获取的表示与所述特定客户相关的客户群体的规则数据。According to a further embodiment, the extended rule data includes data representing a customer group related to the specific customer obtained by performing data mining on the multiple customers based on the customer-related data of each customer in the multiple customers. rule data.
根据进一步的实施例,所述扩展规则数据还包括预先确定的表示所述客户群体中的每个客户与所述特定客户的相关性的规则数据;和 /或预先确定的与获取所述客户群体的目的相关的规则数据。According to a further embodiment, the extended rule data also includes predetermined rule data representing the relevance of each customer in the customer group to the specific customer; and/or predetermined relationship with the acquisition of the customer group purpose-related rule data.
使用上述至少两方面的扩展规则数据,能够更全面、准确地获取与特定客户相关的客户群体。By using the above-mentioned extended rule data of at least two aspects, it is possible to more comprehensively and accurately obtain customer groups related to specific customers.
根据进一步的实施例,通过将预定义的模板与所述多个客户的客户相关数据进行匹配来识别在所述多个客户中的一个或多个客户群体,所述预定义的模板定义对应的各个客户之间的关系结构和/或对应的各个客户的特征数据;并且将表示所述一个或多个客户群体中的与所述特定客户相关的客户群体的数据确定为表示与所述特定客户相关的客户群体的规则数据。According to a further embodiment, one or more customer groups among the plurality of customers are identified by matching a predefined template defining corresponding The relationship structure between various customers and/or the corresponding characteristic data of each customer; and the data representing the customer group related to the specific customer among the one or more customer groups is determined to represent the The rule data of the relevant customer groups.
根据进一步的实施例,基于所述多个客户的客户相关数据从所述多个客户中确定一个或多个客户群体,使得所述一个或多个客户群体中的每个客户群体中的每个客户在所述客户群体中均具有至少预定数量的相关客户;并且将表示所述一个或多个客户群体中的与所述特定客户相关的客户群体的数据确定为表示与所述特定客户相关的客户群体的规则数据。According to a further embodiment, one or more customer groups are determined from the plurality of customers based on customer-related data of the plurality of customers, such that each of each of the one or more customer groups customers each have at least a predetermined number of related customers in the customer group; and determining data representing a customer group of the one or more customer groups related to the particular customer Rule data for customer groups.
以上提供了获取表示与所述特定客户相关的客户群体的规则数据的两种方式。The above provides two ways of acquiring the rule data representing the customer group related to the specific customer.
根据另一个实施例,提供一种用于获取与特定客户相关的客户群体的设备,包括存储器;和处理器,其被配置为当运行来自所述存储器的程序代码时,执行根据本发明的各个实施例所述的方法。According to another embodiment, there is provided an apparatus for acquiring a customer group related to a particular customer, comprising a memory; and a processor configured to, when running program code from the memory, perform various methods according to the present invention The method described in the examples.
根据另一个实施例,提供一种机器可读介质,其存储计算机程序代码,当所述计算机程序代码被执行时,令计算机或处理器执行根据本发明的各个实施例所述的方法。According to another embodiment, there is provided a machine-readable medium storing computer program code which, when executed, causes a computer or a processor to perform the method according to various embodiments of the present invention.
根据另一个实施例,提供一种获取与特定客户相关的客户群体的设备,包括第一获取单元,其被配置为获取表示多个客户中的所述特定客户的数据,并且获取与多个客户中的每个客户相关的客户相关数据,所述客户相关数据至少包括表示所述多个客户中的每个客户与其他客户之间的关系的客户关系数据和所述客户的客户特征数据;第二获取单元,其被配置为获取预定义的扩展规则数据;和确定单元,其被配置为基于所述客户相关数据和所述扩展规则数据确定所述多个客户中与所述特定客户相关的一个或多个客户,以获取与所述特定客户相关的客户群体。According to another embodiment, there is provided a device for acquiring a customer group related to a specific customer, comprising a first acquiring unit configured to acquire data representing the specific customer among a plurality of customers, and acquire data related to a plurality of customers Customer-related data related to each customer in , said customer-related data includes at least customer relationship data representing the relationship between each customer in said plurality of customers and other customers and customer characteristic data of said customers; 2. an acquisition unit configured to acquire predefined extended rule data; and a determination unit configured to determine, among the plurality of customers, those related to the specific customer based on the customer-related data and the expanded rule data One or more customers to get the customer groups associated with that particular customer.
附图说明Description of drawings
图1示出了根据一个实施例的用于获取与特定客户相关的客户群体的设备的方块图;FIG. 1 shows a block diagram of a device for acquiring customer groups related to a specific customer according to one embodiment;
图2示出了根据另一个实施例的用于获取与特定客户相关的客户群体的设备的方块图;Fig. 2 shows a block diagram of a device for obtaining a customer group related to a specific customer according to another embodiment;
图3示出了根据再一个实施例的用于获取与特定客户相关的客户群体的设备的方块图;Fig. 3 shows a block diagram of a device for obtaining a customer group related to a specific customer according to yet another embodiment;
图4示出了根据一个实施例的获取与特定客户相关的客户群体的方法的流程图;Fig. 4 shows a flow chart of a method for obtaining customer groups related to a specific customer according to an embodiment;
图5示出了根据另一个实施例的获取与特定客户相关的客户群体的方法的流程图。Fig. 5 shows a flowchart of a method for acquiring customer groups related to a specific customer according to another embodiment.
参照上述附图来描述本发明的各个方面和特征。通常采用相同或相似的附图标号来表示相同的部件。上述附图仅仅是示意性的,而非限制性的。在不脱离本发明的主旨的情况下,在上述附图中各个元件的尺寸、形状、标号、或者外观可以发生变化,而不被限制到仅仅说明书附图所示出的那样。Various aspects and features of the invention are described with reference to the aforementioned figures. The same or similar reference numerals are generally used to refer to the same parts. The above-mentioned drawings are only schematic and non-limitative. Without departing from the gist of the present invention, the size, shape, label, or appearance of each element in the above-mentioned drawings may be changed, and are not limited to those shown in the accompanying drawings.
具体实施方式Detailed ways
以下将参考对电子支付平台的客户进行非法交易审查的应用来描述本发明的各实施例的应用,应当理解,本发明的各个实施例的应用不局限于此,其应当能够用于任何需要在特定客户的基础上扩展客户范围以获得与特定客户相关的客户群体的应用场景下。因此,以下所指的客户也不局限于在电子支付平台中进行交易的客户。The application of various embodiments of the present invention will be described below with reference to the application of illegal transaction review on customers of electronic payment platforms. It should be understood that the application of various embodiments of the present invention is not limited thereto, and it should be applicable to any On the basis of specific customers, the scope of customers is expanded to obtain customer groups related to specific customers. Therefore, the customers referred to below are not limited to customers who conduct transactions on the electronic payment platform.
图1示出了根据一个实施例的获取与特定客户相关的客户群体的设备10的方块图。该设备10包括第一获取单元11,第二获取单元12,确定单元13和输出单元14。Fig. 1 shows a block diagram of a
第一获取单元11获取表示特定客户的数据。诸如支付宝的电子支付平台对交易客户提供针对非法交易的审查,例如当前支付宝监察平台交易客户的各个交易,并且在预定时间段内,如每周,输出监察到的可疑客户的列表,以供审查者进行审查。第一获取单元11能够获得该可疑客户的列表,将这些可疑客户作为特定客户存储。该特定客户可以是在预定时间段内进行交易的多个客户中的一个或者多个客户。The
另外,该第一获取单元11还能够获取多个客户,例如在该预定时间段内在电子支付平台上进行交易的所有客户,的客户相关数据。上述特定客户包括在该多个客户中。该客户相关数据至少包括表示多个客户中的每个客户与其他客户之间的关系的客户关系数据和每个客户的客户特征数据。客户关系数据包括在任意两个客户之间的资金和非资金关系。资金关系指的是在该预定时间段内在两个客户之间发生的转账等交易行为,而非资金关系指的是除了在两个客户之间发生的资金关系之外的任何关系,例如在该预定时间段内两个客户之间的同设备关系,如共用mac地址,共有手机通讯录联系人等。客户特征数据是与一个客户个体相关的特征数据,例如,该客户在预定时间段内的资金流入和流出金额、交易对手情况等,以及该客户在预定时间段内是否曾经收到系统关于非法交易的警报或者是否曾经就非法交易而被上报过。In addition, the
第二获取单元12获取预定义的扩展规则数据。该扩展规则数据规定了如何在当前的特定客户的基础上进行扩展以在进行交易的多个客户中得到与该特定客户相关的客户群体的规则,具体来说规定了如何在特定客户的基础上扩展需要被审查的客户的数量。在优选的实施例中,该扩展规则数据可以包括两方面的规则数据。一方面,该扩展规则数据包括预先确定的表示与特定客户相关的客户群体的规则数据,这能够通过对预定时间段内的支付平台交易客户进行基于客户相关数据的数据挖掘来预先确定;或者能够使用之前确定的能够表征与特定客户相关的客户群体的特征的任何规则数据。另一方面,该扩展规则数据可以包括表示客户群体中的每个客户与特定客户和/或获取客户群体的目的的相关性的规则数据。虽然优选地使用这两方面的规则数据来确定与特定客户相关的客户群体,但这不是限制性的,也可以使用其中一方面的规则数据,或者在必要的情况下引入其他规则数据。The second acquiring
为了预先确定表示与特定客户相关的客户群体的规则数据,能够使用各种方法对多个交易客户进行数据挖掘。在一个实施例中,能够通过将预定义的模板与多个客户的客户相关数据进行匹配来识别在多个客户中的一个或多个客户群体,该预定义的模板定义对应的各个客户之间的关系结构和/或对应的各个客户的特征数据。在进一步的实施例中,能够首先使用表示例如非法交易的各个客户之间的关系结构(例如资金流向关系)的模板在多个客户之间的关系图的基础上识别某些疑似客户群体,然后再对识别的客户群体中的每个客户基于其特征数据进一步判断是否应当属于非法交易的客户群体中的一员。Various methods can be used to data mine multiple transacting customers in order to predetermine regular data representing groups of customers related to particular customers. In one embodiment, one or more customer groups among the plurality of customers can be identified by matching a predefined template defining corresponding relationship structure and/or corresponding characteristic data of each customer. In a further embodiment, some suspected customer groups can be identified on the basis of a relationship graph between multiple customers using a template representing, for example, the relationship structure (such as the relationship between funds flow) among various customers of illegal transactions, and then Then, based on its characteristic data, it is further judged whether each customer in the identified customer group should belong to a member of the illegal transaction customer group.
在另一个实施例中,能够基于在例如预定时间段内进行交易的多个客户的客户相关数据从多个客户中确定一个或多个客户群体,使得所述一个或多个客户群体中的每个客户群体中的每个客户在所述客户群体中均具有至少预定数量的相关客户。In another embodiment, one or more customer groups can be determined from among the plurality of customers based on customer-related data of the plurality of customers who have transacted within, for example, a predetermined period of time, such that each of the one or more customer groups Each customer in the customer groups has at least a predetermined number of related customers in the customer group.
在通过上述不同的实施例从多个客户中确定了可能例如涉及非法交易的一个或多个客户群体之后,将表示所述一个或多个客户群体中的与所述特定客户相关的客户群体的数据确定为表示与所述特定客户相关的客户群体的规则数据。上述确定表示与特定客户相关的客户群体的规则数据的过程也能够由第二获取单元12在进行交易的多个客户的客户相关数据的基础上来执行。当然,也能够预期预先确定了上述规则数据,而仅仅在根据本发明的实施例的设备中使用。After one or more customer groups that may, for example, be involved in illegal transactions are determined from multiple customers through the above-mentioned different embodiments, the customer groups related to the specific customer in the one or more customer groups will be represented The data is determined as regular data representing a customer group related to the particular customer. The above-mentioned process of determining rule data representing a customer group related to a specific customer can also be performed by the
确定单元13不仅基于表示与特定客户相关的客户群体的规则数据还基于进行交易的多个客户中的每个客户的客户相关数据,包括客户关系数据和客户特征数据,来确定多个客户中与特定客户相关的一个或多个客户,从而得到与该特定客户相关的客户群体。该确定的一个或多个客户包括在与该特定客户相关的客户群体中。例如,如果预先确定的表示与特定客户相关的客户群体的规则数据指示使用同一 mac地址且预定时间段内资金流出量大于该特定客户的资金流出量某一个阈值的客户为与该特定客户相关的客户群体中的成员,那么则能够根据进行交易的多个客户的客户相关数据识别这样的客户。The determining
除了上述的使用表示与特定客户相关的客户群体的规则数据识别相关客户群体之外,也能够基于客户相关数据对进行交易的多个客户进行进一步的判断,以识别与特定客户相关的客户,例如,能够利用表示客户群体中的每个客户与特定客户和/或获取客户群体的目的的相关性的规则数据。In addition to the above-mentioned use of rule data representing customer groups related to specific customers to identify relevant customer groups, it is also possible to make further judgments on multiple customers who conduct transactions based on customer-related data to identify customers related to specific customers, for example , can utilize rule data representing the relevance of each customer in the customer group to a particular customer and/or purpose of acquiring the customer group.
这样的规则数据例如包括涉及资金量级、非资金关系、资金占比、是否接收过警报、是否曾经被上报的规则数据。涉及资金量级的规则数据能够规定客户要确定的客户群体中的客户的资金流入流出总额与该特定客户的资金流入流出总额的关系;涉及非资金关系的规则数据能够规定要确定的客户群体中的客户与特定客户之间的非资金关系指标是否大于某个阈值;涉及资金占比的规则数据能够规定要确定的客户群体中的客户的流入或流出资金量级占特定客户的流入或流出资金量级的占比是否大于某个阈值;涉及是否接收过警报的规则数据能够规定要确定的客户群体中的客户在预定时间段内接收过关于例如非法交易的警报;涉及是否曾经被上报的规则数据规定要确定的客户群体中的客户是否就例如非法交易在预定时间内而被上报过。上述涉及资金量级、非资金关系、资金占比的规则数据属于表示与特定客户的相关性的规则数据,而上述涉及是否接收过警报、是否曾经被上报的规则数据属于表示与获取客户群体的目的的相关性的规则数据。还可以预期涉及其他方面的规则数据。另外,能够对上述规则数据进行任意的组合来识别与特定客户相关的客户,例如能够将多个客户中符合上述规则中的一条或多个条的客户确定为与该特定客户相关的客户。使用上述两个方面的规则数据从多个客户中识别的与特定客户相关的客户均能够被确定为与特定客户相关的客户群体中的成员。Such rule data includes, for example, rule data related to the amount of funds, non-fund relationship, proportion of funds, whether an alert has been received, and whether it has been reported. The rule data involving the magnitude of funds can specify the relationship between the total amount of capital inflows and outflows of customers in the customer group to be determined by the customer and the total amount of fund inflows and outflows of the specific customer; Whether the non-financial relationship indicator between the customer and the specific customer is greater than a certain threshold; the rule data related to the proportion of funds can stipulate that the magnitude of the inflow or outflow of customers in the customer group to be determined accounts for the inflow or outflow of specific customers Whether the proportion of the magnitude is greater than a certain threshold; rule data concerning whether an alert has been received can specify that customers in the customer group to be determined have received alerts about, for example, illegal transactions within a predetermined period of time; rules concerning whether they have ever been reported The data stipulates whether a customer in the customer group to be determined has been reported, for example, for an illegal transaction within a predetermined period of time. The above-mentioned rule data involving the amount of funds, non-fund relationship, and capital ratio belong to the rule data that expresses the correlation with a specific customer, while the above-mentioned rule data related to whether an alert has been received and whether it has been reported belongs to the expression and acquisition of customer groups. The rule data for the relevance of the purpose. Rule data relating to other aspects is also contemplated. In addition, the above rule data can be combined arbitrarily to identify customers related to a specific customer, for example, customers who meet one or more of the above rules can be determined as customers related to the specific customer. Customers related to a specific customer identified from multiple customers using the rule data of the above two aspects can be determined as members of the customer group related to the specific customer.
在确定单元13确定了与特定客户相关的客户群体的各个成员之后,输出单元14能够将该特定客户以及确定的与其相关的客户群体一同输出,从而使得审理者能够在此基础上对这些客户进行团体审理,从而提高审理效率,并且便于在审理时获得完整的证据链。After the
另一方面,该输出单元14还能够在输出该特定客户以及与该特定客户相关的客户群体中的各个客户的同时,输出其中每个客户所符合的扩展规则,以便于审理者进行审理。例如,如果某个客户因为符合涉及资金量级和是否接收过警报的规则数据而被确定为与特定客户相关的客户群体中的一员,那么针对该客户,在输出其自身的同时,还输出上述涉及资金量级和是否接收过警报的规则数据,或者输出与该规则数据相关的表示,例如该客户的资金流入流出总额与特定客户的资金流入流出总额的关系和该客户的警报数据。On the other hand, the
如上所述,在确定单元13中确定多个客户中与特定客户相关的一个或多个客户,从而获取与该特定客户相关的客户群体之后,直接在输出单元14输出该特定客户及其相关的客户群体。然而,为了进一步扩展审理客户的覆盖范围,在一个实施例中,确定单元13还能够在所确定的一个或多个客户的基础上,进一步扩展出与该一个或多个客户中的每个客户相关的客户,以进一步增加所确定的客户群体的覆盖范围。具体地,确定单元13能够基于多个客户中每个客户的客户相关数据和扩展规则数据确定进行交易的多个客户中与之前确定的一个或多个客户中的每个客户相关的另外一个或多个客户,将该另外一个或多个客户包括在与特定客户相关的客户群体中,以用于输出单元14输出。在该进一步扩展的实施例中,能够直接使用之前第二获取单元12获取的扩展规则数据。还预期对经过上述进一步扩展获取的客户群体中的各个客户进行如下所述的评分和排序。As mentioned above, in the
图2示出了根据另一个实施例的获取与特定客户相关的客户群体的设备20的方块图。图2所示的设备20与图1所示的设备10的不同之处主要在于,图2所示的设备10进一步包括评分单元15和排序单元16。该评分单元15从确定单元13接收特定客户以及所确定的与该特定客户相关的客户群体,在该特定客户为多个的情况下,在一个实施例中,能够接收每个特定客户以及确定的与该特定客户相关的客户群体,即接收对应每个特定客户的客户群体。评分单元15能够使用基于机器学习的评分模型M基于与所述特定客户相关的每个客户群体中的每个客户的客户相关数据对该客户群体中的每个客户进行评分。该评分模型能够是事先使用机器学习的手段训练好的。一个可用的评分模型的例子是基于梯度提升决策树算法的评分模型。排序单元16能够基于每个客户群体中的每个客户的评分对该客户群体中的客户进行排序。在这种情况下,输出单元14基于该排序输出每个客户群体。也能够设想将该特定客户包括在与其相关的客户群体中进行评分和排序。Fig. 2 shows a block diagram of a
图3示出了根据再一个实施例的获取与特定客户相关的客户群体的设备30的方块图。图3所示的设备30与图2所示的设备20的不同之处主要在于,在图3所示的设备中进一步包括训练单元17。该训练单元17能够根据一组参考客户中的每个参考客户的客户相关数据确定表示该参考客户的多个客户特征的特征数据;并且使用所述参考客户的特征数据来训练所述基于机器学习的评分模型M。该参考客户的评分已知。上述特征数据包括但不限于表示例如“预定时间内的流入金额”,“同mac关系指数”和/或“是否上报过”等的特征数据。可以预期采用任意数量和任意种类的特征数据。能够在使用根据本发明的实施例的设备之前首先实现上述训练过程。Fig. 3 shows a block diagram of a
在使用如上所述训练的评分模型M的情况下,确定单元13根据确定的客户群体中的每个客户的客户相关数据确定表示该客户的多个客户特征的特征数据。评分单元15使用基于机器学习的评分模型基于表示客户的多个客户特征的特征数据对确定的客户群体中的每个客户进行评分。排序单元16基于每个客户的评分,对确定的客户群体中的客户进行排序。In the case of using the scoring model M trained as described above, the determining
上述参照图1-3所示的实施例描述了本发明的各个实施例,本领域技术人员应当能够理解,上述各个实施例不是限制性的,能够在各个实施例的基础上进行变更/修改/删除其中的某些特征,从而获得新的技术方案。例如,上述训练单元17所限定的训练方式能够被现有技术中已知的其他训练方式所替代。The above described various embodiments of the present invention with reference to the embodiments shown in FIGS. Some of the features are deleted to obtain a new technical solution. For example, the training methods defined by the
下面参考图4描述根据本发明的一个实施例的获取与特定客户相关的客户群体的方法400的流程图。The following describes a flow chart of a
在401,获取表示多个客户中的特定客户的数据,在一个实施例中,能够从外部接收指示所述特定客户的数据,该特定客户能够是事先从进行交易的多个客户中确定的。At 401, data indicating a specific customer among multiple customers is obtained. In one embodiment, the data indicating the specific customer can be received from outside, and the specific customer can be determined in advance from multiple customers conducting transactions.
在402,获取与多个客户中的每个客户相关的客户相关数据,所述客户相关数据至少包括表示多个客户中的每个客户与其他客户之间的关系的客户关系数据和该客户的客户特征数据。At 402, customer-related data related to each customer in a plurality of customers is obtained, the customer-related data at least includes customer relationship data representing the relationship between each customer in a plurality of customers and other customers and the customer's customer profile data.
在403,获取预定义的扩展规则数据。如上所述,在优选实施例中,该扩展规则数据可以包括两方面的规则数据。一方面,该扩展规则数据包括预先确定的表示与特定客户相关的客户群体的规则数据。另一方面,该扩展规则数据可以包括表示客户群体中的每个客户与特定客户和/或获取客户群体的目的的相关性的规则数据。At 403, the predefined expansion rule data is obtained. As mentioned above, in a preferred embodiment, the extended rule data may include two aspects of rule data. In one aspect, the extended rule data includes predetermined rule data representing customer groups related to a particular customer. In another aspect, the extended rule data may include rule data representing the relevance of each customer in the customer group to a particular customer and/or purpose of acquiring the customer group.
在404,基于客户相关数据和扩展规则数据确定多个客户中与特定客户相关的一个或多个客户,以获得与所述特定客户相关的客户群体。在优选的实施例中,在404,还基于客户相关数据和扩展规则数据进一步确定所述多个客户中与所述一个或多个客户中的每个客户相关的另外一个或多个客户,所述另外一个或多个客户包括在与所述特定客户相关的客户群体中,从而进一步扩展与特定客户相关的客户群体。At 404, one or more customers among the plurality of customers related to the specific customer are determined based on the customer related data and the extended rule data, so as to obtain a customer group related to the specific customer. In a preferred embodiment, at 404, another one or more customers among the plurality of customers related to each customer in the one or more customers are further determined based on the customer-related data and the extended rule data, so The other one or more customers are included in the customer group related to the specific customer, thereby further expanding the customer group related to the specific customer.
在405,输出该特定客户及其相关的客户群体。At 405, the particular customer and its associated customer groups are output.
图5示出了根据本发明的一个实施例的获取与特定客户相关的客户群体的方法的流程图500,其中在501-503的处理与图4所示的流程图400中401-403的处理相同。FIG. 5 shows a
在504,除与上述404相同的处理之外,在一个实施例中,还根据确定的客户群体中的每个客户的客户相关数据确定表示所述客户的多个客户特征的特征数据。At 504, in addition to the same processing as the above 404, in one embodiment, according to the customer-related data of each customer in the determined customer group, feature data representing multiple customer features of the customer are determined.
在505,使用基于机器学习的评分模型基于表示客户的多个客户特征的特征数据对每个确定的客户群体中的每个客户进行评分。At 505, each customer in each determined customer group is scored using a machine learning-based scoring model based on characteristic data representing a plurality of customer characteristics of the customer.
在506,基于每个客户的评分,对该客户群体中的客户进行排序。At 506, the customers in the customer group are sorted based on each customer's rating.
在507,基于该排序输入该客户群体。At 507, the customer group is entered based on the ranking.
虽然参照图4和5所示的流程图描述了根据本发明的方法的各个实施例。可以理解,能够在上述实施例的流程图的基础上添加/修改/ 删除相应的处理,从而构成新的技术方案,以实现不同的效果。Although various embodiments of the method according to the present invention have been described with reference to the flowcharts shown in FIGS. 4 and 5 . It can be understood that corresponding processes can be added/modified/deleted on the basis of the flow charts of the above embodiments, so as to form new technical solutions to achieve different effects.
在一个实施例中,能够在403,通过如下方式获取预定义的扩展规则数据:将预定义的模板与多个客户的客户相关数据进行匹配来识别在多个客户中的一个或多个客户群体,所述预定义的模板定义对应的各个客户之间的关系结构和/或对应的各个客户的特征数据;将表示一个或多个客户群体中的与特定客户相关的客户群体的数据确定为表示与所述特定客户相关的客户群体的规则数据。In one embodiment, at 403, the predefined extended rule data can be obtained by: matching the predefined template with the customer-related data of multiple customers to identify one or more customer groups among the multiple customers , the predefined template defines the corresponding relationship structure between each customer and/or the corresponding feature data of each customer; the data representing a customer group related to a specific customer in one or more customer groups is determined as representing Rule data of customer groups related to said particular customer.
在另一个实施例中,能够在403,通过如下方式获取预定义的扩展规则数据:基于多个客户的客户相关数据从多个客户中确定一个或多个客户群体,使得一个或多个客户群体中的每个客户群体中的每个客户在该客户群体中均具有至少预定数量的相关客户;将表示一个或多个客户群体中的与特定客户相关的客户群体的数据确定为表示与该特定客户相关的客户群体的规则数据。In another embodiment, at 403, the predefined extended rule data can be acquired in the following manner: based on the customer-related data of multiple customers, one or more customer groups are determined from multiple customers, so that one or more customer groups Each customer in each customer group in the customer group has at least a predetermined number of related customers in the customer group; Rule data for customer groups related to customers.
在另一个实施例中,能够在505使用基于机器学习的评分模型基于与所述特定客户相关的客户群体中的每个客户的客户相关数据对该客户群体中的每个客户进行评分;并且在506,基于该评分,对该客户群体中的客户进行排序。In another embodiment, each customer in the customer group can be scored at 505 using a machine learning-based scoring model based on customer-related data for each customer in the customer group associated with the particular customer; and at 506. Based on the scoring, sort the customers in the customer group.
在再一个实施例中,能够在执行根据上述流程的步骤505之前,对评分模型进行训练,具体来说,根据一组参考客户中的每个参考客户的客户相关数据确定表示该参考客户的多个客户特征的特征数据;并且使用该参考客户的特征数据训练该评分模型。In yet another embodiment, the scoring model can be trained before
可以理解,本发明的各个实施例的用于获取与特定客户相关的客户群体的设备中的各个单元的功能以及方法的流程能够由计算机程序/软件实现。这些软件能够被载入到数据处理器的工作存储器中,当运行时用于执行根据本发明的各实施例的方法。It can be understood that the functions of each unit in the device for obtaining a customer group related to a specific customer and the flow of the method in each embodiment of the present invention can be implemented by computer programs/software. These software can be loaded into the working memory of the data processor and, when run, are used to perform the methods according to the various embodiments of the present invention.
本发明的示范性实施例覆盖以下两者:从一开始就创建/使用本发明的计算机程序/软件,以及借助于更新将已有程序/软件转为使用本发明的计算机程序/软件。Exemplary embodiments of the invention cover both creating/using the computer program/software of the invention from the outset and converting an existing program/software to use the computer program/software of the invention by means of an update.
根据本发明另外的实施例,提供一种机器(如计算机)可读介质,例如CD-ROM,其中所述可读介质具有被存储在其上的计算机程序代码,该计算机程序代码当被执行时令计算机或处理器执行根据本发明的各实施例的方法。该机器可读介质例如是与其他硬件一起或作为其他硬件的部分供应的光学存储介质或固态介质。According to a further embodiment of the present invention there is provided a machine (e.g. computer) readable medium, such as a CD-ROM, wherein said readable medium has stored thereon computer program code which, when executed, instructs A computer or processor executes methods according to various embodiments of the invention. The machine-readable medium is, for example, an optical storage medium or a solid-state medium supplied with or as part of other hardware.
也可以将用于执行根据本发明的各实施例的方法的计算机程序以其他形式分布,例如经由因特网或者其他有线或无线电信系统。计算机程序也可以被提供在诸如万维网的网络上,并且能够从这样的网络被下载到数据处理器的工作计算机中。The computer program for carrying out the methods according to embodiments of the invention may also be distributed in other forms, for example via the Internet or other wired or wireless telecommunication systems. The computer program may also be provided on a network such as the World Wide Web and can be downloaded from such a network into a working computer of the data processor.
也可以理解,本发明的各个实施例的用于获取与特定客户相关的客户群体的设备中的各个单元以及方法的流程也能够由硬件或者硬件和软件的组合来实现。It can also be understood that each unit in the device for acquiring a customer group related to a specific customer and the flow of the method in each embodiment of the present invention can also be implemented by hardware or a combination of hardware and software.
在一个实施例中,一种用于获取与特定客户相关的客户群体的系统能够由存储器和处理器来实现。存储器能够存储用于运行根据本发明的各个实施例的方法流程的计算机程序代码;当运行来自存储器的程序代码时,处理器执行根据本发明的各个实施例的流程。In one embodiment, a system for obtaining a customer group related to a particular customer can be implemented by a memory and a processor. The memory can store computer program codes for executing the method procedures according to the various embodiments of the present invention; when executing the program codes from the memory, the processor executes the procedures according to the various embodiments of the present invention.
必须指出,本发明的实施例是参考不同主题来描述的。尤其地,一些实施例是参考方法型权利要求来描述的,而其他实施例是参考设备型权利要求来描述的。然而,本领域技术人员将从以上和以下描述获悉,除非另外指明,除了属于一种类型的主题的特征的任意组合以外,涉及不同主题的特征之间的任意组合也被视为被本申请公开了。并且,能够组合全部特征,提供大于特征的简单加和的协同效应。It has to be pointed out that embodiments of the invention have been described with reference to different subject matters. In particular, some embodiments are described with reference to method type claims whereas other embodiments are described with reference to apparatus type claims. However, those skilled in the art will appreciate from the above and the following description that, unless otherwise specified, any combination of features related to different subject matter, in addition to any combination of features belonging to one type of subject matter, is also considered to be disclosed by the present application. up. Also, all features can be combined, providing a synergistic effect greater than the simple sum of the features.
以上参照特定的实施例描述本发明,本领域技术人员应当理解,在不背离本发明的精神和基本特征的情况下,能够以各种方式来实现本发明的技术方案。具体的实施例仅仅是示意性的,而非限制性的。另外,这些实施例之间能够任意组合,来实现本发明的目的。本发明的保护范围由所附的权利要求书来定义。The present invention has been described above with reference to specific embodiments. Those skilled in the art should understand that the technical solutions of the present invention can be implemented in various ways without departing from the spirit and basic features of the present invention. The specific embodiments are illustrative only, not limiting. In addition, these embodiments can be combined arbitrarily to achieve the object of the present invention. The protection scope of the present invention is defined by the appended claims.
说明书和权利要求中的“包括”一词不排除其它元件或步骤的存在。在说明书中说明或者在权利要求中记载的各个元件的功能也可以被分拆或组合,由对应的多个元件或单一元件来实现。The word "comprising" in the description and claims does not exclude the presence of other elements or steps. The functions of the various elements described in the specification or described in the claims can also be divided or combined, and realized by corresponding multiple elements or a single element.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811522367.4A CN110046910B (en) | 2018-12-13 | 2018-12-13 | Method and equipment for judging the legitimacy of transactions conducted by customers through electronic payment platforms |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811522367.4A CN110046910B (en) | 2018-12-13 | 2018-12-13 | Method and equipment for judging the legitimacy of transactions conducted by customers through electronic payment platforms |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110046910A CN110046910A (en) | 2019-07-23 |
| CN110046910B true CN110046910B (en) | 2023-04-14 |
Family
ID=67273661
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811522367.4A Active CN110046910B (en) | 2018-12-13 | 2018-12-13 | Method and equipment for judging the legitimacy of transactions conducted by customers through electronic payment platforms |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110046910B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107517207A (en) * | 2017-03-13 | 2017-12-26 | 平安科技(深圳)有限公司 | Server, auth method and computer-readable recording medium |
| CN108174359A (en) * | 2017-12-11 | 2018-06-15 | 成都欧督系统科技有限公司 | For the message push processing method of mobile terminal |
| CN108573432A (en) * | 2018-04-23 | 2018-09-25 | 重庆南米电子商务有限公司 | Transaction supervisory systems and method for e-commerce |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030065520A1 (en) * | 2001-09-28 | 2003-04-03 | Jutzi Curtis E. | System and method for selecting relevant products to be transparently acquired for a consumer |
| US7200594B2 (en) * | 2003-03-14 | 2007-04-03 | Firestop Specialty Contractors, Llc | Method of providing online database containing proprietary information |
| JP2008524729A (en) * | 2004-12-21 | 2008-07-10 | シーティーアールイー プロプライエタリー リミテッド | Change management |
| CN102083010B (en) * | 2009-11-26 | 2014-05-07 | 中国移动通信集团公司 | Method and equipment for screening user information |
| CN102004889B (en) * | 2010-11-30 | 2012-10-03 | 石家庄开发区冀科双实科技有限公司 | Encryption method of hierarchical data in hierarchical tree system |
| US9330418B2 (en) * | 2012-09-14 | 2016-05-03 | Ancestry.Com Operations Inc. | System and method for creating a family tree data structure |
| CN104765874B (en) * | 2015-04-24 | 2019-03-26 | 百度在线网络技术(北京)有限公司 | For detecting the method and device for clicking cheating |
| US9654949B2 (en) * | 2015-09-25 | 2017-05-16 | Samsung Electronics Co., Ltd. | Automatic construction of personalized, peer-derived messages for mobile health applications |
| CN105488211A (en) * | 2015-12-11 | 2016-04-13 | 成都陌云科技有限公司 | Method for determining user group based on feature analysis |
| CN105653518A (en) * | 2015-12-25 | 2016-06-08 | 北京理工大学 | Specific group discovery and expansion method based on microblog data |
| CN106504029A (en) * | 2016-11-08 | 2017-03-15 | 山东大学 | A kind of gas station's Method for Sales Forecast method based on customer group's behavior analysiss |
| CN106651564B (en) * | 2016-11-18 | 2021-03-19 | 中国农业银行股份有限公司 | Target client acquisition method and system |
| CN108428138B (en) * | 2017-02-13 | 2021-07-20 | 北京京东尚科信息技术有限公司 | Customer survival rate analysis device and method based on customer clustering |
| CN108664483B (en) * | 2017-03-28 | 2021-04-09 | 北大方正集团有限公司 | Management method and management system for specific user groups |
| CN108776857A (en) * | 2018-04-22 | 2018-11-09 | 平安科技(深圳)有限公司 | NPS short messages method of investigation and study, system, computer equipment and storage medium |
| CN108846700A (en) * | 2018-06-15 | 2018-11-20 | 山东外贸职业学院 | A kind of big data intelligent marketing system and marketing method |
-
2018
- 2018-12-13 CN CN201811522367.4A patent/CN110046910B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107517207A (en) * | 2017-03-13 | 2017-12-26 | 平安科技(深圳)有限公司 | Server, auth method and computer-readable recording medium |
| CN108174359A (en) * | 2017-12-11 | 2018-06-15 | 成都欧督系统科技有限公司 | For the message push processing method of mobile terminal |
| CN108573432A (en) * | 2018-04-23 | 2018-09-25 | 重庆南米电子商务有限公司 | Transaction supervisory systems and method for e-commerce |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110046910A (en) | 2019-07-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI780433B (en) | A method and device for constructing and predicting an isolated forest model based on federated learning | |
| CN110992167B (en) | Bank customer business intention recognition method and device | |
| US20140351109A1 (en) | Method and apparatus for automatically identifying a fraudulent order | |
| CN109711955B (en) | Poor evaluation early warning method and system based on current order and blacklist base establishment method | |
| CN106682906B (en) | Risk identification and service processing method and equipment | |
| TW202014940A (en) | Training sample obtaining method, account prediction method, and corresponding devices | |
| TWI709927B (en) | Method and device for determining target user group | |
| CN106951571B (en) | Method and device for labeling application with label | |
| CN112785194B (en) | Workflow recommendation method and device, readable storage medium and electronic equipment | |
| CN111199474A (en) | Risk prediction method and device based on network diagram data of two parties and electronic equipment | |
| CN113792089B (en) | Illegal behavior detection method, device, equipment and medium based on artificial intelligence | |
| CN111736940A (en) | Business interface display method and device for intelligent counter | |
| CN112765230B (en) | Payment big data analysis method and big data analysis system based on internet finance | |
| CN111428217A (en) | Method and device for identifying cheat group, electronic equipment and computer readable storage medium | |
| CN110309293B (en) | Text recommendation method and device | |
| CN111476658A (en) | A method and device for predicting continuous overdue loans | |
| US10706371B2 (en) | Data processing techniques | |
| CN110347806A (en) | Original text discriminating method, device, equipment and computer readable storage medium | |
| CN108961019B (en) | User account detection method and device | |
| CN112581271A (en) | Merchant transaction risk monitoring method, device, equipment and storage medium | |
| JP6308339B1 (en) | Clustering system, method and program, and recommendation system | |
| CN110197426B (en) | Credit scoring model building method, device and readable storage medium | |
| CN116976664A (en) | Risk merchant prediction method, system, computer and readable storage medium | |
| CN113159924A (en) | Method and device for determining trusted client object | |
| CN111581222A (en) | Correlation analysis method and device of business data, computer equipment and computer storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20201013 Address after: English genus Applicant after: Innovative advanced technology Co.,Ltd. Address before: English genus Applicant before: Advanced innovation technology Co.,Ltd. Effective date of registration: 20201013 Address after: English genus Applicant after: Advanced innovation technology Co.,Ltd. Address before: A four-storey 847 mailbox in Grand Cayman Capital Building, British Cayman Islands Applicant before: Alibaba Group Holding Ltd. |
|
| TA01 | Transfer of patent application right | ||
| TA01 | Transfer of patent application right |
Effective date of registration: 20230307 Address after: 801-10, Section B, 8th floor, 556 Xixi Road, Xihu District, Hangzhou City, Zhejiang Province Applicant after: Ant financial (Hangzhou) Network Technology Co.,Ltd. Address before: Cayman Islands Applicant before: Innovative advanced technology Co.,Ltd. |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: 801-10, Section B, 8th floor, 556 Xixi Road, Xihu District, Hangzhou City, Zhejiang Province 310000 Patentee after: Ant Intelligent (Hangzhou) Technology Co.,Ltd. Country or region after: China Address before: 801-10, Section B, 8th floor, 556 Xixi Road, Xihu District, Hangzhou City, Zhejiang Province 310000 Patentee before: Ant financial (Hangzhou) Network Technology Co.,Ltd. Country or region before: China |