[go: up one dir, main page]

CN110151769B - Withaferin A在制备治疗眼底缺血性疾病的药物中的应用 - Google Patents

Withaferin A在制备治疗眼底缺血性疾病的药物中的应用 Download PDF

Info

Publication number
CN110151769B
CN110151769B CN201910398536.6A CN201910398536A CN110151769B CN 110151769 B CN110151769 B CN 110151769B CN 201910398536 A CN201910398536 A CN 201910398536A CN 110151769 B CN110151769 B CN 110151769B
Authority
CN
China
Prior art keywords
withaferin
fundus
vegf
retinopathy
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910398536.6A
Other languages
English (en)
Other versions
CN110151769A (zh
Inventor
闫喆一
曹晓明
王春芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910398536.6A priority Critical patent/CN110151769B/zh
Publication of CN110151769A publication Critical patent/CN110151769A/zh
Application granted granted Critical
Publication of CN110151769B publication Critical patent/CN110151769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了Withaferin A在制备治疗眼底缺血性疾病的药物中的应用。实验证明,Withaferin A可以从发病机制角度抑制眼底缺血性疾病:1.显著减少缺血导致的氧化应激性细胞坏死与凋亡;2.靶向性抑制血管内皮生长因子及其受体(VEGF‑VEGFR2)信号通路,改善病理性微血管出血渗漏以及血管异常生长等症状。Withaferin A通过以上两种机制的双重作用显著缓解眼底缺血性疾病的症状,抑制疾病的发生发展。Withaferin A作为小分子靶向化合物,化学结构稳定、安全、可以透过血眼屏障,因此,它在眼底缺血性疾病中具有广阔的应用前景。

Description

Withaferin A在制备治疗眼底缺血性疾病的药物中的应用
技术领域:
本发明属于药学技术领域,具体涉及Withaferin A在制备治疗眼底缺血性疾病的药物中的应用。
背景技术
视网膜和脉络膜缺血、缺氧统称缺血性眼底疾病,是导致视力下降和丧失的重要原因,包括:1.急性缺血性:眼动脉阻塞、视网膜中央动脉阻塞、视网膜分支动脉阻塞、睫状视网膜动脉阻塞、远达性视网膜病变、类Purtscher视网膜病变等;2.慢性缺血性:视网膜中央静脉阻塞、分支静脉阻塞、糖尿病视网膜病变、眼缺血综合征、大动脉炎眼底病变、早产儿视网膜病变、年龄相关性黄斑病变等。慢性眼底缺血性疾病还会导致新生血管性青光眼及角膜新生血管等并发症。
视网膜和脉络膜缺血、缺氧可引起多种代谢物质的缺乏,但最为紧急、损害最重的病变是由缺氧所致。因此,该类型疾病有着部分共同的损伤的机理:1.缺氧导致的氧化应激性细胞坏死和凋亡,引起组织急性水肿、坏死。2.缺氧诱导的血管内皮生长因子(VEGF)生成。VEGF通过其受体VEGFR2起作用,增加血管的通透性,引起明显的血管渗漏,导致组织持续严重出血与水肿;长期VEGF升高会刺激内皮细胞的增殖,诱发不健康的新生血管,继而出现大量出血、纤维增殖、牵拉性视网膜脱离、新生血管性青光眼等严重并发症。上述疾病在全球发病率呈上升趋势,是儿童、成年人和老年人各年龄段致盲的首要原因。
因此,找到一种本身即具有抗氧化应激性细胞死亡作用的,且可以靶向抗VEGF的化合物是眼科界临床工作者和科研工作者一直以来的追求。
Withaferin A是一种小分子甾体内酯。化学名:5,6-环氧基-4,27-二羟基-1-氧代-2,24-二烯内酯,分子式:C28H38O6,分子量:470.6,其结构稳定、易保存,高剂量使用也无任何明显的全身毒性,分子化学结构式如下:
Figure BDA0002058970990000021
以往分子对接分析发现Withaferin A可能可以通过抑制IKKβ的激活来防止NF-κB活化;被认为可能具有抗炎,抗肿瘤的功效,但是,人们尚不知晓Withaferin A在眼底缺血疾病中的抗氧化应激性细胞死亡作用及靶向性抗VEGF的双重作用,因此,对于其在眼底缺血性疾病的药物中的应用也无人报道。
发明内容:
本发明的目的是提供Withaferin A在制备治疗眼底缺血性疾病的药物中的应用。
上述应用中,所述眼底缺血性疾病为视网膜病变或脉络膜病变。
所述视网膜病变为急性视网膜病变或慢性视网膜病变。
所述眼底缺血性疾病为眼动脉阻塞、视网膜中央动脉阻塞、视网膜分支动脉阻塞、睫状视网膜动脉阻塞、远达性视网膜病变、类Purtscher视网膜病变、视网膜中央静脉阻塞、分支静脉阻塞、糖尿病视网膜病变、眼缺血综合征、大动脉炎眼底病变、早产儿视网膜病变、年龄相关性黄斑病变。
所述视网膜病变为视网膜血管出血渗漏或视网膜细胞坏死凋亡或视网膜血管新生。
所述脉络膜病变为脉络膜血管出血渗漏或脉络膜细胞坏死凋亡或脉络膜血管新生。
本发明中采用外源性Withaferin A进行了细胞实验、动物模型的眼部急慢性缺血性实验,结果显示:所述的Withaferin A对缺血性眼底疾病造成的细胞坏死凋亡、血管渗漏、病理性血管新生以及视功能下降有明显的抑制作用,使眼底形态、结构与功能正常化,从而缓解并抑制疾病的发生发展。分子机制实验表明:Withaferin A抑制缺氧导致的氧化应激性细胞坏死与凋亡,且直接靶向性抑制VEGF信号通路的作用,从而从发病机制角度有效对抗缺血性眼底病变及其并发症。Withaferin A效果明确,作用机制清楚,化学结构稳定、安全、可以透过血眼屏障,应用于临床可能会开创小分子抗VEGF化合物靶向治疗缺血性眼底疾病的新时代。
附图说明
图1、Withaferin A(WFA)抑制人视网膜微血管内皮细胞(HRMECs)中缺血再灌注(I/R)和H2O2诱导的氧化应激性细胞死亡。
图2、Withaferin A抑制HRMECs中H2O2诱导的氧化应激性细胞凋亡。
图3、Withaferin A小鼠眼底急性缺血再灌注损伤后视功能的保护作用。
图4、Withaferin A上调抗氧化蛋白的表达并激活ERK,Akt蛋白。
图5、Withaferin A抑制眼底氧化应激性性损伤的机理:通过Akt/SOD2,SOD3,Prdx-1信号通路抑制人眼底微血管内皮细胞中氧化应激性细胞凋亡及坏死。
图6、Withaferin A对VEGF诱导的眼底微血管内皮细胞的迁移、成管有抑制作用。
图7、Withaferin A对VEGF诱导的病理性眼底微血管通透性增加有抑制作用。
图8、典型慢性眼底缺血性病变-糖尿病视网膜病变(DR)小鼠模型的建立。
图9、Withaferin A在典型慢性眼底缺血性病变-糖尿病视网膜病变(DR)小鼠模型中抑制病理性出血渗出及血管新生。
图10、Withaferin A抑制眼底缺血性疾病病理性出血渗出及血管新生的机理:靶向性抑制血管内皮生长因子及其受体(VEGF-VEGFR2)信号通路。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下面结合附图和实施例对本发明做进一步说明。
实施例1
Withaferin A(WFA)抑制人视网膜微血管内皮细胞(HRMECs)中缺血再灌注(I/R)和H2O2诱导的氧化应激性细胞死亡。
由于与视网膜与脉络膜供血的同源性,本项目中采用原代人视网膜微血管内皮细胞(HRMECs);给予细胞缺血再灌注(I/R)可以模拟眼底急性缺血状态,给予H2O2处理可以模拟急性与慢性缺血导致的氧化应激性细胞损伤。HRMECs原代细胞购自Angio-Proteomie,用含5%FBS,1%青链霉素,1%EGF的内皮生长培养基(EGM)常规复苏细胞,待其贴壁后换液,细胞增殖到铺满底面70%时传代,细胞悬液1,000rpm离心5分钟,一般传代比例为1:3,平均种植于培养皿中,取其7代内细胞进行本实验。不同剂量的WFA(0,12.5,25,50或100nmol/ml)给予细胞15min预处理,再给予缺血(3h)/再灌注(2h)损伤后,给予常规MTT染色法检测细胞活力,常规乳酸脱氢酶检测试剂盒(LDH)检测细胞死亡率。结果可见Withaferin A显著提高细胞活力(图1A),显著降低细胞死亡率(图1B)。WFA(0,12.5,25,50或100nmol/ml)给予细胞15min预处理,再给予H2O2模拟细胞氧化应激性损伤,H2O2(100μmol/ml)处理2小时后,仍给予常规MTT法检测细胞活力,常规LDH检测细胞死亡率。结果可见Withaferin A同样显著提高细胞活力(图1C),降低细胞死亡率(图1D)。由图1可知,Withaferin A(WFA)抑制HRMECs中缺血再灌注(I/R)和H2O2诱导的氧化应激性细胞死亡,即Withaferin A抑制眼底急性与慢性缺血导致的细胞氧化应激性细胞坏死及凋亡,且这种作用存在着显著地剂量依赖关系。图1中n=5-6。*p<0.05,**p<0.01,***p<0.01。
实施例2
Withaferin A抑制HRMECs中H2O2诱导的氧化应激性细胞凋亡。
本实验采用H2O2处理模拟急性与慢性缺血导致的氧化应激性细胞损伤。常规培养HRMECs,取其7代内细胞,WFA(50nmol/ml)预处理共15分钟,H2O2(100μmol/ml)处理2小时体外实验模拟氧化应激性损伤,Annexin V-FITC凋亡检测试剂盒染色评估细凋亡,计数早期凋亡细胞(Annexin V+/PI-)和晚期凋亡细胞(Annexin V+/PI-),结果可见:H2O2造成的诱导的氧化应激中早期凋亡细胞和晚期凋亡细胞均增加,而用WFA预处理后细胞凋亡细胞显著减少,柱状图显示各组计数HRMECs凋亡的情况(图2A)。该结果说明Withaferin A抑制H2O2诱导的氧化应激性细胞凋亡。常规制备各组细胞蛋白样品、测定含量、行SDS-PAGE电泳、转膜、封闭、一抗过夜、孵二抗,Western检测各组细胞组织中凋亡终末蛋白Caspase3与其活化形式Cleave Caspase3含量,以检测细胞凋亡,柱状图显示各组细胞中Cleave Caspase3/Caspase3比值(图2B)。结果可见Withaferin A预处理可以减少H2O2造成的CleaveCaspase3/Caspase3升高。图2的两个实验结果均说明Withaferin A抑制HRMECs中H2O2诱导的氧化应激性细胞凋亡,即Withaferin A抑制眼底急性与慢性缺血导致的细胞氧化应激性细胞凋亡。图2中n=2-3。#p<0.05,##p<0.01。
实施例3
Withaferin A保护小鼠眼底急性缺血再灌注损伤(I/R)后视功能
本实验选择缺血再灌注损伤(I/R)小鼠模型模拟眼底急性缺血缺氧损伤。由于急性眼底缺血性疾病临床的主要表现为急性视功能的损伤,因此本实验检测各组小鼠的视功能变化。健康的野生型雄性C57小鼠,鼠龄6-8周。所有小鼠毛发色泽光亮,无脱毛,眼部检查未见异常,屈光间质清晰,眼底正常,随机分为为:1、Control组;2、I/R损伤组;3、I/R损伤+WFA(10nmol/g/d)腹腔注射组;4、I/R损伤+WFA(5nmol/g/d)眼球旁(眼周)注射组。各组20只。在损伤模型进行前2小时给予相应药物预处理。利用2%的异氟烷稳定麻醉,将连接生理盐水输液管的针头置针刺入后三组小鼠右眼前房,升高输液瓶150cm可在眼内形成110mmHg左右的眼压,可观察到球结膜苍白,眼底血管断流。持续l小时后降低输液瓶高度至动物水平,拔出前房灌注针头,可见眼结膜充血,恢复血液供应。损伤7天后,活体动态检测小鼠视觉电生理改变,包括闪光视觉诱发电位(fVEP)及闪光视网膜电图(fERG)。结果显示:小鼠眼底急性缺血再灌注损伤后闪光视觉诱发电位(fVEP)组N1-P1,P1-N2,N2-P2成分的振幅均较正常组显著下降;WFA经腹腔给药及经眼周给药均显著减少fVEP的P1-N2,N2-P2振幅下调,但两种给药方式间差异无统计学意义(图3A)。fERG实验结果显示I/R损伤组a波、b波成分振幅较正常组显著下降;WFA经腹腔给药及经眼周给药显著减少ERG b波振幅下调,两种给药方式的效果差异无统计学意义(图3B)。以上两个结果均说明Withaferin A抑制小鼠急性缺血再灌注损伤(I/R)后视功能损伤,Withaferin A可以通过血眼屏障,且局部用药与全身给药作用无明显差异。图3中n=5-6。*p<0.05,**p<0.01,***p<0.01,NS=无差异,ip,腹腔注射;po,眼周注射。
实施例4
Withaferin A抑制眼底氧化应激性性损伤的机理:通过Akt/SOD2,SOD3,Prdx-1信号通路抑制人眼底微血管内皮细胞中氧化应激性细胞凋亡及坏死。
为了明确Withaferin A抑制缺氧导致的氧化应激性损伤的作用机制,本实验采用H2O2处理模拟急性与慢性缺血导致的氧化应激性细胞损伤,常规培养HRMECs,取其7代内细胞,WFA(50nmol/ml)处理HRMECs15分钟或30分钟,制备各组细胞蛋白样品、测定含量、行SDS-PAGE电泳、转膜、封闭、一抗过夜、孵二抗,Western检测细胞组织中AMPK、ERK1/2(Thr202/Tyr204)和Akt(Serine473)三种管家蛋白及其激活形式,柱状图显示各组细胞中相应蛋白的含量。结果显示WFA短时间显著增强ERK1/2(Thr202/Tyr204)和Akt(Serine473)两种管家蛋白的磷酸化水平(图4A)。推测WFA可能有抗氧化应激作用。常规培养HRMECs,取其7代内细胞,WFA(50nmol/ml)处理HRMECs30分钟,提取总RNA,溶解,将RNA反转录成cDNA,使用real-time PCR试剂盒,在Bio-Rad PCR仪器上进行PCR扩增,结果显示:WFA(50nmol/ml)孵育HRMECs显著增强检测的所测所有抗氧化蛋白的RNA表达水平(图4B)。该实验结果明确WFA有抗氧化应激作用。提取各组细胞蛋白样品,进一步Western blot检测结果及柱状图分析显示:WFA显著增强SOD2,SOD3,Prdx-1三种抗氧化蛋白的蛋白表达水平(图4C)。图4结果说明在眼底急性与慢性缺血导致的氧化应激性细胞损伤中,Withaferin A上调抗氧化蛋白SOD2,SOD3,Prdx-1的表达并激活ERK,Akt蛋白,作为管家蛋白,ERK,Akt很可能作用于抗氧化蛋白SOD2,SOD3,Prdx-1的上游,图中所有n=4-6,#p<0.05,##p<0.01,###p<0.001。
为了进一步明确眼底急性与慢性缺血导致的氧化应激性细胞损伤中WithaferinA抑制氧化应激性细胞坏死与凋亡的具体机制,给予HRMECs细胞Akt抑制剂IV(1μM)或ERK抑制剂U1026(10μM)预处理2小时后,再给予WFA(50nmol/ml)处理,提取各组细胞蛋白样品,Western blot检测结果显示:Akt抑制剂IV显著阻断了WFA介导的SOD2,SOD3和Prdx-的上调,而U1026无效,柱状图显示各组细胞中相应蛋白的含量(图5A)。这个结果证明了Withaferin A通过Akt/SOD2,SOD3,Prdx-1B,而不是ERK/SOD2,SOD3,Prdx-1信号通路抑制缺氧导致的氧化应激性损伤。给予细胞相同处理后,ROS荧光探针二氢乙啶(Dihydroethidium,DHE)染色结果显示:WFA显著抑制H2O2导致的活性氧增多,Akt抑制剂IV阻断了WFA的作用,而U1026无效,柱状图显示各组细胞中相应染色结果(图5B)。这个结果进一步说明WFA是通过Akt/SOD2,SOD3,Prdx-1抑制人眼底细胞中氧化应激损伤。提取各组细胞蛋白样品,Western blot检测结果显示:WFA预处理可以减少H2O2造成的CleaveCaspase3/Caspase3升高,而Akt抑制剂IV可以阻断了WFA的这种作用,柱状图显示各组细胞中Cleave Caspase3/Caspase3的含量(图5C)。这一结果又进一步说明:Withaferin A是通过Akt/SOD2,SOD3,Prdx-1/Caspase3信号通路抑制人眼底细胞中氧化应激性细胞凋亡的。MTT检测可见:WFA预处理可以减少H2O2造成的细胞坏死与凋亡,而Akt抑制剂IV可以阻断了WFA的这种作用(图5D)。更进一步说明WFA通过Akt/SOD2,SOD3,Prdx-1信号通路抑制氧化应激性细胞坏死与凋亡。以上图5所有结果共同说明了在眼底急性与慢性缺血时,WithaferinA通过Akt/SOD2,SOD3,Prdx-1信号通路抑制人眼底血管内皮细胞中氧化应激性细胞死亡及凋亡,图5中n=5-6。*p<0.05,**p<0.01,***p<0.01,NS=无差异。
实施例5
Withaferin A对VEGF诱导的眼底微血管内皮细胞的迁移、成管及病理性微血管通透性增加有抑制作用。
由于眼底慢性血性疾病的长期眼底缺氧诱导血管内皮生长因子(VEGF)生成。VEGF会增加血管的通透性,引起明显的血管渗漏与病理性血管新生,因此本实验直接使用VEGF诱导眼底微血管内皮细胞迁移、成管及病理性微血管通透性增高。
为了研究Withaferin A对VEGF诱导的眼底微血管内皮细胞的迁移、成管的作用,本人使用了三种实验:
1.划痕实验:将HRMECs细胞消化后将细胞接种于Culture Insert中间的Insert,细胞长满Insert区域后用镊子移除Insert即可产生500μm宽度的划痕。给予WFA(0,10,20,50或100nmol/ml)预处理15分钟后给予VEGF(10ng/ml)培养8小时处理,拍照记录,收集图片数据分析实验结果。该实验结果可见:VEGF(10ng/ml)培养8小时明显增加了HRMECs的迁移,而给予Withaferin A可以抑制HRMECs的迁移,且作用呈剂量依赖性增加,柱状图显示各组细胞划痕实验结果(图6A)。
2.迁移实验:Transwell小室的内室加入HRMECs(1.0x105/孔,100μl),给予WFA(0,10,20,50或100nmol/ml)预处理15分钟后给予VEGF(10ng/ml)培养8小时处理,取出Transwell的内室,用棉签擦去PVPF膜靠近内室那一面的细胞,另一面的细胞用甲醛室温固定30分钟,结晶紫染色20分钟,用清水洗3遍以上,显微镜下观察细胞的迁移,记数。结果可见:VEGF(10ng/ml)培养8小时明显增加了HRMECs在Transwell小室的迁移,而给予Withaferin A可以抑制HRMECs的迁移,且作用呈剂量依赖性增加,柱状图显示各组细胞迁移实验结果(图6B)。
3.成管实验:将HRMECs(1*104/孔,50μl)接种到铺好Matrigel的96孔板上,接种好的细胞给予WFA(0,10,20,50或100nmol/ml)预处理15分钟后给予VEGF(10ng/ml)培养8小时处理,结果可见:VEGF(10ng/ml)培养8小时明显增加了HRMECs的血管生成,而给予Withaferin A可以抑制HRMECs的血管生成,且作用呈剂量依赖性增加,柱状图显示成管实验结果(图6C)。
图6所示,这三种实验说明:Withaferin A对VEGF诱导的眼底微血管内皮细胞的迁移、成管有抑制作用,且这些作用均呈剂量依赖性增加。图中n=5,差异有统计学意义,**:与Control组相比,P<0.01;***:与Control组相比,P<0.001;#:与VEGF组相比,P<0.05;##:与VEGF组相比,P<0.01;###:与VEGF组相比,P<0.001。
为了研究Withaferin A对VEGF诱导的微血管通透性增加的作用,本人使用了两种实验:
1.X-CELLigence细胞跨内皮细胞电阻实验
取传代后第3-5代的HRMECs,每孔3*104个细胞,接种于E-16平板后,转移到X-CELLigence系统。监测各组细胞跨内皮细胞电阻,每15分钟测量一次。跨内皮细胞电阻越高膜渗透性越低。在细胞指数曲线达到最高峰并稳定后给予WFA(50nmol/ml)预处理15分钟后给予VEGF(10ng/ml)培养8小时处理,结果可见:图7A所示曲线由上到下依次为1、Vehicle组;2、Withaferin A;3、VEGF损伤+Withaferin A组;4、VEGF损伤组。柱状图显示各组跨内皮细胞电阻,该结果说明X-CELLigence系统中VEGF培养明显增加了单层HRMECs膜的通透性,而给予Withaferin A预处理可以抑制单层HRMECs膜的通透性的增加(图7A)。
2.Transwell小室单层细胞膜通透性实验。
本实验采用0.4um孔径Transwell小室(Coning公司),取传代后第3-5代的HRMECs,1.0x105/孔,接种于入Transwell小室中,当细胞生长融合后连续三天通透性达到稳定,给予WFA(50nmol/ml)预处理15分钟后给予VEGF(10ng/ml)培养8小时处理,Transwell小室内杯中加入1mg/ml的FITC–Dextran溶液,半小时后酶标仪(490nm)检测吸光度即代表细胞膜渗透性。柱状图显示各组单层细胞膜通透性,结果可见:Transwell小室中,VEGF明显增加了单层HRMECs膜对示踪剂的通透性,而给予Withaferin A可以抑制示踪剂的通过(图7B)。
图7中以上两个实验说明了Withaferin A对VEGF诱导的微血管通透性增加有抑制作用,图中n=4-6,差异有统计学意义,**:与Control组相比,P<0.01;#:与VEGF组相比,P<0.05;##:与VEGF组相比,P<0.01。
图6与图7共同说明了眼底缺血性疾病导致VEGF诱导眼底微血管内皮细胞的迁移、成管及病理性微血管通透性增加,而细胞实验中,Withaferin A明确、显著地抑制了该作用。
实施例6
Withaferin A在典型慢性眼底缺血性病变-糖尿病视网膜病变(DR)动物模型中抑制病理性出血渗出及血管新生。
慢性缺血性眼底疾病包括:视网膜中央静脉阻塞、分支静脉阻塞、糖尿病视网膜病变、眼缺血综合征、大动脉炎眼底病变、早产儿视网膜病变、年龄相关性黄斑病变等,由于慢性眼底缺血性疾病临床的主要表现均为眼底出血渗漏及病理性血管新生,因此本实验选用慢性眼底缺血性病变最具代表性的糖尿病视网膜病变(DR)动物模型来检测Withaferin A在动物体内的作用。选用健康的野生型雄性C57小鼠,鼠龄6-8周。所有小鼠毛发色泽光亮,无脱毛,眼部检查未见异常,屈光间质清晰,眼底正常,分别为:1、Control组;2、WithaferinA组;3、HFD/STZ-DR(高脂肪饮食+链脲佐菌素诱导糖尿病视网膜病变)组;4、HFD/STZ-DR(Withaferin A)(高脂肪饮食+链脲佐菌素诱导糖尿病视网膜病变+Withaferin A治疗)组,各组20只。首先给予HFD/STZ-DR组、HFD/STZ-DR(Withaferin A)组小鼠高脂肪饮食(HFD)(60%的脂肪热量饲料),12周诱发肥胖、糖耐量异常及胰岛素抵抗(图8B,C,D)。之后,小鼠禁食12小时后给予腹腔单次注射低剂量链脲佐菌素(STZ)柠檬酸缓冲液(50mg/kg)。3天后使用检查血糖水平,超过12mmol时小鼠被认为小鼠血糖升高(图8E);确定小鼠血糖升高后,继续给小鼠喂食高脂肪饮食(HFD)8周,小鼠血糖明显增高(图8F,H),体重无明显差异(图8G),眼底出现微血管渗漏(图8I)证实HFD/STZ造DR模型成功。造模流程如图8A所示。图8中*p<0.05,**p<0.01,***p<0.01,NS=无差异。之后,HFD/STZ-DR(Withaferin A)组腹膜下植入Alzet植入式给药泵Withaferin A10nmol/g/d,共7天,其余小鼠给予对照处理7天。处理结束后,各组小鼠麻醉,给予FITC–Dextran与FRITC-ConcanavalinA 1:2混合液10ml/kg上腔静脉缓慢注射,棉球压迫止血。5分钟后,处死小鼠,快速摘取双眼球。将眼球标本放入4℃预冷的4%PFA-PBS,冰上固定3小时。常规视网膜铺片,硬质封片剂封片。共聚焦显微镜拍摄染色的视网膜铺片,FRITC-ConcanavalinA用于检测血管的走形,FITC–Dextran用于检测血管的渗漏。ImageJ软件计算血管渗漏程度。FITC–Dextran渗漏时提示出现微血管通透性增加;当FRITC-ConcanavalinA出现无灌注区,FITC–Dextran渗漏剧烈时提示新生血管出现。结果可见:Control组和Withaferin A组小鼠未见视网膜血管渗漏。HFD/STZ诱导的DR小鼠组与Control组相比,视网膜血管渗漏显著增加,且出现视网膜新生血管,证明DR小鼠模型诱导成功。HFD/STZ-DR(Withaferin A)组明显减少了DR小鼠的视网膜血管渗漏,且抑制了视网膜新生血管的出现。这个结果说明了Withaferin A在动物体内也可以抑制DR引起的病理性微血管出血、渗漏及血管新生,且Withaferin A可以透过血眼屏障起作用(图9A)。柱状图显示各组视网膜铺片中视网膜血管渗漏的情况。n=4,差异有统计学意义(图9B),图9中:***:与Control组相比,P<0.001;##:与HFD/STZ-DR组相比,P<0.01。右侧从上到下第三图中最左侧两个灰色箭头表示视网膜新生血管形成,其余白色箭头表示视网膜微血管出血渗漏。
实施例7
Withaferin A抑制眼底缺血性疾病病理性出血渗出及血管新生的机理:靶向性抑制血管内皮生长因子及其受体(VEGF-VEGFR2)信号通路。
为了明确Withaferin A抑制眼底缺血性疾病病理性出血渗出及血管新生的作用机制,常规培养HRMECs,取其7代内细胞,不同剂量的WFA(0,10,50或100nmol/ml)给予细胞15min预处理,再给予HG(High Glucose,高糖处理,给予25μmol/mL D-葡萄糖)8小时模拟糖尿病视网膜病变(DR)损伤,常规培养基凝胶电泳可见给予HG 8小时后,培养基中分泌型VEGF表达稍增加,给予Withaferin A预处理的培养基中分泌型VEGF表达没有明显变化(图10A)。培养基ELISA分析也显示给予HG 8小时后,培养基中分泌型VEGF表达增加,给予Withaferin A预处理后培养基中分泌型VEGF表达没有明显变化(图10B)。这两个结果说明:Withaferin A并不影响分泌型VEGF表达。提取各组细胞蛋白样品,Western blot检测结果显示:给予HG 8小时后,细胞内VEGF表达增加,而给予Withaferin A预处理后细胞内VEGF表达没有明显变化;但细胞内VEGF下游受体VEGFR2及VEGFR2的活化形式pVEGFR2堆积(图10C)。这个结果说明:Withaferin A也不影响细胞型VEGF表达,但Withaferin A影响了VEGF与其受体VEGFR2结合。为了研究Withaferin A影响VEGF-VEGFR2结合的具体机制,常规培养HRMECs,取其7代内细胞,分为1、Control组;2、WFA组;3、HG组;4、HG+WFA组。WFA(50nmol/ml)给予细胞15min预处理,再给予HG共8小时模拟糖尿病视网膜病变(DR)损伤,常规免疫共沉淀法(CO-IP)检测,结果显示,Control组有少量的VEGF-VEGFR2结合;WFA组VEGF-VEGFR2结合显著减少;HG组VEGF-VEGFR2结合较多;HG+WFA组VEGF-VEGFR2结合显著减少(图10D),这些说明Withaferin A可以靶向性抑制VEGF与其受体VEGFR2结合,从而阻断VEGF信号通路传导,从而抑制眼底长期缺氧导致的VEGF诱导的眼底微血管内皮细胞的迁移、成管及病理性微血管通透性增加。图10中n=4-6,*p<0.05,NS=无差异。
以上体外、体内及分子机制实验结果表明,Withaferin A可以显著减少眼底缺血导致的氧化应激性细胞坏死与凋亡;靶向性抑制血管内皮生长因子及其受体(VEGF-VEGFR2)信号通路,改善病理性微血管出血渗漏以及血管新生等症状。从而从发病机制角度有效对抗急慢性缺血性眼底病变。Withaferin A效果明确,作用机制清楚,可以透过血眼屏障,应用于临床可能会开创抗氧化小分子药物靶向治疗缺血性眼底疾病的新时代。
本发明所述眼底缺血性疾病的并发症主要是指新生血管性青光眼及角膜新生血管。

Claims (4)

1.WithaferinA在制备治疗眼底缺血性疾病的药物中的应用;所述眼底缺血性疾病为视网膜病变。
2.根据权利要求1所述的应用,其特征在于:所述视网膜病变为急性视网膜病变或慢性视网膜病变。
3.根据权利要求1所述的应用,其特征在于:所述视网膜病变为视网膜中央动脉阻塞、视网膜分支动脉阻塞、睫状视网膜动脉阻塞、视网膜中央静脉阻塞、视网膜分支静脉阻塞、早产儿视网膜病变、糖尿病视网膜病变、年龄相关性黄斑病变。
4.根据权利要求1所述的应用,其特征在于:所述视网膜病变为视网膜血管出血渗漏或视网膜细胞坏死凋亡或视网膜血管新生。
CN201910398536.6A 2019-05-14 2019-05-14 Withaferin A在制备治疗眼底缺血性疾病的药物中的应用 Active CN110151769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910398536.6A CN110151769B (zh) 2019-05-14 2019-05-14 Withaferin A在制备治疗眼底缺血性疾病的药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910398536.6A CN110151769B (zh) 2019-05-14 2019-05-14 Withaferin A在制备治疗眼底缺血性疾病的药物中的应用

Publications (2)

Publication Number Publication Date
CN110151769A CN110151769A (zh) 2019-08-23
CN110151769B true CN110151769B (zh) 2020-11-13

Family

ID=67634738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910398536.6A Active CN110151769B (zh) 2019-05-14 2019-05-14 Withaferin A在制备治疗眼底缺血性疾病的药物中的应用

Country Status (1)

Country Link
CN (1) CN110151769B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113288903B (zh) * 2021-06-23 2023-08-01 中国人民解放军空军军医大学 醉茄素a作为提高机体极端缺氧耐力的药物应用及组合物
CN118726349B (zh) * 2024-05-22 2025-04-08 上海市第一人民医院 一种治疗眼底血管性疾病的rna分子及其应用
CN118986870A (zh) * 2024-08-09 2024-11-22 山西医科大学 一种抑制眼部病理性血管新生的滴眼剂及其制备方法
CN118995345B (zh) * 2024-08-09 2025-09-26 山西医科大学 一种抑制角膜缺氧损伤和角膜新生血管的隐形眼镜护理液及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《A robust model for simultaneously inducing corneal neovascularization and retinal gliosis in the mouse eye》;Riya R. Paranthan,;《Molecular Vision》;20110714(第17期);第1901-1908页 *
《Pharmacological and analytical aspects of withaferin A: A concise report of current scientific literature》;Kanika Patel;《Asian Pacific Journal of Reproduction》;20130920;第3卷(第2期);第238-243页 *
《Withaferin A is a potent inhibitor of angiogenesis》;Royce Mohan;《Angiogenesis》;20040730(第7期);第115-122页 *

Also Published As

Publication number Publication date
CN110151769A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN110151769B (zh) Withaferin A在制备治疗眼底缺血性疾病的药物中的应用
US5798380A (en) Cytoskeletal active agents for glaucoma therapy
Guan et al. Puerarin ameliorates retinal ganglion cell damage induced by retinal ischemia/reperfusion through inhibiting the activation of TLR4/NLRP3 inflammasome
Wang et al. Cell‐penetrating peptide TAT‐mediated delivery of acidic FGF to retina and protection against ischemia–reperfusion injury in rats
Li et al. Pinocembrin alleviates lipopolysaccharide-induced myocardial injury and cardiac dysfunction in rats by inhibiting p38/JNK MAPK pathway
KR102022631B1 (ko) 고리형 펜타뎁시펩타이드를 유효성분으로 함유하는 혈관신생 억제용 약학적 조성물
Hou et al. A novel approach of daunorubicin application on formation of proliferative retinopathy using a porous silicon controlled delivery system: pharmacodynamics
WO2014025127A1 (ko) C-펩타이드를 포함하는 당뇨성 혈관누출에 의한 질병의 예방 또는 치료용 조성물
Fu et al. The effect of human umbilical cord mesenchymal stem cell-derived exosomes on diabetic retinal neurodegeneration in a rat model
JP7436067B2 (ja) ナノ低分子ペプチドfg及びその眼底血管疾患の治療用薬物又は予防用薬物の調製への使用
CN109771411A (zh) 二氢槲皮素用于制备治疗脂肪肝的药物中的用途
Li et al. A high-salt diet aggravates retinal ischaemia/reperfusion injury
CN102218051A (zh) 丙戊酸钠在制备治疗或改善青光眼视神经病变的药物中的用途
US20090209455A1 (en) Vitreous administration of erythropoietin
You et al. Injectable, antioxidative, and loaded with exosomes/Liproxstatin-1 hydrogel as a potential treatment for retinal ischemia–reperfusion by inhibiting ferroptosis and apoptosis
Lee et al. Effect of 2′-benzoyl-oxycinnamaldehyde on RPE cells in vitro and in an experimental proliferative vitreoretinopathy model
KR20140041459A (ko) 초기 녹내장에서 정상적인 시각 기능을 회복시키는 pacap에 기반한 안과용 제제
US11045435B2 (en) Methods for treating ocular diseases
KR20130122958A (ko) 망막의 질환을 치료하기 위한 방법
KR20240028815A (ko) 약리 활성 물질의 신규 분자회합체 및 이를 포함하는 약학 조성물
JP6266666B2 (ja) 医薬組成物および血管新生に関係する眼疾患の治療方法
CN107334757B (zh) 丹酚酸a作为防治糖尿病眼病药物的用途
EP2842557A1 (en) Mildronate in ophthalmic disorders
CN106668054B (zh) 异长春花苷内酰胺的应用
CN119033914B (zh) Reelin蛋白在制备治疗视网膜损伤药物中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant