CN110121765A - 半导体装置的制造方法和成膜装置 - Google Patents
半导体装置的制造方法和成膜装置 Download PDFInfo
- Publication number
- CN110121765A CN110121765A CN201780080973.2A CN201780080973A CN110121765A CN 110121765 A CN110121765 A CN 110121765A CN 201780080973 A CN201780080973 A CN 201780080973A CN 110121765 A CN110121765 A CN 110121765A
- Authority
- CN
- China
- Prior art keywords
- mentioned
- gas
- film
- layer
- oxide semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
- H01J37/32724—Temperature
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/407—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45574—Nozzles for more than one gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3321—CVD [Chemical Vapor Deposition]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Thin Film Transistor (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
一种半导体装置的制造方法,是具备基板(1)和氧化物半导体TFT的半导体装置的制造方法,氧化物半导体TFT支撑于基板(1),以氧化物半导体膜为活性层,半导体装置的制造方法包括:工序(A),准备包含含有In的第1有机金属化合物和含有Zn的第2有机金属化合物的MO气体;以及工序(B),在将基板(1)加热到500℃以下的温度的状态下,对设置于腔室内的基板(1)供应MO气体和含有氧的气体,在基板(1)上通过MOCVD法生长含有In和Zn的氧化物半导体膜(2A),工序(B)是在腔室内形成了等离子体(3)的状态下进行的。
Description
技术领域
本发明涉及使用氧化物半导体形成的半导体装置的制造方法和上述制造方法所使用的成膜装置。
背景技术
液晶显示装置等所使用的有源矩阵基板按每一像素具备薄膜晶体管(Thin FilmTransistor;以下称为“TFT”)等开关元件。作为这种开关元件,以往以来广泛地使用以非晶硅膜为活性层的TFT(以下称为“非晶硅TFT”)或以多晶硅膜为活性层的TFT(以下称为“多晶硅TFT”)。
近年来,作为TFT的活性层的材料,有时使用氧化物半导体代替非晶硅或多晶硅。将这种TFT称为“氧化物半导体TFT”。氧化物半导体具有比非晶硅高的迁移率。因此,氧化物半导体TFT能以比非晶硅TFT快的速度动作。
氧化物半导体层在多数情况下是使用溅射法形成的(例如专利文献1)。专利文献1提出了使用溅射法形成将组成不同的2个氧化物半导体膜层叠而成的层叠半导体层作为氧化物半导体TFT的活性层。
另外,专利文献2公开了形成在厚度方向上使组成连续地变化的氧化物半导体膜作为氧化物半导体TFT的活性层。专利文献2提到了MOCVD(metal organic chemical vapordeposition:金属有机化学气相沉积)法作为这种氧化物半导体膜的一种形成方法。
现有技术文献
专利文献
专利文献1:特开2013-41945号公报
专利文献2:特开2015-79947号公报
发明内容
发明要解决的问题
为了得到确保高TFT特性并且可靠性优异的氧化物半导体TFT,例如控制氧化物半导体层的组成、厚度等是重要的。但是,在用溅射法形成氧化物半导体层的情况下,由于根据溅射法所使用的靶材的组成来决定氧化物半导体层的组成,因此,组成的选择自由度小。另外,需要根据想要形成的氧化物半导体的组成来准备靶材,制造成本有可能变高。
另一方面,若应用MOCVD法,则通过控制MO气体的组成比,能更容易地使氧化物半导体膜的组成变化,因此,氧化物半导体层的组成选择的幅度变大。
但是,本发明的发明人经研究发现,根据MOCVD法,难以稳定地形成具有希望的膜特性的氧化物半导体膜,在实用性上存在问题。因此,难以得到可靠性高的氧化物半导体TFT。详细后述。
本发明的一实施方式是鉴于上述情况而完成的,其目的在于提供具备具有稳定的特性的、可靠性高的氧化物半导体TFT的半导体装置的制造方法。其目的还在于提供能应用于组成范围大的氧化物半导体膜的形成并且能形成具有高的膜特性的氧化物半导体膜的新型的成膜装置。
用于解决问题的方案
本发明的一实施方式的半导体装置的制造方法是具备基板和氧化物半导体TFT的半导体装置的制造方法,上述氧化物半导体TFT支撑于上述基板,以氧化物半导体膜为活性层,上述半导体装置的制造方法包括:工序(A),准备包含含有In的第1有机金属化合物和含有Zn的第2有机金属化合物的MO气体;以及工序(B),在将上述基板加热到500℃以下的温度的状态下对设置于腔室内的上述基板供应上述MO气体和含有氧的气体,在上述基板上通过MOCVD法生长含有In和Zn的上述氧化物半导体膜,上述工序(B)是在上述腔室内形成了等离子体的状态下进行的。
在某实施方式中,在上述工序(B)中,将上述腔室的压力设定为3.3×102Pa以上且不到2.7×103Pa。
在某实施方式中,在上述工序(B)中,上述等离子体是通过高频电场形成的,产生上述等离子体的功率密度是1440W/m2以上且4800W/m2以下。
在某实施方式中,上述第1有机金属化合物和上述第2有机金属化合物中的至少一方含有甲基。
在某实施方式中,上述基板包括玻璃基板,当用二次离子质谱分析法分析上述氧化物半导体膜和上述基板的深度方向的组成时,上述氧化物半导体膜所含的碳成分的量是上述玻璃基板所含的碳成分的量的1/10以下。
在某实施方式中,上述氧化物半导体膜实质上不含碳成分。
在某实施方式中,上述氧化物半导体膜是In-Ga-Zn-O系半导体膜,并且具有从上述基板侧起按顺序包含下膜、中间过渡膜、上膜的层叠结构,上述MO气体还包含含有Ga的第3有机金属化合物,上述工序(B)包含:工序(B1),在将对上述基板供应的上述MO气体的流量中的上述第1有机金属化合物的比例设定为F1a、上述第2有机金属化合物的比例设定为F2a、上述第3有机金属化合物的比例设定为F3a的状态下,在上述基板上形成上述下膜;工序(B2),一边使对上述基板供应的上述MO气体的流量中的、上述第3有机金属化合物的比例从F3a连续地变化为F3b,一边在上述下膜上形成上述中间过渡膜;以及工序(B3),在将对上述基板供应的上述MO气体的流量中的、上述第1有机金属化合物的比例设定为F1b、上述第2有机金属化合物的比例设定为F2b、上述第3有机金属化合物的比例设定为F3b的状态下,在上述中间过渡膜上形成上述上膜。
在某实施方式中,在上述工序(B2)中,一边使对上述基板供应的上述MO气体的流量中的、上述第3有机金属化合物的比例变化并且使上述第1有机金属化合物的比例从F1a连续地变化为F1b,一边形成上述中间过渡膜,上述第1有机金属化合物和上述第3有机金属化合物的比例满足F3a<F3b且F1a>F1b,或者满足F3a>F3b且F1a<F1b。
本发明的一实施方式的成膜装置是用于在基板上通过MOCVD法形成氧化物半导体膜的成膜装置,具备:气体生成部,其生成包含多个有机金属化合物的MO气体;腔室;导电性支撑体,其在上述腔室内支撑上述基板;加热单元,其加热上述基板;导电性气体分配喷头,其在上述腔室内配置于上述基板的上方,并且空开间隔形成有在其内部延伸的多个第1气体通路和多个第2气体通路;第1气体供应部,其经由上述多个第1气体通路对上述腔室内供应上述MO气体;第2气体供应部,其经由上述多个第2气体通路对上述腔室内供应含有氧的气体;电力供应部,其对上述支撑体与上述气体分配喷头之间供应电力,并且包括连接到上述支撑体和上述气体分配喷头中的至少一方的高频电源;以及控制部,其控制上述电力供应部、上述第1气体供应部以及上述第2气体供应部,使得在对上述支撑体与上述气体分配喷头之间供应电力而生成了等离子体的状态下,对上述腔室内供应上述MO气体和上述含有氧的气体。
发明效果
根据本发明的一实施方式,能制造具备具有稳定的特性的、可靠性高的氧化物半导体TFT的半导体装置。另外,能应用如下成膜装置:其能应用于组成范围大的氧化物半导体膜的形成,并且能形成具有高的膜特性的氧化物半导体膜。
附图说明
图1A是用于说明实施例的In-Ga-Zn-O系半导体膜的形成方法的示意性截面图。
图1B是用于说明比较例的In-Ga-Zn-O系半导体膜的形成方法的示意性截面图。
图2是表示各实施例和比较例的基于TDS的分析结果的图,是表示各实施例和比较例的由于升温而从In-Ga-Zn-O系半导体膜脱离的H2、H2O、CO、O2、CO2的量的图。
图3是表示各实施例和比较例的基于TDS的分析结果的图,(a)是表示可知实施例1和比较例1、2的由于升温而从In-Ga-Zn-O系半导体膜脱离的CH3、C2H5、C3H7、C4H9、C6H5的相对比率的检测量的图,(b)是表示可知各实施例和比较例的由于升温而从In-Ga-Zn-O系半导体膜脱离的CH3的相对比率的检测量的图。
图4是表示各实施例和比较例的基于TDS的分析结果的图,是表示可知各实施例和比较例的由于升温而从In-Ga-Zn-O系半导体膜脱离的In、Ga以及Zn的相对比率的检测量的图。
图5的(a)~(c)分别是表示实施例1和比较例1的In-Ga-Zn-O系半导体膜的成膜速度、组成比以及折射率的测定结果的图。
图6的(a)和(b)是分别表示实施例4和比较例3的样品的基于SIMS的组成分析结果的图。
图7的(a)~(f)是分别表示相对于DEZ和TMGa的TMIn的流量比N与成膜速度、折射率n、In比率、Ga比率、Zn比率、O比率的关系的图。
图8的(a)~(f)是分别表示相对于TMIn和TMGa的DEZ的流量比M与成膜速度、折射率n、In比率、Ga比率、Zn比率、O比率的关系的图。
图9的(a)是表示第2实施方式的半导体装置的氧化物半导体TFT20的一例的截面图,(b)是作为TFT20的活性层的氧化物半导体层27的放大截面图。
图10是表示第2实施方式的其它氧化物半导体TFT的截面图。
图11的(a)和(b)是分别例示氧化物半导体膜的成膜工序中的、第3有机金属化合物在整个MO气体中所占的比例的变化的图。
图12是表示实施例I的TFT的氧化物半导体层的深度方向的组成分析结果的图。
图13是表示比较例I的TFT的氧化物半导体层的深度方向的组成分析结果的图。
图14是表示实施例I和比较例I的TFT的电流-电压特性的图。
图15是示意性地表示第3实施方式的成膜装置(等离子体辅助MOCVD装置)的构成的俯视图。
图16是用于说明In-Ga-Zn-O系半导体膜的组成范围的图。
图17是例示用溅射法形成的参考例的氧化物半导体层的深度方向的元素分布的图。
具体实施方式
MOCVD法是指使薄膜原料在高温中反应而在基板上成膜的CVD工艺中的、在其原料中使用有机金属的方法。例如作为铟(In)的原料而使用三甲基铟、作为镓(Ga)的原料而使用三甲基镓等有机金属原料。有机金属原料在常温下是液体/固体,但通过在某固定的压力下使运载气体流入有机金属原料中,从而有机金属原料气化,成为有机金属气体(MetalOrganic Gas、以下称为“MO气体”)。MO气体例如在加热到1000℃以上的基板上发生分解/化学反应,在基板上生长(沉积)。这样来进行成膜。例如在Si晶圆上形成GaN等氮化物半导体膜时使用MOCVD法。
本发明的发明人经研究发现,当将上述现有的MOCVD法应用于氧化物半导体TFT的制造工艺时,有时无法稳定地得到希望的TFT特性。推测其原因如下。
例如在有源矩阵基板中,氧化物半导体TFT通常形成于玻璃基板上。当想要用MOCVD法在玻璃基板上形成氧化物半导体膜时,需要将基板温度设定为比玻璃的融点低很多的温度、例如500℃以下,优选设定为400℃以下。但是,在该温度范围内,MO气体不会充分地分解,MO气体的甲基易于残留在膜中。当氧化物半导体膜中的残留甲基的浓度变高时,无法得到稳定的膜特性,其结果是,有可能无法稳定地实现高的TFT特性。
本发明的发明人基于上述见解,详细地研究了能降低氧化物半导体膜的残留甲基浓度的形成方法。其结果是,发现通过在基于MOCVD法的成膜工序中使用等离子体,能提高MO气体的离解度,能形成残留甲基浓度较低的氧化物半导体膜而想到了本申请发明。
在现有的MOCVD法中,仅用热能进行MO气体的离解,因此,需要通过较高地设定反应室内的压力(成膜压力)并且将成膜温度设定为高温来提高离解度,从而提高反应性。相比于此,在利用了等离子体的MOCVD法(称为“等离子体MOCVD法”或“等离子体辅助MOCVD法”)中,针对MO气体的离解,不仅使用热能还使用等离子体能量。因此,即使在将基板温度设定为玻璃的融点以下的情况下,也能提高MO气体的离解度而提高反应性,能形成残留甲基浓度较低的氧化物半导体膜。另外,即使将成膜压力设定为低于现有的MOCVD法,也能实现高的反应性,因此,能形成良好的氧化物半导体膜。因而,当使用通过等离子体MOCVD法形成的氧化物半导体膜时,能制造具有稳定的特性的氧化物半导体TFT。
而且,通过调整原料气体的流量比,能更容易且以高的自由度控制氧化物半导体层的组成。因此,能进一步提高氧化物半导体TFT的特性和可靠性。
(第1实施方式)
以下,说明半导体装置的制造方法的第1实施方式。在本实施方式中制造的半导体装置只要具备氧化物半导体TFT即可,广泛地包括有源矩阵基板等电路基板、各种显示装置、电子设备等。
本实施方式的半导体装置的制造方法包括至少含有In和Zn的氧化物半导体膜的形成方法。氧化物半导体膜用作氧化物半导体TFT的活性层。
首先,准备MO气体,MO气体至少包含:含有In的第1有机金属化合物;以及含有Zn的第2有机金属化合物。第1有机金属化合物例如可以是三甲基铟(In(CH3)3、以下称为“TMIn”),第2有机金属化合物例如可以是二乙基锌(Zn(C2H5)2、以下称为“DEZ”)。在形成作为氧化物半导体膜的In-Ga-Zn-O系半导体膜的情况下,MO气体还可以包含作为第3有机金属化合物的三甲基镓(Ga(CH3)3、以下称为“TMGa”)。MO气体可以与现有的MOCVD法同样地通过例如用运载气体对液体状态的有机金属化合物进行鼓泡(Bubbling)来生成。
接下来,将包括玻璃基板等支撑基板的被处理基板设置在腔室(反应室)内。被处理基板是具有要形成氧化物半导体膜的表面的基板。在制造具有底栅结构的氧化物半导体TFT的情况下,作为被处理基板,使用在玻璃基板上形成有栅极电极和栅极绝缘膜的基板。在制造具有顶栅结构的氧化物半导体TFT的情况下,例如将在玻璃基板上形成有基底膜的基板用作被处理基板。以下,将被处理基板简称为“基板”。
接着,在将基板加热到支撑基板(例如玻璃基板)的融点以下(例如500℃以下)的状态下,对基板的表面供应MO气体和含有氧的气体(MOCVD法)。或者,在腔室内含有MO气体和氧的状态下对其施加RF电力,或是在腔室内形成有等离子体的状态下对其供应MO气体和氧(等离子体MOCVD法)。由此,MO气体在腔室内通过热和等离子体进行分解/反应,其结果是,在基板上,含有In和Zn的氧化物半导体膜通过MOCVD法进行生长。这样形成氧化物半导体膜。
其后,用公知的方法对氧化物半导体膜进行图案化,由此,得到成为氧化物半导体TFT的活性层的氧化物半导体层。
在等离子体MOCVD法中,当腔室内的压力(成膜压力)过高时,有时难以维持等离子体状态。因此,成膜压力典型的是设定为低于现有的MOCVD法的成膜压力(例如100Torr以上)。在等离子体MOCVD法中,即使成膜压力低,也能确保高的成膜速度。
在等离子体MOCVD法中,成膜工序中的腔室内的压力例如设定为2.5Torr以上且不到20Torr、即3.3×102Pa以上且不到2.7×103Pa。当相对于原料气体(MO气体、运载气体、氧)的总流量的排气能力小时,有时难以将成膜压力维持为不到2.5Torr。另外,在20Torr以上的情况下,有可能放电会不稳定。
等离子体例如由高频电场形成。产生等离子体的RF电力可设定为功率密度成为14W/m2以上。具体地,RF电力例如设定为100W(约480W/m2)以上。当RF电力过低时,MO气体有时会不彻底地离解,对膜质带来不良影响。RF电力优选是300W(约1440W/m2)以上且1800W(约8650W/m2)以下,更优选是300W(约1440W/m2)以上且1000W(约4800W/m2)以下。
在本实施方式中,在基于MOCVD法的成膜工序中,不仅利用热还利用等离子体使MO气体分解。因此,即使将基板温度设定为比较低的温度(500℃以下),也能以高的速度(以高的效率)分解In、Zn等金属、以及甲基、乙基等有机基。因而,能减小有机金属化合物中的未被分解而沉积到基板上的比例,因此,能降低残留于氧化物半导体膜的有机基的浓度,能得到质量更好的氧化物半导体膜。
等离子体MOCVD法例如在第1有机金属化合物和第2有机金属化合物中的至少一方含有甲基的情况下是特别有利的。根据现有的MOCVD法,弱结合的甲基易于残留在氧化物半导体膜内。相比于此,在本实施方式中,能大幅降低氧化物半导体膜内的甲基的浓度。如后所述,这一点能根据例如对氧化物半导体膜以二次离子质谱分析法(SIMS)、升温脱离气体分析法(TDS:Thermal Desorption Spectrometry)等进行分析的结果来确认。
[实施例和比较例]
形成实施例和比较例的氧化物半导体膜(在此为In-Ga-Zn-O系半导体膜),进行了它们的膜特性的评价。在实施例1~3中,用等离子体MOCVD法形成了氧化物半导体膜。在比较例1和2中,分别用没有使用等离子体的现有的MOCVD法和溅射法形成了氧化物半导体膜。以下,参照附图说明氧化物半导体膜的形成方法和分析结果。
<实施例1~3和比较例1、2的氧化物半导体膜的形成方法>
·实施例1
图1A是用于说明使用了等离子体MOCVD法的实施例的In-Ga-Zn-O系半导体膜的形成方法的示意性截面图。
如图1A所示,在腔室内的支撑台(未图示)上载置玻璃基板作为基板1,将基板1加热到350℃。另外,为了在腔室内形成等离子体,对分别位于基板1的下方和上方的下部电极和上部电极(未图示)之间施加了高频(RF)电压。在此,将下部电极与上部电极的距离(电极间距离)设为1000mil(25.4mm),对这些电极间施加了工业用频率(13.56)MHz的RF电力。RF电力设定为1000W。
在该状态下对腔室内从基板1的上方沿着基板1的法线方向按规定的流量供应了含有MO气体及运载气体(在此为Ar气体)的原料气体以及含有氧的气体(在此为氧气)。MO气体包含三甲基铟(TMIn)、三甲基镓(TMGa)、二乙基锌(DEZ)。腔室内的压力设为2.5Torr。
原料气体的生成是用与现有的MOCVD法同样的方法进行的。在此,将液体状态的TMIn、TMGa以及DEZ分别加入原料槽,用运载气体(Ar气体)进行鼓泡从而使其气化。气化后的有机金属化合物混入到运载气体内,被运送到腔室内。以使原料气体中的TMIn、TMGa以及DEZ的流量比成为1:1:1的方式调整了使各有机金属化合物鼓泡的Ar气体的流量、原料槽内的液体温度、背压等。具体地,将原料气体中的TMIn、TMGa以及DEZ的流量分别设为约0.68sccm,将原料气体中的Ar气体的总计流量设为12slm。原料气体从在腔室的上部按8mm间距设置的多个原料气体用供应口扩散到腔室内。另外,将O2气体的流量设为12slm,同样地,使其从在腔室的上部按8mm间距设置的多个氧气用供应口扩散到腔室内。
在腔室内的上部电极与下部电极之间,MO气体通过高频电场成为等离子体状态3,由于从MO气体离解的In、Zn以及Ga与氧的化学反应,在基板1上沉积了In-Ga-Zn-O系半导体。这样形成了厚度为约100nm的In-Ga-Zn-O系半导体膜2A。
·实施例2
除了将用于在腔室内形成等离子体的RF电力设定为300W这一点以外,用与实施例1同样的方法形成了In-Ga-Zn-O系半导体膜。
·实施例3
除了将用于在腔室内形成等离子体的RF电力设定为100W这一点以外,用与实施例1同样的方法形成了In-Ga-Zn-O系半导体膜。
·比较例1
图1B是用于说明使用了未利用等离子体的现有的MOCVD法的比较例1的In-Ga-Zn-O系半导体膜的形成方法的示意性截面图。
在比较例1中,如图1B所示,在腔室内载置玻璃基板作为基板1,将基板1加热到350℃。接着,与实施例1同样地,将原料气体和氧气供应到腔室内。将腔室内的压力设定为20Torr。不过,不对腔室内的上部电极与下部电极之间施加RF电力(在不形成等离子体的状态下),通过MOCVD法将In-Ga-Zn-O系半导体膜沉积到基板1上。这样形成了In-Ga-Zn-O系半导体膜2B。
·比较例2
作为比较例2,通过公知的溅射法并使用具有In:Ga:Zn=1:1:1的组成的靶材在玻璃基板上形成了In-Ga-Zn-O系半导体膜。
<膜特性的测定>
·X射线光电子分光(XPS)测定
对实施例1~3和比较例1、2的In-Ga-Zn-O系半导体膜进行了X射线光电子分光(XPS)测定。将XPS测定结果和成膜条件在表1中示出。
[表1]
根据实施例1~实施例3的分析结果可知,即使原料气体的流量比相同,若形成等离子体的RF电力变化,则In-Ga-Zn-O系半导体膜的组成也会不同。具体地,当RF电力变低时,可得到较多地包含Zn成分的In-Ga-Zn-O系半导体膜。不过,若以低的RF电力进行成膜,则Zn成分会以弱结合进入膜中,因此,当加热时易于分解/脱离(参照基于TDS的分析结果)。通过将RF电力最佳化,能以较强的结合形成含有Zn成分的膜(参照基于TDS的分析结果)。
·升温脱离气体分析(TDS)
接着,通过升温脱离气体分析(TDS:Thermal Desorption Spectrometry)调查了在实施例1~3和比较例1、2中形成的In-Ga-Zn-O系半导体膜所含的甲基等有机基的量。TDS是指在高真空下加热样品、按每一温度分析从样品脱离的气体的方法。根据TDS,能对从样品释放的气体的脱离量和脱离温度进行比较。另外,由于处于真空气氛下,所以还能灵敏度良好地分析氢或水。
在此,在TDS装置的腔室内载置实施例和比较例的各样品(在表面具有In-Ga-Zn-O系半导体膜的玻璃基板),并在高真空下升温到80~450℃。进行了由于升温而脱离的气体的分析。具有代表性的组成的H2、O2、H2O等通过校准曲线被定量化,但CH3基等的量能用根据信号强度的相对数值进行比较。
图2~图4是表示基于TDS的分析结果的图。图2是表示各实施例和比较例的由于升温而从In-Ga-Zn-O系半导体膜脱离的H2、H2O、CO、O2、CO2的量(通过校准曲线被定量化的值)的图。图3的(a)是表示实施例1、比较例1以及比较例2的由于升温而从In-Ga-Zn-O系半导体膜脱离的CH3、C2H5、C3H7、C4H9、C6H5的量(换算量)的图。图3的(b)是表示各实施例和比较例的由于升温而从In-Ga-Zn-O系半导体膜脱离的CH3的量(换算量)的图。图4是表示各实施例和比较例的由于升温而从In-Ga-Zn-O系半导体膜脱离的In、Ga以及Zn的量(换算量)的图。
此外,用溅射法形成的In-Ga-Zn-O系半导体膜(比较例2)实质上不含有机基,但在图3的(a)和(b)所示的结果中,检测出了甲基等微量的有机基。认为这是由测定极限造成的。即,认为检测出与比较例2相同程度的有机基的实施例1的In-Ga-Zn-O系半导体膜也在实质上不含有机基。
根据图3所示的结果,确认了通过用等离子体MOCVD法形成In-Ga-Zn-O系半导体膜(实施例1~3),从而与用MOCVD法形成时(比较例1)相比,In-Ga-Zn-O系半导体膜中的甲基的残留浓度得以降低。因而,可知当使用实施例1~3的In-Ga-Zn-O系半导体膜时,与使用了现有的MOCVD法的情况(比较例1)相比,能制造具有稳定的特性的TFT。
另外,如图2和图3所示,在实施例1中,与比较例1或其它实施例相比,In-Ga-Zn-O系半导体膜中的水分的含有量也得以减少。为了改善In-Ga-Zn-O等氧化物半导体的膜质,已知通过加热工序将氢、水分、羟基等杂质从氧化物半导体膜中有意识地排除,使氧化物半导体膜高密度化(例如参照特开2011-222984号公报)。根据该内容可知,在实施例1中,能使对特性带来影响的膜中的水分量与比较例1相比较大地降低,因此,能更有效地使TFT特性稳定化。特别是,可知实施例1的In-Ga-Zn-O系半导体膜中的甲基等的残留浓度和水分的含有量均下降到与用溅射法形成时(比较例2)相同的程度,并具有与用溅射法形成的膜同等的优异的膜特性。
因而,确认了通过提高用于形成等离子体的RF电力(例如400W以上、优选是800W以上),能进一步改善膜质。
而且,根据图4所示的结果可知,各实施例和各比较例的Zn成分从In-Ga-Zn-O系半导体膜离解的温度产生差异。在用MOCVD法形成的In-Ga-Zn-O系半导体膜(比较例1)和实施例2、3的In-Ga-Zn-O系半导体膜中,存在通过直至450℃为止的升温而Zn成分会离解的倾向。相比于此,在实施例1的In-Ga-Zn-O系半导体膜中几乎看不到Zn成分的离解。由此可知,实施例1的In-Ga-Zn-O系半导体膜以与基于溅射法的In-Ga-Zn-O系半导体膜(比较例2)同等或者其以上的强结合含有Zn成分。实施例1中的RF电力是1000W,但认为RF电力只要是例如600W(约2900W/m2)以上且1200W(约5500W/m2)以下,就能得到同样的效果。此外,优选的RF电力的范围能根据MO气体的种类、流量比、组成等的不同而变化。
图5的(a)~(c)是分别表示实施例1和比较例1的In-Ga-Zn-O系半导体膜的成膜速度、组成比以及折射率的测定结果的图。图5的(a)是在成膜速度测定用晶圆上用实施例1和比较例1的方法形成In-Ga-Zn-O系半导体膜并对其成膜速度进行了测定的结果。图5的(b)所示的组成比是XPS测定结果(参照表1)。图5的(c)是在折射率测定用晶圆上用实施例1和比较例1的方法形成In-Ga-Zn-O系半导体膜并对其折射率进行了测定的结果。
如图5的(a)所示,可知当使用等离子体MOCVD法时,与现有的MOCVD法相比,能加大成膜速度。认为其原因是,通过利用等离子体,MO气体的离解速度变大,并且得以形成可具有更强的结合的膜。
另外,根据图5的(b)和(c)所示的结果可知,尽管实施例1和比较例1的In-Ga-Zn-O系半导体膜的组成比大致相同,但是实施例1的In-Ga-Zn-O系半导体膜具有较高的折射率。认为其原因是,通过利用等离子体而形成了可具有更强的结合的膜,结果是折射率变高了。
[氧化物半导体膜中的碳成分的分析]
为了调查通过等离子体MOCVD法形成的氧化物半导体膜中的甲基的残留量,通过二次离子质谱分析法(SIMS)测定了氧化物半导体膜中的碳成分的含有量。以下说明样品的制作方法和分析结果。
对玻璃基板上供应氧气和含有TMIn、DEZ及Ar气体(运载气体)的原料气体,通过等离子体MOCVD法形成了In-Zn-O系半导体膜。这样,制作了实施例4的样品A(在表面具有In-Zn-O系半导体膜的玻璃基板)。另外,为了进行比较,将与样品A相同种类的气体按相同的流量比供应到玻璃基板上,通过不利用等离子体的MOCVD法形成了In-Zn-O系半导体膜。这样,制作了比较例3的样品B。
接着,通过SIMS进行了样品A和样品B的深度方向的组成分析。
图6的(a)和(b)是分别表示样品A和样品B的基于SIMS的组成分析结果的图。横轴是测定循环次数,与距离样品表面的深度对应。纵轴是强度。在这些分析结果中,玻璃基板含有SiO2、Fe、C等杂质。因此,在玻璃基板中,虽为少量但检测出了碳成分。
根据图6的(a),在样品A中,在In-Zn-O系半导体膜中按高的比率含有In和Zn,但没有检测出碳成分,认为碳的含有量是检测极限以下(即实质上不含碳成分)。In-Zn-O系半导体膜中的碳成分的比率远远小于玻璃基板中的作为杂质的碳成分的比率。其是玻璃基板中的碳成分的比率的1/2以下,在该例中是1/10以下。另一方面,根据图6的(b)可知,在样品B中,在In-Zn-O系半导体膜中按与玻璃基板大致相同的比率含有碳成分。因而,可确认当使用等离子体MOCVD法形成氧化物半导体膜时,与使用MOCVD法的情况相比,能大幅减少碳成分的含有量。
此外,在此以In-Zn-O系半导体膜为例进行了说明,但即使用SIMS分析通过等离子体MOCVD法形成的In-Ga-Zn-O系半导体膜,也能得到与上述同样的结果。
[原料气体中的有机金属化合物的流量比与氧化物半导体膜的组成的关系]
如上所述,在本实施方式中,通过调整原料气体的流量比,能控制氧化物半导体膜的组成。
以下,以形成In-Ga-Zn-O系半导体膜的情况为例调查了有机金属化合物的流量比与氧化物半导体膜的组成的关系,因此说明其结果。
首先,在表2所示的条件下,在玻璃基板上形成了作为样品膜1~20的In-Ga-Zn-O系半导体膜。在各样品膜的成膜工序中,以使原料气体中的流量比TMIn:TMGa:DEZ成为规定的比例的方式调整了进行液体状的各有机金属化合物的鼓泡时的运载气体(在此为Ar气体)的流量。另外,将流量比TMIn:TMGa:DEZ=1:1:1(样品膜1)时的各有机金属化合物的流量设为0.68sccm。表2所示的流量比是相对于0.68sccm的值。例如在TMIn:TMGa:DEZ=2:2:2(样品膜12)时,各有机金属化合物的流量是1.36sccm(0.68sccm×2)。另外,将成膜时的基板温度(Ts)设定为350℃以上且400℃以下的范围。将对腔室内供应的氧气的流量、腔室内的压力(Press)、电极间距离(GAP)、RF电力设为固定。而且,用与上述同样的条件,也在Si晶圆上形成了样品膜1~20。
针对形成于玻璃基板上的样品膜1~20进行了基于XPS的组成分析。将分析结果在表3中示出。另外,针对形成于Si晶圆上的样品膜1~20进行分光偏光解析(spectroscopicellipsometry),测定了各样品膜的折射率n、厚度、成膜速度。将测定结果在表3中示出。
[表2]
[表3]
根据该结果,调查了原料气体中的流量比与氧化物半导体膜的组成和特性的关系。
作为一例,基于TMGa和DEZ的流量相等的样品膜1~6、12~16的测定结果,调查了TMIn的流量比与膜特性的关系。图7的(a)~(f)是分别表示相对于DEZ和TMGa的TMIn的流量比N与成膜速度、折射率n、In比率、Ga比率、Zn比率、O比率的关系的图。在这些图中,将样品膜1~6(TMIn:TMGa:DEZ=N:1:1)的测定结果用黑方块◆表示,将样品膜12~16(TMIn:TMGa:DEZ=2×N:2:2)的测定结果用白方块◇表示。根据该结果,可确认能通过相对于DEZ和TMGa的TMIn的流量比N来控制氧化物半导体膜的In比率。另外,还可知当增大相对于DEZ和TMGa的TMIn的流量比N时,成膜速度变大,并且可得到折射率高的膜。
同样地,基于TMGa和TMIn的流量相等的样品膜1、7~11以及17~20的测定结果,调查了DEZ的流量比与膜特性的关系。图8的(a)~(f)是分别表示相对于TMIn和TMGa的DEZ的流量比M与成膜速度、折射率n、In比率、Ga比率、Zn比率、O比率的关系的图。在这些图中,将样品膜1、7~11(TMIn:TMGa:DEZ=1:1:M)的测定结果用黑方块◆表示,将样品膜17~20(TMIn:TMGa:DEZ=2:2:2×M)的测定结果用白方块◇表示。根据该结果,可确认能通过相对于TMIn和TMGa的DEZ的流量比M来控制氧化物半导体膜的Zn比率。另外,还可知当增大相对于TMIn和TMGa的DEZ的流量比M时,成膜速度变大,并且可得到折射率高的膜。
如在图7和图8中例示的那样,氧化物半导体膜的组成和特性根据原料气体中的流量比的不同而变化。因而,可确认能通过调整原料气体中的流量比来控制氧化物半导体膜的组成和特性。
另外,能基于表2和表3所示的结果算出用于形成具有希望的组成的氧化物半导体膜的原料气体的流量比。例如能将In、Ga、Zn以及O的组成比分别设为Z+a×TMI+b×TMG+c×DeZ(Z、a~c:系数、TMI:TMIn的流量比、TMG:TMGa的流量比、DeZ:DEZ的流量比),通过最小平方法求出各系数的值。根据得到的公式,能算出用于形成希望的组成的In-Ga-Zn-O系半导体膜的流量比。作为一例,当求出用于以350℃的基板温度形成一般的In:Ga:Zn=1:1:1的In-Ga-Zn-O系半导体膜(In:Ga:Zn:O=12.4:13.8:13.6:60.2原子(atomic)%)的流量比TMIn:TMGa:DEZ时,是3.5:1.8:3。
[关于氧化物半导体]
在上述的实施例中,作为氧化物半导体膜,形成了In-Ga-Zn-O系半导体膜,但氧化物半导体膜和TFT的氧化物半导体层所包含的氧化物半导体不限于In-Ga-Zn-O系半导体。
氧化物半导体既可以是非晶质氧化物半导体,也可以是具有结晶质部分的结晶质氧化物半导体。作为结晶质氧化物半导体,可列举多晶氧化物半导体、微晶氧化物半导体、c轴与层面大致垂直地取向的结晶质氧化物半导体等。
用等离子体MOCVD法形成的氧化物半导体膜或TFT的氧化物半导体层(以下简写为“氧化物半导体膜”)也可以具有2层以上的层叠结构。在氧化物半导体膜具有层叠结构的情况下,氧化物半导体膜可以包含非晶质氧化物半导体层和结晶质氧化物半导体层。或者,也可以包含结晶结构不同的多个结晶质氧化物半导体层。另外,还可以包含多个非晶质氧化物半导体层。在氧化物半导体膜具有包含上层和下层的2层结构的情况下,优选上层所包含的氧化物半导体的能隙大于下层所包含的氧化物半导体的能隙。不过,在这些层的能隙之差比较小的情况下,下层的氧化物半导体的能隙也可以大于上层的氧化物半导体的能隙。
例如特开2014-007399号公报中记载有非晶质氧化物半导体和上述的各结晶质氧化物半导体的材料、结构、成膜方法、具有层叠结构的氧化物半导体层的构成等。为了参照,将特开2014-007399号公报的所有公开内容引用到本说明书中。
氧化物半导体膜可以例如包含In、Ga以及Zn中的至少1种金属元素。在本实施方式中,氧化物半导体膜包含例如In-Ga-Zn-O系的半导体(例如铟镓锌氧化物)。其中,In-Ga-Zn-O系的半导体是In(铟)、Ga(镓)、Zn(锌)的三元系氧化物,并且In、Ga以及Zn的比例(组成比)没有特别限定,例如包含In:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等。这种氧化物半导体膜可由包含In-Ga-Zn-O系的半导体的氧化物半导体膜形成。
In-Ga-Zn-O系的半导体既可以是非晶质,也可以是结晶质。作为结晶质In-Ga-Zn-O系的半导体,优选c轴与层面大致垂直地取向的结晶质In-Ga-Zn-O系的半导体。
此外,结晶质In-Ga-Zn-O系的半导体的结晶结构例如公开于上述的特开2014-007399号公报、特开2012-134475号公报、特开2014-209727号公报等中。为了参照,将特开2012-134475号公报和特开2014-209727号公报的所有公开内容引用到本说明书中。具有In-Ga-Zn-O系半导体层的TFT具有高迁移率(与a-SiTFT相比超过20倍)和低漏电流(与a-SiTFT相比不到百分之一),因此,适于用作驱动TFT(例如在包含多个像素的显示区域的周边与显示区域设置于相同的基板上的驱动电路所包含的TFT)和像素TFT(设置于像素的TFT)。
氧化物半导体膜也可以包含其它氧化物半导体来代替In-Ga-Zn-O系半导体。例如也可以包含In-Sn-Zn-O系半导体(例如In2O3-SnO2-ZnO;InSnZnO)。In-Sn-Zn-O系半导体是In(铟)、Sn(锡)以及Zn(锌)的三元系氧化物。或者,氧化物半导体膜也可以包含In-Al-Zn-O系半导体、In-Al-Sn-Zn-O系半导体、Zn-O系半导体、In-Zn-O系半导体、Zn-Ti-O系半导体、Cd-Ge-O系半导体、Cd-Pb-O系半导体、CdO(氧化镉)、Mg-Zn-O系半导体、In-Ga-Sn-O系半导体、In-Ga-O系半导体、Zr-In-Zn-O系半导体、Hf-In-Zn-O系半导体、Al-Ga-Zn-O系半导体、Ga-Zn-O系半导体等。
(第2实施方式)
以下说明第2实施方式的半导体装置。本实施方式的半导体装置具备具有作为活性层的层叠结构的氧化物半导体TFT。
如上所述,作为氧化物半导体TFT的活性层,提出了使用具有将组成不同的氧化物半导体膜层叠而成的结构(层叠结构)的氧化物半导体层。例如专利文献1公开了以形成具有高迁移率且可靠性高的氧化物半导体TFT为目的,而用溅射法形成具有层叠结构的氧化物半导体层。
但是,本发明的发明人经研究发现,当使用溅射法形成具有层叠结构的氧化物半导体层时,由于在膜质不同的2个氧化物半导体膜之间产生的界面态,有时无法得到稳定的TFT特性。这成为使氧化物半导体TFT的可靠性下降的主要原因。
作为参考例,本发明的发明人用溅射法形成了2层结构的氧化物半导体层,并通过俄歇电子分光分析法调查了上述氧化物半导体层的深度方向上的元素分布。将结果在图17中示出。在该参考例中,将In:Ga:Zn=1:1:1的In-Ga-Zn-O系半导体膜设为下层,将In:Ga:Zn=1:3:2的In-Ga-Zn-O系半导体膜设为上层。如在图17中用箭头所示的那样,可知在组成不同的2层之间明确地形成有界面。
本发明的发明人发现,通过在组成不同的2个氧化物半导体膜(上层和下层)之间设置组成连续地变化的中间过渡层,能抑制界面态的发生。中间过渡层通过使用例如等离子体MOCVD法而能容易地形成。中间过渡层的组成以使上层和下层的金属元素(例如In或Ga)的组成差平滑地衔接的方式在深度方向上连续地变化。通过使用具有这种层叠结构的氧化物半导体层,能提供降低了界面态对TFT特性的影响的、可靠性优异的氧化物半导体TFT。
参照附图更具体地说明本实施方式的半导体装置的构成。
图9的(a)是表示本实施方式的半导体装置的氧化物半导体TFT20的一例的截面图,图9的(b)是作为TFT20的活性层的氧化物半导体层27的放大截面图。
TFT20具备:支撑基板21;栅极电极23,其支撑于支撑基板21上;氧化物半导体层27;栅极绝缘层25,其配置于氧化物半导体层27与栅极电极23之间;以及源极电极28和漏极电极29,其电连接到氧化物半导体层27。TFT20例如由绝缘层(钝化膜)35覆盖。
TFT20例如是沟道蚀刻型的底栅结构TFT。栅极电极23配置于氧化物半导体层27的支撑基板21侧。栅极绝缘层25覆盖栅极电极23,氧化物半导体层27以隔着栅极绝缘层25与栅极电极23重叠的方式配置成。另外,源极电极28和漏极电极29以分别与氧化物半导体层27的上表面接触的方式配置。
氧化物半导体层27具有沟道区域27c和位于沟道区域27c的两侧的源极接触区域27s及漏极接触区域27d。源极电极28和漏极电极29以分别与源极接触区域27s和漏极接触区域27d接触的方式形成。在本说明书中,“沟道区域27c”是指如下区域:在从支撑基板21的法线方向观看时,位于氧化物半导体层27中的源极接触区域27s和漏极接触区域27d之间,并包括形成沟道的部分。在本实施方式中,可在沟道区域27c中的、第1层31的栅极绝缘层25近旁形成沟道。
本实施方式的氧化物半导体TFT的结构不限于图示的结构。例如如图10所示,也可以是蚀刻阻挡型的底栅结构TFT。在蚀刻阻挡型的氧化物半导体TFT中,在氧化物半导体层27的至少成为沟道区域的部分上,以与氧化物半导体层27的上表面接触的方式配置有蚀刻阻挡层37。源极电极28和漏极电极29分别以与氧化物半导体层27的上表面接触的方式配置在蚀刻阻挡层37上。虽未图示,但氧化物半导体TFT也可以具有顶栅结构。
如图9的(b)所示,氧化物半导体层27具有从支撑基板21侧按顺序具有下层27L、中间过渡层33以及上层27U的层叠结构。在本说明书中,有时将下层27L和上层27U中的位于栅极绝缘层25侧的层称为“第1层31”,将另一个层称为“第2层32”。第1层31(在此为下层27L)可作为形成沟道的沟道层而发挥功能。第1层31的迁移率高于第2层32的迁移率。第2层32(在此为上层27U)可作为具有比沟道层高的耐蚀刻性或屏障性的阻隔层而发挥功能。中间过渡层33以与第1层31和第2层32双方接触的方式配置于第1层31与第2层32之间。第1层31是氧化物半导体层27的最下层,可以与栅极绝缘层25的上表面接触。第2层32是氧化物半导体层27的最上层,可以构成氧化物半导体层27的上表面。第2层32的上表面可以与源极电极28、漏极电极29以及绝缘层35(或蚀刻阻挡层37)接触。此外,在顶栅结构TFT中,上层为第1层31,下层为第2层32。
氧化物半导体层27含有例如In、Zn以及Ga。氧化物半导体层27可以是In-Ga-Zn-O系半导体膜。
第1层31和第2层32可以具有不同的组成。“组成不同”是指各层所含的金属元素的种类或组成比不同。第1层31具有作为沟道层所优选的组成。例如是较多地含有In、Zn等电阻比较低的金属元素、具有高迁移率的高迁移率层。第2层32具有可具有高屏障性的组成。例如是较多地含有Ga的高可靠性层。通过设置第2层32,在TFT20的制造工艺中或在制造TFT20之后,能抑制从钝化膜等绝缘膜的开口部等侵入的氢等杂质侵入第1层31而在第1层31产生氧缺损。因而,能抑制由氢等杂质导致的第1层31的低电阻化,能确保希望的TFT特性。另外,在沟道蚀刻型TFT的情况下,第2层32在源极/漏极分离工序等中也可发挥作为沟道层的第1层31的保护层和牺牲层的功能。
中间过渡层33的组成从第1层31的组成向第2层32的组成连续地变化。即,中间过渡层33为了不产生由它们的组成差所致的界面态,而具有以使第1层31与第2层32的组成差连续地衔接的方式变化的组成。此外,本实施方式的氧化物半导体层27还可以包括上述3个层以外的层。
如上所述,当使用具有层叠结构的现有的氧化物半导体层时,存在由于在上层与下层的界面产生的界面态而无法得到具有高可靠性的TFT的问题。相比于此,在本实施方式中,在具有包含迁移率高的层的层叠结构的氧化物半导体层27中,在上层27U与下层27L之间不存在界面态,因此,能抑制界面态所致的可靠性的下降。因而,能实现具有高迁移率且可靠性优异的TFT20。而且,根据本实施方式,能确保可靠性并且能进一步增大第1层31与第2层32的组成差。因而,能将第1层31和第2层32的组成设定为与各自的功能相应的更优选的组成,因此能更有效地提高TFT特性和可靠性。
如后所述,氧化物半导体层27例如通过等离子体MOCVD法来形成。当使用等离子体MOCVD法时,通过一边使原料气体中的流量比变化一边进行成膜工序,从而能容易地形成具有平滑的组成变化的中间过渡层33。另外,通过调整原料气体中的流量比,能以高自由度选择第1层31和第2层32的组成。
<氧化物半导体层27的各层的组成和厚度>
以氧化物半导体层27是In-Ga-Zn-O系半导体层的情况为例说明各层31~33所优选的组成。
在以下的说明中,将相对于主要构成氧化物半导体的所有元素的In的原子数比(组成比)简称为“In比率”。例如In-Ga-Zn-O系半导体层的In比率是相对于In、Ga、Zn以及O(氧)的总计原子数的In的原子数的比例。同样地,将相对于主要构成氧化物半导体的所有元素的Ga、Zn、O的原子数比(组成比)简称为“Ga比率”、“Zn比率”、“O比率”。当将In的原子数标记为[In]、将Ga的原子数标记为[Ga]、将Zn的原子数标记为[Zn]、将O的原子数标记为[O]时,In比率用[In]/([In]+[Ga]+[Zn]+[O])表示。
在In-Ga-Zn-O系半导体膜中,当Ga比率变高时,膜中的氧比率会变高,能形成更稳定且可靠性高的膜。但是,由于绝缘性高的Ga2O3成分变多,因此,半导体特性变低。相反地,当Ga比率低、即低电阻的In、Zn的比率高时,能实现高半导体特性,但可靠性变低。因而,优选第1层31中的Ga比率小于第2层32中的Ga比率。由此,能使第1层31的迁移率高于第2层32的迁移率,并且能使第2层32的稳定性高于第1层31的稳定性。在该情况下,中间过渡层33的Ga比率从第1层31侧向第2层32侧连续地增加。第1层31和第2层32的Ga比率之差没有特别限定,例如是5%以上,优选是10%以上。当Ga比率之差大时(例如为15%以上),通过设置中间过渡层33,能得到更显著的效果。
第1层31中的In比率可以大于第2层32中的In比率。第1层31和第2层32的In比率之差没有特别限定,例如是5%以上,优选是10%以上。当In比率之差大时(例如为20%以上),通过设置中间过渡层33,能得到更显著的效果。在第1层31的In比率高于第2层32的In比率、第2层32的Ga比率高于第1层31的Ga比率的情况下,在中间过渡层33中,例如可以是,Ga比率从第1层31侧向第2层32侧连续地增加,In比率从第1层31侧向第2层32侧连续地减少。
成为沟道层的第1层31所优选的组成如下所示。Ga比率例如是0%以上且不到15%(0≤[Ga]/([In]+[Ga]+[Zn]+[O])<0.15)。第1层31的In比率和Zn比率的总计大于Ga比率([In]+[Zn]>[Ga])。In比率可以不到70%([In]/([In]+[Ga]+[Zn]+[O])<0.7)。或者,In比率和Zn比率的总计可以不到70%(([In]+[Zn])/([In]+[Ga]+[Zn]+[O])<0.7)。优选In比率高于Ga比率和Zn比率([In]>[Ga]、[In]>[Zn])。
第1层31的厚度没有特别限定,例如是超过0nm且20nm以下。优选是5nm以上且10nm以下。若是10nm以下,则能提高导通特性。若是5nm以上,则与中间过渡层33相比,电子优先在第1层31中迁移,因此能实现高迁移率的TFT。
第2层32所优选的组成如下所示。Ga比率例如超过9%且不到40%(0.09<[Ga]/([In]+[Ga]+[Zn]+[O])<0.4)。优选In比率小于Ga比率([In]<[Ga])。第2层32的In比率和Zn比率的总计可以是Ga比率以下([In]+[Zn]≤[Ga])。
第2层32的厚度没有特别限定,例如是20nm以上且50nm以下。若是20nm以上,则可作为阻隔层(保护层、屏障层)更有效地发挥功能,因此,能进一步提高可靠性。另一方面,若是50nm以下,则能抑制在氧化物半导体层27中产生的电阻成分的增大,因此,能抑制TFT20的迁移率的下降。
此外,在TFT20是沟道蚀刻型TFT的情况下,在源极/漏极分离工序中,第2层32(上层27U)作为保护层发挥功能。因此,优选进一步高地设定第2层32的Ga比率(例如20%以上)和/或进一步增大第2层32的厚度(例如30nm以上)。
中间过渡层33只要具有使第1层31与第2层32的组成比之差平滑地(连续地)衔接的组成变化即可。中间过渡层33的厚度没有特别限定,可以调整为使得整个氧化物半导体层27的厚度成为例如40nm以上且70nm以下。中间过渡层33可以比第1层31和第2层32厚。中间过渡层33的厚度例如可以是5nm以上且50nm以下,优选是10nm以上且30nm以下。若不到10nm,则由于第1层31与第2层32的组成比之差,有时难以使组成变化平滑。若中间过渡层33的厚度是10nm以上、更优选是20nm以上,则能更可靠地抑制组成差所致的界面态的生成。另一方面,若是50nm以下,则能抑制氧化物半导体层27的厚度的增大和氧化物半导体层27所产生的电阻成分的增大。
<氧化物半导体层27的形成方法>
接着,以氧化物半导体层27是In-Ga-Zn-O系半导体层的情况为例说明形成氧化物半导体层27的方法的一例。
氧化物半导体层27例如通过用等离子体MOCVD法形成含有In、Sn以及Zn的层叠膜并对其进行图案化而得到。将层叠膜中的、成为氧化物半导体层27的下层27L(在此为第1层31)的膜称为“下膜”,成为氧化物半导体层27的中间过渡层33的膜称为“中间过渡膜”,成为氧化物半导体层27的上层27U(在此为第2层32)的膜称为“上膜”。在等离子体MOCVD法中,通过调整原料气体中的有机金属化合物的流量比,形成具有上述的组成的3层结构的层叠膜。下膜和上膜能通过将原料气体的流量比设定为规定的值(流量比固定)并进行沉积而形成。中间过渡膜能通过一边使原料气体的流量比连续地变化一边沉积而形成。例如通过阶段性地设定流量比并在切换流量比时也将原料气体原样供应到基板上,从而能使供应到基板上的原料气体的流量比连续地变化。
更具体地,首先,将想要形成层叠膜的基板设置于腔室内(下部电极与上部电极之间)。如在上述的实施方式中说明的那样,对腔室内供应MO气体以外的运载气体(氩或氮等)并根据情况供应氧,调整压力和基板温度。另外,对腔室内供应含有MO气体的原料气体和含有氧的气体,同时将用于在腔室内生成等离子体的RF电力施加到腔室内的下部电极与上部电极之间。MO气体包含:含有In的第1有机金属化合物、含有Zn的第2有机金属化合物、以及含有Ga的第3有机金属化合物。第1有机金属化合物可以是TMIn,第2有机金属化合物可以是DEZ,第3有机金属化合物可以是TMGa。
首先,在将MO气体中的第1有机金属化合物、第2有机金属化合物以及第3有机金属化合物的流量比设定为规定的值的状态下进行成膜,得到成为氧化物半导体层27的下层27L的下膜。将形成下膜时的相对于整个MO气体的第1有机金属化合物的比例设为F1a,第2有机金属化合物的比例设为F2a,第3有机金属化合物的比例设为F3a。例如在将TMIn:DEZ:TMGa设定为6:6:1的情况下,成为F1a=6/13、F2a=6/13、F3a=1/13。
接着,一边使第3有机金属化合物的比例从F3a连续地变化为F3b一边进行成膜,在下膜上形成成为中间过渡层33的中间过渡膜。与此相伴地,第1有机金属化合物和上述第2有机金属化合物的比例也可变化。例如也可以使第3有机金属化合物的比例变化并且使第1有机金属化合物的比例从F1a向F1b连续地变化。
在氧化物半导体层27的下膜成为沟道层(第1层31)的情况下,一边使第3有机金属化合物的比例增加,一边进行成膜(即F3a<F3b)。并且,还可以减少第1有机金属化合物的比例(即F1a>F1b)。在氧化物半导体层27的下膜成为阻隔层(第2层32)的情况下,一边减少第3有机金属化合物的比例,一边进行成膜(即F3a>F3b)。并且,还可以增加第1有机金属化合物的比例(即F1a<F1b)。
接下来,在将第1有机金属化合物的比例设定为F1b、将第2有机金属化合物的比例设定为F2b、将第3有机金属化合物的比例设定为F3b的状态下进行成膜,将成为氧化物半导体层27的上层27U的上膜形成在中间过渡膜上。这样,形成包括3层的层叠膜。层叠膜例如是非晶质In-Ga-Zn-O系半导体膜(一部分也可以被结晶化)。其后,进行层叠膜的图案化,得到氧化物半导体层27。
图11的(a)例示在上述的成膜工序中,第3有机金属化合物在整个MO气体中所占的比例。此外,也可以在将MO气体的流量比维持为固定的状态下仅形成成为沟道层(第1层31)的膜,一边使MO气体的流量比变化,一边形成成为中间过渡层33和第2层32的膜。图11的(b)例示该情况下的成膜工序中的第3有机金属化合物的比例。通过将MO气体中的流量比设为固定而至少形成成为沟道层的膜,能实现具有高迁移率的TFT。
如图11的(b)所示,当一边使MO气体的流量比变化一边形成第2层32时,第2层32的组成会连续地变化。第2层32的组成可以在与中间过渡层33的组成相同的方向上连续地变化。例如第2层32的Ga比率可以从中间过渡层33侧朝向第2层32的表面连续地增加。在该情况下,第2层32和中间过渡层33均成为组成连续地变化的层(组成过渡层)。能将组成过渡层中的、位于第1层31侧且Ga比率为15%以下的部分视为中间过渡层33,将Ga比率超过15%的部分视为作为阻隔层而发挥功能的第2层32。
此外,图11的(a)和(b)的流量比的变化是例示。在形成中间过渡层时MO气体的流量比可以以1个阶段变化,但也可以是以2个阶段以上变化,更优选以3个阶段以上变化。在该情况下,可以使各阶段的变化量或沉积时间不同。
氧化物半导体层27的形成方法不限于上述内容。例如还能用不利用等离子体的现有的MOCVD法形成。但是,如在上述的实施方式中说明的那样,在MOCVD法中,甲基等有机基易于残留于氧化物半导体膜内,有时无法得到希望的TFT特性。根据等离子体MOCVD法,能形成减少了甲基等的残留量的氧化物半导体膜,因此是更优选的。
在此,再次参照图10说明以氧化物半导体层27为活性层的TFT20的制造方法的一例。
首先,在支撑基板21上形成栅极电极23,接下来,按顺序形成栅极绝缘层25。
作为支撑基板21,例如能使用玻璃基板、硅基板、具有耐热性的塑料基板(树脂基板)等。
栅极电极23是通过在基板(例如玻璃基板)21上利用溅射法等形成栅极用导电膜(厚度:例如50nm以上且500nm以下)并对其进行图案化而形成的。栅极用导电膜的材料没有特别限定。能适当地使用含有铝(Al)、钨(W)、钼(Mo)、钽(Ta)、铬(Cr)、钛(Ti)、铜(Cu)等金属或其合金、或其金属氮化物的膜。
栅极绝缘层25例如能通过CVD法等形成。作为栅极绝缘层25,能适当地使用氧化硅(SiO2)层、氮化硅(SiNx)层、氧化氮化硅(SiOxNy;x>y)层、氮化氧化硅(SiNxOy;x>y)层等。栅极绝缘层25可以具有层叠结构。例如可以是,为了防止杂质等从支撑基板21扩散而在基板侧(下层)形成氮化硅层、氮化氧化硅层等,为了确保绝缘性而在其之上的层(上层)形成氧化硅层、氧化氮化硅层等。在此,使用将厚度为50nm的SiO2膜设为上层、将厚度为300nm的SiNx膜设为下层的层叠膜。这样,当使用含有氧的绝缘层(例如SiO2等的氧化物层)作为栅极绝缘层25的最上层(即与氧化物半导体层接触的层)时,在氧化物半导体层27发生了氧缺损的情况下,能通过氧化物层所含的氧来使氧缺损恢复,因此,能减少氧化物半导体层27的氧缺损。
接下来,在栅极绝缘层25上形成具有层叠结构的氧化物半导体层27。氧化物半导体层27的形成是使用例如等离子体MOCVD法并用上述的方法进行的。也可以在形成氧化物半导体层27后在大气气氛中按350℃以上(例如450℃)的温度进行热处理。
接着,通过在氧化物半导体层27上形成绝缘膜并对其进行图案化而得到蚀刻阻挡层37。蚀刻阻挡层37例如是SiO2层(厚度:例如150nm)。蚀刻阻挡层37覆盖氧化物半导体层27中的成为沟道区域的部分,并且在成为源极接触区域和漏极接触区域的部分上具有开口部。
接下来,形成源极电极28和漏极电极29。首先,例如通过溅射法等在蚀刻阻挡层37上和蚀刻阻挡层37的开口部内形成源极用导电膜。通过对源极用导电膜进行图案化,得到源极电极28和漏极电极29。源极电极28和漏极电极29在开口部内与氧化物半导体层27(源极接触区域和漏极接触区域)接触。源极用导电膜既可以具有单层结构,也可以具有层叠结构。在此,作为源极用导电膜,形成从氧化物半导体层27侧起按顺序将Ti膜(厚度:30nm)、Al或Cu膜(厚度:300nm)以及Ti膜(厚度50nm)层叠而成的层叠膜。
此外,在沟道蚀刻型TFT的情况下,不形成蚀刻阻挡层37,以覆盖氧化物半导体层27的方式形成源极用导电膜。接着,进行源极用导电膜的图案化,得到源极电极28和漏极电极29(源极/漏极分离)。此时,氧化物半导体层27中的成为沟道区域的部分的表面有时会被蚀刻(过蚀刻)。例如,氧化物半导体层27的成为沟道区域的部分的上层的一部分或全部有时会被除去。
接下来,对氧化物半导体层27的沟道区域进行氧化处理。在此,进行使用了N2O气体的等离子体处理。处理条件没有特别限定。将N2O气体的压力例如设定为100Pa以上且300Pa以下,将等离子体功率密度设定为0.2W/cm2以上且1.5W/cm2以下,将处理时间设定为5~100sec,将基板温度设定为例如200℃以上且450℃以下,优选设定为200℃以上且350℃以下,更优选设定为200℃以上且300℃以下。
接着,在TFT10上形成绝缘层35。绝缘层35例如可以是氧化硅(SiO2)膜、氮化硅(SiNx)膜、氧化氮化硅(SiOxNy;x>y)膜、氮化氧化硅(SiNxOy;x>y)膜等无机绝缘层。在此,作为绝缘层35,通过CVD法形成厚度例如为300nm的SiO2层。其后,可以按例如200℃以上且不到350℃的温度进行热处理。由此,能降低形成绝缘层35时在氧化物半导体层27中产生的氧缺损。
虽未图示,但可以在绝缘层35上还设置有机绝缘层等平坦化层。这样制造TFT20。
<关于TFT结构>
能应用本实施方式的沟道结构的TFT的结构没有特别限定。图9所示的TFT20具有源极和漏极电极与半导体层的上表面接触的顶部接触结构,但也可以具有源极和漏极电极与半导体层的下表面接触的底部接触结构。
另外,本实施方式的TFT既可以具有沟道蚀刻结构,也可以具有蚀刻阻挡结构。在沟道蚀刻型的TFT中,如图9所示,在沟道区域上没有形成蚀刻阻挡层,源极和漏极电极的沟道侧的端部下表面以与氧化物半导体层的上表面接触的方式配置。沟道蚀刻型的TFT例如通过在氧化物半导体层上形成源极/漏极电极用的导电膜并进行源极/漏极分离而形成。在源极/漏极分离工序中,沟道区域的表面部分有时会被蚀刻。
在蚀刻阻挡型的TFT中,如图10所示,在沟道区域上形成有蚀刻阻挡层。源极和漏极电极的沟道侧的端部下表面位于例如蚀刻阻挡层上。蚀刻阻挡型的TFT通过例如在形成了将氧化物半导体层的成为沟道区域的部分覆盖的蚀刻阻挡层后在氧化物半导体层和蚀刻阻挡层上形成源极/漏极电极用导电膜、进行源极/漏极分离而形成。在蚀刻阻挡型TFT中,通过用蚀刻阻挡层覆盖半导体层的侧面,能抑制上述的膜残留的发生。但是,当半导体层的侧面发生了收缩时,在半导体层侧面上有时蚀刻阻挡层的被覆性会下降而无法得到可靠性高的TFT。
上述的TFT20是在氧化物半导体层27与支撑基板21之间配置有栅极电极23的底栅结构TFT,但也可以是在氧化物半导体层27的与支撑基板21相反的一侧配置有栅极电极23的顶栅结构TFT。
本实施方式的氧化物半导体层27能适当地应用于具有顶部接触结构的沟道蚀刻型TFT。在应用于这种TFT时,在源极/漏极分离工序等中能抑制对第1氧化物半导体层的工艺损伤,因此,能得到更显著的效果。
本实施方式能应用于例如显示装置的有源矩阵基板。在将本实施方式应用于有源矩阵基板的情况下,只要设置于有源矩阵基板的多个TFT中的至少一部分是具有上述的层叠结构的氧化物半导体TFT即可。例如配置于各像素的像素TFT和/或构成单片驱动器的TFT(电路TFT)可以是TFT20。有源矩阵基板的结构是公知的,因此省略说明。
[实施例和比较例]
制作具备具有3层结构的氧化物半导体层的实施例I的TFT,对其特性进行了评价,因此说明其方法和结果。
<实施例I和比较例I的TFT的氧化物半导体层的形成方法>
在实施例I中,在玻璃基板上形成了蚀刻阻挡型的底栅结构TFT(参照图10)。
氧化物半导体层的形成是使用等离子体MOCVD法进行的。在此,将MO气体中的有机金属化合物的流量比TMIn:TMGa:DEZ的设定值从6:1:6阶段性地变化至1:3:1,生长了In-Ga-Zn-O系半导体膜。流量比的设定值从Depo-01工序到Depo-05工序按5个阶段变化(在各工序中流量比的设定是固定的)。在工序之间切换流量比的设定的期间(例如在Depo-01工序与Depo-02工序之间将流量比的设定从6:1:6切换为4:1:4的期间)内也连续地对腔室内供应MO气体。因而,供应到腔室内的MO气体的实际的流量比连续地变化。
在Depo-01工序中形成了成为第1层31的下膜(厚度:约16nm),在Depo-02~Depo-04工序中形成了成为中间过渡层33的中间过渡膜(厚度:约16nm),在Depo-05工序中形成了成为第2层32的上膜(厚度:约16nm)。在表4中示出Depo-01工序~Depo-05工序中的成膜时间、氧气流量、MO气体的流量比TMIn:TMGa:DEZ、腔室内的压力、RF电力、电极间的距离、基板温度。
[表4]
为了进行比较,使用溅射法形成氧化物半导体层,制造了比较例I的TFT。在溅射法中,使用In:Ga:Zn=1:2:1的靶材形成了组成比固定的氧化物半导体层。
<氧化物半导体层的组成分析>
通过俄歇电子分光分析调查了实施例I和比较例I的氧化物半导体层的深度方向的元素分布。
图12是表示实施例I的氧化物半导体层的组成分析结果的图。横轴是蚀刻时间,与距离样品表面的深度对应。纵轴是原子比率。在图12中,将具有金属性的结合状态的Si标记为“Si(pure)”,将具有氧化物性的结合状态的Si(构成SiO2的金属)标记为“Si(SiO2)”,将包括所有结合状态的Si标记为“Si(total)”。此外,在图12和图13所示的分析结果中,由于测定上的问题,在实施例I和比较例I的氧化物半导体层的表面近旁示出了碳(C)成分,但实际上,这些氧化物半导体层实质上不含碳成分(这一点可从如下情况明确得知:虽然用溅射法形成的氧化物半导体层(比较例I)本来不含碳,在该分析中却会检测出碳成分)。
根据图12可知,在实施例I中,氧化物半导体层的第1层31和第2层32包括组成大致固定的区域,在中间过渡层33中,组成连续地变化。另外,在第1层31中,In和Zn成分多于Ga成分,在第2层32中,Ga和Zn成分多于In成分。
图13是表示比较例I的TFT的氧化物半导体层91以及栅极绝缘膜92的一部分分析结果的图。如图13所示,在比较例I中,在氧化物半导体层的厚度方向上组成比是固定的。
<TFT特性的评价>
接着,调查了实施例I和比较例I的TFT的电流-电压特性(Id-Vg特性)。将结果在图14中示出。另外,将各TFT的阈值电压Vth和迁移率μ在表5中示出。
[表5]
根据该结果,确认了通过使用等离子体MOCVD法形成氧化物半导体层,能实现希望的TFT特性。可知实施例I的TFT与比较例I的TFT相比具有较高的迁移率。认为其原因是,实施例I的TFT与比较例I的氧化物半导体层相比具有In比率较高的层(沟道层)。
(第3实施方式)
在第3实施方式中,说明能应用于氧化物半导体膜的形成的成膜装置。本实施方式的成膜装置是等离子体辅助型MOCVD装置。本实施方式的成膜装置可用于在第1和第2实施方式中说明的氧化物半导体膜的形成。
本实施方式的成膜装置可用于包含氧化物半导体膜的各种半导体装置的制造。特别是在玻璃基板等融点比较低(500℃以下)的支撑基板上形成氧化物半导体膜时可适当地应用。半导体装置例如可以是具备氧化物半导体TFT的有源矩阵基板。
图15是示意性地表示本实施方式的成膜装置(等离子体辅助MOCVD装置)的构成的截面图。
成膜装置100具备:腔室111;导电性支撑体113,其在腔室111内支撑被处理基板(以下简称为“基板”);导电性气体分配喷头117,其在腔室111内配置于基板的上方;电力供应部121,其对支撑体113与气体分配喷头117之间供应电力;第1气体供应部,其对腔室111内供应MO气体;以及第2气体供应部,其对腔室111内供应含有氧的气体。气体分配喷头117和支撑体113分别兼作用于生成等离子体的上部电极和下部电极。
在腔室111中还设置有对基板进行加热的加热单元115。作为加热单元115,可以在支撑体113的内部配置有加热器。在气体分配喷头117中空开间隔形成有多个第1气体通路118和多个第2气体通路119。这些气体通路118、119在气体分配喷头117的内部从腔室111的外部延伸到腔室111内。第1气体供应部将含有MO气体和运载气体的原料气体经由第1气体通路118供应到腔室111内。第2气体供应部将含有氧的气体经由第2气体通路119供应到腔室111内。
电力供应部121包括连接到支撑体113和气体分配喷头117中的至少一方的高频电源122。在该例中,气体分配喷头117连接着高频电源122,支撑体113被接地。通过对支撑体113与气体分配喷头117之间供应电力,能在腔室111内形成等离子体。
气体分配喷头117的气体通路118、119连接到气体生成部123。气体生成部123生成含有有机金属化合物的MO气体。作为气体生成部123,能使用公知的各种MO气体的生成单元。例如可以通过在收纳有液状的有机金属化合物的槽内使运载气体鼓泡,从而生成含有运载气体和MO气体的原料气体。气体生成部123也可以具备对各有机金属化合物的流量比进行控制的流量控制部。
虽未图示,但成膜装置100具备控制部。控制部控制电力供应部121、第1气体供应部以及第2气体供应部的动作,使得在成膜时在对支撑体113与气体分配喷头117之间供应电力而生成了等离子体的状态下,对腔室111内供应MO气体和含有氧的气体。由此,有机金属化合物和氧成为等离子体状态,在化学上成为活性,因此,在腔室111内或者基板表面发生反应,沉积于基板表面。
优选成膜装置100还具备控制腔室111内的压力的压力控制部、控制支撑体113上的基板的温度的温度控制部。压力控制部包括测定腔室111内的压力的压力计125和连接到腔室111内的真空泵127。
现有的MOCVD装置是将以高温进行成膜作为前提的。例如在特表2013-503490号公报中,公开了用于在Si晶圆上形成III族氮化物膜的MOCVD装置。基板温度例如是1000℃程度。
相比于此,在本实施方式的成膜装置100中,通过引入等离子体,能提高MO气体的分解度。因而,即使将基板温度设定为比较低的温度(500℃以下、优选是400℃以下),也能形成降低了杂质(特别是由甲基带来的碳)的浓度的、优质的氧化物半导体膜。因而,能使用融点低的玻璃基板等作为支撑基板。
另外,在成膜装置100中,经由多个第1气体通路118从腔室111的上方沿着基板的法线方向供应MO气体。因此,例如与从腔室的侧面对基板在水平方向上供应MO气体的情况相比,能对基板表面更均匀地供应MO气体。因而,在基板上形成多个氧化物半导体TFT时,能减小这些TFT特性的不匀。
另外,认为基于MO气体的等离子体与通常工艺的等离子体CVD的成膜工艺不同,金属种料自身或附带有甲基的金属成分成为有助于膜沉积的成膜种料。因此,例如与自由基是成膜种料的情况(例如在等离子体CVD的a-Si的成膜工艺中,是扩散距离长且寿命长的SiH3自由基等为主要的成膜种料)相比,有成膜种料的扩散距离短的可能性。因而,例如当使用远程等离子体MOVD装置时,由于MO气体被分解的等离子体区域与成膜区域是分开的,因此,存在金属成分难以有效地有助于成膜的问题。相比于此,在成膜装置100中,如图1A所示,作为被处理基板的基板1位于等离子体区域之中或正下方,因此,基于MO气体的等离子体的成膜种料容易有助于成膜。
而且,当使用成膜装置100时,与溅射法相比,能以高自由度选择氧化物半导体膜的组成。通过调整原料气体的流量比,也易于形成具有不同的组成的氧化物半导体膜的层叠结构。例如在形成In-Ga-Zn-O系半导体膜的情况下,当将组成比In:Ga:Zn设为1:X:Y时,一般的溅射靶材的组成范围94是0<X<5且0<Y<5(参照图16)。相比于此,根据本实施方式,则还能实现被认为是物理性稳定区域以上的过渡状态的组成范围。例如能通过使原料气体中的DEZ的流量比增加,从而容易地形成具有成为5≤Y的组成的In-Ga-Zn-O系半导体膜,或者,能通过使原料气体中的TMGa的流量比增加,从而容易地形成具有成为5≤X的组成的In-Ga-Zn-O系半导体膜。
成膜装置100的各构成要素可以具有例如与在特表2013-503490号公报中公开的MOCVD装置同样的构成。为了参照,将特表2013-503490号公报的所有公开内容引用到本申请说明书中。不过,特表2013-503490号公报具有使支撑体旋转的机构,但成膜装置100由于不以向如Si晶圆这样的耐热性基板上成膜为前提,因此,不需要这种机构。此外,在特表2013-503490号公报的MOCVD装置中记载了在腔室内形成等离子体的单元,但该单元是以气体分配喷头等的清洗或者残留物的蚀刻为目的并为了将清洗用氯气设为等离子体状态而使用的。不是如成膜装置100这样在成膜时将原料气体设为等离子体状态。
工业上的可利用性
本发明的实施方式能广泛地应用于具有氧化物半导体TFT的各种半导体装置。例如还能应用于有源矩阵基板等电路基板、液晶显示装置、有机电致发光(EL)显示装置和无机电致发光显示装置、MEMS显示装置等显示装置、图像传感器装置等摄像装置、图像输入装置、指纹读取装置、半导体存储器等各种电子装置。
附图标记说明
1:基板
2A、2B:In-Ga-Zn-O系半导体膜
21:基板
23:栅极电极
25:栅极绝缘层
27:氧化物半导体层
27L:下层
27U:上层
27c:沟道区域
27d:漏极接触区域
27s:源极接触区域
28:源极电极
29:漏极电极
31:第1层
32:第2层
33:中间过渡层
35:绝缘层
37:蚀刻阻挡层
100:成膜装置
111:腔室
113:支撑体
115:加热单元
117:气体分配喷头
118:第1气体通路
119:第2气体通路
121:电力供应部
122:高频电源
123:气体生成部
125:压力计
127:真空泵。
Claims (9)
1.一种半导体装置的制造方法,是具备基板和氧化物半导体TFT的半导体装置的制造方法,上述氧化物半导体TFT支撑于上述基板,以氧化物半导体膜为活性层,上述半导体装置的制造方法的特征在于,包括:
工序(A),准备包含含有In的第1有机金属化合物和含有Zn的第2有机金属化合物的MO气体;以及
工序(B),在将上述基板加热到500℃以下的温度的状态下对设置于腔室内的上述基板供应上述MO气体和含有氧的气体,在上述基板上通过MOCVD法生长含有In和Zn的上述氧化物半导体膜,
上述工序(B)是在上述腔室内形成了等离子体的状态下进行的。
2.根据权利要求1所述的半导体装置的制造方法,
在上述工序(B)中,将上述腔室的压力设定为3.3×102Pa以上且不到2.7×103Pa。
3.根据权利要求1或2所述的半导体装置的制造方法,
在上述工序(B)中,上述等离子体是通过高频电场形成的,产生上述等离子体的功率密度是1440W/m2以上且4800W/m2以下。
4.根据权利要求1至3中的任意一项所述的半导体装置的制造方法,
上述第1有机金属化合物和上述第2有机金属化合物中的至少一方含有甲基。
5.根据权利要求4所述的半导体装置的制造方法,
上述基板包括玻璃基板,
当用二次离子质谱分析法分析上述氧化物半导体膜和上述基板的深度方向的组成时,上述氧化物半导体膜所含的碳成分的量是上述玻璃基板所含的碳成分的量的1/10以下。
6.根据权利要求4或5所述的半导体装置的制造方法,
上述氧化物半导体膜实质上不含碳成分。
7.根据权利要求1至6中的任意一项所述的半导体装置的制造方法,
上述氧化物半导体膜是In-Ga-Zn-O系半导体膜,并且具有从上述基板侧起按顺序包含下膜、中间过渡膜、上膜的层叠结构,
上述MO气体还包含含有Ga的第3有机金属化合物,
上述工序(B)包含:
工序(B1),在将对上述基板供应的上述MO气体的流量中的上述第1有机金属化合物的比例设定为F1a、上述第2有机金属化合物的比例设定为F2a、上述第3有机金属化合物的比例设定为F3a的状态下,在上述基板上形成上述下膜;
工序(B2),一边使对上述基板供应的上述MO气体的流量中的、上述第3有机金属化合物的比例从F3a连续地变化为F3b,一边在上述下膜上形成上述中间过渡膜;以及
工序(B3),在将对上述基板供应的上述MO气体的流量中的、上述第1有机金属化合物的比例设定为F1b、上述第2有机金属化合物的比例设定为F2b、上述第3有机金属化合物的比例设定为F3b的状态下,在上述中间过渡膜上形成上述上膜。
8.根据权利要求7所述的半导体装置的制造方法,
在上述工序(B2)中,一边使对上述基板供应的上述MO气体的流量中的、上述第3有机金属化合物的比例变化并且使上述第1有机金属化合物的比例从F1a连续地变化为F1b,一边形成上述中间过渡膜,
上述第1有机金属化合物和上述第3有机金属化合物的比例满足F3a<F3b且F1a>F1b,或者满足F3a>F3b且F1a<F1b。
9.一种成膜装置,是用于在基板上通过MOCVD法形成氧化物半导体膜的成膜装置,其特征在于,具备:
气体生成部,其生成包含多个有机金属化合物的MO气体;
腔室;
导电性支撑体,其在上述腔室内支撑上述基板;
加热单元,其加热上述基板;
导电性气体分配喷头,其在上述腔室内配置于上述基板的上方,并且空开间隔形成有在其内部延伸的多个第1气体通路和多个第2气体通路;
第1气体供应部,其经由上述多个第1气体通路对上述腔室内供应上述MO气体;
第2气体供应部,其经由上述多个第2气体通路对上述腔室内供应含有氧的气体;
电力供应部,其对上述支撑体与上述气体分配喷头之间供应电力,并且包括连接到上述支撑体和上述气体分配喷头中的至少一方的高频电源;以及
控制部,其控制上述电力供应部、上述第1气体供应部以及上述第2气体供应部,使得在对上述支撑体与上述气体分配喷头之间供应电力而生成了等离子体的状态下,对上述腔室内供应上述MO气体和上述含有氧的气体。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016253392 | 2016-12-27 | ||
| JP2016-253392 | 2016-12-27 | ||
| PCT/JP2017/045126 WO2018123659A1 (ja) | 2016-12-27 | 2017-12-15 | 半導体装置の製造方法および成膜装置 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110121765A true CN110121765A (zh) | 2019-08-13 |
| CN110121765B CN110121765B (zh) | 2023-04-28 |
Family
ID=62707485
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201780080973.2A Active CN110121765B (zh) | 2016-12-27 | 2017-12-15 | 半导体装置的制造方法和成膜装置 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US10879064B2 (zh) |
| CN (1) | CN110121765B (zh) |
| WO (1) | WO2018123659A1 (zh) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114910522A (zh) * | 2022-04-29 | 2022-08-16 | 广东氢芯智能科技有限公司 | 一种基于mocvd生长氧化物氢敏薄膜及其制备方法 |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102720885B1 (ko) * | 2019-10-31 | 2024-10-28 | 주성엔지니어링(주) | 금속 산화물 박막 증착 방법 및 챔버 처리 방법 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006165531A (ja) * | 2004-11-10 | 2006-06-22 | Canon Inc | 電界効果型トランジスタの製造方法 |
| US20130009149A1 (en) * | 2011-07-08 | 2013-01-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
| US20130221356A1 (en) * | 2012-02-29 | 2013-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
| US20150221507A1 (en) * | 2014-02-05 | 2015-08-06 | Applied Materials, Inc. | Indium gallium zinc oxide layers for thin film transistors |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08172055A (ja) * | 1994-12-20 | 1996-07-02 | Nippon Telegr & Teleph Corp <Ntt> | 窒化物半導体結晶の成長方法およびその装置 |
| US6686210B1 (en) * | 1998-09-07 | 2004-02-03 | Texas Instruments Incorporated | Methods for controlling the crystallographic texture of thin films with anisotropic ferroelectric polarization or permittivity |
| JP3659101B2 (ja) * | 1999-12-13 | 2005-06-15 | 富士ゼロックス株式会社 | 窒化物半導体素子及びその製造方法 |
| US8529699B2 (en) * | 2008-09-16 | 2013-09-10 | Stanley Electric Co., Ltd. | Method of growing zinc-oxide-based semiconductor and method of manufacturing semiconductor light emitting device |
| JP5731244B2 (ja) | 2010-03-26 | 2015-06-10 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
| DE112011104002B4 (de) | 2010-12-03 | 2023-07-27 | Semiconductor Energy Laboratory Co., Ltd. | Oxidhalbleiterschicht |
| JP5052693B1 (ja) | 2011-08-12 | 2012-10-17 | 富士フイルム株式会社 | 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置 |
| KR102388690B1 (ko) | 2012-05-31 | 2022-04-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
| WO2014024808A1 (en) * | 2012-08-10 | 2014-02-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
| WO2014157019A1 (en) | 2013-03-25 | 2014-10-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
| KR102294507B1 (ko) | 2013-09-06 | 2021-08-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
| TWI646690B (zh) | 2013-09-13 | 2019-01-01 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
| JP2015079946A (ja) * | 2013-09-13 | 2015-04-23 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
-
2017
- 2017-12-15 WO PCT/JP2017/045126 patent/WO2018123659A1/ja not_active Ceased
- 2017-12-15 CN CN201780080973.2A patent/CN110121765B/zh active Active
- 2017-12-15 US US16/473,272 patent/US10879064B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006165531A (ja) * | 2004-11-10 | 2006-06-22 | Canon Inc | 電界効果型トランジスタの製造方法 |
| US20130009149A1 (en) * | 2011-07-08 | 2013-01-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
| US20130221356A1 (en) * | 2012-02-29 | 2013-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
| US20150221507A1 (en) * | 2014-02-05 | 2015-08-06 | Applied Materials, Inc. | Indium gallium zinc oxide layers for thin film transistors |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114910522A (zh) * | 2022-04-29 | 2022-08-16 | 广东氢芯智能科技有限公司 | 一种基于mocvd生长氧化物氢敏薄膜及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2018123659A1 (ja) | 2018-07-05 |
| US20200194254A1 (en) | 2020-06-18 |
| US10879064B2 (en) | 2020-12-29 |
| CN110121765B (zh) | 2023-04-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12302639B2 (en) | Metal oxide film and method for forming metal oxide film | |
| KR102308442B1 (ko) | 반도체 장치 및 그 제작방법 | |
| Abermann et al. | MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs | |
| JP6009747B2 (ja) | 半導体装置 | |
| TWI459474B (zh) | 金屬氮氧化物薄膜電晶體之覆蓋層 | |
| CN102007597B (zh) | 低温薄膜晶体管工艺、装置特性和装置稳定性改进 | |
| US20150357480A1 (en) | Stable metal-oxide thin film transistor and method of making | |
| JP6909191B2 (ja) | 積層体、半導体装置及び積層体の製造方法 | |
| TWI571525B (zh) | A crystalline laminated structure, and a semiconductor device | |
| CN108431963A (zh) | 半导体元件和使用该半导体元件的电气设备 | |
| CN110121765B (zh) | 半导体装置的制造方法和成膜装置 | |
| JP6550514B2 (ja) | ディスプレイ用酸化物半導体薄膜、ディスプレイ用薄膜トランジスタ及びディスプレイ用スパッタリングターゲット | |
| CN113169232A (zh) | 薄膜晶体管及其制造方法 | |
| TWI541900B (zh) | 絕緣膜及其製造方法 | |
| KR20140018702A (ko) | 박막 트랜지스터 및 그 제조 방법 | |
| KR101827514B1 (ko) | 박막 트랜지스터 및 그 제조 방법 | |
| Li et al. | Silicon doping and N2 annealing effects on Zn3N2 thin film transistors | |
| CN110121785A (zh) | 具备氧化物半导体tft的半导体装置 | |
| KR20140071491A (ko) | 박막 트랜지스터, 박막 트랜지스터의 제조방법 및 반도체 장치 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |