CN110097919B - Storage system, method of determining error thereof, and electronic device including the same - Google Patents
Storage system, method of determining error thereof, and electronic device including the same Download PDFInfo
- Publication number
- CN110097919B CN110097919B CN201910066323.3A CN201910066323A CN110097919B CN 110097919 B CN110097919 B CN 110097919B CN 201910066323 A CN201910066323 A CN 201910066323A CN 110097919 B CN110097919 B CN 110097919B
- Authority
- CN
- China
- Prior art keywords
- channel
- path
- connection state
- error
- channels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/16—Error detection or correction of the data by redundancy in hardware
- G06F11/20—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
- G06F11/2002—Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where interconnections or communication control functionality are redundant
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/56—External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/10—Decoders
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/16—Multiple access memory array, e.g. addressing one storage element via at least two independent addressing line groups
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Quality & Reliability (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
- Dram (AREA)
Abstract
Description
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本申请要求于2018年1月31日在韩国知识产权局(KIPO)提交的韩国专利申请No.10-2018-0012200的优先权,其全部公开内容通过引用并入本文。This application claims the benefit of Korean Patent Application No. 10-2018-0012200 filed on January 31, 2018 in the Korean Intellectual Property Office (KIPO), the disclosure of which is incorporated herein by reference in its entirety.
技术领域Technical Field
本发明构思的示例性实施例涉及存储系统、确定存储系统的错误的方法以及包括该存储系统的电子设备。Exemplary embodiments of the inventive concept relate to a memory system, a method of determining an error of the memory system, and an electronic device including the memory system.
背景技术Background technique
通常,高带宽存储器(HBM)包括多通道存储器和连接多通道存储器和存储控制器的通道路径。Generally, a high bandwidth memory (HBM) includes a multi-channel memory and a channel path connecting the multi-channel memory and a memory controller.
当在包括多通道存储器的存储系统中出现错误时,可能难以确定出现错误的位置。例如,错误可能出现在存储系统中或连接多通道存储器与存储控制器的通道路径中。When an error occurs in a storage system including a multi-channel memory, it may be difficult to determine where the error occurs. For example, the error may occur in the storage system or in a channel path connecting the multi-channel memory and a storage controller.
另外,当为了检测错误而将存储系统转接(transmit)到独立的错误确定系统而非真实的工作负载系统时,错误不再现,因此可能无法确定错误的位置。In addition, when the storage system is transferred to an independent error determination system instead of the real workload system for error detection, the error is not reproduced, and thus the location of the error may not be determined.
发明内容Summary of the invention
在根据本发明构思的存储系统的示例性实施例中,所述存储系统包括:存储装置,所述存储装置包括缓冲器裸片、设置在所述缓冲器裸片上的多个核心裸片、多个通道和穿硅通路,所述穿硅通路被配置为在所述缓冲器裸片与所述多个核心裸片中的至少一个核心裸片之间发送信号;存储控制器,所述存储控制器被配置为向所述存储装置输出命令信号和地址信号,向所述存储装置输出数据信号,以及从所述存储装置接收数据信号;以及内插件,所述内插件包括用于连接所述存储控制器和所述多个通道的多个通道路径,其中,所述存储装置还包括用于改变所述多个通道与所述多个通道路径之间的连接状态的路径选择器,其中,当在所述多个通道与所述多个通道路径之间的第一连接状态下检测到所述存储系统的错误时,所述路径选择器将所述多个通道与所述多个通道路径之间的所述第一连接状态改变为第二连接状态。In an exemplary embodiment of a storage system conceived according to the present invention, the storage system includes: a storage device, the storage device including a buffer die, a plurality of core dies arranged on the buffer die, a plurality of channels and a through-silicon via, the through-silicon via being configured to send signals between the buffer die and at least one of the plurality of core dies; a storage controller, the storage controller being configured to output command signals and address signals to the storage device, output data signals to the storage device, and receive data signals from the storage device; and an interposer, the interposer including a plurality of channel paths for connecting the storage controller and the plurality of channels, wherein the storage device also includes a path selector for changing a connection state between the plurality of channels and the plurality of channel paths, wherein when an error of the storage system is detected in a first connection state between the plurality of channels and the plurality of channel paths, the path selector changes the first connection state between the plurality of channels and the plurality of channel paths to a second connection state.
在根据本发明构思的确定包括存储装置和存储控制器的存储系统的错误的方法的示例性实施例中,所述方法包括:在存储装置的多个通道与所述存储系统的多个通道路径之间的第一连接状态下检测所述存储系统的错误,所述多个通道路径将所述多个通道连接到所述存储控制器,所述存储装置包括缓冲器裸片、设置在所述缓冲器裸片上的多个核心裸片和穿硅通路,所述穿硅通路被配置为在所述多个核心裸片中的至少一个核心裸片与所述缓冲器裸片之间发送信号;当检测到所述存储系统的错误时,将所述多个通道与所述多个通道路径之间的连接状态从所述第一连接状态改变为第二连接状态;以及在所述第二连接状态下检测所述存储系统的错误。In an exemplary embodiment of a method for determining an error of a storage system including a storage device and a storage controller according to the present invention, the method includes: detecting an error of the storage system in a first connection state between multiple channels of the storage device and multiple channel paths of the storage system, the multiple channel paths connecting the multiple channels to the storage controller, the storage device including a buffer die, a plurality of core dies arranged on the buffer die, and a through-silicon via, the through-silicon via being configured to send a signal between at least one core die of the plurality of core dies and the buffer die; when an error of the storage system is detected, changing the connection state between the plurality of channels and the plurality of channel paths from the first connection state to a second connection state; and detecting an error of the storage system in the second connection state.
在根据本发明构思的电子设备的示例性实施例中,所述电子设备包括应用处理器;存储系统,所述存储系统被配置为由所述应用处理器来操作。其中所述存储系统包括:存储装置,所述存储装置包括缓冲器裸片、设置在所述缓冲器裸片上的多个核心裸片、多个通道和穿硅通路,所述穿硅通路被配置为在所述多个核心裸片中的至少一个核心裸片与所述缓冲器裸片之间发送信号;存储控制器,所述存储控制器被配置为向所述存储装置输出命令信号和地址信号,向所述存储装置输出数据信号,以及从所述存储装置接收数据信号;以及内插件,所述内插件包括用于连接所述存储控制器和所述多个通道的多个通道路径,其中,所述存储装置还包括用于改变所述多个通道与所述多个通道路径之间的连接状态的路径选择器,其中当在所述多个通道与所述多个通道路径之间的第一连接状态下检测到所述存储系统的错误时,所述路径选择器将所述多个通道与所述多个通道路径之间的所述第一连接状态改变为第二连接状态。In an exemplary embodiment of an electronic device according to the concept of the present invention, the electronic device includes an application processor; a storage system, the storage system is configured to be operated by the application processor. The storage system includes: a storage device, the storage device includes a buffer die, a plurality of core dies arranged on the buffer die, a plurality of channels and a through-silicon path, the through-silicon path is configured to send signals between at least one of the plurality of core dies and the buffer die; a storage controller, the storage controller is configured to output command signals and address signals to the storage device, output data signals to the storage device, and receive data signals from the storage device; and an interposer, the interposer includes a plurality of channel paths for connecting the storage controller and the plurality of channels, wherein the storage device further includes a path selector for changing the connection state between the plurality of channels and the plurality of channel paths, wherein when an error of the storage system is detected in a first connection state between the plurality of channels and the plurality of channel paths, the path selector changes the first connection state between the plurality of channels and the plurality of channel paths to a second connection state.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过参考附图详细描述本发明构思的示例性实施例,本发明构思的上述和其他特征将变得更加明显,其中:The above and other features of the present inventive concept will become more apparent by describing in detail exemplary embodiments of the present inventive concept with reference to the accompanying drawings, in which:
图1是示出了根据本发明构思的示例性实施例的存储系统的框图;FIG. 1 is a block diagram illustrating a memory system according to an exemplary embodiment of the inventive concept; FIG.
图2是示出了根据本发明构思的示例性实施例的图1的存储系统的示图;FIG. 2 is a diagram illustrating the memory system of FIG. 1 according to an exemplary embodiment of the inventive concept; FIG.
图3是示出了根据本发明构思的示例性实施例的图2的存储装置的示图;FIG. 3 is a diagram illustrating the storage device of FIG. 2 according to an exemplary embodiment of the inventive concept; FIG.
图4是示出了根据本发明构思的示例性实施例的图2的存储装置的核心裸片的示图;4 is a diagram illustrating a core die of the memory device of FIG. 2 according to an exemplary embodiment of the inventive concept;
图5是示出了根据本发明构思的示例性实施例的图2的核心裸片的框图;5 is a block diagram illustrating a core die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图6A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第一连接状态的示图;6A is a diagram illustrating a first connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图6B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第二连接状态的示图;6B is a diagram illustrating a second connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图7A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第一连接状态的示图;7A is a diagram illustrating a first connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图7B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第二连接状态的示图;7B is a diagram illustrating a second connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图8A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第一连接状态的示图;8A is a diagram illustrating a first connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图8B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第二连接状态的示图;8B is a diagram illustrating a second connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图9A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第一连接状态的示图;9A is a diagram illustrating a first connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图9B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第二连接状态的示图;9B is a diagram illustrating a second connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图10A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第一连接状态的示图;10A is a diagram illustrating a first connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图10B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片上的路径选择器的第二连接状态的示图;10B is a diagram illustrating a second connection state of a path selector provided on the buffer die of FIG. 2 according to an exemplary embodiment of the inventive concept;
图11是示出了根据本发明构思的示例性实施例的存储系统的示图;FIG. 11 is a diagram illustrating a memory system according to an exemplary embodiment of the inventive concept; FIG.
图12A是示出了根据本发明构思的示例性实施例的设置在图11的缓冲器裸片上的路径选择器的第一连接状态的示图;12A is a diagram illustrating a first connection state of a path selector provided on the buffer die of FIG. 11 according to an exemplary embodiment of the inventive concept;
图12B是示出了根据本发明构思的示例性实施例的设置在图11的缓冲器裸片上的路径选择器的第二连接状态的示图;12B is a diagram illustrating a second connection state of a path selector provided on the buffer die of FIG. 11 according to an exemplary embodiment of the inventive concept;
图12C是示出了根据本发明构思的示例性实施例的设置在图11的缓冲器裸片上的路径选择器的第三连接状态的示图;以及12C is a diagram illustrating a third connection state of a path selector provided on the buffer die of FIG. 11 according to an exemplary embodiment of the inventive concept; and
图13是示出了根据本发明构思的示例性实施例的包括存储系统的电子设备的框图。FIG. 13 is a block diagram illustrating an electronic device including a memory system according to an exemplary embodiment of the inventive concept.
具体实施方式Detailed ways
以下将参考附图更全面地描述本发明构思的示例性实施例。然而,本发明构思可以以许多不同的形式实施,并且不应当被解释为限于本文所阐述的实施例。贯穿本申请,相同的附图标记可以指代相同的元件。The exemplary embodiments of the inventive concept will be described more fully below with reference to the accompanying drawings. However, the inventive concept can be implemented in many different forms and should not be construed as being limited to the embodiments described herein. Throughout this application, the same reference numerals may refer to the same elements.
图1是示出了根据本发明构思的示例性实施例的存储系统1000的框图。图2是示出了根据本发明构思的示例性实施例的图1的存储系统1000的示图。FIG1 is a block diagram illustrating a memory system 1000 according to an exemplary embodiment of the inventive concept. FIG2 is a diagram illustrating the memory system 1000 of FIG1 according to an exemplary embodiment of the inventive concept.
参照图1和图2,存储系统1000包括存储控制器1100和存储装置1200。存储系统1000还可以包括设置在存储控制器1100与存储装置1200之间的内插件1300。存储控制器1100和存储装置1200例如可以布置在内插件1300上。例如,内插件1300可以是硅内插件。例如,存储控制器1100和存储装置1200可以设置在同一平面上。存储系统1000还可以包括封装基板1400。内插件1300可以设置在封装基板1400上。1 and 2, the memory system 1000 includes a memory controller 1100 and a memory device 1200. The memory system 1000 may further include an interposer 1300 disposed between the memory controller 1100 and the memory device 1200. The memory controller 1100 and the memory device 1200 may be disposed on the interposer 1300, for example. For example, the interposer 1300 may be a silicon interposer. For example, the memory controller 1100 and the memory device 1200 may be disposed on the same plane. The memory system 1000 may further include a packaging substrate 1400. The interposer 1300 may be disposed on the packaging substrate 1400.
第一凸块BP1可以设置在内插件1300与存储控制器1100之间。第二凸块BP2可以设置在内插件1300与存储装置1200之间。第三凸块BP3可以设置在封装基板1400与内插件1300之间。第三凸块BP3的尺寸可以大于第一凸块BP1和第二凸块BP2中的每个凸块的尺寸。The first bump BP1 may be disposed between the interposer 1300 and the memory controller 1100. The second bump BP2 may be disposed between the interposer 1300 and the memory device 1200. The third bump BP3 may be disposed between the package substrate 1400 and the interposer 1300. The size of the third bump BP3 may be greater than that of each of the first bump BP1 and the second bump BP2.
存储装置1200可以包括缓冲器裸片BD和设置在缓冲器裸片BD上的至少一个核心裸片(例如,CD1、CD2、CD3和CD4)。The memory device 1200 may include a buffer die BD and at least one core die (eg, CD1 , CD2 , CD3 , and CD4 ) disposed on the buffer die BD.
缓冲器裸片BD可以包括多个缓冲器。缓冲器连接到通道路径CP1、CP2、CP3、CP4、CP5、CP6、CP7、CP8、CP9、CP10、CP11、CP12、CP13、CP14、CP15和CP16,并且将通过通道路径CP1至CP16发送的数据信号DQ输出到通道CH1、CH2、CH3、CH4、CH5、CH6、CH7、CH8、CH9、CH10、CH11、CH12、CH13、CH14、CH15和CH16。The buffer die BD may include a plurality of buffers. The buffers are connected to channel paths CP1, CP2, CP3, CP4, CP5, CP6, CP7, CP8, CP9, CP10, CP11, CP12, CP13, CP14, CP15, and CP16, and output data signals DQ transmitted through channel paths CP1 to CP16 to channels CH1, CH2, CH3, CH4, CH5, CH6, CH7, CH8, CH9, CH10, CH11, CH12, CH13, CH14, CH15, and CH16.
存储装置1200可以包括通道CH1至CH16。例如,设置在缓冲器裸片BD上的第一核心裸片CD1可以包括第一通道CH1至第四通道CH4。例如,设置在第一核心裸片CD1上的第二核心裸片CD2可以包括第五通道CH5至第八通道CH8。例如,设置在第二核心裸片CD2上的第三核心裸片CD3可以包括第九通道CH9至第十二通道CH12。例如,设置在第三核心裸片CD3上的第四核心裸片CD4可以包括第十三通道CH13至第十六通道CH16。例如,存储装置1200可以是动态随机存取存储器(DRAM)设备。The memory device 1200 may include channels CH1 to CH16. For example, the first core die CD1 disposed on the buffer die BD may include the first channel CH1 to the fourth channel CH4. For example, the second core die CD2 disposed on the first core die CD1 may include the fifth channel CH5 to the eighth channel CH8. For example, the third core die CD3 disposed on the second core die CD2 may include the ninth channel CH9 to the twelfth channel CH12. For example, the fourth core die CD4 disposed on the third core die CD3 may include the thirteenth channel CH13 to the sixteenth channel CH16. For example, the memory device 1200 may be a dynamic random access memory (DRAM) device.
可以通过穿硅通路(through silicon via)在缓冲器裸片BD与核心裸片CD1至CD4之间发送信号。Signals may be sent between the buffer die BD and the core dies CD1 to CD4 through through silicon vias.
内插件1300可以包括连接存储装置1200的通道CH1至CH16与存储控制器1100的通道路径CP1至CP16。存储装置1200的通道CH1至CH16可以通过通道路径CP1至CP16连接到存储控制器1100。尽管为清楚起见,图2仅示出了两个通道路径CP1和CP2,应当理解,其余通道路径CP3至CP16以类似的方式连接到存储控制器1100的第一凸块BP1。内插件1300还可以包括连接存储装置1200的通道CH1至CH16与存储控制器1100的至少一个修复通道路径RP。当在通道路径CP1至CP16中的一个通道路径处出现错误时,存储控制器1100可以通过修复通道路径RP与存储装置1200的通道CH1至CH16进行通信。The interposer 1300 may include channel paths CP1 to CP16 connecting the channels CH1 to CH16 of the memory device 1200 and the memory controller 1100. The channels CH1 to CH16 of the memory device 1200 may be connected to the memory controller 1100 through the channel paths CP1 to CP16. Although FIG. 2 shows only two channel paths CP1 and CP2 for clarity, it should be understood that the remaining channel paths CP3 to CP16 are connected to the first bump BP1 of the memory controller 1100 in a similar manner. The interposer 1300 may also include at least one repair channel path RP connecting the channels CH1 to CH16 of the memory device 1200 and the memory controller 1100. When an error occurs at one of the channel paths CP1 to CP16, the memory controller 1100 may communicate with the channels CH1 to CH16 of the memory device 1200 through the repair channel path RP.
存储控制器1100可以通过通道路径CP1至CP16将命令信号CMD和地址信号ADDR输出到存储装置1200。存储控制器1100可以通过通道路径CP1至CP16将数据信号DQ输出到存储装置1200,以及通过通道路径CP1至CP16从存储装置1200接收数据信号DQ。The memory controller 1100 may output a command signal CMD and an address signal ADDR to the memory device 1200 through channel paths CP1 to CP16. The memory controller 1100 may output a data signal DQ to the memory device 1200 through channel paths CP1 to CP16, and receive the data signal DQ from the memory device 1200 through channel paths CP1 to CP16.
图3是示出了根据本发明构思的示例性实施例的图2的存储装置1200的示图。FIG. 3 is a diagram illustrating the memory device 1200 of FIG. 2 according to an exemplary embodiment of the inventive concept.
参照图1至图3,可以堆叠缓冲器裸片BD和核心裸片CD1至CD4。缓冲器裸片BD和核心裸片CD1至CD4可以通过穿硅通路彼此连接。1 to 3 , the buffer die BD and the core dies CD1 to CD4 may be stacked. The buffer die BD and the core dies CD1 to CD4 may be connected to each other through through silicon vias.
穿硅通路电连接到核心裸片CD1至CD4的内部电路和缓冲器裸片BD的内部电路。例如,穿硅通路与核心裸片CD1至CD4的内部电路和缓冲器裸片BD的内部电路之间的电连接可以通过响应于控制信号,选择性地切断电熔丝或选择性地断开和接通开关电路来形成。The through silicon via is electrically connected to the internal circuits of the core dies CD1 to CD4 and the internal circuits of the buffer die BD. For example, the electrical connection between the through silicon via and the internal circuits of the core dies CD1 to CD4 and the internal circuits of the buffer die BD can be formed by selectively cutting an electrical fuse or selectively opening and closing a switch circuit in response to a control signal.
第二核心裸片CD2可以直接设置在第一核心裸片CD1上。第三核心裸片CD3可以直接设置在第二核心裸片CD2上。第四核心裸片CD4可以直接设置在第三核心裸片CD3上。例如,用于发送第一公共芯片选择信号CS1的穿硅通路可以电连接到第一核心裸片CD1的内部电路和第三核心裸片CD3的内部电路。用于发送第二公共芯片选择信号CS2的穿硅通路可以电连接到第二核心裸片CD2的内部电路和第四核心裸片CD4的内部电路。用于发送命令地址信号CA的穿硅通路可以电连接到第一核心裸片CD1至第四核心裸片CD4中的每个核心裸片的内部电路。用于发送数据信号DQ的穿硅通路可以电连接到第一核心裸片CD1至第四核心裸片CD4中的每个核心裸片的内部电路。The second core die CD2 may be directly disposed on the first core die CD1. The third core die CD3 may be directly disposed on the second core die CD2. The fourth core die CD4 may be directly disposed on the third core die CD3. For example, a through-silicon path for sending a first common chip select signal CS1 may be electrically connected to an internal circuit of the first core die CD1 and an internal circuit of the third core die CD3. A through-silicon path for sending a second common chip select signal CS2 may be electrically connected to an internal circuit of the second core die CD2 and an internal circuit of the fourth core die CD4. A through-silicon path for sending a command address signal CA may be electrically connected to an internal circuit of each core die in the first core die CD1 to the fourth core die CD4. A through-silicon path for sending a data signal DQ may be electrically connected to an internal circuit of each core die in the first core die CD1 to the fourth core die CD4.
图4是示出了根据本发明构思的示例性实施例的图2的存储装置1200的核心裸片CD1至CD4的示图。FIG. 4 is a diagram illustrating core dies CD1 to CD4 of the memory device 1200 of FIG. 2 according to an exemplary embodiment of the inventive concept.
参照图1至图4,存储装置1200可以包括多个核心裸片或核心层CD1至CDK。这里,K是等于或大于2的正整数。1 to 4 , the memory device 1200 may include a plurality of core dies or core layers CD1 to CDK. Here, K is a positive integer equal to or greater than 2.
核心裸片CD1至CDK(也称为第一核心裸片至第K核心裸片)通过穿硅通路TSV发送信号。设置多个穿硅通路TSV。第一核心裸片CD1可以通过缓冲器裸片BD与存储控制器1100通信。The core dies CD1 to CDK (also referred to as the first core die to the Kth core die) transmit signals through through silicon vias TSV. A plurality of through silicon vias TSV are provided. The first core die CD1 can communicate with the memory controller 1100 through the buffer die BD.
第一核心裸片CD1至第K核心裸片CDK分别包括用来驱动存储单元阵列区域(或存储区域)1210的外围电路1220。例如,外围电路1220可以包括:驱动存储单元阵列区域1210的字线的行驱动器(例如,X-驱动器);驱动存储单元阵列区域1210的位线的列驱动器(例如,Y驱动器);控制数据信号的输入和输出的数据输入和输出部分;用于接收命令信号CMD和用于缓冲命令信号CMD的命令缓冲器;以及用于接收地址信号ADDR和用于缓冲地址信号ADDR的地址缓冲器。可以从第一核心裸片CD1至第K核心裸片CDK的外部接收命令信号CMD和地址信号ADDR。The first core die CD1 to the Kth core die CDK respectively include peripheral circuits 1220 for driving the memory cell array region (or memory region) 1210. For example, the peripheral circuits 1220 may include: a row driver (e.g., an X-driver) for driving the word lines of the memory cell array region 1210; a column driver (e.g., a Y-driver) for driving the bit lines of the memory cell array region 1210; a data input and output portion for controlling the input and output of data signals; a command buffer for receiving a command signal CMD and for buffering the command signal CMD; and an address buffer for receiving an address signal ADDR and for buffering the address signal ADDR. The command signal CMD and the address signal ADDR may be received from the outside of the first core die CD1 to the Kth core die CDK.
第一核心裸片CD1还可以包括控制逻辑电路。控制逻辑电路基于命令信号CMD和地址信号ADDR控制对存储区域1210的访问,并生成用以访问存储区域1210的控制信号。或者,控制逻辑电路可以设置在缓冲器裸片BD上。The first core die CD1 may further include a control logic circuit that controls access to the memory area 1210 based on the command signal CMD and the address signal ADDR and generates a control signal for accessing the memory area 1210. Alternatively, the control logic circuit may be provided on the buffer die BD.
图5是示出了根据本发明构思的示例性实施例的图2的核心裸片CD1的框图。FIG. 5 is a block diagram illustrating the core die CD1 of FIG. 2 according to an exemplary embodiment of the inventive concept.
参照图1至图5,核心裸片CD1包括控制逻辑电路210、刷新控制电路215、地址寄存器220、存储体(memory bank)控制逻辑电路230、行地址多路复用器(RA MUX)240、列地址锁存器250、行译码器(例如,260a至260d)、列译码器(例如,270a至270d)、存储单元阵列(例如,280a至280d)、读出放大器单元(例如,285a至285d)、输入/输出(I/O)选通电路290和数据I/O缓冲器295。1 to 5 , the core die CD1 includes a control logic circuit 210, a refresh control circuit 215, an address register 220, a memory bank control logic circuit 230, a row address multiplexer (RA MUX) 240, a column address latch 250, a row decoder (e.g., 260 a to 260 d), a column decoder (e.g., 270 a to 270 d), a memory cell array (e.g., 280 a to 280 d), a sense amplifier unit (e.g., 285 a to 285 d), an input/output (I/O) selection circuit 290, and a data I/O buffer 295.
存储单元阵列(例如,280a到280d)可以包括多个存储体阵列,例如,第一存储体阵列280a、第二存储体阵列280b、第三存储体阵列280c、和第四存储体阵列280d。行译码器可以包括多个存储体行译码器,例如,分别连接到第一存储体阵列280a、第二存储体阵列280b、第三存储体阵列280c和第四存储体阵列280d的第一存储体行译码器260a、第二存储体行译码器260b、第三存储体行译码器260c和第四存储体行译码器260d。列译码器可以包括多个存储体列译码器,例如,分别连接到第一存储体阵列280a、第二存储体阵列280b、第三存储体阵列280c和第四存储体阵列280d的第一存储体列译码器270a、第二存储体列译码器270b、第三存储体列译码器270c和第四存储体列译码器270d。读出放大器单元可以包括多个存储体读出放大器,例如,分别连接到第一存储体阵列280a、第二存储体阵列280b、第三存储体阵列280c和第四存储体阵列280d的第一存储体读出放大器285a、第二存储体读出放大器285b、第三存储体读出放大器285c和第四存储体读出放大器285d。第一存储体阵列280a至第四存储体阵列280d、第一存储体行译码器260a至第四存储体行译码器260d、第一存储体列译码器270a至第四存储体列译码器270d以及第一存储体读出放大器285a至第四存储体读出放大器285d可以分别形成第一存储体、第二存储体、第三存储体和第四存储体。例如,第一存储体阵列280a、第一存储体行译码器260a、第一存储体列译码器270a和第一存储体读出放大器285a可以形成第一存储体;第二存储体阵列280b、第二存储体行译码器260b、第二存储体列译码器270b和第二存储体读出放大器285b可以形成第二存储体;第三存储体阵列280c、第三存储体行译码器260c、第三存储体列译码器270c和第三存储体读出放大器285c可以形成第三存储体;第四存储体阵列280d、第四存储体行译码器260d、第四存储体列译码器270d和第四存储体读出放大器285d可以形成第四存储体。尽管图5示出了包括四个存储体的核心裸片CD1,但是核心裸片CD1可以包括任意数目的存储体。例如,核心裸片CD1可以包括少于四个存储体或多于四个存储体。The memory cell array (e.g., 280a to 280d) may include a plurality of memory cell arrays, e.g., a first memory cell array 280a, a second memory cell array 280b, a third memory cell array 280c, and a fourth memory cell array 280d. The row decoder may include a plurality of memory cell row decoders, e.g., a first memory cell row decoder 260a, a second memory cell row decoder 260b, a third memory cell row decoder 260c, and a fourth memory cell row decoder 260d connected to the first memory cell array 280a, the second memory cell array 280b, the third memory cell array 280c, and the fourth memory cell array 280d, respectively. The column decoder may include a plurality of bank column decoders, for example, a first bank column decoder 270a, a second bank column decoder 270b, a third bank column decoder 270c, and a fourth bank column decoder 270d, respectively connected to the first bank array 280a, the second bank array 280b, the third bank array 280c, and the fourth bank array 280d. The sense amplifier unit may include a plurality of bank sense amplifiers, for example, a first bank sense amplifier 285a, a second bank sense amplifier 285b, a third bank sense amplifier 285c, and a fourth bank sense amplifier 285d, respectively connected to the first bank array 280a, the second bank array 280b, the third bank array 280c, and the fourth bank array 280d. The first memory bank array 280a to the fourth memory bank array 280d, the first memory bank row decoders 260a to the fourth memory bank row decoders 260d, the first memory bank column decoders 270a to the fourth memory bank column decoders 270d, and the first memory bank readout amplifiers 285a to the fourth memory bank readout amplifiers 285d can respectively form a first memory bank, a second memory bank, a third memory bank, and a fourth memory bank. For example, the first memory bank array 280a, the first memory bank row decoder 260a, the first memory bank column decoder 270a and the first memory bank sense amplifier 285a can form a first memory bank; the second memory bank array 280b, the second memory bank row decoder 260b, the second memory bank column decoder 270b and the second memory bank sense amplifier 285b can form a second memory bank; the third memory bank array 280c, the third memory bank row decoder 260c, the third memory bank column decoder 270c and the third memory bank sense amplifier 285c can form a third memory bank; the fourth memory bank array 280d, the fourth memory bank row decoder 260d, the fourth memory bank column decoder 270d and the fourth memory bank sense amplifier 285d can form a fourth memory bank. Although FIG. 5 shows a core die CD1 including four memory banks, the core die CD1 can include any number of memory banks. For example, the core die CD1 can include less than four memory banks or more than four memory banks.
地址寄存器220可以从存储控制器(例如,图1中的存储控制器1100)接收包括存储体地址BANK_ADDR、行地址ROW_ADDR和列地址COL_ADDR的地址ADDR。地址寄存器220可以将接收到的存储体地址BANK_ADDR提供给存储体控制逻辑电路230,可以将接收到的行地址ROW_ADDR提供给行地址复用器240,可以将接收到的列地址COL_ADDR提供给列地址锁存器250。The address register 220 may receive an address ADDR including a bank address BANK_ADDR, a row address ROW_ADDR, and a column address COL_ADDR from a memory controller (e.g., the memory controller 1100 in FIG. 1 ). The address register 220 may provide the received bank address BANK_ADDR to the bank control logic circuit 230, may provide the received row address ROW_ADDR to the row address multiplexer 240, and may provide the received column address COL_ADDR to the column address latch 250.
存储体控制逻辑电路230可以响应于接收到存储体地址BANK_ADDR而生成存储体控制信号。响应于由存储体控制逻辑电路230生成的存储体控制信号,可以激活第一存储体行译码器260a至第四存储体行译码器260d中与接收到的存储体地址BANK_ADDR相对应的存储体行译码器。另外,响应于由存储体控制逻辑电路230生成的存储体控制信号,可以激活第一存储体列译码器270a至第四存储体列译码器270d中与接收到的存储体地址BANK_ADDR相对应的存储体列译码器。The bank control logic circuit 230 may generate a bank control signal in response to receiving the bank address BANK_ADDR. In response to the bank control signal generated by the bank control logic circuit 230, a bank row decoder corresponding to the received bank address BANK_ADDR among the first bank row decoder 260a to the fourth bank row decoder 260d may be activated. In addition, in response to the bank control signal generated by the bank control logic circuit 230, a bank column decoder corresponding to the received bank address BANK_ADDR among the first bank column decoder 270a to the fourth bank column decoder 270d may be activated.
刷新控制电路215可以响应于接收到刷新命令,而生成刷新地址REF_ADDR。例如,刷新控制电路215可以包括刷新计数器,该刷新计数器被配置为根据存储单元阵列(例如,280a至280d)的第一个地址至存储单元阵列(例如,280a至280d)的最后一个地址,来顺序地改变刷新地址REF_ADDR。The refresh control circuit 215 may generate a refresh address REF_ADDR in response to receiving a refresh command. For example, the refresh control circuit 215 may include a refresh counter configured to sequentially change the refresh address REF_ADDR from the first address of the memory cell array (e.g., 280a to 280d) to the last address of the memory cell array (e.g., 280a to 280d).
行地址多路复用器240可以从地址寄存器220接收行地址ROW_ADDR,并且可以从刷新控制电路215接收刷新地址REF_ADDR。行地址多路复用器240可以选择性地输出行地址ROW_ADDR或刷新地址REF_ADDR。从行地址多路复用器240输出的行地址(例如,行地址ROW_ADDR或刷新地址REF_ADDR)可以被应用于第一存储体行译码器260a至第四存储体行译码器260d。The row address multiplexer 240 may receive a row address ROW_ADDR from the address register 220, and may receive a refresh address REF_ADDR from the refresh control circuit 215. The row address multiplexer 240 may selectively output a row address ROW_ADDR or a refresh address REF_ADDR. The row address (e.g., row address ROW_ADDR or refresh address REF_ADDR) output from the row address multiplexer 240 may be applied to the first to fourth bank row decoders 260a to 260d.
第一存储体行译码器260a至第四存储体行译码器260d中的已激活的存储体行译码器可以对从行地址多路复用器240输出的行地址进行译码,并且可以激活与该行地址对应的字线。例如,已激活的存储体行译码器(例如260a)可以将字线驱动电压施加到与行地址对应的字线。The activated bank row decoder among the first bank row decoder 260a to the fourth bank row decoder 260d may decode the row address output from the row address multiplexer 240 and may activate a word line corresponding to the row address. For example, the activated bank row decoder (e.g., 260a) may apply a word line driving voltage to the word line corresponding to the row address.
列地址锁存器250可以从地址寄存器220接收列地址COL_ADDR,并且可以临时存储接收到的列地址COL_ADDR。列地址锁存器250可以将临时存储的或接收到的列地址COL_ADDR应用于第一存储体列译码器270a至第四存储体列译码器270d。The column address latch 250 may receive the column address COL_ADDR from the address register 220 and may temporarily store the received column address COL_ADDR. The column address latch 250 may apply the temporarily stored or received column address COL_ADDR to the first to fourth bank column decoders 270a to 270d.
第一存储体列译码器270a至第四存储体列译码器270d中的已激活的存储体列译码器可以对从列地址锁存器250输出的列地址COL_ADDR进行译码,并且可以控制I/O选通电路290输出与列地址COL_ADDR对应的数据。An activated bank column decoder among the first to fourth bank column decoders 270 a to 270 d may decode the column address COL_ADDR output from the column address latch 250 and may control the I/O gating circuit 290 to output data corresponding to the column address COL_ADDR.
I/O选通电路290可以包括用于选通I/O数据的电路。例如,I/O选通电路290可以包括输入数据屏蔽逻辑、用于存储从第一存储体阵列280a至第四存储体阵列280d输出的数据的读出数据锁存器、以及用于将数据写入第一存储体阵列280a至第四存储体阵列280d的写入驱动器。The I/O gating circuit 290 may include a circuit for gating I/O data. For example, the I/O gating circuit 290 may include an input data masking logic, a read data latch for storing data output from the first memory bank array 280a to the fourth memory bank array 280d, and a write driver for writing data to the first memory bank array 280a to the fourth memory bank array 280d.
要从第一存储体阵列280a至第四存储体阵列280d中的一个存储体阵列读取出的数据可以由耦接到该一个存储体阵列(例如,280a)的读出放大器(例如,285a)感测,并且可以存储在读取数据锁存器中。存储在读取数据锁存器中的数据可以经由数据I/O缓冲器295和数据总线/数据端子DQ提供给存储控制器1100。可以从存储控制器1100将要写入第一存储体阵列280a至第四存储体阵列280d中的一个存储体阵列的数据经由数据总线/数据端子DQ提供给数据I/O缓冲器295。通过数据总线/数据端子DQ接收到的提供给数据I/O缓冲器295的数据可以通过写入驱动器被写入到一个存储体阵列(例如,280a)。Data to be read out from one of the first to fourth memory arrays 280a to 280d may be sensed by a sense amplifier (e.g., 285a) coupled to the one memory array (e.g., 280a) and may be stored in a read data latch. The data stored in the read data latch may be provided to the memory controller 1100 via the data I/O buffer 295 and the data bus/data terminal DQ. Data to be written to one of the first to fourth memory arrays 280a to 280d may be provided to the data I/O buffer 295 via the data bus/data terminal DQ from the memory controller 1100. The data provided to the data I/O buffer 295 received through the data bus/data terminal DQ may be written to one of the memory arrays (e.g., 280a) by a write driver.
控制逻辑电路210可以控制核心裸片CD1的操作。例如,控制逻辑电路210可以生成用于核心裸片CD1的控制信号以执行写入操作或读取操作。控制逻辑电路210可以包括对从存储控制器1100接收到的命令CMD进行译码的命令译码器211,以及设置核心裸片CD1的操作模式的模式寄存器212。例如,命令译码器211可以通过对写入使能信号(例如,/WE)、行地址选通信号(例如,/RAS)、列地址选通信号(例如,/CAS)、芯片选择信号(例如,/CS)等进行译码,来生成与命令CMD对应的控制信号。控制逻辑电路210还可以接收用于以同步的方式来操作核心裸片CD1的时钟信号(例如,CLK)和时钟使能信号(例如,/CKE)。The control logic circuit 210 may control the operation of the core die CD1. For example, the control logic circuit 210 may generate a control signal for the core die CD1 to perform a write operation or a read operation. The control logic circuit 210 may include a command decoder 211 that decodes the command CMD received from the storage controller 1100, and a mode register 212 that sets the operation mode of the core die CD1. For example, the command decoder 211 may generate a control signal corresponding to the command CMD by decoding a write enable signal (e.g., /WE), a row address strobe signal (e.g., /RAS), a column address strobe signal (e.g., /CAS), a chip select signal (e.g., /CS), etc. The control logic circuit 210 may also receive a clock signal (e.g., CLK) and a clock enable signal (e.g., /CKE) for operating the core die CD1 in a synchronous manner.
图6A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器的第一连接状态的示图。图6B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器的第二连接状态的示图。6A is a diagram showing a first connection state of a path selector disposed on the buffer die BD of FIG. 2 according to an exemplary embodiment of the inventive concept. FIG. 6B is a diagram showing a second connection state of a path selector disposed on the buffer die BD of FIG. 2 according to an exemplary embodiment of the inventive concept.
参照图1至图6B,缓冲器裸片BD可以包括多个缓冲器。缓冲器连接到通道路径CP1至CP16,并将通过通道路径CP1至CP16发送的数据信号DQ输出到通道CH1到CH16。缓冲器裸片BD可以包括用于改变通道CH1至CH16与通道路径CP1至CP16之间的连接的路径选择器MUX1、MUX2、MUX3、MUX4、MUX5、MUX6、MUX7和MUX8。例如,路径选择器MUX1至MUX8可以是多路复用器。存储控制器1100可以将用于改变路径选择器MUX1至MUX8的状态的连接控制信号输出到路径选择器MUX1至MUX8。1 to 6B, the buffer die BD may include a plurality of buffers. The buffer is connected to the channel paths CP1 to CP16, and outputs the data signal DQ transmitted through the channel paths CP1 to CP16 to the channels CH1 to CH16. The buffer die BD may include path selectors MUX1, MUX2, MUX3, MUX4, MUX5, MUX6, MUX7, and MUX8 for changing the connection between the channels CH1 to CH16 and the channel paths CP1 to CP16. For example, the path selectors MUX1 to MUX8 may be multiplexers. The storage controller 1100 may output a connection control signal for changing the state of the path selectors MUX1 to MUX8 to the path selectors MUX1 to MUX8.
路径选择器MUX1至MUX8可以在正常操作模式下将通道CH1至CH16与通道路径CP1至CP16之间的连接设置为第一连接状态。换句话说,路径选择器MUX1至MUX8可以在第一操作模式下将通道CH1至CH16与通道路径CP1至CP16之间的连接设置为第一连接状态。The path selectors MUX1 to MUX8 can set the connection between the channels CH1 to CH16 and the channel paths CP1 to CP16 to the first connection state in the normal operation mode. In other words, the path selectors MUX1 to MUX8 can set the connection between the channels CH1 to CH16 and the channel paths CP1 to CP16 to the first connection state in the first operation mode.
当在第一连接状态中出现存储系统1000的错误时,存储控制器1100检测存储系统1000的错误。When an error of the memory system 1000 occurs in the first connection state, the memory controller 1100 detects the error of the memory system 1000 .
然后,存储控制器1100将连接控制信号输出到路径选择器MUX1至MUX8,使得通道CH1至CH16与通道路径CP1至CP16之间的连接从第一连接状态改变为第二连接状态。换句话说,当出现错误时,改变连接状态。存储控制器1100检测在通道CH1至CH16和通道路径CP1至CP16的第二连接状态下存储系统1000的错误。Then, the storage controller 1100 outputs a connection control signal to the path selectors MUX1 to MUX8 so that the connection between the channels CH1 to CH16 and the channel paths CP1 to CP16 is changed from the first connection state to the second connection state. In other words, when an error occurs, the connection state is changed. The storage controller 1100 detects an error of the storage system 1000 in the second connection state of the channels CH1 to CH16 and the channel paths CP1 to CP16.
当在第一连接状态和第二连接状态下在相同的通道路径处检测到错误时,存储控制器1100可以确定存储系统1000的错误是通道路径的错误。换句话说,当在第一连接状态和第二连接状态这两种状态下都在第一通道路径CP1中出现错误时,确定错误出现在第一通道路径CP1中。When an error is detected at the same channel path in the first connection state and the second connection state, the memory controller 1100 may determine that the error of the memory system 1000 is an error of the channel path. In other words, when an error occurs in the first channel path CP1 in both the first connection state and the second connection state, it is determined that the error occurs in the first channel path CP1.
当在第一连接状态和第二连接状态下在不同的通道路径处检测到错误时,存储控制器1100可以确定存储系统1000的错误是存储装置1200的通道的错误。When errors are detected at different channel paths in the first connection state and the second connection state, the memory controller 1100 may determine that the error of the memory system 1000 is an error of a channel of the memory device 1200 .
参照图2、图6A和图6B,在本示例性实施例中,存储装置1200可以包括四个核心裸片CD1至CD4,并且每个核心裸片CD1至CD4可以包括通道CH1至CH16中的四个通道。另外,在本示例性实施例中,路径选择器MUX1至MUX8中的每一个可以连接到两个通道,并且路径选择器MUX1至MUX8中的每一个可以连接到同一核心裸片中的彼此相邻的两个通道。因此,存储装置1200可以包括八个路径选择器MUX1至MUX8。2, 6A, and 6B, in the present exemplary embodiment, the memory device 1200 may include four core dies CD1 to CD4, and each of the core dies CD1 to CD4 may include four channels among channels CH1 to CH16. In addition, in the present exemplary embodiment, each of the path selectors MUX1 to MUX8 may be connected to two channels, and each of the path selectors MUX1 to MUX8 may be connected to two channels adjacent to each other in the same core die. Therefore, the memory device 1200 may include eight path selectors MUX1 to MUX8.
尽管在本示例性实施例中存储装置1200包括四个核心裸片,但是本发明构思不限于此。另外,尽管在本示例性实施例中每个核心裸片包括四个通道,但是本发明构思不限于此。Although the memory device 1200 includes four core dies in the present exemplary embodiment, the inventive concept is not limited thereto. In addition, although each core die includes four channels in the present exemplary embodiment, the inventive concept is not limited thereto.
例如,第一核心裸片CD1包括第一通道CH1和第二通道CH2。第一路径选择器MUX1连接到第一通道CH1和第二通道CH2。参见图6A,第一路径选择器MUX1在第一连接状态下将第一通道CH1连接到第一通道路径CP1,并且将第二通道CH2连接到第二通道路径CP2。参见图6B,第一路径选择器MUX1在第二连接状态下将第一通道CH1连接到第二通道路径CP2,并且将第二通道CH2连接到第一通道路径CP1。For example, the first core die CD1 includes a first channel CH1 and a second channel CH2. The first path selector MUX1 is connected to the first channel CH1 and the second channel CH2. Referring to FIG6A , the first path selector MUX1 connects the first channel CH1 to the first channel path CP1 in a first connection state, and connects the second channel CH2 to the second channel path CP2. Referring to FIG6B , the first path selector MUX1 connects the first channel CH1 to the second channel path CP2 in a second connection state, and connects the second channel CH2 to the first channel path CP1.
当在第一连接状态下在连接到第一通道CH1的第一通道路径CP1处检测到第一错误,并且在第二连接状态下在连接到第二通道CH2的第一通道路径CP1处检测到该第一错误时,存储控制器1100可以确定错误出现在第一通道路径CP1处。When a first error is detected at the first channel path CP1 connected to the first channel CH1 in the first connection state and the first error is detected at the first channel path CP1 connected to the second channel CH2 in the second connection state, the memory controller 1100 may determine that an error occurs at the first channel path CP1.
换句话说,当在同一通道路径检测到错误时,尽管该通道路径实时地切换到了不同的通道,也能确定错误出现在通道路径(而不是通道)处。In other words, when an error is detected in the same channel path, even though the channel path is switched to a different channel in real time, it can be determined that the error occurs at the channel path (not the channel).
例如,通道路径的错误可能是由发送到存储装置1200的通道的数据信号的错误而产生的,或者由于相邻通道路径之间的串扰所导致的数据信号的失真而产生的。例如,通道路径的错误也可能是由于相邻通道路径之间的桥接所导致的数据信号的失真而产生的。例如,通道路径的错误可能是由于存储控制器1100与通道路径之间的引脚的错误所导致的数据信号的失真而产生的。For example, the channel path error may be caused by an error in the data signal sent to the channel of the storage device 1200, or by distortion of the data signal caused by crosstalk between adjacent channel paths. For example, the channel path error may also be caused by distortion of the data signal caused by bridging between adjacent channel paths. For example, the channel path error may be caused by distortion of the data signal caused by an error in the pin between the storage controller 1100 and the channel path.
当在通道路径处出现错误时,可以使用内插件1300中的修复通道路径RP来修复通道路径的错误。When an error occurs at a channel path, the error of the channel path can be repaired using the repair channel path RP in the inserter 1300.
当在第一连接状态下在连接到第一通道CH1的第一通道路径CP1处检测到第二错误,并且在第二连接状态下在连接到第一通道CH1的第二通道路径CP2处检测到该第二错误时,存储控制器1100可以确定错误出现在存储装置1200的通道处。When a second error is detected at a first channel path CP1 connected to the first channel CH1 in a first connection state, and the second error is detected at a second channel path CP2 connected to the first channel CH1 in a second connection state, the storage controller 1100 may determine that an error occurs at a channel of the storage device 1200 .
换句话说,当由于通道路径实时切换而在不同通道路径处检测到错误时,确定错误出现在通道(而不是通道路径)处。In other words, when an error is detected at a different channel path due to real-time switching of the channel path, it is determined that the error occurs at the channel (not the channel path).
例如,通道的错误可能是在通道的存储单元(cell)处产生的读取错误和/或写入错误。例如,通道的错误可能是在通道的存储单元处产生的保持错误(retention error)。例如,通道的错误可能是在通道的存储单元处产生的信号发送错误。For example, the error of the channel may be a read error and/or a write error generated at a storage cell of the channel. For example, the error of the channel may be a retention error generated at a storage cell of the channel. For example, the error of the channel may be a signal transmission error generated at a storage cell of the channel.
当在通道处出现错误时,可以使用形成在通道中的修复单元和修复线来修复通道的错误。When an error occurs at a channel, the error of the channel may be repaired using a repair cell and a repair line formed in the channel.
例如,第一核心裸片CD1包括第三通道CH3和第四通道CH4。第二路径选择器MUX2连接到第三通道CH3和第四通道CH4。如图6A所示,第二路径选择器MUX2在第一连接状态下将第三通道CH3连接到第三通道路径CP3,并且将第四通道CH4连接到第四通道路径CP4。如图6B所示,第二路径选择器MUX2在第二连接状态下将第三通道CH3连接到第四通道路径CP4,并且将第四通道CH4连接到第三通道路径CP3。For example, the first core die CD1 includes a third channel CH3 and a fourth channel CH4. The second path selector MUX2 is connected to the third channel CH3 and the fourth channel CH4. As shown in FIG6A , the second path selector MUX2 connects the third channel CH3 to the third channel path CP3 in the first connection state, and connects the fourth channel CH4 to the fourth channel path CP4. As shown in FIG6B , the second path selector MUX2 connects the third channel CH3 to the fourth channel path CP4 in the second connection state, and connects the fourth channel CH4 to the third channel path CP3.
当在第一连接状态下在连接到第三通道CH3的第三通道路径CP3处检测到第一错误,并且在第二连接状态下在连接到第四通道CH4的第三通道路径CP3处检测到该第一错误时,存储控制器1100可以确定错误出现在第三通道路径CP3处。When a first error is detected at the third channel path CP3 connected to the third channel CH3 in the first connection state, and the first error is detected at the third channel path CP3 connected to the fourth channel CH4 in the second connection state, the storage controller 1100 can determine that the error occurs at the third channel path CP3.
当在第一连接状态下在连接到第三通道CH3的第三通道路径CP3处检测到第二错误,并且在第二连接状态下在连接到第三通道CH3的第四通道路径CP4处检测到该第二错误时,存储控制器1100可以确定错误出现在存储装置1200的通道处。When a second error is detected at the third channel path CP3 connected to the third channel CH3 in the first connection state, and the second error is detected at the fourth channel path CP4 connected to the third channel CH3 in the second connection state, the storage controller 1100 can determine that an error occurs at a channel of the storage device 1200.
如图6A和图6B所示,第三路径选择器MUX3至第八路径选择器MUX8可以以与第一路径选择器MUX1和第二路径选择器MUX2相同的方式进行操作。As shown in FIGS. 6A and 6B , the third to eighth path selectors MUX3 to MUX8 may operate in the same manner as the first and second path selectors MUX1 and MUX2 .
根据本示例性实施例,当在存储装置1200的通道CH1至CH16与通道路径CP1至CP16的第一连接状态下检测到存储系统1000的错误时,通道CH1至CH16与通道路径CP1至CP16的连接状态从第一连接状态变为第二连接状态,并且在通道CH1至CH16与通道路径CP1至CP16的第二连接状态下再次检测到存储系统1000的错误。因此,可以确定存储系统的错误是存储装置1200的通道的错误还是通道路径的错误。另外,可以在实际工作负载系统中确定存储系统1000的错误,而无需将存储系统1000转接到独立的错误确定系统。According to the present exemplary embodiment, when an error of the storage system 1000 is detected in a first connection state of the channels CH1 to CH16 and the channel paths CP1 to CP16 of the storage device 1200, the connection state of the channels CH1 to CH16 and the channel paths CP1 to CP16 is changed from the first connection state to the second connection state, and the error of the storage system 1000 is detected again in the second connection state of the channels CH1 to CH16 and the channel paths CP1 to CP16. Therefore, it can be determined whether the error of the storage system is an error of the channels or an error of the channel paths of the storage device 1200. In addition, the error of the storage system 1000 can be determined in an actual workload system without transferring the storage system 1000 to an independent error determination system.
图7A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器MUX1至MUX8的第一连接状态的示图。图7B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器MUX1至MUX8的第二连接状态的示图。Fig. 7A is a diagram showing a first connection state of path selectors MUX1 to MUX8 provided on the buffer die BD of Fig. 2 according to an exemplary embodiment of the inventive concept. Fig. 7B is a diagram showing a second connection state of path selectors MUX1 to MUX8 provided on the buffer die BD of Fig. 2 according to an exemplary embodiment of the inventive concept.
参照图1至图5、图7A和图7B,在本示例性实施例中,存储装置1200可以包括四个核心裸片CD1至CD4,并且每个核心裸片CD1至CD4可以包括通道CH1至CH16中的四个通道。另外,在本示例性实施例中,路径选择器MUX1至MUX8中的每一个可以连接到两个通道,并且路径选择器MUX1至MUX8中的每一个可以连接到位于不同核心裸片中的两个通道。因此,存储装置1200可以包括八个路径选择器MUX1至MUX8。1 to 5, 7A, and 7B, in the present exemplary embodiment, the memory device 1200 may include four core dies CD1 to CD4, and each of the core dies CD1 to CD4 may include four channels among channels CH1 to CH16. In addition, in the present exemplary embodiment, each of the path selectors MUX1 to MUX8 may be connected to two channels, and each of the path selectors MUX1 to MUX8 may be connected to two channels located in different core dies. Therefore, the memory device 1200 may include eight path selectors MUX1 to MUX8.
例如,第一核心裸片CD1包括第一通道CH1,第二核心裸片CD2包括第五通道CH5。第一路径选择器MUX1连接到第一通道CH1和第五通道CH5。如图7A所示,第一路径选择器MUX1在第一连接状态下将第一通道CH1连接到第一通道路径CP1,并且将第五通道CH5连接到第五通道路径CP5。如图7B所示,第一路径选择器MUX1在第二连接状态下将第一通道CH1连接到第五通道路径CP5,并且将第五通道CH5连接到第一通道路径CP1。For example, the first core die CD1 includes a first channel CH1, and the second core die CD2 includes a fifth channel CH5. The first path selector MUX1 is connected to the first channel CH1 and the fifth channel CH5. As shown in FIG7A, the first path selector MUX1 connects the first channel CH1 to the first channel path CP1 in a first connection state, and connects the fifth channel CH5 to the fifth channel path CP5. As shown in FIG7B, the first path selector MUX1 connects the first channel CH1 to the fifth channel path CP5 in a second connection state, and connects the fifth channel CH5 to the first channel path CP1.
当在第一连接状态下在连接到第一通道CH1的第一通道路径CP1处检测到第一错误,并且在第二连接状态下在连接到第五通道CH5的第一通道路径CP1处检测到该第一错误时,存储控制器1100可以确定错误出现在第一通道路径CP1处。When a first error is detected at the first channel path CP1 connected to the first channel CH1 in the first connection state and the first error is detected at the first channel path CP1 connected to the fifth channel CH5 in the second connection state, the memory controller 1100 may determine that an error occurs at the first channel path CP1.
当在第一连接状态下在连接到第一通道CH1的第一通道路径CP1处检测到第二错误,并且在第二连接状态下在连接到第一通道CH1的第五通道路径CP5处检测到该第二错误时,存储控制器1100可以确定错误出现在存储装置1200的通道处。When a second error is detected at the first channel path CP1 connected to the first channel CH1 in the first connection state, and the second error is detected at the fifth channel path CP5 connected to the first channel CH1 in the second connection state, the storage controller 1100 can determine that an error occurs at a channel of the storage device 1200.
例如,第三核心裸片CD3包括第九通道CH9,第四核心裸片CD4包括第十三通道CH13。第二路径选择器MUX2连接到第九通道CH9和第十三通道CH13。如图7A所示,第二路径选择器MUX2在第一连接状态下将第九通道CH9连接到第九通道路径CP9,并且将第十三通道CH13连接到第十三通道路径CP13。如图7B所示,第二路径选择器MUX2在第二连接状态下将第九通道CH9连接到第十三通道路径CP13,并且将第十三通道CH13连接到第九通道路径CP9。For example, the third core die CD3 includes a ninth channel CH9, and the fourth core die CD4 includes a thirteenth channel CH13. The second path selector MUX2 is connected to the ninth channel CH9 and the thirteenth channel CH13. As shown in FIG7A , the second path selector MUX2 connects the ninth channel CH9 to the ninth channel path CP9 in a first connection state, and connects the thirteenth channel CH13 to the thirteenth channel path CP13. As shown in FIG7B , the second path selector MUX2 connects the ninth channel CH9 to the thirteenth channel path CP13 in a second connection state, and connects the thirteenth channel CH13 to the ninth channel path CP9.
当在第一连接状态下在连接到第九通道CH9的第九通道路径CP9处检测到第一错误,并且在第二连接状态下在连接到第十三通道CH13的第九通道路径CP9处检测到该第一错误时,存储控制器1100可以确定错误出现在第九通道路径CP9处。When a first error is detected at a ninth channel path CP9 connected to a ninth channel CH9 in a first connection state, and the first error is detected at a ninth channel path CP9 connected to a thirteenth channel CH13 in a second connection state, the storage controller 1100 may determine that an error occurs at the ninth channel path CP9.
当在第一连接状态下在连接到第九通道CH9的第九通道路径CP9处检测到第二错误,并且在第二连接状态下在连接到第九通道CH9的第十三通道路径CP13处检测到该第二错误时,存储控制器1100可以确定错误出现在存储装置1200的通道处。When a second error is detected at a ninth channel path CP9 connected to a ninth channel CH9 in a first connection state, and the second error is detected at a thirteenth channel path CP13 connected to the ninth channel CH9 in a second connection state, the storage controller 1100 may determine that an error occurs at a channel of the storage device 1200.
如图7A和图7B,第三路径选择器MUX3至第八路径选择器MUX8可以以与第一路径选择器MUX1和第二路径选择器MUX2相同的方式操作。As shown in FIGS. 7A and 7B , the third to eighth path selectors MUX3 to MUX8 may operate in the same manner as the first and second path selectors MUX1 and MUX2 .
根据本示例性实施例,在第一连接状态和第二连接状态下检测存储系统1000的错误,从而能够确定存储系统的错误是存储装置1200的通道的错误还是通道路径的错误。另外,可以在实际工作负载系统中确定存储系统1000的错误,而无需将存储系统1000转接到独立的错误确定系统。According to the present exemplary embodiment, an error of the storage system 1000 is detected in the first connection state and the second connection state, so that it is possible to determine whether the error of the storage system is an error of a channel or an error of a channel path of the storage device 1200. In addition, the error of the storage system 1000 can be determined in an actual workload system without transferring the storage system 1000 to an independent error determination system.
另外,路径选择器MUX1至MUX8可以连接到不同核心裸片CD1至CD4的通道,并且可以切换连接状态,从而可以提高错误确定的可靠性。In addition, the path selectors MUX1 to MUX8 may be connected to channels of different core dies CD1 to CD4 and the connection states may be switched, so that the reliability of error determination may be improved.
图8A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器MUX1至MUX4的第一连接状态的示图。图8B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器MUX1至MUX4的第二连接状态的示图。Fig. 8A is a diagram showing a first connection state of path selectors MUX1 to MUX4 disposed on the buffer die BD of Fig. 2 according to an exemplary embodiment of the inventive concept. Fig. 8B is a diagram showing a second connection state of path selectors MUX1 to MUX4 disposed on the buffer die BD of Fig. 2 according to an exemplary embodiment of the inventive concept.
参照图1至图5、图8A和图8B,在本示例性实施例中,存储装置1200可以包括四个核心裸片CD1至CD4,并且每个核心裸片CD1至CD4可以包括通道CH1至CH16中的四个通道。另外,在本示例性实施例中,路径选择器MUX1至MUX4中的每一个可以连接到四个通道,并且路径选择器MUX1至MUX4中的每一个可以连接到位于同一核心裸片中的四个通道。因此,存储装置1200可以包括四个路径选择器MUX1至MUX4。1 to 5, 8A, and 8B, in the present exemplary embodiment, the memory device 1200 may include four core dies CD1 to CD4, and each of the core dies CD1 to CD4 may include four channels among channels CH1 to CH16. In addition, in the present exemplary embodiment, each of the path selectors MUX1 to MUX4 may be connected to four channels, and each of the path selectors MUX1 to MUX4 may be connected to four channels located in the same core die. Therefore, the memory device 1200 may include four path selectors MUX1 to MUX4.
例如,第一核心裸片CD1包括第一通道CH1至第四通道CH4。第一路径选择器MUX1连接到第一通道CH1至第四通道CH4。如图8A所示,第一路径选择器MUX1在第一连接状态下将第一通道CH1连接到第一通道路径CP1,将第二通道CH2连接到第二通道路径CP2,将第三通道CH3连接到第三通道路径CP3,并且将第四通道CH4连接到第四通道路径CP4。如图8B所示,第一路径选择器MUX1在第二连接状态下将第一通道CH1连接到第四通道路径CP4,将第二通道CH2连接到第三通道路径CP3,将第三通道CH3连接到第二通道路径CP2,并且将第四通道CH4连接到第一通道路径CP1。For example, the first core die CD1 includes a first channel CH1 to a fourth channel CH4. The first path selector MUX1 is connected to the first channel CH1 to the fourth channel CH4. As shown in FIG8A , the first path selector MUX1 connects the first channel CH1 to the first channel path CP1, the second channel CH2 to the second channel path CP2, the third channel CH3 to the third channel path CP3, and the fourth channel CH4 to the fourth channel path CP4 in a first connection state. As shown in FIG8B , the first path selector MUX1 connects the first channel CH1 to the fourth channel path CP4, the second channel CH2 to the third channel path CP3, the third channel CH3 to the second channel path CP2, and the fourth channel CH4 to the first channel path CP1 in a second connection state.
使用上述路径选择器MUX1至MUX4,确定存储系统1000的错误是存储装置1200的通道的错误还是通道路径的错误。Using the above-described path selectors MUX1 to MUX4 , it is determined whether the error of the storage system 1000 is an error of a channel of the storage device 1200 or an error of a channel path.
应当理解,为了提高错误确定的可靠性,第一路径选择器MUX1可以形成与第一连接状态和第二连接状态不同的第三连接状态。例如,第一路径选择器MUX1可以在第三连接状态下将第一通道CH1连接到第二通道路径CP2,将第二通道CH2连接到第三通道路径CP3,将第三通道CH3连接到第四通道路径CP4,将第四通道CH4连接到第一通道路径CP1。It should be understood that in order to improve the reliability of error determination, the first path selector MUX1 can form a third connection state different from the first connection state and the second connection state. For example, the first path selector MUX1 can connect the first channel CH1 to the second channel path CP2, connect the second channel CH2 to the third channel path CP3, connect the third channel CH3 to the fourth channel path CP4, and connect the fourth channel CH4 to the first channel path CP1 in the third connection state.
如图8A和图8B所示,第二路径选择器MUX2至第四路径选择器MUX4可以以与第一路径选择器MUX1相同的方式进行操作。As shown in FIGS. 8A and 8B , the second to fourth path selectors MUX2 to MUX4 may operate in the same manner as the first path selector MUX1 .
根据本示例性实施例,在第一连接状态和第二连接状态下检测存储系统1000的错误,使得能够确定存储系统1000的错误是存储装置1200的通道的错误还是通道路径的错误。另外,可以在实际工作负载系统中确定存储系统1000的错误,而无需将存储系统1000转接到独立的错误确定系统。According to the present exemplary embodiment, an error of the storage system 1000 is detected in the first connection state and the second connection state, so that it is possible to determine whether the error of the storage system 1000 is an error of a channel or an error of a channel path of the storage device 1200. In addition, the error of the storage system 1000 can be determined in an actual workload system without transferring the storage system 1000 to an independent error determination system.
另外,路径选择器(例如,MUX1、MUX2、MUX3或MUX4)还可以在第三连接状态下检测存储系统1000的错误,从而可以提高错误确定的可靠性。In addition, the path selector (eg, MUX1, MUX2, MUX3, or MUX4) may also detect an error of the storage system 1000 in the third connection state, thereby improving reliability of error determination.
图9A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器MUX1和MUX2的第一连接状态的示图。图9B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器MUX1和MUX2的第二连接状态的示图。9A is a diagram showing a first connection state of path selectors MUX1 and MUX2 disposed on the buffer die BD of FIG. 2 according to an exemplary embodiment of the inventive concept. FIG. 9B is a diagram showing a second connection state of path selectors MUX1 and MUX2 disposed on the buffer die BD of FIG. 2 according to an exemplary embodiment of the inventive concept.
参照图1至图5、图9A和图9B,在本示例性实施例中,存储装置1200可以包括四个核心裸片CD1至CD4,并且每个核心裸片CD1至CD4可以包括通道CH1至CH16中的四个通道。另外,在本示例性实施例中,路径选择器MUX1和MUX2中的每一个可以连接到八个通道,并且路径选择器MUX1和MUX2中的每一个可以连接到同一核心裸片中的四个相邻通道以及相邻核心裸片中的四个相邻通道。因此,存储装置1200可以包括两个路径选择器MUX1和MUX2。1 to 5, 9A and 9B, in the present exemplary embodiment, the memory device 1200 may include four core dies CD1 to CD4, and each of the core dies CD1 to CD4 may include four channels among channels CH1 to CH16. In addition, in the present exemplary embodiment, each of the path selectors MUX1 and MUX2 may be connected to eight channels, and each of the path selectors MUX1 and MUX2 may be connected to four adjacent channels in the same core die and four adjacent channels in an adjacent core die. Therefore, the memory device 1200 may include two path selectors MUX1 and MUX2.
例如,第一核心裸片CD1包括第一通道CH1至第四通道CH4,第二核心裸片CD2包括第五通道CH5至第八通道CH8。第一路径选择器MUX1连接到第一通道CH1至第八通道CH8。如图9A所示,第一路径选择器MUX1在第一连接状态下将第一通道CH1连接到第一通道路径CP1,将第二通道CH2连接到第二通道路径CP2,将第三通道CH3连接到第三通道路径CP3,将第四通道CH4连接到第四通道路径CP4,将第五通道CH5连接到第五通道路径CP5,将第六通道CH6连接到第六通道路径CP6,将第七通道CH7连接到第七通道路径CP7,并且将第八通道CH8连接到第八通道路径CP8。For example, the first core die CD1 includes the first channel CH1 to the fourth channel CH4, and the second core die CD2 includes the fifth channel CH5 to the eighth channel CH8. The first path selector MUX1 is connected to the first channel CH1 to the eighth channel CH8. As shown in FIG9A , the first path selector MUX1 connects the first channel CH1 to the first channel path CP1, connects the second channel CH2 to the second channel path CP2, connects the third channel CH3 to the third channel path CP3, connects the fourth channel CH4 to the fourth channel path CP4, connects the fifth channel CH5 to the fifth channel path CP5, connects the sixth channel CH6 to the sixth channel path CP6, connects the seventh channel CH7 to the seventh channel path CP7, and connects the eighth channel CH8 to the eighth channel path CP8 in the first connection state.
如图9B所示,第一路径选择器MUX1在第二连接状态下将第一通道CH1连接到第八通道路径CP8,将第二通道CH2连接到第七通道路径CP7,将第三通道CH3连接到第六通道路径CP6,将第四通道CH4连接到第五通道路径CP5,将第五通道CH5连接到第四通道路径CP4,将第六通道CH6连接到第三通道路径CP3,将第七通道CH7连接到第二通道路径CP2,并且将第八通道CH8连接到第一通道路径CP1。As shown in FIG. 9B , the first path selector MUX1 connects the first channel CH1 to the eighth channel path CP8, connects the second channel CH2 to the seventh channel path CP7, connects the third channel CH3 to the sixth channel path CP6, connects the fourth channel CH4 to the fifth channel path CP5, connects the fifth channel CH5 to the fourth channel path CP4, connects the sixth channel CH6 to the third channel path CP3, connects the seventh channel CH7 to the second channel path CP2, and connects the eighth channel CH8 to the first channel path CP1 in the second connection state.
使用上述路径选择器MUX1和MUX2,可以确定存储系统1000的错误是存储装置1200的通道的错误还是通道路径的错误。Using the above-described path selectors MUX1 and MUX2 , it can be determined whether the error of the storage system 1000 is an error of a channel of the storage device 1200 or an error of a channel path.
应当理解,为了提高错误确定的可靠性,第一路径选择器MUX1可以形成与第一连接状态和第二连接状态不同的第三连接状态。It should be understood that in order to improve the reliability of error determination, the first path selector MUX1 may form a third connection state different from the first connection state and the second connection state.
如图9A和图9B所示,第二路径选择器MUX2可以以与第一路径选择器MUX1相同的方式操作。As shown in FIGS. 9A and 9B , the second path selector MUX2 may operate in the same manner as the first path selector MUX1 .
根据本示例性实施例,在第一连接状态和第二连接状态下检测存储系统1000的错误,使得可以确定存储系统1000的错误是存储装置1200的通道的错误还是通道路径的错误。另外,可以在实际工作负载系统中确定存储系统1000的错误,而无需将存储系统1000转接到独立的错误确定系统。According to the present exemplary embodiment, an error of the storage system 1000 is detected in the first connection state and the second connection state, so that it is possible to determine whether the error of the storage system 1000 is an error of a channel or an error of a channel path of the storage device 1200. In addition, the error of the storage system 1000 can be determined in an actual workload system without transferring the storage system 1000 to an independent error determination system.
另外,路径选择器(例如,MUX1或MUX2)还可以在第三连接状态下检测存储系统1000的错误,从而可以提高错误确定的可靠性。In addition, the path selector (eg, MUX1 or MUX2) may also detect an error of the storage system 1000 in the third connection state, thereby improving the reliability of error determination.
另外,路径选择器(例如,MUX1和MUX2)可以连接到不同核心裸片的通道并且可以切换连接状态,从而可以提高错误确定的可靠性。In addition, path selectors (eg, MUX1 and MUX2) may be connected to channels of different core dies and may switch connection states, thereby making it possible to improve reliability of error determination.
图10A是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器MUX1的第一连接状态的示图。图10B是示出了根据本发明构思的示例性实施例的设置在图2的缓冲器裸片BD上的路径选择器MUX1的第二连接状态的示图。Fig. 10A is a diagram illustrating a first connection state of a path selector MUX1 disposed on a buffer die BD of Fig. 2 according to an exemplary embodiment of the inventive concept. Fig. 10B is a diagram illustrating a second connection state of a path selector MUX1 disposed on a buffer die BD of Fig. 2 according to an exemplary embodiment of the inventive concept.
参照图1至图5、图10A和图10B,在本示例性实施例中,存储装置1200可以包括四个核心裸片CD1至CD4,并且每个核心裸片CD1至CD4可以包括通道CH1至CH16中的四个通道。另外,路径选择器MUX1可以连接到所有通道CH1至CH16。因此,存储装置1200可以包括一个路径选择器MUX1。1 to 5, 10A, and 10B, in the present exemplary embodiment, the memory device 1200 may include four core dies CD1 to CD4, and each of the core dies CD1 to CD4 may include four channels of channels CH1 to CH16. In addition, the path selector MUX1 may be connected to all channels CH1 to CH16. Therefore, the memory device 1200 may include one path selector MUX1.
例如,第一路径选择器MUX1连接到第一通道CH1至第十六通道CH16。如图10A所示,第一路径选择器MUX1可以在第一连接状态下将第一通道CH1至第十六通道CH16顺序地连接至第一通道路径CP1至第十六通道路径CP16。For example, the first path selector MUX1 is connected to the first to sixteenth channels CH1 to CH16. As shown in FIG. 10A, the first path selector MUX1 may sequentially connect the first to sixteenth channels CH1 to CH16 to the first to sixteenth channel paths CP1 to CP16 in a first connection state.
如图10B所示,第一路径选择器MUX1可以在第二连接状态下将第一通道CH1至第十六通道CH16顺序地连接至第十六通道路径CP16至第一通道路径CP1。As shown in FIG. 10B , the first path selector MUX1 may sequentially connect the first to sixteenth channels CH1 to CH16 to the sixteenth channel path CP16 to the first channel path CP1 in the second connection state.
使用上述路径选择器MUX1,可以确定存储系统1000的错误是存储装置1200的通道的错误还是通道路径的错误。By using the path selector MUX1, it can be determined whether the error of the storage system 1000 is an error of a channel of the storage device 1200 or an error of a channel path.
应当理解,为了提高错误确定的可靠性,第一路径选择器MUX1可以形成与第一连接状态和第二连接状态不同的各种连接状态。It should be understood that in order to improve the reliability of error determination, the first path selector MUX1 may form various connection states different from the first connection state and the second connection state.
根据本示例性实施例,在第一连接状态和第二连接状态下检测存储系统1000的错误,从而可以确定存储系统1000的错误是存储装置1200的通道的错误还是通道路径的错误。另外,可以在实际工作负载系统中确定存储系统1000的错误,而无需将存储系统1000转接到独立的错误确定系统。According to the present exemplary embodiment, an error of the storage system 1000 is detected in the first connection state and the second connection state, so that it can be determined whether the error of the storage system 1000 is an error of a channel or an error of a channel path of the storage device 1200. In addition, the error of the storage system 1000 can be determined in an actual workload system without transferring the storage system 1000 to an independent error determination system.
另外,路径选择器MUX1还可以在与第一连接状态和第二连接状态不同的各种连接状态下检测存储系统1000的错误,从而可以提高错误确定的可靠性。In addition, the path selector MUX1 can also detect errors of the storage system 1000 in various connection states different from the first connection state and the second connection state, so that the reliability of error determination can be improved.
另外,路径选择器MUX1可以连接到不同核心裸片的通道并且可以切换连接状态,从而可以提高错误确定的可靠性。In addition, the path selector MUX1 may be connected to channels of different core dies and may switch a connection state, so that reliability of error determination may be improved.
图11是示出了根据本发明构思的示例性实施例的存储系统1000的示图。图12A是示出了根据本发明构思的示例性实施例的设置在图11的缓冲器裸片BD上的路径选择器MUX1至MUX16的第一连接状态的示图。图12B是示出了根据本发明构思的示例性实施例的设置在图11的缓冲器裸片BD上的路径选择器MUX1至MUX16的第二连接状态的示图。图12C是示出了根据本发明构思的示例性实施例的设置在图11的缓冲器裸片BD上的路径选择器MUX1至MUX16的第三连接状态的示图。FIG. 11 is a diagram showing a storage system 1000 according to an exemplary embodiment of the inventive concept. FIG. 12A is a diagram showing a first connection state of path selectors MUX1 to MUX16 disposed on a buffer die BD of FIG. 11 according to an exemplary embodiment of the inventive concept. FIG. 12B is a diagram showing a second connection state of path selectors MUX1 to MUX16 disposed on a buffer die BD of FIG. 11 according to an exemplary embodiment of the inventive concept. FIG. 12C is a diagram showing a third connection state of path selectors MUX1 to MUX16 disposed on a buffer die BD of FIG. 11 according to an exemplary embodiment of the inventive concept.
除了本示例性实施例的存储装置还包括参考通道之外,根据本示例性实施例的存储系统与参照图1至图10B说明的前述示例性实施例的存储系统基本相同。因此,相同的附图标记将用于表示与图1至图10B的示例性实施例中所描述的部件相同或相似的部件。可以省略关于上述元件的任何重复说明。The storage system according to the present exemplary embodiment is substantially the same as the storage system of the aforementioned exemplary embodiment described with reference to FIGS. 1 to 10B , except that the storage device of the present exemplary embodiment further includes a reference channel. Therefore, the same reference numerals will be used to represent the same or similar components as those described in the exemplary embodiment of FIGS. 1 to 10B . Any repeated description of the above elements may be omitted.
参照图11至图12C,存储系统1000包括存储控制器1100和存储装置1200。存储系统1000还可以包括用于连接存储控制器1100和存储装置1200的内插件1300。11 to 12C , the memory system 1000 includes a memory controller 1100 and a memory device 1200. The memory system 1000 may further include an interposer 1300 for connecting the memory controller 1100 and the memory device 1200.
存储装置1200可以包括多个通道CH1至CH16。存储装置1200还可以包括参考通道。内插件1300还可以包括用于将参考通道连接到存储控制器1100的参考通道路径。例如,存储装置1200可以包括多个参考通道RCH1、RCH2、RCH3和RCH4。例如,每个核心裸片CD1至CD4均包括参考通道。例如,设置在缓冲器裸片BD上的第一核心裸片CD1可以包括第一通道CH1至第四通道CH4和第一参考通道RCH1。例如,设置在第一核心裸片CD1上的第二核心裸片CD2可以包括第五通道CH5至第八通道CH8和第二参考通道RCH2。例如,设置在第二核心裸片CD2上的第三核心裸片CD3可以包括第九通道CH9至第十二通道CH12和第三参考通道RCH3。例如,设置在第三核心裸片CD3上的第四核心裸片CD4可以包括第十三通道CH13至第十六通道CH16和第四参考通道RCH4。The memory device 1200 may include a plurality of channels CH1 to CH16. The memory device 1200 may further include a reference channel. The interposer 1300 may further include a reference channel path for connecting the reference channel to the memory controller 1100. For example, the memory device 1200 may include a plurality of reference channels RCH1, RCH2, RCH3, and RCH4. For example, each of the core dies CD1 to CD4 includes a reference channel. For example, the first core die CD1 disposed on the buffer die BD may include the first channel CH1 to the fourth channel CH4 and the first reference channel RCH1. For example, the second core die CD2 disposed on the first core die CD1 may include the fifth channel CH5 to the eighth channel CH8 and the second reference channel RCH2. For example, the third core die CD3 disposed on the second core die CD2 may include the ninth channel CH9 to the twelfth channel CH12 and the third reference channel RCH3. For example, the fourth core die CD4 disposed on the third core die CD3 may include the thirteenth channel CH13 to the sixteenth channel CH16 and the fourth reference channel RCH4.
参考通道RCH1至RCH4的错误率可以小于通道CH1至CH16的错误率。例如,与通道CH1至CH16相比,参考通道RCH1至RCH4可以在存储装置1000的制造步骤中通过更严格的可靠性测试。The error rate of the reference channels RCH1 to RCH4 may be lower than that of the channels CH1 to CH16. For example, the reference channels RCH1 to RCH4 may pass a stricter reliability test in a manufacturing step of the memory device 1000 than the channels CH1 to CH16.
在本示例性实施例中,存储装置1200可以包括四个核心裸片CD1至CD4,并且核心裸片CD1至CD4中的每个核心裸片可以包括通道CH1至CH16中的四个通道。核心裸片CD1至CD4中的每个核心裸片分别可以包括参考通道RCH1、RCH2、RCH3或RCH4。另外,在本示例性实施例中,路径选择器MUX1至MUX16中的每一个可以连接到一个通道和一个参考通道,并且路径选择器MUX1至MUX16中的每一个可以连接到同一核心裸片中的一个通道和一个参考通道。因此,存储装置1200可以包括十六个路径选择器MUX1至MUX16。In the present exemplary embodiment, the memory device 1200 may include four core dies CD1 to CD4, and each of the core dies CD1 to CD4 may include four channels of channels CH1 to CH16. Each of the core dies CD1 to CD4 may include reference channels RCH1, RCH2, RCH3, or RCH4, respectively. In addition, in the present exemplary embodiment, each of the path selectors MUX1 to MUX16 may be connected to one channel and one reference channel, and each of the path selectors MUX1 to MUX16 may be connected to one channel and one reference channel in the same core die. Therefore, the memory device 1200 may include sixteen path selectors MUX1 to MUX16.
尽管在本示例性实施例中存储装置1200包括四个核心裸片CD1至CD4,但是本发明构思不限于此。另外,尽管在本示例性实施例中每个核心裸片CD1至CD4包括四个通道,但是本发明构思不限于此。另外,尽管在本示例性实施例中每个核心裸片CD1至CD4包括一个参考通道,但是本发明构思不限于此。或者,核心裸片CD1至CD4中的至少一个可以包括多个参考通道。或者,参考通道的数目可以小于核心裸片的数目,因此,核心裸片中的至少一个可以不包括参考通道。Although the storage device 1200 includes four core dies CD1 to CD4 in the present exemplary embodiment, the inventive concept is not limited thereto. In addition, although each of the core dies CD1 to CD4 includes four channels in the present exemplary embodiment, the inventive concept is not limited thereto. In addition, although each of the core dies CD1 to CD4 includes one reference channel in the present exemplary embodiment, the inventive concept is not limited thereto. Alternatively, at least one of the core dies CD1 to CD4 may include a plurality of reference channels. Alternatively, the number of reference channels may be less than the number of core dies, and therefore, at least one of the core dies may not include a reference channel.
例如,第一核心裸片CD1包括第一通道CH1至第四通道CH4。第一路径选择器MUX1连接到第一通道CH1和第一参考通道RCH1。如图12A所示,第一路径选择器MUX1在第一连接状态下将第一通道CH1连接到第一通道路径CP1,并且将第一参考通道RCH1连接到的第一参考通道路径RCP1。如图12B所示,第一路径选择器MUX1在第二连接状态下将第一通道CH1连接到第一参考通道路径RCP1,并且将第一参考通道RCH1连接到第一通道路径CP1。For example, the first core die CD1 includes the first channel CH1 to the fourth channel CH4. The first path selector MUX1 is connected to the first channel CH1 and the first reference channel RCH1. As shown in FIG12A, the first path selector MUX1 connects the first channel CH1 to the first channel path CP1 in a first connection state, and connects the first reference channel RCH1 to the first reference channel path RCP1. As shown in FIG12B, the first path selector MUX1 connects the first channel CH1 to the first reference channel path RCP1 in a second connection state, and connects the first reference channel RCH1 to the first channel path CP1.
第二路径选择器MUX2连接到第二通道CH2和第一参考通道RCH1。如图12A所示,第二路径选择器MUX2在第一连接状态下将第二通道CH2连接到第二通道路径CP2,将第一参考通道RCH1连接到第一参考通道路径RCP1。如图12C所示,第二路径选择器MUX2在第三连接状态下将第二通道CH2连接到第一参考通道路径RCP1,将第一参考通道RCH1连接到第二通道路径CP2。The second path selector MUX2 is connected to the second channel CH2 and the first reference channel RCH1. As shown in FIG12A, the second path selector MUX2 connects the second channel CH2 to the second channel path CP2 and connects the first reference channel RCH1 to the first reference channel path RCP1 in the first connection state. As shown in FIG12C, the second path selector MUX2 connects the second channel CH2 to the first reference channel path RCP1 and connects the first reference channel RCH1 to the second channel path CP2 in the third connection state.
使用上述路径选择器MUX1和MUX2,可以确定存储系统1000的错误是存储装置1200的通道的错误还是通道路径的错误。在本示例性实施例中,使用其可靠性高于通道CH1至CH16的可靠性的参考通道RCH1至RCH4来确定存储系统1000的错误。Using the above path selectors MUX1 and MUX2, it can be determined whether the error of the memory system 1000 is an error of a channel or a channel path of the memory device 1200. In this exemplary embodiment, the error of the memory system 1000 is determined using reference channels RCH1 to RCH4 having higher reliability than channels CH1 to CH16.
如图12A和图12B所示,第三路径选择器MUX3至第十六路径选择器MUX16可以以与第一路径选择器MUX1和第二路径选择器MUX2相同的方式操作。As shown in FIGS. 12A and 12B , the third to sixteenth path selectors MUX3 to MUX16 may operate in the same manner as the first and second path selectors MUX1 and MUX2 .
根据本示例性实施例,在第一连接状态和第二连接状态下检测存储系统1000的错误,使得可以确定存储系统1000的错误是存储装置1200的通道的错误还是通道路径的错误。另外,可以在实际工作负载系统中确定存储系统1000的错误,而无需将存储系统1000转接到独立的错误确定系统。According to the present exemplary embodiment, an error of the storage system 1000 is detected in the first connection state and the second connection state, so that it is possible to determine whether the error of the storage system 1000 is an error of a channel or an error of a channel path of the storage device 1200. In addition, the error of the storage system 1000 can be determined in an actual workload system without transferring the storage system 1000 to an independent error determination system.
另外,存储装置1200使用数据可靠性高于通道CH1至CH16的数据可靠性的参考通道RCH1至RCH4,使得可以提高错误确定的可靠性。In addition, the memory device 1200 uses the reference channels RCH1 to RCH4 having higher data reliability than the channels CH1 to CH16 , so that the reliability of error determination can be improved.
图13是示出了根据本发明构思的示例性实施例的包括存储系统的电子设备2000的框图。FIG. 13 is a block diagram illustrating an electronic device 2000 including a memory system according to an exemplary embodiment of the inventive concept.
参照图1至图13,电子设备2000包括经由总线进行通信的应用处理器2100、连接电路2200、存储系统(VM)2300、非易失性存储系统(NVM)2400、用户接口2500和电源2600。例如,电子设备2000可以是移动设备。1 to 13 , the electronic device 2000 includes an application processor 2100, a connection circuit 2200, a memory system (VM) 2300, a nonvolatile memory system (NVM) 2400, a user interface 2500, and a power supply 2600 that communicate via a bus. For example, the electronic device 2000 may be a mobile device.
应用处理器2100可以执行诸如web浏览器、游戏应用、视频播放器等应用。连接电路2200可以与外部设备执行有线通信或无线通信。非易失性存储系统2400可以存储用于启动电子设备2000的启动图像。用户接口2500可以包括至少一个输入装置(例如键盘、触摸屏等)以及至少一个输出设备(例如扬声器、显示装置等)。电源2600可以向电子设备2000提供电源电压。存储系统2300可以存储被应用处理器2100处理过的数据,或者可以用作工作存储器。如上面参考本发明构思的示例性实施例所说明的,存储系统2300可以实时地改变通道与通道路径之间的连接状态,从而执行错误确定。The application processor 2100 may execute applications such as a web browser, a game application, a video player, etc. The connection circuit 2200 may perform wired or wireless communication with an external device. The non-volatile storage system 2400 may store a startup image for starting the electronic device 2000. The user interface 2500 may include at least one input device (e.g., a keyboard, a touch screen, etc.) and at least one output device (e.g., a speaker, a display device, etc.). The power supply 2600 may provide a power supply voltage to the electronic device 2000. The storage system 2300 may store data processed by the application processor 2100, or may be used as a working memory. As described above with reference to the exemplary embodiments of the inventive concept, the storage system 2300 may change the connection state between the channel and the channel path in real time, thereby performing error determination.
上述实施例可以用在存储系统、包括存储系统的各种设备或系统中,例如移动电话、智能电话、个人数字助理(PDA)、便携式多媒体播放器(PMP)、数码相机、便携式摄像机、数字电视、机顶盒、音乐播放器、便携式游戏机、导航装置、个人计算机(PC)、服务器计算机、工作站、平板计算机、笔记本计算机、智能卡、打印机、可穿戴系统、物联网(IoT)系统、虚拟现实(VR)系统、增强现实(AR)系统等。The above-mentioned embodiments can be used in storage systems, various devices or systems including storage systems, such as mobile phones, smart phones, personal digital assistants (PDAs), portable multimedia players (PMPs), digital cameras, portable camcorders, digital televisions, set-top boxes, music players, portable game consoles, navigation devices, personal computers (PCs), server computers, workstations, tablet computers, notebook computers, smart cards, printers, wearable systems, Internet of Things (IoT) systems, virtual reality (VR) systems, augmented reality (AR) systems, etc.
在根据本发明构思的示例性实施例的存储系统、确定存储系统的错误的方法和包括存储系统的电子设备中,在存储装置的通道与将该存储装置的通道连接到存储控制器的通道路径之间的第一连接状态下检测存储系统的错误;通道与通道路径之间的第一连接状态改变为第二连接状态;在通道与通道路径之间的第二连接状态下检测存储系统的错误,从而可以确定错误出现在存储装置中还是在通道路径中。In a storage system, a method for determining an error of a storage system, and an electronic device including the storage system according to exemplary embodiments of the present invention, an error of the storage system is detected in a first connection state between a channel of a storage device and a channel path connecting the channel of the storage device to a storage controller; the first connection state between the channel and the channel path is changed to a second connection state; and an error of the storage system is detected in the second connection state between the channel and the channel path, so that it can be determined whether the error occurs in the storage device or in the channel path.
另外,根据本发明构思的示例性实施例的存储系统无需转接到独立的错误确定系统。可以在实际工作负载系统中确定存储系统的错误,而无需将存储系统转接到独立的错误确定系统。In addition, the storage system according to the exemplary embodiment of the inventive concept does not need to be transferred to an independent error determination system. The error of the storage system can be determined in the actual workload system without transferring the storage system to an independent error determination system.
尽管已经参考本发明的示例性实施例具体示出和描述了本发明构思,但是对于本领域普通技术人员显而易见的是,在不脱离由所附权利要求限定的本发明构思的精神和范围的情况下,可以在形式和细节上对这些示例性实施例进行各种改变。While the inventive concept has been particularly shown and described with reference to exemplary embodiments thereof, it will be apparent to those skilled in the art that various changes in form and details may be made to these exemplary embodiments without departing from the spirit and scope of the inventive concept as defined by the appended claims.
Claims (20)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2018-0012200 | 2018-01-31 | ||
| KR1020180012200A KR102467357B1 (en) | 2018-01-31 | 2018-01-31 | Memory system and method of determining error of the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110097919A CN110097919A (en) | 2019-08-06 |
| CN110097919B true CN110097919B (en) | 2024-06-11 |
Family
ID=67443761
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910066323.3A Active CN110097919B (en) | 2018-01-31 | 2019-01-24 | Storage system, method of determining error thereof, and electronic device including the same |
Country Status (2)
| Country | Link |
|---|---|
| KR (1) | KR102467357B1 (en) |
| CN (1) | CN110097919B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6549988B1 (en) * | 1999-01-22 | 2003-04-15 | Ilya Gertner | Data storage system comprising a network of PCs and method using same |
| KR20080086179A (en) * | 2007-03-22 | 2008-09-25 | 삼성중공업 주식회사 | Analog-to-digital converter |
| US8806095B2 (en) * | 2011-01-31 | 2014-08-12 | Zeroplus Technology Co., Ltd. | Electronic measuring device and method of converting serial data to parallel data for storage using the same |
| CN105612580A (en) * | 2013-11-11 | 2016-05-25 | 拉姆伯斯公司 | Mass storage system using standard controller components |
| WO2017058494A1 (en) * | 2015-10-01 | 2017-04-06 | Rambus Inc. | Memory system with cached memory module operations |
| CN106782665A (en) * | 2015-11-23 | 2017-05-31 | 爱思开海力士有限公司 | Stacked memories part and the semiconductor storage system including it |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20130011138A (en) * | 2011-07-20 | 2013-01-30 | 삼성전자주식회사 | Monolithic rank and multiple rank compatible memory device |
| US9153508B2 (en) * | 2011-08-17 | 2015-10-06 | Rambus Inc. | Multi-chip package and interposer with signal line compression |
| US9612901B2 (en) * | 2012-03-30 | 2017-04-04 | Intel Corporation | Memories utilizing hybrid error correcting code techniques |
| US9245825B2 (en) * | 2014-01-23 | 2016-01-26 | Sandisk Technologies Inc. | I/O pin capacitance reduction using TSVS |
| KR102165233B1 (en) * | 2014-07-10 | 2020-10-13 | 에스케이하이닉스 주식회사 | Semiconductor apparatus and system including plurality of channels |
| KR102189757B1 (en) * | 2014-07-30 | 2020-12-11 | 삼성전자주식회사 | A semiconductor memory device, a memory system including the same, and a method operating the same |
| KR102215826B1 (en) * | 2014-12-22 | 2021-02-16 | 삼성전자주식회사 | Stacked memory chip having reduced input-output load, memory module and memory system including the same |
| KR102417182B1 (en) * | 2015-06-22 | 2022-07-05 | 삼성전자주식회사 | Data storage device and data processing system having the same |
| KR102427262B1 (en) * | 2015-09-11 | 2022-08-01 | 삼성전자주식회사 | Storage device including random access memory devices and nonvolatile memory devices |
| KR20170083820A (en) * | 2016-01-11 | 2017-07-19 | 삼성전자주식회사 | Memory system including a memory device |
| KR20170111572A (en) * | 2016-03-29 | 2017-10-12 | 삼성전자주식회사 | Semiconductor memory device and method of operating the same |
-
2018
- 2018-01-31 KR KR1020180012200A patent/KR102467357B1/en active Active
-
2019
- 2019-01-24 CN CN201910066323.3A patent/CN110097919B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6549988B1 (en) * | 1999-01-22 | 2003-04-15 | Ilya Gertner | Data storage system comprising a network of PCs and method using same |
| KR20080086179A (en) * | 2007-03-22 | 2008-09-25 | 삼성중공업 주식회사 | Analog-to-digital converter |
| US8806095B2 (en) * | 2011-01-31 | 2014-08-12 | Zeroplus Technology Co., Ltd. | Electronic measuring device and method of converting serial data to parallel data for storage using the same |
| CN105612580A (en) * | 2013-11-11 | 2016-05-25 | 拉姆伯斯公司 | Mass storage system using standard controller components |
| WO2017058494A1 (en) * | 2015-10-01 | 2017-04-06 | Rambus Inc. | Memory system with cached memory module operations |
| CN106782665A (en) * | 2015-11-23 | 2017-05-31 | 爱思开海力士有限公司 | Stacked memories part and the semiconductor storage system including it |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110097919A (en) | 2019-08-06 |
| KR20190092907A (en) | 2019-08-08 |
| KR102467357B1 (en) | 2022-11-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8879340B2 (en) | Memory device having data paths with multiple speeds | |
| US9236143B2 (en) | Generic address scrambler for memory circuit test engine | |
| US9905288B2 (en) | Semiconductor memory devices and methods of operating the same | |
| US9747058B2 (en) | Semiconductor memory device, memory system including the same, and method of operating the same | |
| KR102084553B1 (en) | Memory system | |
| US9324380B2 (en) | Stacked semiconductor apparatus and semiconductor system capable of inputting signals through various paths | |
| KR20200053754A (en) | Memory devices, memory systems and methods of operating memory devices | |
| JP2011081883A (en) | Semiconductor device, and information processing system including the same | |
| US11868650B2 (en) | Apparatus with combinational access mechanism and methods for operating the same | |
| US20240371410A1 (en) | Apparatus including multiple high bandwidth memory cubes | |
| JP2018092690A (en) | Semiconductor device and semiconductor integrated system | |
| US12424270B2 (en) | Semiconductor memory device and memory module having various operation modes | |
| US9767887B2 (en) | Memory device, memory module including the same, and memory system including the same | |
| CN110097919B (en) | Storage system, method of determining error thereof, and electronic device including the same | |
| US11049542B2 (en) | Semiconductor device with multiple chips and weak cell address storage circuit | |
| US9589670B2 (en) | Input circuit of three-dimensional semiconductor apparatus capable of enabling testing and direct access | |
| US11307793B2 (en) | Memory controller, and method thereof | |
| US11392313B2 (en) | Memory controller and method thereof with built-in self-tester (BIST) | |
| US10891204B2 (en) | Memory system, a method of determining an error of the memory system and an electronic apparatus having the memory system | |
| US12437789B2 (en) | Apparatus with timing control for a die grouping | |
| US7920433B2 (en) | Method and apparatus for storage device with a logic unit and method for manufacturing same | |
| WO2025207306A1 (en) | Memory devices with fine-grained command/address training modes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |