CN110244365A - A Multi-resolution Ionospheric Chromatography Method - Google Patents
A Multi-resolution Ionospheric Chromatography Method Download PDFInfo
- Publication number
- CN110244365A CN110244365A CN201910557200.XA CN201910557200A CN110244365A CN 110244365 A CN110244365 A CN 110244365A CN 201910557200 A CN201910557200 A CN 201910557200A CN 110244365 A CN110244365 A CN 110244365A
- Authority
- CN
- China
- Prior art keywords
- grid
- ionospheric
- matrix
- inversion
- orthogonal function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Operations Research (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明提供了一种多分辨率的电离层层析方法,包括将反演区域格网化,设置时间窗函数;对GNSS观测数据预处理,计算第一次反演所需的TEC;创建经验正交函数;利用经验正交函数构建映射矩阵,并对矩阵做正则化处理;利用处理后的矩阵和计算得到的TEC构建正规方程,求出方程的最优解,得到一次反演结果;设定level的值,再次创建经验正交函数、构建映射矩阵,对矩阵做正则化处理;利用第一次反演结果和第二次处理后的矩阵构建正规方程,求出方程最优解,得到二次反演结果。本发明对电离层结构进行二次重构,较大程度地提高了电离层层析成像的精度;通过对level的设定,可以实现不同较小分辨率的电离层层析结果。
The invention provides a multi-resolution ionospheric tomography method, including gridding the inversion area and setting a time window function; preprocessing the GNSS observation data and calculating the TEC required for the first inversion; creating experience Orthogonal function; use the empirical orthogonal function to construct the mapping matrix, and regularize the matrix; use the processed matrix and the calculated TEC to construct the normal equation, find the optimal solution of the equation, and get an inversion result; set Set the value of level, create an empirical orthogonal function again, construct a mapping matrix, and regularize the matrix; use the results of the first inversion and the matrix after the second processing to construct a normal equation, find the optimal solution of the equation, and obtain The result of the second inversion. The invention performs secondary reconstruction on the ionospheric structure, greatly improving the accuracy of the ionospheric tomography; by setting the level, the ionospheric tomography results with different and smaller resolutions can be realized.
Description
技术领域technical field
本发明属于电离层探测技术领域,尤其是涉及一种多分辨率的电离层层析方法。The invention belongs to the technical field of ionospheric detection, in particular to a multi-resolution ionospheric chromatography method.
背景技术Background technique
电离层层析作为一种全天候、大范围的电离层探测技术,具有费用低、操作简单、探测范围广等诸多优势,对于电离层不同尺度结构变化及全球电离层环境监测具有重要意义。但是由于陆基GNSS数据覆盖的局限性以及地面站分布不均匀,导致层析反演数据源缺乏且分布不均匀,从而限制了电离层结构的重构精度,尤其是对中小尺度结构的重构产生严重制约。As an all-weather, large-scale ionospheric detection technology, ionospheric tomography has many advantages such as low cost, simple operation, and wide detection range. However, due to the limitation of ground-based GNSS data coverage and the uneven distribution of ground stations, the tomographic inversion data source is lacking and unevenly distributed, which limits the reconstruction accuracy of the ionospheric structure, especially for the reconstruction of small and medium scale structures. severe constraints.
近年来,随着一些地区陆基GNSS地面站的增加和多星座GNSS的建设,为电离层成像算法的发展提供了良好的契机。赵海山等人针对传统乘法代数重构算法(MART)迭代精度不高的问题,提出一种自适应电离层层析新算法,一方面,该算法根据射线穿越像素点的截距和电子密度值的综合影响,合理地分配迭代差值;另一方面,提出一种与电子密度值相关的自适应松弛因子,有效克服传播噪声对电子密度反演的影响。汤俊等人针对电离层电子密度重构问题,提出了一种综合利用总变差最小化与乘法代数重构算法的电离层层析成像算法。该算法对反演模型的参数施加总变差约束,以提高反演过程的稳定性和结果的精确性。明峰等人提出一种附加尺度因子的电离层层析方法,将实测STEC与迭代中当前电子密度计算的STEC的比值作为基本尺度,依据电子密度的空间相关性和网格中心到观测射线的距离,对没有信号穿过的网格也计算出对应尺度进行调整,使其向真值逐渐逼近,提高反演精度。以上这些方法在一定程度上提高了电离层层析反演的精度,但这些层析方法是基于一次反演来重构电离层结构,导致电离层层析反演精度不能达到一个较理想的状态。In recent years, with the increase of land-based GNSS ground stations and the construction of multi-constellation GNSS in some areas, it has provided a good opportunity for the development of ionospheric imaging algorithms. Zhao Haishan et al. proposed a new adaptive ionospheric tomography algorithm for the problem of low iteration accuracy of the traditional multiplicative algebraic reconstruction algorithm (MART). The comprehensive influence of the electron density can be reasonably assigned to the iterative difference; on the other hand, an adaptive relaxation factor related to the electron density value is proposed to effectively overcome the influence of the propagation noise on the electron density inversion. Aiming at the ionospheric electron density reconstruction problem, Tang Jun et al. proposed an ionospheric tomography algorithm that comprehensively uses the total variation minimization and multiplicative algebraic reconstruction algorithm. The algorithm imposes total variation constraints on the parameters of the inversion model to improve the stability of the inversion process and the accuracy of the results. Mingfeng et al. proposed an ionospheric tomography method with an additional scale factor, taking the ratio of the measured STEC to the STEC calculated by the current electron density in the iteration as the basic scale, based on the spatial correlation of the electron density and the distance from the grid center to the observed ray , the corresponding scale is calculated and adjusted for the grids that no signal passes through, so that it gradually approaches the true value and improves the inversion accuracy. The above methods have improved the accuracy of ionospheric tomographic inversion to a certain extent, but these tomographic methods are based on one inversion to reconstruct the ionospheric structure, resulting in the inversion accuracy of ionospheric tomography cannot reach a more ideal state .
发明内容Contents of the invention
有鉴于此,本发明旨在提出一种多分辨率的电离层层析方法,以实现多分辨率的电离层结构层析成像。In view of this, the present invention aims to propose a multi-resolution ionospheric tomography method to realize multi-resolution ionospheric structure tomography.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, technical solution of the present invention is achieved in that way:
一种多分辨率的电离层层析方法,包括以下步骤:A multi-resolution ionospheric chromatography method, comprising the following steps:
(1)将反演区域的电离层格网化,将每一个格网分为三维的体积像素,穿过格网的信号路径上电子密度积分即为TEC,并设置反演的时间函数;(1) The ionosphere in the inversion area is gridded, and each grid is divided into three-dimensional volume pixels. The electron density integral on the signal path passing through the grid is TEC, and the inversion time function is set;
(2)对GNSS观测数据预处理,计算步骤(1)所需的TEC;(2) Preprocessing the GNSS observation data, calculating the required TEC of step (1);
(3)对步骤(1)中穿过格网的信号路径创建经验正交函数;(3) create an empirical orthogonal function for the signal path passing through the grid in step (1);
(4)对步骤(3)得到的经验正交函数构建补偿映射矩阵M,并对矩阵做正则化处理;(4) build compensation mapping matrix M to the empirical orthogonal function that step (3) obtains, and do regularization processing to matrix;
(5)对步骤(4)得到正则化处理后的矩阵和步骤(2)计算得到的TEC构建正规方程,并估计方程的解,得到方程最优解,即一次反演结果;(5) Construct a normal equation for the matrix after the regularization process obtained in step (4) and the TEC calculated in step (2), and estimate the solution of the equation to obtain the optimal solution of the equation, which is the result of an inversion;
(6)设定level的值,并再次进行步骤(3)、(4)的操作;(6) Set the value of level, and perform steps (3) and (4) again;
(7)根据步骤(5)得到的一次反演结果作为输入数据和步骤(6)得到处理后的矩阵再次构建正规方程,估计方程的解,得到二次反演的最优解。(7) According to the primary inversion result obtained in step (5) as input data and the processed matrix obtained in step (6), the normal equation is constructed again, the solution of the equation is estimated, and the optimal solution of the secondary inversion is obtained.
进一步的,所述步骤(1)具体包括:第一次反演用setgrid函数将格网设置为较粗略的4°×4°,并将时间间隔设置为30min。Further, the step (1) specifically includes: using the setgrid function for the first inversion to set the grid to a rougher 4°×4°, and set the time interval to 30 minutes.
进一步的,所述步骤(2)具体包括:对观测数据进行周跳和整周模糊度检测,然后利用载波相位观测法计算穿过电离层格网的信号路径上的TEC。Further, the step (2) specifically includes: performing cycle slip and integer ambiguity detection on the observation data, and then calculating the TEC on the signal path passing through the ionospheric grid by using the carrier phase observation method.
进一步的,所述步骤(3)具体包括:利用Chapman函数或国际参考模型(IRI)从一组电离层电子密度的径向分布来创建经验正交函数(EOF)。Further, the step (3) specifically includes: using the Chapman function or the International Reference Model (IRI) to create an Empirical Orthogonal Function (EOF) from a group of radial distributions of ionospheric electron density.
进一步的,所述步骤(4)具体包括:在反演过程中,电子密度被假定为给定的一组三维EOF的线性组合,即映射矩阵使用一组EOF来映射电子密度的径向变化,经度和纬度映射电子密度的水平方向,反演的时间窗映射电子密度的时间轴,然后分别在水平方向、径向、时间上对利用映射矩阵求出的电子密度进行二次平滑处理。Further, the step (4) specifically includes: in the inversion process, the electron density is assumed to be a linear combination of a given set of three-dimensional EOF, that is, the mapping matrix uses a set of EOF to map the radial change of the electron density, The longitude and latitude map the horizontal direction of the electron density, and the inverted time window maps the time axis of the electron density, and then perform secondary smoothing on the electron density obtained by using the mapping matrix in the horizontal direction, radial direction, and time respectively.
进一步的,所述步骤(5)具体包括:使用最小残差法将最小范数残差解引入到正规方程求取最优解或者二次规划法求方程最优解。Further, the step (5) specifically includes: using the minimum residual method to introduce the minimum norm residual solution into the normal equation to obtain the optimal solution or the quadratic programming method to obtain the optimal solution of the equation.
进一步的,所述步骤(6)具体包括:设置level=[2,1],level代表空间和时间分辨率,二次反演是在第一次反演基础上将空间和时间分辨率以2的次幂倍降低,即在第二次反演中电离层格网是1°×1°,时间为15min。Further, the step (6) specifically includes: setting level=[2,1], level represents the spatial and temporal resolution, and the second inversion is based on the first inversion with the spatial and temporal resolution divided by 2 , the ionospheric grid is 1°×1° in the second inversion, and the time is 15 minutes.
进一步的,所述步骤(7)具体包括:将一次反演结果内插到由level设定的反演格网及时间函数里,然后构建正规方程,使用最小残差法或二次规划法求解此次正规方程的最优解。Further, the step (7) specifically includes: interpolating the primary inversion result into the inversion grid and time function set by level, then constructing a normal equation, and using the minimum residual method or quadratic programming method to solve The optimal solution of the normal equation this time.
本发明的另一目的在于提出一种多分辨率的电离层层析装置,具体方案是这样实现的:Another object of the present invention is to propose a multi-resolution ionospheric chromatography device, and the specific scheme is realized in this way:
一种多分辨率的电离层层析装置,包括:A multi-resolution ionospheric chromatography device comprising:
用于将反演区域的电离层格网化,将每一个格网分为三维的体积像素,穿过格网的信号路径上电子密度积分即为TEC,并设置反演的时间函数的电离层网格化模块;It is used to grid the ionosphere in the inversion area, divide each grid into three-dimensional volume pixels, and the integral of electron density on the signal path passing through the grid is TEC, and set the ionosphere of the inversion time function Grid module;
用于对GNSS观测数据预处理,计算电离层网格化模块所需的TEC的TEC计算模块;A TEC calculation module for preprocessing the GNSS observation data and calculating the TEC required by the ionospheric gridding module;
用于对电离层网格化模块中穿过格网的信号路径创建经验正交函数的经验正交函数创建模块;an empirical orthogonal function creation module for creating empirical orthogonal functions for signal paths through the grid in the ionospheric gridding module;
用于对经验正交函数创建模块得到的经验正交函数构建补偿映射矩阵M,并对矩阵做正则化处理的经验正交函数修正模块;An empirical orthogonal function correction module for constructing a compensation mapping matrix M for the empirical orthogonal function obtained by the empirical orthogonal function creation module, and performing regularization processing on the matrix;
用于对经验正交函数修正模块得到正则化处理后的矩阵和TEC计算模块计算得到的TEC构建正规方程,并估计方程的解,得到方程最优解,即一次反演结果的一次反演结果模块;It is used to construct the normal equation from the regularized matrix obtained by the empirical orthogonal function correction module and the TEC calculated by the TEC calculation module, and estimate the solution of the equation to obtain the optimal solution of the equation, that is, the first inversion result of one inversion result module;
用于设定level的值,并再次利用进行经验正交函数创建模块、经验正交函数修正模块进行经验正交函数创建、经验正交函数修正操作的数据处理模块;A data processing module for setting the value of level, and again using the empirical orthogonal function creation module and empirical orthogonal function correction module to perform empirical orthogonal function creation and empirical orthogonal function correction operations;
用于根据一次反演结果模块得到的一次反演结果作为输入数据和数据处理模块得到处理后的矩阵再次构建正规方程,估计方程的解,得到二次反演的最优解的二次反演结果模块。The secondary inversion is used to construct the normal equation again based on the primary inversion result obtained by the primary inversion result module as input data and the processed matrix obtained by the data processing module, estimate the solution of the equation, and obtain the optimal solution of the secondary inversion Results module.
相对于现有技术,本发明所述的一种多分辨率的电离层层析方法及系统具有以下优势:Compared with the prior art, a kind of multi-resolution ionospheric chromatography method and system of the present invention has the following advantages:
(1)本发明对电离层结构进行二次重构,较大程度地提高了电离层层析成像的精度;(1) The present invention carries out secondary reconstruction to ionospheric structure, has improved the precision of ionospheric tomography to a large extent;
(2)本发明通过对level的设定,可以实现不同较小分辨率的电离层层析结果。(2) The present invention can realize ionospheric tomography results with different and smaller resolutions by setting the level.
附图说明Description of drawings
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:
图1为本发明提供的多分辨率电离层层析技术方法的流程图;Fig. 1 is the flowchart of the multi-resolution ionospheric tomography technique method provided by the present invention;
图2为电离层格网化结构示意图;Figure 2 is a schematic diagram of the ionospheric grid structure;
图3(a)为MHJ45站点2015年3月16日4°×4°的no-multi和multi与ionos对比图;Figure 3(a) is a comparison of no-multi, multi and ionos at 4°×4° on March 16, 2015 at MHJ45 site;
图3(b)为MHJ45站点2015年3月16日1°×1°的MHJ45 no-multi和multi与ionos对比图;Figure 3(b) is a comparison of MHJ45 no-multi, multi and ionos at 1°×1° on March 16, 2015 at the MHJ45 site;
图4(a)为IF843站点2015年3月16日4°×4°的no-multi与multi和ionos对比图;Figure 4(a) is a comparison of no-multi, multi and ionos at 4°×4° on March 16, 2015 at IF843 site;
图4(b)为IF843站点2015年3月16日1°×1°的no-multi与multi和ionos对比图。Figure 4(b) is a comparison of no-multi, multi and ionos at the IF843 site on March 16, 2015 at 1°×1°.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other.
下面将参考附图并结合实施例来详细说明本发明。The present invention will be described in detail below with reference to the accompanying drawings and examples.
如图1所示,本发明提供的多分辨率电离层层析方法按顺序进行的下列步骤:As shown in Figure 1, the multi-resolution ionospheric chromatography method provided by the present invention carries out the following steps in order:
(1)将反演区域的电离层格网化,将每一个格网分为三维的体积像素,穿过格网的信号路径上电子密度积分即为TEC,并设置反演的时间函数;(1) The ionosphere in the inversion area is gridded, and each grid is divided into three-dimensional volume pixels. The electron density integral on the signal path passing through the grid is TEC, and the inversion time function is set;
使用setgrid函数将电离层格网化,然后设卫星与接收机传输路径为h,该射线穿过每一体素时在垂直方向的截距记为H1,H2,...,Hi...假设每个网格中的电子密度为定值x1,x2,...,xi...则单位格网内TEC值为Hixi,则一条传输路径上的TEC值可认为是射线穿过网格内的截距与该网格内的电子密度的乘积之和,即TEC=H1x1+H2x2+…+Hixi+…;则所有射线上电子含量为Hx=z,x即为所求的电离层电子密度。并将一天的反演时间段设置成30min的时间间隔,从而进行4°×4°的第一次反演。Use the setgrid function to grid the ionosphere, then set the transmission path between the satellite and the receiver as h, and the intercepts in the vertical direction when the ray passes through each voxel are recorded as H 1 , H 2 ,...,H i . ..assuming that the electron density in each grid is a fixed value x 1 , x 2 ,..., xi ... then the TEC value in the unit grid is H i x i , then the TEC value on a transmission path It can be considered as the sum of the product of the intercept of the ray passing through the grid and the electron density in the grid, that is, TEC=H 1 x 1 +H 2 x 2 +…+H i x i +…; then all the rays The upper electron content is Hx=z, and x is the desired ionospheric electron density. And the inversion time period of one day is set to a time interval of 30 minutes, so as to perform the first inversion of 4°×4°.
(2)对GNSS观测数据预处理,计算步骤(1)所需的TEC;(2) Preprocessing the GNSS observation data, calculating the required TEC of step (1);
具体步骤如下:Specific steps are as follows:
GPS接收机的RINEX文件包含以下可观测量。A RINEX file for a GPS receiver contains the following observables.
其中P1和P2是从精密码中获得的伪距,L1和L2代表信号的载波相位。P0是电离层自由伪距,n和λ分别代表整周模糊度和载波波长。ε代表接收机和卫星硬件误差分量。where P1 and P2 are the pseudoranges obtained from the refined code, and L1 and L2 represent the carrier phase of the signal. P 0 is the ionospheric free pseudorange, n and λ represent the integer ambiguity and carrier wavelength, respectively. ε represents receiver and satellite hardware error components.
比较相位和码距的可观测量之间的不同,可以得到关于TEC的两个方程Comparing the difference between the observables of phase and code distance, two equations for TEC can be obtained
综上所述,TEC值可通过式2.5中的噪声项计算,也可通过式2.6中与其相关联的整数模糊度的偏置项来计算。卫星在可见范围内(除了在周跳期间,如较大的跳变或突变时),其整周模糊度恒定,发生大周跳时的偏置量等于式2.5和式2.6求差的加权平均,并且该权重与信噪比相关。相比利用伪距计算TEC值,载波相位计算的TEC精度更高,,因此通常采用载波相位法来计算穿过电离层格网的信号路径上的TEC。In summary, the TEC value can be calculated by the noise term in Equation 2.5, or by the bias term of the integer ambiguity associated with it in Equation 2.6. When the satellite is within the visible range (except during the cycle slip period, such as a large jump or sudden change), the ambiguity of the entire cycle is constant, and the offset when a large cycle slip occurs is equal to the weighted average of the difference between formula 2.5 and formula 2.6 , and the weight is related to the signal-to-noise ratio. Compared with using pseudorange to calculate TEC value, the accuracy of TEC calculated by carrier phase is higher, so the carrier phase method is usually used to calculate the TEC on the signal path passing through the ionospheric grid.
(3)解决步骤(1)中穿过格网的路径不完备问题,创建经验正交函数;(3) Solving the incomplete problem of the path passing through the grid in step (1), creating an empirical orthogonal function;
(a)Chapman函数创建经验正交函数(EOF):(a) The Chapman function creates an empirical orthogonal function (EOF):
电子密度分布Chapman函数一般方程为:The general equation of the electron density distribution Chapman function is:
其中χ是太阳天顶角;N是电子密度;k是一个有值的常数,表示Chapmanβ层时,k=1,表示Chapmanα层时,z由下式给出:Among them, χ is the solar zenith angle; N is the electron density; k is a constant with value, when representing the Chapmanβ layer, k=1, representing the Chapmanα layer, z is given by:
其中h和hm分别代表高度和峰值密度高;H是标高。我们通常是通过Chapman的β函数构建正交函数,一般需要以下参数:白天260km~320km范围内的峰值高度,晚上260km~360km范围内的峰值高度,以及60km~90km的标高。此外,还需输入一定经纬度范围内的电离层格网即setgrid函数和level设定的格网,以获取电子密度反演重构算法所需的三维空间经验正交函数集。where h and h m stand for height and peak density height, respectively; H is elevation. We usually use Chapman's β function to construct an orthogonal function, which generally requires the following parameters: the peak height within the range of 260km to 320km during the day, the peak height within the range of 260km to 360km at night, and the elevation of 60km to 90km. In addition, the ionospheric grid within a certain range of latitude and longitude, that is, the grid set by the setgrid function and level, needs to be input to obtain the three-dimensional space empirical orthogonal function set required by the electron density inversion reconstruction algorithm.
(b)IRI模型创建经验正交函数(EOF):(b) The IRI model creates an Empirical Orthogonal Function (EOF):
国际参考电离层(IRI)是地球电离层等离子体参数的一个标准规范。IRI模型综合了全球范围的电离层探测声纳、散射雷达等众多电离层探测仪器的观测数据,描述了50km~1 500km范围内电离层密度和温度的月平均变化。用IRI模型系数创建经验正交函数,一般需要以下参数:所需经验正交函数个数,日期以及指定的电离层空间格网。具体步骤如下:The International Reference Ionosphere (IRI) is a standard specification for plasma parameters in the Earth's ionosphere. The IRI model synthesizes the observation data of many ionospheric sounding instruments such as ionospheric sounding sonar and scattered radar on a global scale, and describes the monthly average change of ionospheric density and temperature in the range of 50km to 1500km. To create empirical orthogonal functions with IRI model coefficients, the following parameters are generally required: the number of required empirical orthogonal functions, the date, and the specified ionospheric spatial grid. Specific steps are as follows:
1、通过IRI模型获取测区中心位置且与观测数据同时期的电离层剖面时间序列;1. Obtain the ionospheric profile time series at the center of the survey area and at the same time as the observation data through the IRI model;
2、求取这个时间序列的协方差矩阵;2. Find the covariance matrix of this time series;
3、对此协方差矩阵进行特征值分解从而求取相应的EOF。3. Decompose the eigenvalue of this covariance matrix to obtain the corresponding EOF.
(4)对步骤(2)得到经验正交函数构建补偿映射矩阵M,并对矩阵做正则化处理。(4) Construct the compensation mapping matrix M for the empirical orthogonal function obtained in step (2), and perform regularization processing on the matrix.
在反演过程中,电子密度被假定为经验正交函数(EOF)的线性组合,即映射矩阵使用步骤(3)计算的经验正交函数(EOF)来映射电子密度的径向变化,经度和纬度映射电子密度的水平方向,反演的时间窗映射电子密度的时间轴,其中经纬度间隔及时间窗分别按照步骤(1)设置,形成映射矩阵M,即方程Hx=z变为(HM)X=z,然后引入正则化矩阵R,在水平、径向、时间上对方程的解进行二次平滑。During the inversion, the electron density is assumed to be a linear combination of empirical orthogonal functions (EOF), i.e. the mapping matrix uses the empirical orthogonal function (EOF) calculated in step (3) to map the radial variation of electron density, longitude and The latitude maps the horizontal direction of the electron density, and the inverted time window maps the time axis of the electron density, wherein the latitude-longitude interval and the time window are respectively set according to step (1) to form a mapping matrix M, that is, the equation Hx=z becomes (HM)X = z, and then introduce the regularization matrix R to perform quadratic smoothing on the solution of the equation in the horizontal, radial and time directions.
(5)对步骤(4)得到处理后的矩阵和步骤(2)计算得到的TEC构建正规方程,并估计方程的解,得到方程最优解,即一次反演结果。(5) Construct a normal equation for the processed matrix obtained in step (4) and the TEC calculated in step (2), and estimate the solution of the equation to obtain the optimal solution of the equation, which is the result of an inversion.
具体步骤:Specific steps:
(a)构建正规方程HTH+cRTR=HTz,c是用户定义的正则化常数(a) Construct the normal equation H T H+cR T R=H T z, where c is a user-defined regularization constant
(b)利用最小残差法计算方程的解(b) Calculate the solution of the equation using the minimum residual method
最小残差方法(minres)试图将最小范数残差解x引入到线性方程组,例如:Ax=b,在最小残差法里要求n阶系数矩阵A必须对称但不必正定,等式右侧向量b的行或列的长度必须为n。The minimum residual method (minres) tries to introduce the minimum norm residual solution x into the linear equation system, for example: Ax=b, in the minimum residual method, the n-order coefficient matrix A must be symmetric but not necessarily positive definite, and the right side of the equation The rows or columns of vector b must be of length n.
(c)利用二次规划法(quadprog)计算方程的解(c) Calculate the solution of the equation using the quadratic programming method (quadprog)
二次规划法(quadprog)求解问题的形式:The quadratic programming method (quadprog) solves the problem in the form:
其中,HX≤bAmong them, HX≤b
这样可以求得使上述问题最小化的向量X,为使该问题有一个有限的最小值解,需要保证H为正定矩阵。Quadprog算法需要两个或两个以上的输入,例如上限和下限,等式和不等式约束等,以对反演问题的解施加约束。为了使变换基中的逆问题求解为非负,quadprog算法通过不等式MX≥0来对反演问题施加约束,这保证了EOF系数的向量为正数集。然后,最后的解是基于原始基,最后求得的电子密度剖面分布为:x=MXIn this way, the vector X that minimizes the above problem can be obtained. In order to make this problem have a finite minimum solution, it is necessary to ensure that H is a positive definite matrix. The Quadprog algorithm requires two or more inputs, such as upper and lower bounds, equality and inequality constraints, etc., to impose constraints on the solution of the inversion problem. In order to make the solution of the inverse problem in the transformation basis non-negative, the quadprog algorithm imposes constraints on the inverse problem through the inequality MX≥0, which ensures that the vector of EOF coefficients is a set of positive numbers. Then, the final solution is based on the original basis, and the finally obtained electron density profile distribution is: x=MX
选择这两种方法中任意一种求出方程最优解,即为一次反演结果。Choose any one of these two methods to find the optimal solution of the equation, which is the result of an inversion.
(6)设定level的值,并再次进行步骤(3)、(4)的操作;(6) Set the value of level, and perform steps (3) and (4) again;
设置level=[2,1],即反演区域的电离层格网变为4°×4°/2^2,反演时间间隔为30min/2^1,创建经验正交函数及构建映射矩阵,并对矩阵正则化处理同步骤(3)、(4)。Set level=[2,1], that is, the ionospheric grid in the inversion area becomes 4°×4°/2^2, the inversion time interval is 30min/2^1, and the empirical orthogonal function is created and the mapping matrix is constructed , and the matrix regularization process is the same as steps (3) and (4).
(7)根据步骤(5)得到的一次反演结果作为输入数据和步骤(6)得到处理后的正则矩阵再次构建正规方程,估计方程的解,得到二次反演的最优解。(7) According to the primary inversion result obtained in step (5) as input data and the processed regular matrix obtained in step (6), the normal equation is constructed again, the solution of the equation is estimated, and the optimal solution of the secondary inversion is obtained.
再次使用步骤(5)的方法构造正规方程,然后根据最小残差法或二次规划法求解方程最优解,得到二次反演结果。Use the method of step (5) again to construct the normal equation, and then solve the optimal solution of the equation according to the minimum residual method or the quadratic programming method to obtain the result of the quadratic inversion.
本发明提供的多分辨率层析方法的效果可以通过以下实验结果进一步说明,并对本发明方法计算出的结果和测高仪数据进行比较分析。The effect of the multi-resolution chromatography method provided by the present invention can be further illustrated by the following experimental results, and the results calculated by the method of the present invention and the altimeter data are compared and analyzed.
实验数据描述:GPS观测数据由UNAVCO机构提供,精密星历数据由IGS官网下载,测高仪数据来自Digital Ionogram Database官网,其中一个测高仪位于美国西部的IdahoNational Lab(代码:IF843,位置:北纬43.81°,西经112.68°),其当地时LT=世界时UT-7;另一个位于美国东部的Millstone Hill(代码:MHJ45,位置:北纬42.6°,西经71.5°),其当地时LT=UT-5。Experimental data description: The GPS observation data is provided by UNAVCO, the precise ephemeris data is downloaded from the IGS official website, and the altimeter data is from the Digital Ionogram Database official website. One of the altimeters is located in the Idaho National Lab in the west of the United States (code: IF843, location: northern latitude 43.81°, west longitude 112.68°), its local time LT = universal time UT-7; another Millstone Hill (code: MHJ45, location: north latitude 42.6°, west longitude 71.5°) in the eastern United States, its local time LT = UT-5.
表一给出了本发明方法和单分辨率方法与测高仪数据对比结果,从统计结果来看,本发明方法计算结果相对于测高仪数据来说精度较高;另外本发明方法的层析成像分辨率较高。Table one has provided the inventive method and the single resolution method and the altimeter data comparison result, from the statistical result, the inventive method calculation result is higher precision with respect to the altimeter data; In addition the layer of the inventive method Higher resolution imaging.
表一multi,no-multi层析结果和测高仪的NmF2误差比较Table 1 Comparison of multi, no-multi chromatography results and the NmF2 error of the altimeter
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910557200.XA CN110244365A (en) | 2019-06-25 | 2019-06-25 | A Multi-resolution Ionospheric Chromatography Method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910557200.XA CN110244365A (en) | 2019-06-25 | 2019-06-25 | A Multi-resolution Ionospheric Chromatography Method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN110244365A true CN110244365A (en) | 2019-09-17 |
Family
ID=67889334
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910557200.XA Pending CN110244365A (en) | 2019-06-25 | 2019-06-25 | A Multi-resolution Ionospheric Chromatography Method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110244365A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100030475A1 (en) * | 2002-09-23 | 2010-02-04 | Columbia Technologies , LLC | Smart data subsurface data repository system, method and computer program product |
| CN103454695A (en) * | 2013-08-20 | 2013-12-18 | 河海大学 | GPS ionized layer TEC chromatographic method |
| CN104007479A (en) * | 2014-06-13 | 2014-08-27 | 东南大学 | Ionized layer chromatography technology and ionized layer delay correction method based on multi-scale subdivision |
| CN107356979A (en) * | 2017-05-27 | 2017-11-17 | 淮海工学院 | A kind of method of ionized layer TEC exception detection |
| CN107632323A (en) * | 2017-08-08 | 2018-01-26 | 西安电子科技大学 | Radar echo signal processing method for Ionospheric F detection |
| CN109657191A (en) * | 2018-12-28 | 2019-04-19 | 中国人民解放军战略支援部队信息工程大学 | A kind of Ionospheric Tomography method and device |
-
2019
- 2019-06-25 CN CN201910557200.XA patent/CN110244365A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100030475A1 (en) * | 2002-09-23 | 2010-02-04 | Columbia Technologies , LLC | Smart data subsurface data repository system, method and computer program product |
| CN103454695A (en) * | 2013-08-20 | 2013-12-18 | 河海大学 | GPS ionized layer TEC chromatographic method |
| CN104007479A (en) * | 2014-06-13 | 2014-08-27 | 东南大学 | Ionized layer chromatography technology and ionized layer delay correction method based on multi-scale subdivision |
| CN107356979A (en) * | 2017-05-27 | 2017-11-17 | 淮海工学院 | A kind of method of ionized layer TEC exception detection |
| CN107632323A (en) * | 2017-08-08 | 2018-01-26 | 西安电子科技大学 | Radar echo signal processing method for Ionospheric F detection |
| CN109657191A (en) * | 2018-12-28 | 2019-04-19 | 中国人民解放军战略支援部队信息工程大学 | A kind of Ionospheric Tomography method and device |
Non-Patent Citations (2)
| Title |
|---|
| PING YIN ET AL.,: "A multiresolution inversion for imaging the ionosphere", 《JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS》 * |
| 尹萍 等: "电离层E/F层闪烁对GPS TEC变化率的影响", 《中国民航大学学报》 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111273335B (en) | Ionosphere tomography method based on vertical measurement data constraint | |
| Yao et al. | Global ionospheric modeling based on multi-GNSS, satellite altimetry, and Formosat-3/COSMIC data | |
| Feltens et al. | Comparative testing of four ionospheric models driven with GPS measurements | |
| Chen et al. | Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model | |
| Aa et al. | A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation | |
| Sui et al. | Sparse reconstruction of 3-D regional ionospheric tomography using data from a network of GNSS reference stations | |
| CN114690208B (en) | Ionospheric three-dimensional electron density sparse tomography method and device | |
| Yao et al. | An improved constrained simultaneous iterative reconstruction technique for ionospheric tomography | |
| Cui et al. | Modeling wide-area tropospheric delay corrections for fast PPP ambiguity resolution | |
| Jin et al. | 3-D ionospheric tomography from dense GNSS observations based on an improved two-step iterative algorithm | |
| Allain et al. | Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping | |
| Li et al. | Real‐time sensing of precipitable water vapor from beidou observations: hong kong and CMONOC networks | |
| She et al. | Global ionospheric electron density estimation based on multisource TEC data assimilation | |
| Razin et al. | Regional ionosphere modeling using spherical cap harmonics and empirical orthogonal functions over Iran | |
| Haji-Aghajany et al. | The effect of function-based and voxel-based tropospheric tomography techniques on the GNSS positioning accuracy | |
| CN114384564A (en) | A multi-source data-driven ionospheric tomography method | |
| Wang et al. | Three‐dimensional ionospheric tomography reconstruction using the model function approach in Tikhonov regularization | |
| Nohutcu et al. | B-spline modeling of VTEC over Turkey using GPS observations | |
| Lu et al. | Virtual reference station-based computerized ionospheric tomography | |
| Xu et al. | A cloud-dependent 1DVAR precipitation retrieval algorithm for FengYun-3D microwave soundings: A case study in tropical cyclone Mekkhala | |
| Durmaz et al. | Non-parametric regional VTEC modeling with multivariate adaptive regression B-splines | |
| Liu et al. | Generating GPS decoupled clock products for precise point positioning with ambiguity resolution | |
| Ding et al. | A novel method for tropospheric delay mapping function vertical modeling | |
| CN118731996B (en) | A new method for monitoring ionospheric three-dimensional disturbances | |
| Wang et al. | 3-D ionospheric tomography using model function in the modified L-curve method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190917 |
|
| RJ01 | Rejection of invention patent application after publication |