CN110257425B - A PS transposon system and its mediated gene transfer method - Google Patents
A PS transposon system and its mediated gene transfer method Download PDFInfo
- Publication number
- CN110257425B CN110257425B CN201910366530.0A CN201910366530A CN110257425B CN 110257425 B CN110257425 B CN 110257425B CN 201910366530 A CN201910366530 A CN 201910366530A CN 110257425 B CN110257425 B CN 110257425B
- Authority
- CN
- China
- Prior art keywords
- transposase
- plasmid
- gene
- transposon
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 78
- 238000012546 transfer Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000001404 mediated effect Effects 0.000 title abstract description 10
- 239000013612 plasmid Substances 0.000 claims abstract description 76
- 102000008579 Transposases Human genes 0.000 claims abstract description 48
- 108010020764 Transposases Proteins 0.000 claims abstract description 48
- 230000009261 transgenic effect Effects 0.000 claims abstract description 19
- 230000017105 transposition Effects 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 claims abstract description 10
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 230000003252 repetitive effect Effects 0.000 claims abstract 3
- 239000013598 vector Substances 0.000 claims description 37
- 230000014509 gene expression Effects 0.000 claims description 20
- 238000000338 in vitro Methods 0.000 claims description 12
- 238000013518 transcription Methods 0.000 claims description 11
- 230000035897 transcription Effects 0.000 claims description 11
- 238000010276 construction Methods 0.000 claims description 10
- 101710184550 15-cis-phytoene synthase Proteins 0.000 claims description 9
- 101710173432 Phytoene synthase Proteins 0.000 claims description 9
- 108020004999 messenger RNA Proteins 0.000 claims description 6
- XMQFTWRPUQYINF-UHFFFAOYSA-N bensulfuron-methyl Chemical compound COC(=O)C1=CC=CC=C1CS(=O)(=O)NC(=O)NC1=NC(OC)=CC(OC)=N1 XMQFTWRPUQYINF-UHFFFAOYSA-N 0.000 claims description 5
- 239000013613 expression plasmid Substances 0.000 claims description 5
- 238000010367 cloning Methods 0.000 claims description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 3
- 238000012215 gene cloning Methods 0.000 claims description 3
- 108700008625 Reporter Genes Proteins 0.000 claims description 2
- 150000001413 amino acids Chemical class 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 230000005030 transcription termination Effects 0.000 claims 1
- 238000001415 gene therapy Methods 0.000 abstract description 10
- 241001465754 Metazoa Species 0.000 abstract description 6
- 238000011160 research Methods 0.000 abstract description 6
- 210000001161 mammalian embryo Anatomy 0.000 abstract description 5
- 238000012795 verification Methods 0.000 abstract description 2
- 241000287107 Passer Species 0.000 description 54
- 210000004027 cell Anatomy 0.000 description 32
- 238000001962 electrophoresis Methods 0.000 description 20
- 108020004414 DNA Proteins 0.000 description 19
- 239000005090 green fluorescent protein Substances 0.000 description 18
- 238000003780 insertion Methods 0.000 description 14
- 230000037431 insertion Effects 0.000 description 14
- 239000002609 medium Substances 0.000 description 13
- 241000252212 Danio rerio Species 0.000 description 12
- 240000007019 Oxalis corniculata Species 0.000 description 11
- 210000002257 embryonic structure Anatomy 0.000 description 11
- 239000012634 fragment Substances 0.000 description 11
- 230000029087 digestion Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 7
- 235000013601 eggs Nutrition 0.000 description 7
- 238000000520 microinjection Methods 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008488 polyadenylation Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 241000251468 Actinopterygii Species 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 3
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 3
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 239000012124 Opti-MEM Substances 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 238000003766 bioinformatics method Methods 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000005138 cryopreservation Methods 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000012096 transfection reagent Substances 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 241000252229 Carassius auratus Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 238000011771 FVB mouse Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101150066002 GFP gene Proteins 0.000 description 1
- 238000002738 Giemsa staining Methods 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 241000276569 Oryzias latipes Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108091027568 Single-stranded nucleotide Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000010352 biotechnological method Methods 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008711 chromosomal rearrangement Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000006481 glucose medium Substances 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 101150065732 tir gene Proteins 0.000 description 1
- 230000013819 transposition, DNA-mediated Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/106—Plasmid DNA for vertebrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/106—Plasmid DNA for vertebrates
- C12N2800/107—Plasmid DNA for vertebrates for mammalian
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/90—Vectors containing a transposable element
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及建立一种PS转座子系统介导的基因转移方法,同时还公开了该方法涉及的转基因供体质粒和转座酶真核表达及体外转录辅助质粒的构建方法,及其在制备转基因动物、研究基因功能和人类基因治疗中的应用。本发明属于动物基因工程领域。The invention relates to the establishment of a gene transfer method mediated by a PS transposon system, and also discloses a method for constructing a transgenic donor plasmid and a transposase eukaryotic expression and in vitro transcription auxiliary plasmid involved in the method, and the preparation method thereof. Transgenic animals, studies of gene function and applications in human gene therapy. The invention belongs to the field of animal genetic engineering.
背景技术Background technique
基因转移是当前一项重要的生物技术手段,可以介导外源基因稳定的整合到宿主染色体中,所以在研究基因功能、制备转基因生物和人类基因治疗等领域中都有重要的应用价值。Gene transfer is an important biotechnological method at present, which can mediate the stable integration of foreign genes into the host chromosome, so it has important application value in the fields of studying gene function, preparing transgenic organisms and human gene therapy.
转座子是基因组上一段可以自由跳跃的DNA序列,首先是由Mc.Clintock于20世纪40年代在玉米染色体中发现,后又陆续在细菌、真菌及昆虫等各种生物中发现。经过对转座子的注解之后发现无论在原核生物还是真核生物中都存在相当数量的转座子。转座子在不同生物间分布存在较大差异,尤其是高等真核生物中含量更高,例如转座子是哺乳动物基因组中最大的组分,几乎占到人类基因组的一半,在玉米中几乎占到80%。DNA转座子的转座过程遵循“剪切-粘贴”的机制在基因组上进行移动,因此被作为有效的基因转移工具进行开发。近年来,转座子在人类基因治疗,转基因鼠和斑马鱼等模式生物制备和功能基因组学的研究上已经取得了重要的进展。除此之外,转座子作为基因转移的载体具有很多优势:1)结构简单,与外源基因共同整合入受体基因组的只是两侧的TIR序列,对外源基因的影响很小,在整合位点也没有发现大片段的丢失和染色体重排的现象;2)相较与病毒载体,DNA转座子载体对插入片段限制较小;3)外源基因可以稳定整合到染色体中,而且通过生殖细胞传代后也能够长期的表达;4)转座酶可以催化单拷贝的基因精确的插入手提序列中,不再依靠随机整合且插入片段的大小也不会发生变化;5)转座子系统可以全部以裸露的DNA形式给予,也可以DNA与RNA或者蛋白质的形式提供转座酶相结合进行转座,所以其免疫原性较低。其中研究最为广泛的DNA转座子Sleeping Beauty(SB)、PiggBac(PB)和Tol2,这三种转座子不仅发生起源不同,在转座活性、插入偏好性方面也存在差异,因此在应用上也有所区别。例如SB偏好插入位点是“TA”,但是对基因没有偏好性,所以SB转座子常被用于人类基因治疗;PB偏好插入位点是“TTAA”,而且偏好插入基因内部,所以常被用于功能基因研究、基因捕获等;Tol2则没有很明显的偏好插入位点,插入位置多为基因上游调控区,故常用来研究增强子捕获等。Transposon is a DNA sequence that can jump freely on the genome. It was first discovered in the corn chromosome by Mc.Clintock in the 1940s, and later in various organisms such as bacteria, fungi and insects. After the annotation of transposons, it is found that there are a considerable number of transposons in both prokaryotes and eukaryotes. There are great differences in the distribution of transposons among different organisms, especially in higher eukaryotes. For example, transposons are the largest component of the mammalian genome, accounting for almost half of the human genome, and almost half of the human genome. accounted for 80%. The transposition process of DNA transposons follows a "cut-and-paste" mechanism to move across the genome, and thus has been developed as an efficient gene transfer tool. In recent years, transposons have made important progress in human gene therapy, transgenic mice and zebrafish and other model organisms and functional genomics research. In addition, transposons have many advantages as a gene transfer carrier: 1) The structure is simple, and only the TIR sequences on both sides are integrated into the recipient genome together with the exogenous gene, which has little impact on the exogenous gene. The loss of large fragments and chromosomal rearrangement were not found at the site; 2) Compared with viral vectors, DNA transposon vectors have less restriction on inserted fragments; 3) Exogenous genes can be stably integrated into chromosomes, and through It can also be expressed for a long time after germ cell passage; 4) Transposase can catalyze the precise insertion of a single copy of the gene into the hand-held sequence, no longer rely on random integration and the size of the inserted fragment will not change; 5) Transposon system It can be administered in the form of naked DNA, or it can be combined with transposase in the form of DNA and RNA or protein for transposition, so its immunogenicity is low. Among them, the most widely studied DNA transposons, Sleeping Beauty (SB), PiggBac (PB) and Tol2, these three transposons not only have different origins, but also have differences in transposition activity and insertion preference. There are also differences. For example, SB prefers the insertion site to be "TA", but has no preference for genes, so SB transposons are often used in human gene therapy; PB prefers the insertion site to be "TTAA", and prefers to insert into genes, so it is often It is used for functional gene research, gene capture, etc.; Tol2 has no obvious preference for insertion sites, and the insertion positions are mostly upstream regulatory regions of genes, so it is often used to study enhancer capture and so on.
显微注射已经被广泛应用,且技术成熟稳定,同时科学家们利用转座子介导基因转移的特点,进一步完善了转座子介导细胞质显微注射的方法。由于DNA转座系统中的转座酶含有核定位信号序列(NLS),可以顺利的介导目的基因进入细胞核,注射可以不入核,直接进行细胞质注射。所以这项技术正受到重视,并取得了令人鼓舞的进展,这可能是突破大型哺乳动物转基因技术瓶颈的新方法。Microinjection has been widely used, and the technology is mature and stable. At the same time, scientists have further improved the method of transposon-mediated cytoplasmic microinjection by using the characteristics of transposon-mediated gene transfer. Since the transposase in the DNA transposition system contains a nuclear localization signal sequence (NLS), it can smoothly mediate the entry of the target gene into the nucleus, and the injection can be carried out directly into the cytoplasm without entering the nucleus. So this technology is receiving attention and has made encouraging progress, which may be a new way to break through the bottleneck of transgenic technology in large mammals.
转座子用于人类基因治疗主要包括目的基因克隆、基因转移、靶细胞选择和临床试验观察等阶段,其中基因转移则是基因治疗的关键步骤,而DNA转座子介导的基因转移在基因治疗中的优点就是高效、安全。迄今为止,转座子已经称为基因治疗中最常用的非病毒载体。此外,转座子还可以制备突变体,开展基因捕获,应用与功能基因组学研究。The use of transposon in human gene therapy mainly includes the stages of target gene cloning, gene transfer, target cell selection and clinical trial observation. The advantages of treatment are that it is efficient and safe. To date, transposons have been called the most commonly used non-viral vectors in gene therapy. In addition, transposons can also generate mutants, carry out gene trapping, application and functional genomics research.
DNA转座子介导的基因转移系统是备受科学家们青睐的转基因技术,但是具有自主转座活性的DNA转座子在脊椎动物中很少见。1996年,首次在白化青鏘(Oryziaslatipes)中发现具有天然活性的脊椎动物转座子,即Tol2转座子;2008年,在金鱼中发现了第二例具有自主转座活性的Tgf2转座子,并且该转座子与青鏘Tol2转座子元件十分相似。发明人利用生物信息学的手段,对脊椎动物的Tc1/Mariner转座子超家族挖掘研究中发现了passer(PS)家族,通过插入年龄分析等表明其可能具有较高的活性。在系统进化比较研究基础上进行了分子重构,获得PS转座子的两个末端重复序列TIR关键元件和转座酶的序列,并构建成一套基因转移载体系统,经细胞、转基因鼠和斑马鱼等验证,该载体系统能够有效介导基因转移,在转基因动物制备和基因治疗中具有很大应用潜力。DNA transposon-mediated gene transfer system is a transgenic technology favored by scientists, but DNA transposons with autonomous transposition activity are rare in vertebrates. In 1996, a vertebrate transposon with natural activity, namely Tol2 transposon, was first discovered in Oryzias latipes; in 2008, the second case of Tgf2 transposon with autonomous transposition activity was found in goldfish. , and this transposon is very similar to the Qingqiang Tol2 transposon element. The inventors discovered the passer (PS) family in the research on the Tc1/Mariner transposon superfamily of vertebrates by means of bioinformatics, and the insertion age analysis showed that it may have higher activity. On the basis of phylogenetic comparative study, molecular reconstruction was carried out, and the sequences of TIR key elements and transposase of the two terminal repeats of PS transposon were obtained, and a set of gene transfer vector system was constructed. Fish and others have verified that the vector system can effectively mediate gene transfer, and has great application potential in the preparation of transgenic animals and gene therapy.
发明内容SUMMARY OF THE INVENTION
为了克服上述缺陷,本发明提供一种PS转座子系统及其介导的基因转移方法,采用生物信息学方法,发现Tc1/Mariner超家族中PS家族,进行分子重构,获得转座子两个末端重复序列和转座酶序列,并构建PS转座子供体质粒和表达PS转座酶的辅助质粒,组装成一套基因转移系统,命名为PS转座子系统。本发明的目的在于提供一种PS转座系统介导的高效基因转移方法,提高鼠、斑马鱼等动物的转基因制备效率,并可以有效应用于细胞基因转染整合、人类基因治疗和基因捕获等研究领域。In order to overcome the above-mentioned defects, the present invention provides a PS transposon system and a gene transfer method mediated by the same. By using bioinformatics methods, the PS family in the Tc1/Mariner superfamily is found, and molecular reconstruction is performed to obtain two transposons. A terminal repeat sequence and transposase sequence were constructed, and a PS transposon donor plasmid and an auxiliary plasmid expressing PS transposase were constructed to assemble a set of gene transfer system, named PS transposon system. The purpose of the present invention is to provide a high-efficiency gene transfer method mediated by PS transposition system, improve the transgene preparation efficiency of animals such as mice and zebrafish, and can be effectively applied to cell gene transfection and integration, human gene therapy and gene capture, etc. field of study.
本发明所述的PS转座子系统主要由PS转座子供体质粒和PS转座酶辅助质粒构成。The PS transposon system of the present invention is mainly composed of a PS transposon donor plasmid and a PS transposase helper plasmid.
本发明所述的转基因供体质粒(pLB-PS)包括PS转座子两侧末端重复序列和多克隆插入位点,多克隆插入位点(NruI/NotI/EcoRI酶切位点)可以插入需要转移的目的基因盒,该供体质粒(pLB-PS)的序列如SEQ ID No.1所示。目的基因可通过上述的任意一个多克隆插入位点插入转基因供体质粒中。目的基因插入转基因供体质粒中是指:目的基因插入PS5’TIR和PS3’TIR之间。The transgenic donor plasmid (pLB-PS) of the present invention includes the terminal repeat sequences on both sides of the PS transposon and a polyclonal insertion site, and the polyclonal insertion site (NruI/NotI/EcoRI restriction site) can be inserted into the desired The target gene cassette transferred, the sequence of the donor plasmid (pLB-PS) is shown in SEQ ID No.1. The gene of interest can be inserted into the transgenic donor plasmid through any of the above-mentioned polyclonal insertion sites. Insertion of the target gene into the transgenic donor plasmid means: the target gene is inserted between the PS5'TIR and the PS3'TIR.
本发明所述的PS转座子两侧末端重复序列来源于Tc1/Mariner超家族中PS家族的分子重构所得,两侧末端反向重复序列(TIR)分别长度为28个核苷酸序列(即PS5’TIR和PS3’TIR),序列分别如SEQ ID No.2和SEQ ID No.3所示。The terminal repeat sequences on both sides of the PS transposon of the present invention are derived from the molecular reconstruction of the PS family in the Tc1/Mariner superfamily, and the lengths of the terminal inverted repeats (TIR) on both sides are 28 nucleotide sequences ( Namely PS5'TIR and PS3'TIR), the sequences are shown in SEQ ID No. 2 and SEQ ID No. 3, respectively.
本发明所述的目的基因盒可以是报告基因表达盒,或者其它外源基因表达盒,或者基因捕获元件。The target gene cassette described in the present invention can be a reporter gene expression cassette, or other exogenous gene expression cassettes, or a gene trapping element.
本发明所述的PS转座酶(即PS CDS,又称为PSase CDS)序列为利用生物信息学分析手段,对PS转座子家族进行分子重构获得转座酶序列,经化学合成获得,如SEQ ID No.5所示。The PS transposase (i.e. PS CDS, also known as PSase CDS) sequence of the present invention is obtained by using bioinformatics analysis means to carry out molecular reconstruction of the PS transposon family to obtain the transposase sequence, which is obtained by chemical synthesis, As shown in SEQ ID No.5.
本发明所述的PS转座酶辅助质粒pcDNA3.9-PSase有两种形式,一是可以在细胞和体内直接表达的真核表达质粒,另一种是经体外转录辅助质粒,可以进行体外转录形成5’加帽PS转座酶的mRNA。The PS transposase helper plasmid pcDNA3.9-PSase of the present invention has two forms, one is a eukaryotic expression plasmid that can be directly expressed in cells and in vivo, and the other is an in vitro transcription helper plasmid that can be transcribed in vitro The 5' capped PS transposase mRNA is formed.
本发明所述的pcDNA3.9-PSase真核表达质粒包括病毒启动子序列(CMV)和PS转座酶cDNA序列和bGH多聚腺苷酸(PolyA)组成;载体构架来自pcDNA3.9载体,所述病毒启动子序列(CMV)长度为584个核苷酸序列,能够指导下游基因的表达;所述PS转座酶长度为1275个核苷酸序列;所述bGH多聚腺苷酸(PolyA)长度为225个核苷酸序列,该载体能够自主表达转座酶,同时该载体可以作为体外转录辅助质粒包括T7启动子、PS转座酶cDNA序列和bGHPolyA序列,其中T7启动子的长度为19个核苷酸序列(bp)该载体的序列,bGH PolyA序列终止转录,载体能够利用mMESSAGE Mmachine T7kit(购自Invitrogen公司)试剂盒进行PS转座酶5’加帽mRNA的体外转录,该载体的序列如SEQ ID No.4所示。The pcDNA3.9-PSase eukaryotic expression plasmid of the present invention comprises a viral promoter sequence (CMV), a PS transposase cDNA sequence and a bGH polyadenylation (PolyA); the vector framework is derived from the pcDNA3.9 vector, and the The length of the viral promoter sequence (CMV) is 584 nucleotides, which can guide the expression of downstream genes; the length of the PS transposase is 1275 nucleotides; the bGH polyadenylation (PolyA) The length is 225 nucleotides, the vector can express transposase autonomously, and the vector can be used as an in vitro transcription helper plasmid including T7 promoter, PS transposase cDNA sequence and bGHPolyA sequence, wherein the length of the T7 promoter is 19 The nucleotide sequence (bp) is the sequence of the vector, and the bGH PolyA sequence terminates transcription. The vector can use the mMESSAGE Mmachine T7kit (purchased from Invitrogen) to perform in vitro transcription of PS transposase 5'-capped mRNA. The sequence is shown in SEQ ID No.4.
本发明提供的基于PS转座子系统的基因转移方法,经过细胞和胚胎水平验证能够高效介导基因转移,可应用于多个生物技术领域:1)使用本发明中给出的方法可有效地将目的基因盒插入到宿主基因组中,提高基因转移效率;2)与基因捕获技术结合可以有效开展动物基因功能研究;3)可以介导进行人类基因治疗等。The gene transfer method based on the PS transposon system provided by the present invention can efficiently mediate gene transfer after verification at the cell and embryo levels, and can be applied to a number of biotechnological fields: 1) The method provided in the present invention can effectively Insert the target gene cassette into the host genome to improve the efficiency of gene transfer; 2) Combine with gene capture technology, it can effectively carry out animal gene function research; 3) It can mediate human gene therapy and so on.
附图说明Description of drawings
图1:pLB-PSase质粒电泳图;Figure 1: Electrophoresis of pLB-PSase plasmid;
图2:pcDNA3.9-PSase质粒电泳图;Figure 2: Electrophoresis of pcDNA3.9-PSase plasmid;
图3:pcDNA3.9-PSase质粒图谱;Figure 3: pcDNA3.9-PSase plasmid map;
图4:pLB-PS质粒示意图;Figure 4: Schematic diagram of pLB-PS plasmid;
图5:PS-TIR退火产物电泳图;Figure 5: Electropherogram of PS-TIR annealing products;
图6:PS-TIR纯化产物电泳图;Figure 6: Electropherogram of PS-TIR purified product;
图7:pLB-PS质粒电泳图;Figure 7: Electrophoresis of pLB-PS plasmid;
图8:pLB-PS质粒酶切产物电泳图;Figure 8: Electrophoresis of pLB-PS plasmid digestion products;
图9:pPS-PGK-NEO质粒电泳图;Figure 9: electrophoresis of pPS-PGK-NEO plasmid;
图10:pPS-PGK-NEO质粒酶切产物电泳图;Figure 10: Electrophoresis image of pPS-PGK-NEO plasmid digestion products;
图11:pPS-PGK-NEO质粒图谱;Figure 11: pPS-PGK-NEO plasmid map;
图12:PS-FAG-GFP PCR切回产物;Figure 12: PS-FAG-GFP PCR cut back product;
图13:pPS-FAG-GFP质粒电泳图;Figure 13: pPS-FAG-GFP plasmid electrophoresis;
图14:pPS-FAG-GFP酶切电泳图,1:pPS-FAG-GFP酶切;2:pPS-FAG-GFP质粒;Figure 14: electrophoresis of pPS-FAG-GFP digestion, 1: pPS-FAG-GFP digestion; 2: pPS-FAG-GFP plasmid;
图15:pPS-FAG-GFP质粒图谱;Figure 15: pPS-FAG-GFP plasmid map;
图16:pZB-RT-bGH酶切电泳图;Figure 16: pZB-RT-bGH digestion electropherogram;
图17:pPS-PGK-NEO酶切电泳图;Figure 17: pPS-PGK-NEO enzyme digestion electropherogram;
图18:PS框架、Tyr-TYR-bGHpA片段切回电泳图,1:PS框架切回电泳图;2:Tyr-TYR-bGHpA片段切回电泳图;Figure 18: Electropherogram of PS frame and Tyr-TYR-bGHpA fragment cut back, 1: Electropherogram of PS frame cut back; 2: Electropherogram of Tyr-TYR-bGHpA fragment cut back;
图19:pPS-Tyr质粒电泳图;Figure 19: pPS-Tyr plasmid electropherogram;
图20:pPS-Tyr酶切电泳图,1-6:pPS-Tyr酶切;7:pPS-Tyr质粒;Figure 20: The electrophoresis of pPS-Tyr digestion, 1-6: pPS-Tyr digestion; 7: pPS-Tyr plasmid;
图21:pPS-Tyr质粒图谱;Figure 21: pPS-Tyr plasmid map;
图22:Hela细胞G418抗性筛选阳性克隆图;Figure 22: Hela cell G418 resistance screening positive clone map;
图23:PS与SB转座活性比较图;Figure 23: PS and SB transposition activity comparison graph;
图24:PS转座系统制备转基因小鼠图;Figure 24: PS transposition system to prepare transgenic mice;
图25:不同时期显微注射斑马鱼胚胎荧光图;Figure 25: Fluorescence images of microinjected zebrafish embryos at different stages;
图26:PS转座子显微注射斑马鱼阳性率比较图。Figure 26: Comparison of positive rates of PS transposon microinjection in zebrafish.
具体实施方式Detailed ways
为了更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制的实施例如下:In order to better illustrate the present invention and facilitate the understanding of the technical solutions of the present invention, typical but non-limiting embodiments of the present invention are as follows:
下述实施例中提到的实验方法,如无特别说明均为常规方法。The experimental methods mentioned in the following examples are conventional methods unless otherwise specified.
实施例I、转座酶表达载体pcDNA3.9-PSase的构建
1、转座酶PSase载体合成。1. Synthesis of transposase PSase vector.
PSase转座酶序列经化学合成后,克隆至LB载体上,构建p LB-PSase载体,质粒DNA用1%琼脂糖凝胶电泳检测(如图1)。After the PSase transposase sequence was chemically synthesized, it was cloned into the LB vector to construct the pLB-PSase vector, and the plasmid DNA was detected by 1% agarose gel electrophoresis (as shown in Figure 1).
2、转座酶真核表达质粒及体外转录辅助质粒pcDNA3.9-PSase的构建2. Construction of transposase eukaryotic expression plasmid and in vitro transcription helper plasmid pcDNA3.9-PSase
用限制性内切酶BamHI和XhoI将转座酶CDS从pLB-PSase载体中切出,琼脂糖凝胶回收1296bp的CDS序列。同时用BamHI和XhoI双酶切pcDNA3.9载体,切胶回收3.9kb片段作为载体框架。将转座酶CDS和pcDNA3.9载体框架连接后,转化感受态细胞Top10,挑单菌落至液体培养基LA培养,提质粒进行电泳鉴定(如图2),阳性克隆者命名为pcDNA3.9-PSase,质粒图谱如图3所示。The transposase CDS was excised from the pLB-PSase vector with the restriction enzymes BamHI and XhoI, and the 1296bp CDS sequence was recovered from agarose gel. At the same time, the pcDNA3.9 vector was digested with BamHI and XhoI, and the 3.9kb fragment was recovered by cutting the gel as the vector frame. After the transposase CDS and the pcDNA3.9 vector frame were connected, the competent cells Top10 were transformed, and the colonies were picked and cultured in liquid medium LA, and the plasmid was extracted for electrophoresis identification (as shown in Figure 2). The positive clones were named pcDNA3.9- PSase, the plasmid map is shown in Figure 3.
pcDNA3.9-PSase载体序列如SEQ ID No.4所示,包括CMV Enhancer promoter235-818、T7promoter 863-881、PSase CDS 919-2193、Sp6promoter 2224-2242、bGH poly(A)signal 2268-2492、F1Origin 2538-2896、SV40poly(A)signal 2897-2998、AmpicillinResistance gene 4208-5068。The sequence of pcDNA3.9-PSase vector is shown in SEQ ID No.4, including CMV Enhancer promoter 235-818, T7promoter 863-881, PSase CDS 919-2193, Sp6promoter 2224-2242, bGH poly(A)signal 2268-2492, F1Origin 2538-2896, SV40 poly(A) signal 2897-2998, Ampicillin Resistance gene 4208-5068.
实施例II、转座子表达载体的构建Embodiment II, the construction of transposon expression vector
1、转基因供体质粒pLB-PS载体构建1. Construction of transgenic donor plasmid pLB-PS vector
1.1PS两个末端反向重复元件(PS 3’和5’)的合成1.1 Synthesis of two terminal inverted repeat elements of PS (PS 3' and 5')
对多物种进行Tc1/Marinier家族中PS转座子进行插入年龄等分析,并在系统进化比较研究基础上进行了分子重构,确定了高度保守的5’和3’TIR,分别为28bp的反向互补序列。并将此序列加上限制性内切酶位点,送华大基因公司合成,序列见表1。The insertion age of PS transposons in the Tc1/Marinier family was analyzed for multiple species, and molecular reconstruction was carried out on the basis of phylogenetic comparative studies, and highly conserved 5' and 3' TIRs were identified, which were 28 bp transposons, respectively. to the complementary sequence. Add the restriction endonuclease site to this sequence and send it to Huada Gene Company for synthesis. The sequence is shown in Table 1.
1.2PS转座元件的聚合酶扩增1.2 Polymerase Amplification of PS Transposable Elements
将上述化学合成的单链核苷酸链PS5’t(包括PS5’末端的反向重复元件和酶切位点,酶切位点用于插入目的基因)和PS3’t(包括PS3’末端的反向重复元件和酶切位点,酶切位点用于插入目的基因)先退火,再用Klenow聚合酶延伸,形成双链。反应体系为50μL,包括1ul PS5’t(100uM)、1ul PS3’t(100uM)、23ul超纯水,95℃变性5min,再以每秒0.1℃的温度降至25℃,保持5min。再加入5μL Klenow Buffer,2μL Klenow polymerase,5μL 4dNTP,13μL超纯水,37℃ 1.5h,80℃ 20min,降至常温,获得目标序列(PS TIR)。随后用Qiagen PCR纯化试剂盒纯化(如图5,6),经核酸浓度测定仪测定浓度后,-20℃保存备用。质粒示意图如图4所示,图4中基因插入位点即多克隆位点(酶切位点)。The above chemically synthesized single-stranded nucleotide chain PS5't (including the inverted repeat element at the end of PS5' and an enzyme cleavage site, the enzyme cleavage site is used to insert the target gene) and PS3't (including the end of the PS3' end. Inverted repeat elements and restriction sites, which are used to insert the target gene), are first annealed and then extended with Klenow polymerase to form double strands. The reaction system was 50 μL, including 1ul PS5’t (100uM), 1ul PS3’t (100uM), 23ul ultrapure water, denatured at 95°C for 5min, then lowered to 25°C at a temperature of 0.1°C per second, and maintained for 5min. Then add 5 μL Klenow Buffer, 2 μL Klenow polymerase, 5 μL 4dNTP, 13 μL ultrapure water, 37°C for 1.5h, 80°C for 20min, then drop to room temperature to obtain the target sequence (PS TIR). Subsequently, it was purified by Qiagen PCR purification kit (as shown in Figures 5 and 6), and the concentration was determined by a nucleic acid concentration analyzer, and then stored at -20°C for later use. The schematic diagram of the plasmid is shown in Figure 4, and the gene insertion site in Figure 4 is the multiple cloning site (enzyme cleavage site).
1.3 p LB-PS载体构建1.3 p LB-PS vector construction
p LB-PS载体结构示意图如图4所示,将纯化的PS转座子片段(即上述1.2得到的目标序列PS TIR)与天根零背景载体pLB用T4连接酶连接,转化感受态细胞Top10,挑单菌落至含Amp的液体培养基LB培养,提质粒进行电泳及酶切鉴定(如图7,8),阳性克隆者命名为pLB-PS。pLB-PS载体序列如SEQ ID No.1所示,包括T7promoter 305-323;PS 5’TIR 380-407(SEQ ID No.2);PS 3’TIR 428-455(SEQ ID No.3);Ori 1257-1845;AmpicillinResistance gene 2016-2876。SEQ ID No.1中,第408-427的碱基为多克隆位点(酶切位点),用于插入目的基因。The schematic diagram of the structure of the pLB-PS vector is shown in Figure 4. The purified PS transposon fragment (that is, the target sequence PS TIR obtained in 1.2 above) was ligated with the Tiangen zero background vector pLB with T4 ligase, and transformed into competent cells Top10 , pick a single colony to the Amp-containing liquid medium LB culture, extract the plasmid for electrophoresis and digestion identification (as shown in Figures 7, 8), and the positive clone is named pLB-PS. The pLB-PS vector sequence is shown in SEQ ID No.1, including T7promoter 305-323; PS 5'TIR 380-407 (SEQ ID No.2); PS 3'TIR 428-455 (SEQ ID No.3); Ori 1257-1845; Ampicillin Resistance gene 2016-2876. In SEQ ID No. 1, bases 408-427 are multiple cloning sites (enzyme cleavage sites) for inserting the target gene.
2、转座子载体pPS-PGK-NEO的构建2. Construction of the transposon vector pPS-PGK-NEO
用限制性内切酶Nru1酶切PGK-NEO-bGHpA-TA克隆载体(PGK-NEO-bGHpA-TA克隆载体为本实验室保存载体),切胶回收1659bp的PGK-NEO-bGHpA表达框(其作为目的基因盒)。用Nru 1酶切LB-PS载体,回收3066bp的载体框架,将表达框与载体连接,转化感受态细胞Top10,挑单菌落至含Amp液体培养基LB培养,提质粒进行电泳及酶切鉴定,筛选大小及插入方向正确者(如图9,10),送华大基因测序,质粒图谱如图11所示。The PGK-NEO-bGHpA-TA cloning vector (the PGK-NEO-bGHpA-TA cloning vector is the laboratory preservation vector) was cut with restriction endonuclease Nru1, and the 1659bp PGK-NEO-bGHpA expression cassette was recovered by cutting the gel. as the target gene cassette). The LB-PS vector was digested with
3、转座子载体pPS-FAG-GFP的构建3. Construction of the transposon vector pPS-FAG-GFP
以pZB-FAG-GFP质粒DNA为模板,按表2中列举的扩增PS-FAG-GFP的引物扩增FAG-GFP基因片段(扩增的FAG-GFP基因片段作为目的基因盒)。反应体系为50μl,10μL 5×SFBuffer、1μl dNTP、2μL 10μM引物PS-FAG-GFP-F、2μl 10μM引物PS-FAG-GFP-R(见引物序列表2)、1μl PhantaTM Super-Fidelity,1μl pZB-FAG-GFP质粒DNA模板,加超纯水至50μl(高保真酶购自诺唯赞公司)。PCR扩增程序:94℃ 40s,55℃ 40s,72℃ 1m30s,循环30次。PCR扩增产物用1%琼脂糖凝胶电泳检测。将PCR产物琼脂糖凝胶回收(如图12),与p LB载体连接,进行TA克隆,筛选出阳性克隆,提质粒及酶切鉴定(如图13,14),测序比对正确后保存供下一步实验用,命名为pPS-FAG-GFP,质粒图谱如图15。Using the pZB-FAG-GFP plasmid DNA as a template, the FAG-GFP gene fragment was amplified according to the primers listed in Table 2 for amplifying PS-FAG-GFP (the amplified FAG-GFP gene fragment was used as the target gene cassette). The reaction system was 50 μl, 10
4、转座子载体pPS-Tyr的构建4. Construction of the transposon vector pPS-Tyr
用限制性内切酶NheI酶切载体pZB-RT-bGH(如图16),回收Tyr-TYR-bGHpA片段(2555bp)(如图18),补平纯化后保存待用;用NruI酶切载体pPS-PGK-NEO(如图17),回收3070bp PS框架(如图18),与上述补平片段Tyr-TYR-bGHpA(其作为目的基因盒)连接,筛选出阳性克隆,提质粒及酶切鉴定(如图19,20),测序比对正确后保存待用,命名为pPS-Tyr,质粒图谱如图21。The vector pZB-RT-bGH was digested with restriction endonuclease NheI (as shown in Figure 16), and the Tyr-TYR-bGHpA fragment (2555bp) was recovered (as shown in Figure 18), which was filled and purified and stored for later use; the vector was digested with NruI pPS-PGK-NEO (as shown in Figure 17), recovered a 3070bp PS frame (as shown in Figure 18), connected with the above-mentioned fill-in fragment Tyr-TYR-bGHpA (which is used as a target gene cassette), screened out positive clones, extracted plasmids and digested with enzymes Identification (as shown in Figures 19 and 20), sequenced and aligned correctly, and stored for later use, named pPS-Tyr, and the plasmid map is shown in Figure 21.
表1 PS-TIR序列Table 1 PS-TIR sequence
表1中序列分别为SEQ ID No.6和SEQ ID No.7。表1中下换线处为酶切位点。The sequences in Table 1 are SEQ ID No.6 and SEQ ID No.7, respectively. The underline in Table 1 is the restriction site.
表2 PS-FAG-GFP引物序列Table 2 PS-FAG-GFP primer sequences
表2中序列分别为SEQ ID No.8和SEQ ID No.9。The sequences in Table 2 are SEQ ID No. 8 and SEQ ID No. 9, respectively.
实施例III、PS转座子介导目的基因在小鼠细胞水平表达检验Embodiment III, PS transposon mediates target gene expression test at mouse cell level
1、冻存细胞的复苏与培养1. Recovery and culture of cryopreserved cells
pPS-PGK-NEO和pcDNA3.9-PSase质粒用OMEGA无内毒素质粒提取试剂盒(购自OMEGA公司)提取,产物终浓度调整为500ng/ul用于细胞转染。The pPS-PGK-NEO and pcDNA3.9-PSase plasmids were extracted with OMEGA endotoxin-free plasmid extraction kit (purchased from OMEGA company), and the final concentration of the products was adjusted to 500ng/ul for cell transfection.
从液氮中取出装有人宫颈癌细胞(Hela)的冻存管(保存于本实验室的细胞),立即投入37-40℃的温水中快速晃动,直至冻存液完全融解;在1-2min内完成复温;将细胞悬液移入无菌的离心管,加入5mL培养液,轻轻吹匀;将细胞悬液800-1000rpm离心5min,弃上清;向含有细胞沉淀的离心管加入1mL完全培养基,轻轻吹匀,将细胞悬液转入细胞培养瓶,加入适量的完全培养基进行培养。Take out the cryopreservation tube containing human cervical cancer cells (Hela) from liquid nitrogen (cells stored in our laboratory), and immediately put it into warm water at 37-40°C and shake quickly until the cryopreservation solution is completely thawed; after 1-2min Complete rewarming within 10 minutes; transfer the cell suspension to a sterile centrifuge tube, add 5 mL of culture medium, and blow gently; centrifuge the cell suspension at 800-1000 rpm for 5 min, discard the supernatant; add 1 mL of complete cell pellet to the centrifuge tube containing the cell pellet The medium, gently blow evenly, transfer the cell suspension into a cell culture flask, and add an appropriate amount of complete medium for cultivation.
2、细胞转染与筛选2. Cell transfection and screening
将人宫颈癌细胞Hela分成4组,各组分别转染pPS-PGK-NEO:pcDNA3.9-PSase和pPS-PGK-NEO:pcDNA3.9,pSB-PGK-NEO:pT2-CMV-SB100X和pSB-PGK-NEO:pT2-CMV每组3个重复。Human cervical cancer cells Hela were divided into 4 groups, each group was transfected with pPS-PGK-NEO:pcDNA3.9-PSase and pPS-PGK-NEO:pcDNA3.9, pSB-PGK-NEO:pT2-CMV-SB100X and pSB respectively -PGK-NEO:pT2-CMV with 3 replicates per group.
转染前24h,向六孔板中各孔含10%胎牛血清(购自GIBCO公司)的2000μLDMEM高糖培养基(购自GIBCO公司)中按5×105个细胞/孔接种Hela细胞,使细胞在转染前达到约70-80%的汇合;将2种质粒按照1:1质量比混和稀释于用100μL的Opti-MEM(购自GIBCO公司)培养基中,并温和地混匀;将3μL FUGENE转染试剂(购自Promega公司)加入100μL的无血清、无抗生素的Opti-MEM培养基并轻轻混匀,于室温孵育5min;5min后,分别将100μL的转染试剂稀释液加入100μL的各组DNA稀释液中,轻轻混匀并于室温放置20min;将200μL混合物加入到准备好的孔内,轻轻来回晃动培养板,将其置于37℃、饱和湿度、5%CO2的培养箱中培养,于4h后用完全培养基代替转染培养基,完全培养24-48h后,将1%的细胞接种于6孔板中培养,当细胞达10-20%汇合时,加入浓度为600μg/mL的G418筛选培养液,筛选10-12天。用Giemsa染液(购自GIBCO公司)染色,统计阳性克隆数。24h before transfection, HeLa cells were seeded at 5×10 5 cells/well in 2000 μL DMEM high-glucose medium (purchased from GIBCO company) containing 10% fetal bovine serum (purchased from GIBCO company) in each well of a six-well plate, Make the cells about 70-80% confluent before transfection; mix and dilute the two plasmids in a 1:1 mass ratio in 100 μL of Opti-MEM (purchased from GIBCO) medium, and mix gently;
3、转染细胞阳性克隆鉴定3. Identification of positive clones of transfected cells
以pPS-PGK-NEO:pcDNA3.9-PSase(PS+/PSase+)与pSB-PGK-NEO:pT2-CMV-SB100X(SB+/SBase+)组为实验组,以pPS-PGK-NEO:pcDNA3.9(PS+/PSase-)与pSB-PGK-NEO:pT2-CMV(SB+/SBase-)组为对照组,含G418抗性培养液筛选10-12天后,Gimsa(吉姆萨)染色计数。The pPS-PGK-NEO:pcDNA3.9-PSase(PS+/PSase+) and pSB-PGK-NEO:pT2-CMV-SB100X(SB+/SBase+) groups were used as the experimental groups, and the pPS-PGK-NEO:pcDNA3.9( PS+/PSase-) and pSB-PGK-NEO:pT2-CMV (SB+/SBase-) groups were used as control groups. After 10-12 days of selection in G418-resistant culture medium, Gimsa (Giemsa) staining was counted.
结果发现:PS实验组阳性细胞克隆数为560,PS对照组阳性细胞克隆数为18,SB实验组阳性细胞克隆数为427,SB对照组阳性细胞克隆数为18。PS实验组的细胞表达新霉素抗性基因的细胞数量显著高于SB实验组的细胞克隆数(如图22,23)。结果表明PS转座子系统能在Hela细胞中高效的介导新霉素抗性基因转染整合,并且高于SB转座子活性,即用抗性基因证实了PS转座子系统可以高效介导外源基因转移。The results showed that the number of positive cell clones in the PS experimental group was 560, the number of positive cell clones in the PS control group was 18, the number of positive cell clones in the SB experimental group was 427, and the number of positive cell clones in the SB control group was 18. The number of cells expressing the neomycin resistance gene in the PS experimental group was significantly higher than the number of cell clones in the SB experimental group (as shown in Figures 22 and 23). The results show that the PS transposon system can efficiently mediate the transfection and integration of the neomycin resistance gene in Hela cells, and the activity is higher than that of the SB transposon. Induce foreign gene transfer.
实施例IV、PS转座子介导目的基因在小鼠胚胎中的基因转移Embodiment IV, PS transposon mediates the gene transfer of target gene in mouse embryo
1、小鼠受精卵的准备1. Preparation of mouse fertilized eggs
成熟雌小鼠腹腔内注射5国际单位(IU)的孕马血清促性腺激素(PMSG)之后,约在48—54h后再注射2.5-5.0IU的人绒毛膜促性腺激素(hCG),约12h后即可诱发排卵。雌小鼠给予hCG后立刻与雄性小鼠合笼。交配后雌鼠的阴道栓易见,可用交配指示剂指示。受精卵收集时期在合笼后的次日早晨即显微注射前几小时。将输卵管仔细切开,采用输卵管冲洗术或输卵管壶部切开术收集受精卵。Mature female mice were intraperitoneally injected with 5 International Units (IU) of pregnant horse serum gonadotropin (PMSG), and then injected with 2.5-5.0 IU of human chorionic gonadotropin (hCG) about 48-54 hours later for about 12 hours Ovulation can then be induced. Female mice were caged with male mice immediately after administration of hCG. Vaginal plugs of female mice after mating are easy to see and can be indicated by mating indicators. The zygote collection period was the next morning after co-cage, a few hours before microinjection. The fallopian tubes are carefully incised, and fertilized eggs are collected by tubal irrigation or salpingoampulotomy.
2、细胞质显微注射小鼠受精卵2. Cytoplasmic microinjection of mouse fertilized eggs
pPS-Tyr和pcDNA3.9-PSase质粒用OMEGA无内毒素质粒提取试剂盒提取,以线性pcDNA3.9-PSase为模板,用mMessagemMachine kit试剂盒制备PSase-mRNA,产物终浓度调整为20ng/μL,pPS-CAG-GFP和PS-mRNA以1:1摩尔比混合备用。The pPS-Tyr and pcDNA3.9-PSase plasmids were extracted with the OMEGA endotoxin-free plasmid extraction kit, and the linear pcDNA3.9-PSase was used as the template to prepare PSase-mRNA with the mMessagemMachine kit. The final concentration of the product was adjusted to 20ng/μL, pPS-CAG-GFP and PS-mRNA were mixed in a 1:1 molar ratio for use.
将pPS-Tyr质粒和PSase mRNA混合注射为实验组,以FVB鼠为模式生物,细胞质注射小鼠受精卵,观察后期鼠毛色的变化,如图24,可明显观察到其中毛色的变化。Mixed injection of pPS-Tyr plasmid and PSase mRNA was used as the experimental group. FVB mice were used as model organisms. The fertilized eggs of mice were injected into the cytoplasm, and the changes in the coat color of the mice were observed in the later period, as shown in Figure 24. The changes in the coat color were clearly observed.
实施例V、PS转座子介导目的基因在斑马鱼胚胎中的基因转移Embodiment V, PS transposon mediates the gene transfer of target gene in zebrafish embryo
1、斑马鱼受精卵的准备1. Preparation of zebrafish zygotes
公母鱼各饲养若干,于注射前一天晚上,移取1尾母鱼,1尾公鱼于繁殖盒中,隔板隔开培养,光刺激1h后避光过夜培养,第二天将隔板拿开,公母鱼追逐即开始产卵,自产卵开始计时,约10min后收卵,将收集的受精卵置于体视显微镜下进行斑马鱼胚胎注射实验。A number of male and female fish were raised each. One night before the injection, one female fish was removed, and one male fish was placed in a breeding box. The partitions were separated and cultured. After 1 h of light stimulation, they were cultured overnight in the dark. Removed, the male and female fish started to lay eggs after chasing, and the time from the start of spawning, about 10 minutes later, the eggs were collected, and the collected fertilized eggs were placed under a stereo microscope for zebrafish embryo injection experiments.
2、显微注射斑马鱼胚胎2. Microinjection of Zebrafish Embryos
pPS-FAG-GFP和pcDNA3.9-PSase质粒用无内毒素质粒提取试剂盒提取,用NanoPhotometer核酸浓度测定仪测定浓度后保存备用。pcDNA3.9-PSase质粒同上所述,制备PS转座酶mRNA,测定浓度后保存备用。The pPS-FAG-GFP and pcDNA3.9-PSase plasmids were extracted with an endotoxin-free plasmid extraction kit, and the concentrations were measured with a NanoPhotometer nucleic acid concentration analyzer and stored for later use. The pcDNA3.9-PSase plasmid was as described above, and PS transposase mRNA was prepared, and the concentration was determined and stored for later use.
将pPS-FAG-GFP质粒和PS转座酶mRNA以不同浓度混合注射斑马鱼单细胞期胚胎。固定转座子质粒终浓度为25ng/μL,PS-mRNA(由pcDNA3.9-PSase载体体外转录后获得)的终浓度设2个梯度:5ng/μL和25ng/μL,同时以单注射转座子质粒组为对照,未处理组(即未注射组)为空白对照组。每组3个重复,每个重复注射胚胎数均在100枚以上。将注射后的胚胎于1×E3培养液中培养,12-24h换液一次,换液的同时去除死亡胚胎,对照组按照同样的方法培养。分别在培养24h、48h和5d后于荧光显微镜下观察绿色荧光表达情况,同时统计成活胚胎数和阳性胚胎数,计算阳性率。The pPS-FAG-GFP plasmid and PS transposase mRNA were mixed and injected into zebrafish one-cell stage embryos at different concentrations. The final concentration of the immobilized transposon plasmid was 25ng/μL, and the final concentration of PS-mRNA (obtained by in vitro transcription of the pcDNA3.9-PSase vector) was set to 2 gradients: 5ng/μL and 25ng/μL. The daughter plasmid group was the control, and the untreated group (ie, the uninjected group) was the blank control group. There were 3 replicates in each group, and the number of embryos injected in each replicate was more than 100. The injected embryos were cultured in 1×E3 medium, and the medium was changed every 12-24 h, and the dead embryos were removed while changing the medium. The control group was cultured in the same way. After culturing for 24h, 48h and 5d, the expression of green fluorescence was observed under a fluorescence microscope, and the number of viable embryos and positive embryos were counted to calculate the positive rate.
3、不同浓度转座酶介导目的基因表达检测3. Detection of target gene expression mediated by different concentrations of transposase
在荧光显微镜下检测荧光表达情况,结果显示各时期的各组胚胎在显微注射后24h、48h和5d三个时间段都有荧光表达,单注射转座子质粒组也有荧光表达,空白对照组没有荧光表达(如图25)。注射PS转座酶与否,斑马鱼表达绿色荧光蛋白的阳性率不同;在24h,48h和5d时,含有转座酶组(PS+组)阳性率(87.14%、92.77%、92.77%)显著高于未注射转座酶组(PS-组)阳性率(48.73%、61.51%、61.51%)(如图26)。结果表明PS转座子系统同样能在斑马鱼胚胎高效的介导绿色荧光蛋白基因转移,即在斑马鱼胚胎上证实了PS转座子系统有介导基因转移的功能。Fluorescence expression was detected under a fluorescence microscope. The results showed that the embryos of each stage had fluorescence expression at 24h, 48h and 5d after microinjection, and the single-injection transposon plasmid group also had fluorescence expression, while the blank control group had fluorescence expression. There was no fluorescent expression (Figure 25). The positive rate of zebrafish expressing green fluorescent protein was different whether PS transposase was injected or not; at 24h, 48h and 5d, the positive rate of transposase containing group (PS+ group) was significantly higher (87.14%, 92.77%, 92.77%) In the non-injected transposase group (PS-group), the positive rate (48.73%, 61.51%, 61.51%) (Fig. 26). The results show that the PS transposon system can also efficiently mediate GFP gene transfer in zebrafish embryos, that is, it is confirmed that the PS transposon system has the function of mediating gene transfer in zebrafish embryos.
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是为了说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。The foregoing has shown and described the basic principles, main features and advantages of the present invention. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments, and the descriptions in the above-mentioned embodiments and the description are only to illustrate the principle of the present invention, and the present invention will also have Various changes and modifications fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
序列表 sequence listing
<110> 扬州大学<110> Yangzhou University
<120> 一种PS转座子系统及其介导的基因转移方法<120> A PS transposon system and its mediated gene transfer method
<130> xhx2019050501<130> xhx2019050501
<141> 2019-05-05<141> 2019-05-05
<160> 9<160> 9
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 3070<211> 3070
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
gcccctgcag ccgaattata ttatttttgc caaataattt ttaacaaaag ctctgaagtc 60gcccctgcag ccgaattata ttatttttgc caaataattt ttaacaaaag ctctgaagtc 60
ttcttcattt aaattcttag atgatacttc atctggaaaa ttgtcccaat tagtagcatc 120ttcttcattt aaattcttag atgatacttc atctggaaaa ttgtcccaat tagtagcatc 120
acgctgtgag taagttctaa accatttttt tattgttgta ttatctctaa tcttactact 180acgctgtgag taagttctaa accatttttt tattgttgta ttatctctaa tcttactact 180
cgatgagttt tcggtattat ctctattttt aacttggagc aggttccatt cattgttttt 240cgatgagttt tcggtattat ctctattttt aacttggagc aggttccatt cattgttttt 240
ttcatcatag tgaataaaat caactgcttt aacacttgtg cctgaacacc atatccatcc 300ttcatcatag tgaataaaat caactgcttt aacacttgtg cctgaacacc atatccatcc 300
ggcgtaatac gactcactat agggagagcg gccgccagat cttccggatg gctcgagttt 360ggcgtaatac gactcactat agggagagcg gccgccagat cttccggatg gctcgagttt 360
ttcagcaaga tggatcctac cgtattttcc gcactataag gcgcacctcg cgagcggccg 420ttcagcaaga tggatcctac cgtattttcc gcactataag gcgcacctcg cgagcggccg 420
cgaattcggt gcgccttata gtgcggaaaa tacggtagga tccccatctt tctagaagat 480cgaattcggt gcgccttata gtgcggaaaa tacggtagga tccccatctt tctagaagat 480
ctcctacaat attctcagct gccatggaaa atcgatgttc ttcttttatt ctctcaagat 540ctcctacaat attctcagct gccatggaaa atcgatgttc ttcttttatt ctctcaagat 540
tttcaggctg tatattaaaa cttatattaa gaactatgct aaccacctca tcaggaaccg 600tttcaggctg tatattaaaa cttatattaa gaactatgct aaccacctca tcaggaaccg 600
ttgtaggtgg cgtgggtttt cttggcaatc gactctcatg aaaactacga gctaaatatt 660ttgtaggtgg cgtgggtttt cttggcaatc gactctcatg aaaactacga gctaaatatt 660
caatatgttc ctcttgacca actttattct gcattttttt tgaacgaggt ttagagcaag 720caatatgttc ctcttgacca actttattct gcattttttt tgaacgaggt ttagagcaag 720
cttcaggaaa ctgagacagg aattttatta aaaatttaaa ttttgaagaa agttcagggt 780cttcaggaaa ctgagacagg aattttatta aaaatttaaa ttttgaagaa agttcagggt 780
taatagcatc cattttttgc tttgcaagtt cctcagcatt cttaacaaaa gacgtctctt 840taatagcatc cattttttgc tttgcaagtt cctcagcatt cttaacaaaa gacgtctctt 840
ttgacatgtt taaagtttaa acctcctgtg tgaaattgtt atccgctcac aattccacac 900ttgacatgtt taaagtttaa acctcctgtg tgaaattgtt atccgctcac aattccacac 900
attatacgag ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt gagctaactc 960attatacgag ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt gagctaactc 960
acattaattg cgttgcgctc actgccaatt gctttccagt cgggaaacct gtcgtgccag 1020acattaattg cgttgcgctc actgccaatt gctttccagt cgggaaacct gtcgtgccag 1020
ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc 1080ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc 1080
gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 1140gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 1140
cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 1200cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 1200
tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 1260tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 1260
cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 1320cataggctcc gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 1320
aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 1380aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 1380
cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 1440cctgttccga ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 1440
gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 1500gcgctttctc atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 1500
ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 1560ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 1560
cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac 1620cgtcttgagt ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac 1620
aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 1680aggattagca gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 1680
tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 1740tacggctaca ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 1740
ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 1800ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 1800
tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 1860tttgtttgca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 1860
ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 1920ttttctacgg ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 1920
agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 1980agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca 1980
atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 2040atctaaagta tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca 2040
cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag 2100cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag 2100
ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac 2160ataactacga tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagac 2160
ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 2220ccacgctcac cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc 2220
agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct 2280agaagtggtc ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct 2280
agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 2340agagtaagta gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc 2340
gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg 2400gtggtgtcac gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg 2400
cgagttacat gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc 2460cgagttacat gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc 2460
gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 2520gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat 2520
tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag 2580tctcttactg tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag 2580
tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat 2640tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat 2640
aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 2700aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg 2700
cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca 2760cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca 2760
cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 2820cccaactgat cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga 2820
aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 2880aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc 2880
ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 2940ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag cggatacata 2940
tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg 3000tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg 3000
ccacctgacg tctaagaaac cattattatc atgacattaa cctataaaaa taggcgtatc 3060ccacctgacg tctaagaaac cattattatc atgacattaa cctataaaaa taggcgtatc 3060
acgaggcccc 3070acgaggcccc 3070
<210> 2<210> 2
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
ccgtattttc cgcactataa ggcgcacc 28ccgtattttc cgcactataa ggcgcacc 28
<210> 3<210> 3
<211> 28<211> 28
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
ggtgcgcctt atagtgcgga aaatacgg 28ggtgcgcctt atagtgcgga aaatacgg 28
<210> 4<210> 4
<211> 5206<211> 5206
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60
ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600
tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg 660
actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780
gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gcttggtacc 900ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gcttggtacc 900
gagctcggat ccgccaccat ggctcctacc aaaagacacg cgtacaacgc tgagtttaaa 960gagctcggat ccgccaccat ggctcctacc aaaagacacg cgtacaacgc tgagtttaaa 960
ctcaaggcga taagccacgc acaagaacac ggcaatagag cagcagcgag agaatttaat 1020ctcaaggcga taagccacgc acaagaacac ggcaatagag cagcagcgag agaatttaat 1020
atcaatgaat caatggtgag gaagtggagg aagtatgagg atgagctccg ccaagtaaag 1080atcaatgaat caatggtgag gaagtggagg aagtatgagg atgagctccg ccaagtaaag 1080
aagacaacac agagtttccg cgggaacaaa gcgagatggc cacagttaga ggacaaagtt 1140aagacaacac agagtttccg cgggaacaaa gcgagatggc cacagttaga ggacaaagtt 1140
gaacagtggg ttgctgaaca aagagcagca agcagaagtg ttagtacagt cacaattcgt 1200gaacagtggg ttgctgaaca aagagcagca agcagaagtg ttagtacagt cacaattcgt 1200
atgaaggcaa tagcgctagc tcgcgaacat aacatcagtg aattcagagg cggtccttct 1260atgaaggcaa tagcgctagc tcgcgaacat aacatcagtg aattcagagg cggtccttct 1260
tggtgcttcc gttttatgaa acgacgtcat ctctccatcc gtacgcgcac tactgtgtca 1320tggtgcttcc gttttatgaa acgacgtcat ctctccatcc gtacgcgcac tactgtgtca 1320
caacaactac cagctgatta tcaggaaaag ttggccactt tccgcacata ctgcagaaac 1380caacaactac cagctgatta tcaggaaaag ttggccactt tccgcacata ctgcagaaac 1380
aagataactg aaaaaaagat ccagccagag catatcatca atatggacga ggttccactc 1440aagataactg aaaaaaagat ccagccagag catatcatca atatggacga ggttccactc 1440
accttcgata tccctgtaaa ccgcactgtg gataaaacag gagcacgtac ggtgaatatt 1500accttcgata tccctgtaaa ccgcactgtg gataaaacag gagcacgtac ggtgaatatt 1500
cgcaccacag ggaatgagaa aacgtccttc actgtagttc tcgcctgcca ggctaatggc 1560cgcaccacag ggaatgagaa aacgtccttc actgtagttc tcgcctgcca ggctaatggc 1560
cacaaacttc cacccatggt tattttcaag aggaagacct tgccgaaaga aaactttcca 1620cacaaacttc cacccatggt tattttcaag aggaagacct tgccgaaaga aaactttcca 1620
gctggcattg tcataaaagc taactcgaag ggatggatgg atgaagaaaa gatgagtgag 1680gctggcattg tcataaaagc taactcgaag ggatggatgg atgaagaaaa gatgagtgag 1680
tggttgagag aaatttatgt gaagagaccg ggtggttttt ttcacacagc tccgtcccta 1740tggttgagag aaatttatgt gaagagaccg ggtggtttttt ttcacacagc tccgtcccta 1740
ttgatctatg actccatgcg cgcacatatc accgagcatg tcaaaaaaca agtgaagcac 1800ttgatctatg actccatgcg cgcacatatc accgagcatg tcaaaaaaca agtgaagcac 1800
actaattcag tgctcgccgt cattccgggt ggattaacaa aagaactcca gccgctcgat 1860actaattcag tgctcgccgt cattccgggt ggattaacaa aagaactcca gccgctcgat 1860
gttggcgtca acagagcatt caaagctcga ctgcgaactg cgtgggagca gtggatgacc 1920gttggcgtca acagagcatt caaagctcga ctgcgaactg cgtgggagca gtggatgacc 1920
gaaggcgaac acacgttcac caagacgggg agacagcgcc ggacgacata tgctaatatc 1980gaaggcgaac acacgttcac caagacgggg agacagcgcc ggacgacata tgctaatatc 1980
tgcaagtgga tagtaaatgc ctgggctggt atatcagtca caactgtggt ccgagctttt 2040tgcaagtgga tagtaaatgc ctgggctggt atatcagtca caactgtggt ccgagctttt 2040
aggaaggcag gaattgtcac cgaactgcca gacaacagca gcgacactga ctcggttaat 2100aggaaggcag gaattgtcac cgaactgcca gacaacagca gcgacactga ctcggttaat 2100
gatgactttg ataagacgga gccaggcgtt ttggatgccg caatagccca gctgttcaat 2160gatgactttg ataagacgga gccaggcgtt ttggatgccg caatagccca gctgttcaat 2160
tcggacacgg aagaagaagt tttcgaggga ttttagctcg agcatgcatc tagagggccc 2220tcggacacgg aagaagaagt tttcgaggga ttttagctcg agcatgcatc tagagggccc 2220
tattctatag tgtcacctaa atgctagagc tcgctgatca gcctcgactg tgccttctag 2280tattctatag tgtcacctaa atgctagagc tcgctgatca gcctcgactg tgccttctag 2280
ttgccagcca tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac 2340ttgccagcca tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac 2340
tcccactgtc ctttcctaat aaaatgagga aattgcatcg cattgtctga gtaggtgtca 2400tcccactgtc ctttcctaat aaaatgagga aattgcatcg cattgtctga gtaggtgtca 2400
ttctattctg gggggtgggg tggggcagga cagcaagggg gaggattggg aagacaatag 2460ttctattctg gggggtgggg tggggcagga cagcaagggg gaggattggg aagacaatag 2460
caggcatgct ggggatgcgg tgggctctat ggcttctgag gcggaaagaa ccagctgggg 2520caggcatgct ggggatgcgg tgggctctat ggcttctgag gcggaaagaa ccagctgggg 2520
ctctaggggg tatccccacg cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt 2580ctctaggggg tatccccacg cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt 2580
tacgcgcagc gtgaccgcta cacttgccag cgccctagcg cccgctcctt tcgctttctt 2640tacgcgcagc gtgaccgcta cacttgccag cgccctagcg cccgctcctt tcgctttctt 2640
cccttccttt ctcgccacgt tcgccggctt tccccgtcaa gctctaaatc ggggcatccc 2700cccttccttt ctcgccacgt tcgccggctt tccccgtcaa gctctaaatc ggggcatccc 2700
tttagggttc cgatttagtg ctttacggca cctcgacccc aaaaaacttg attagggtga 2760tttagggttc cgatttagtg ctttacggca cctcgacccc aaaaaacttg attagggtga 2760
tggttcacgt agtgggccat cgccctgata gacggttttt cgccctttga cgttggagtc 2820tggttcacgt agtgggccat cgccctgata gacggtttttt cgccctttga cgttggagtc 2820
cacgttcttt aatagtggac tcttgttcca aactggaaca acactcaacc ctatctcggt 2880cacgttcttt aatagtggac tcttgttcca aactggaaca acactcaacc ctatctcggt 2880
ctattctttt gatttataat ggttacaaat aaagcaatag catcacaaat ttcacaaata 2940ctattctttt gatttataat ggttacaaat aaagcaatag catcacaaat ttcacaaata 2940
aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat gtatcttatc 3000aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat gtatcttatc 3000
atgtctgtat accgtcgacc tctagctaga gcttggcgta atcatggtca tagctgtttc 3060atgtctgtat accgtcgacc tctagctaga gcttggcgta atcatggtca tagctgtttc 3060
ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 3120ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 3120
gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc 3180gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc 3180
ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 3240ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 3240
ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac tcgctgcgct 3300ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac tcgctgcgct 3300
cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 3360cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 3360
cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 3420cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 3420
accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgcccccct gacgagcatc 3480accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgcccccct gacgagcatc 3480
acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 3540acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 3540
cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat 3600cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat 3600
acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcaatgctca cgctgtaggt 3660acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcaatgctca cgctgtaggt 3660
atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 3720atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 3720
agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 3780agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 3780
acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 3840acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 3840
gtgctacaga gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg 3900gtgctacaga gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg 3900
gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg 3960gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg 3960
gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 4020gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 4020
gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga 4080gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga 4080
acgaaaactc acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga 4140acgaaaactc acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga 4140
tccttttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt 4200tccttttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt 4200
ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt 4260ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt 4260
catccatagt tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat 4320catccatagt tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat 4320
ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcag 4380ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcag 4380
caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct 4440caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct 4440
ccatccagtc tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt 4500ccatccagtc tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt 4500
tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg 4560tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg 4560
cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc atgttgtgca 4620cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc atgttgtgca 4620
aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt 4680aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt 4680
tatcactcat ggttatggca gcactgcata attctcttac tgtcatgcca tccgtaagat 4740tatcactcat ggttatggca gcactgcata attctcttac tgtcatgcca tccgtaagat 4740
gcttttctgt gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac 4800gcttttctgt gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac 4800
cgagttgctc ttgcccggcg tcaatacggg ataataccgc gccacatagc agaactttaa 4860cgagttgctc ttgcccggcg tcaatacggg ataataccgc gccacatagc agaactttaa 4860
aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt 4920aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt 4920
tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca tcttttactt 4980tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca tcttttactt 4980
tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa 5040tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa 5040
gggcgacacg gaaatgttga atactcatac tcttcctttt tcaatattat tgaagcattt 5100gggcgacacg gaaatgttga atactcatac tcttcctttt tcaatattat tgaagcattt 5100
atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa 5160atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa 5160
taggggttcc gcgcacattt ccccgaaaag tgccacctga cgtctc 5206taggggttcc gcgcacattt ccccgaaaag tgccacctga cgtctc 5206
<210> 5<210> 5
<211> 1275<211> 1275
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
atggctccta ccaaaagaca cgcgtacaac gctgagttta aactcaaggc gataagccac 60atggctccta ccaaaagaca cgcgtacaac gctgagttta aactcaaggc gataagccac 60
gcacaagaac acggcaatag agcagcagcg agagaattta atatcaatga atcaatggtg 120gcacaagaac acggcaatag agcagcagcg agagaattta atatcaatga atcaatggtg 120
aggaagtgga ggaagtatga ggatgagctc cgccaagtaa agaagacaac acagagtttc 180aggaagtgga ggaagtatga ggatgagctc cgccaagtaa agaagacaac acagagtttc 180
cgcgggaaca aagcgagatg gccacagtta gaggacaaag ttgaacagtg ggttgctgaa 240cgcgggaaca aagcgagatg gccacagtta gaggacaaag ttgaacagtg ggttgctgaa 240
caaagagcag caagcagaag tgttagtaca gtcacaattc gtatgaaggc aatagcgcta 300caaagagcag caagcagaag tgttagtaca gtcacaattc gtatgaaggc aatagcgcta 300
gctcgcgaac ataacatcag tgaattcaga ggcggtcctt cttggtgctt ccgttttatg 360gctcgcgaac ataacatcag tgaattcaga ggcggtcctt cttggtgctt ccgttttatg 360
aaacgacgtc atctctccat ccgtacgcgc actactgtgt cacaacaact accagctgat 420aaacgacgtc atctctccat ccgtacgcgc actactgtgt cacaacaact accagctgat 420
tatcaggaaa agttggccac tttccgcaca tactgcagaa acaagataac tgaaaaaaag 480tatcaggaaa agttggccac tttccgcaca tactgcagaa acaagataac tgaaaaaaag 480
atccagccag agcatatcat caatatggac gaggttccac tcaccttcga tatccctgta 540atccagccag agcatatcat caatatggac gaggttccac tcaccttcga tatccctgta 540
aaccgcactg tggataaaac aggagcacgt acggtgaata ttcgcaccac agggaatgag 600aaccgcactg tggataaaac aggagcacgt acggtgaata ttcgcaccac agggaatgag 600
aaaacgtcct tcactgtagt tctcgcctgc caggctaatg gccacaaact tccacccatg 660aaaacgtcct tcactgtagt tctcgcctgc caggctaatg gccacaaact tccacccatg 660
gttattttca agaggaagac cttgccgaaa gaaaactttc cagctggcat tgtcataaaa 720gttattttca agaggaagac cttgccgaaa gaaaactttc cagctggcat tgtcataaaa 720
gctaactcga agggatggat ggatgaagaa aagatgagtg agtggttgag agaaatttat 780gctaactcga agggatggat ggatgaagaa aagatgagtg agtggttgag agaaatttat 780
gtgaagagac cgggtggttt ttttcacaca gctccgtccc tattgatcta tgactccatg 840gtgaagagac cgggtggttt ttttcacaca gctccgtccc tattgatcta tgactccatg 840
cgcgcacata tcaccgagca tgtcaaaaaa caagtgaagc acactaattc agtgctcgcc 900cgcgcacata tcaccgagca tgtcaaaaaa caagtgaagc acactaattc agtgctcgcc 900
gtcattccgg gtggattaac aaaagaactc cagccgctcg atgttggcgt caacagagca 960gtcattccgg gtggattaac aaaagaactc cagccgctcg atgttggcgt caacagagca 960
ttcaaagctc gactgcgaac tgcgtgggag cagtggatga ccgaaggcga acacacgttc 1020ttcaaagctc gactgcgaac tgcgtgggag cagtggatga ccgaaggcga acacacgttc 1020
accaagacgg ggagacagcg ccggacgaca tatgctaata tctgcaagtg gatagtaaat 1080accaagacgg ggagacagcg ccggacgaca tatgctaata tctgcaagtg gatagtaaat 1080
gcctgggctg gtatatcagt cacaactgtg gtccgagctt ttaggaaggc aggaattgtc 1140gcctgggctg gtatatcagt cacaactgtg gtccgagctt ttaggaaggc aggaattgtc 1140
accgaactgc cagacaacag cagcgacact gactcggtta atgatgactt tgataagacg 1200accgaactgc cagacaacag cagcgacact gactcggtta atgatgactt tgataagacg 1200
gagccaggcg ttttggatgc cgcaatagcc cagctgttca attcggacac ggaagaagaa 1260gagccaggcg ttttggatgc cgcaatagcc cagctgttca attcggacac ggaagaagaa 1260
gttttcgagg gattt 1275gttttcgagg gattt 1275
<210> 6<210> 6
<211> 56<211> 56
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
ggatcctacc gtattttccg cactataagg cgcacctcgc gagcggccgc gaattc 56ggatcctacc gtattttccg cactataagg cgcacctcgc gagcggccgc gaattc 56
<210> 7<210> 7
<211> 56<211> 56
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
ggatcctacc gtattttccg cactataagg cgcaccgaat tcgcggccgc tcgcga 56ggatcctacc gtattttccg cactataagg cgcaccgaat tcgcggccgc tcgcga 56
<210> 8<210> 8
<211> 58<211> 58
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
ccgtattttc cgcactataa ggcgcaccac tagtgctttt agaccttctt acttttgg 58ccgtattttc cgcactataa ggcgcaccac tagtgctttt agaccttctt acttttgg 58
<210> 9<210> 9
<211> 56<211> 56
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
ccgtattttc cgcactataa ggcgcacctt aattaaagct tgggctgcag gtcgag 56ccgtattttc cgcactataa ggcgcacctt aattaaagct tgggctgcag gtcgag 56
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910366530.0A CN110257425B (en) | 2019-05-05 | 2019-05-05 | A PS transposon system and its mediated gene transfer method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910366530.0A CN110257425B (en) | 2019-05-05 | 2019-05-05 | A PS transposon system and its mediated gene transfer method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110257425A CN110257425A (en) | 2019-09-20 |
| CN110257425B true CN110257425B (en) | 2022-07-15 |
Family
ID=67914160
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910366530.0A Active CN110257425B (en) | 2019-05-05 | 2019-05-05 | A PS transposon system and its mediated gene transfer method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110257425B (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112159822A (en) * | 2020-09-30 | 2021-01-01 | 扬州大学 | PS transposase and CRISPR/dCpf1 fusion protein expression vector and mediated site-directed integration method thereof |
| CN112322656B (en) * | 2020-11-10 | 2022-08-19 | 中国农业科学院北京畜牧兽医研究所 | System and method for interfering target gene |
| CN118480526A (en) * | 2023-02-08 | 2024-08-13 | 上海吉量医药工程有限公司 | A transposase, a transposon, a transposon system and applications thereof |
| CN120591233A (en) * | 2023-03-27 | 2025-09-05 | 北京星辰集因科技有限责任公司 | Isolated transposase AG-TEF11 and application thereof |
| CN120041501A (en) * | 2023-11-10 | 2025-05-27 | 上海细胞治疗集团药物技术有限公司 | Preparation method of cell expressing chimeric antigen receptor |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105018523A (en) * | 2015-04-09 | 2015-11-04 | 扬州大学 | ZB (zebrafish) transposon system and gene transfer method mediated by same |
| CN106086070A (en) * | 2016-06-07 | 2016-11-09 | 中山大学 | A kind of ProtoRAG Transposon System and application thereof |
| CN109072258A (en) * | 2016-02-11 | 2018-12-21 | 地平线探索有限公司 | Replicative transposition subsystem |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105154473B (en) * | 2015-09-30 | 2019-03-01 | 上海细胞治疗研究院 | A kind of transposon integration system of highly effective and safe and application thereof |
-
2019
- 2019-05-05 CN CN201910366530.0A patent/CN110257425B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105018523A (en) * | 2015-04-09 | 2015-11-04 | 扬州大学 | ZB (zebrafish) transposon system and gene transfer method mediated by same |
| CN109072258A (en) * | 2016-02-11 | 2018-12-21 | 地平线探索有限公司 | Replicative transposition subsystem |
| CN106086070A (en) * | 2016-06-07 | 2016-11-09 | 中山大学 | A kind of ProtoRAG Transposon System and application thereof |
Non-Patent Citations (2)
| Title |
|---|
| SB转座子介导的斑马鱼增强子捕获注解分析;刘帅军等;《生物技术通报》;20171231(第05期);摘要 * |
| 多转座子载体的构建及转座特性比较研究;沈丹等;《中国农业科学》;20150601(第11期);摘要 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110257425A (en) | 2019-09-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110257425B (en) | A PS transposon system and its mediated gene transfer method | |
| DK2788478T3 (en) | Multiplex IMMUNSCREENINGSASSAY | |
| DK2925866T3 (en) | CIRCULAR RNA FOR INHIBITING MICRO-RNA | |
| KR100886312B1 (en) | How to analyze protein-protein interactions | |
| CN114164114B (en) | Toxoplasma gondii ribulose-5-phosphate isomerase TgRPI gene edited strain and its application | |
| CN109804089A (en) | For assessing the present or absent method of duplicating virus | |
| US12421524B2 (en) | Expression vectors for eukaryotic expression systems | |
| CN111440801A (en) | sgRNA for targeted knockout of human NKG2A/K L RC1 gene, expression vector, kit and application thereof | |
| CN113046255B (en) | Large-scale gene rearranged saccharomycete and construction method thereof | |
| AU2016378480A1 (en) | Endothelium-specific nucleic acid regulatory elements and methods and use thereof | |
| KR20220016485A (en) | AAV vectors having myelin protein zero promoter, and their use for treating Schwann cell-associated diseases such as Charcot-Marie-Tooth disease | |
| CN114480503B (en) | Gene over-expression lentivirus plasmid library marked by DNA label and preparation method and application thereof | |
| KR102093495B1 (en) | Chimeric vaccine antigens against hepatitis c virus | |
| CN107805627B (en) | Construction method of hESC indicating cell line for specifically tracing endothelial cell differentiation | |
| CN101875957A (en) | Apoptosis-related genes in Chinese hamsters | |
| KR20060109906A (en) | FLP-mediated recombination | |
| CN104862336B (en) | A kind of expression hepatitis B receptor --- construction method of the mouse model of people NTCP | |
| CN113130009A (en) | Application of regulating EIF4A3 expression to regulating apoptosis, migration and invasion capacity of liver cancer cells | |
| CN113025718A (en) | Application of regulating EIF4A3 expression to regulating liver cancer cell proliferation capacity | |
| US20030182668A1 (en) | Transgenic non-human mammals expressing constitutively activated tyrosine kinase receptors | |
| CN100363498C (en) | Bombyx mori silk gland bioreactor and its construction method | |
| CN115029369B (en) | Preparation method and application of bacillus thuringiensis engineering bacteria for preventing and treating pine wood nematode disease | |
| CN112063655A (en) | Telomere gene therapy product and application of mammal broad promoter | |
| CN114774469B (en) | A kind of preparation method of NK cell with enhanced ADCC function, NK cell and composition thereof | |
| CN114231513B (en) | A Short Peptide Inhibiting the Activity of Proteasome PSMB5 Subunit and Its Application in Anti-Rickettsia Infection |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20230413 Address after: 201805 No. 1585 Garden National Road, Anting Town, Jiading District, Shanghai Patentee after: SHANGHAI CELL THERAPY GROUP Co.,Ltd. Address before: 225009 No. 88, South University Road, Jiangsu, Yangzhou Patentee before: YANGZHOU University |
|
| TR01 | Transfer of patent right | ||
| CP03 | Change of name, title or address |
Address after: 201805 No. 1585 Garden National Road, Anting Town, Jiading District, Shanghai Patentee after: Shanghai Cell Therapy Group Co.,Ltd. Country or region after: China Address before: 201805 No. 1585 Garden National Road, Anting Town, Jiading District, Shanghai Patentee before: SHANGHAI CELL THERAPY GROUP Co.,Ltd. Country or region before: China |
|
| CP03 | Change of name, title or address |