CN110386966A - Application of a gene sequence containing chloroplast transit peptide - Google Patents
Application of a gene sequence containing chloroplast transit peptide Download PDFInfo
- Publication number
- CN110386966A CN110386966A CN201810365955.5A CN201810365955A CN110386966A CN 110386966 A CN110386966 A CN 110386966A CN 201810365955 A CN201810365955 A CN 201810365955A CN 110386966 A CN110386966 A CN 110386966A
- Authority
- CN
- China
- Prior art keywords
- gene
- chlamydomonas
- transit peptide
- chloroplast transit
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 91
- 108010031100 chloroplast transit peptides Proteins 0.000 title claims abstract description 31
- 241000195585 Chlamydomonas Species 0.000 claims abstract description 46
- 241000195597 Chlamydomonas reinhardtii Species 0.000 claims abstract description 34
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 30
- 229930195729 fatty acid Natural products 0.000 claims abstract description 30
- 239000000194 fatty acid Substances 0.000 claims abstract description 30
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 30
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 29
- 238000009825 accumulation Methods 0.000 claims abstract description 24
- 239000013604 expression vector Substances 0.000 claims abstract description 18
- 230000001965 increasing effect Effects 0.000 claims abstract description 6
- 230000009261 transgenic effect Effects 0.000 claims description 43
- 210000004027 cell Anatomy 0.000 claims description 31
- 230000012010 growth Effects 0.000 claims description 27
- 239000013612 plasmid Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 22
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 10
- 210000003763 chloroplast Anatomy 0.000 claims description 10
- 238000003259 recombinant expression Methods 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 7
- 239000012634 fragment Substances 0.000 claims description 7
- 108010028995 phospholipid diacylglycerol acyltransferase Proteins 0.000 claims description 6
- 238000004520 electroporation Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 238000010367 cloning Methods 0.000 claims description 3
- 238000011426 transformation method Methods 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- 101150084750 1 gene Proteins 0.000 claims description 2
- 239000011324 bead Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 230000002018 overexpression Effects 0.000 claims 2
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 230000014509 gene expression Effects 0.000 abstract description 15
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000003786 synthesis reaction Methods 0.000 abstract description 6
- 230000001360 synchronised effect Effects 0.000 abstract description 5
- 108010001348 Diacylglycerol O-acyltransferase Proteins 0.000 abstract description 4
- 102000002148 Diacylglycerol O-acyltransferase Human genes 0.000 abstract description 2
- 230000005791 algae growth Effects 0.000 abstract 1
- 239000001963 growth medium Substances 0.000 abstract 1
- 238000009482 thermal adhesion granulation Methods 0.000 description 20
- 230000035508 accumulation Effects 0.000 description 18
- 239000000243 solution Substances 0.000 description 13
- 101710133727 Phospholipid:diacylglycerol acyltransferase Proteins 0.000 description 10
- 238000012546 transfer Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 108700016155 Acyl transferases Proteins 0.000 description 6
- 229930002875 chlorophyll Natural products 0.000 description 6
- 235000019804 chlorophyll Nutrition 0.000 description 6
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 150000003904 phospholipids Chemical class 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 108030002650 Phospholipid:diacylglycerol acyltransferases Proteins 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 241000195493 Cryptophyta Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 102000045404 acyltransferase activity proteins Human genes 0.000 description 3
- 108700014220 acyltransferase activity proteins Proteins 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 239000012452 mother liquor Substances 0.000 description 3
- 239000010413 mother solution Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000012257 pre-denaturation Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- KDYAPQVYJXUQNY-OPHDRXFHSA-N 1,2-di-(alpha-linolenoyl)-3-[alpha-D-galactosyl-(1->6)-beta-D-galactosyl]-sn-glycerol Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](OC[C@@H](COC(=O)CCCCCCC\C=C/C\C=C/C\C=C/CC)OC(=O)CCCCCCC\C=C/C\C=C/C\C=C/CC)O[C@@H]1CO[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KDYAPQVYJXUQNY-OPHDRXFHSA-N 0.000 description 2
- 102100031251 1-acylglycerol-3-phosphate O-acyltransferase PNPLA3 Human genes 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 102000057234 Acyl transferases Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102100036869 Diacylglycerol O-acyltransferase 1 Human genes 0.000 description 2
- 108050004099 Diacylglycerol O-acyltransferase 1 Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000006372 lipid accumulation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 description 1
- 101710124165 1-acyl-sn-glycerol-3-phosphate acyltransferase Proteins 0.000 description 1
- 108010069159 1-acylglycerol-3-phosphate O-acyltransferase Proteins 0.000 description 1
- 108010054662 2-acylglycerophosphate acyltransferase Proteins 0.000 description 1
- 102100039239 Amidophosphoribosyltransferase Human genes 0.000 description 1
- 108010039224 Amidophosphoribosyltransferase Proteins 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 101100243066 Arabidopsis thaliana PDAT1 gene Proteins 0.000 description 1
- 101001117048 Arabidopsis thaliana Phospholipid:diacylglycerol acyltransferase 1 Proteins 0.000 description 1
- 108010049994 Chloroplast Proteins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108030000884 Glycerol-3-phosphate 1-O-acyltransferases Proteins 0.000 description 1
- 102100024017 Glycerol-3-phosphate acyltransferase 3 Human genes 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 101001130226 Homo sapiens Phosphatidylcholine-sterol acyltransferase Proteins 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 101500023488 Lithobates catesbeianus GnRH-associated peptide 1 Proteins 0.000 description 1
- 101500022510 Lithobates catesbeianus GnRH-associated peptide 2 Proteins 0.000 description 1
- 101710097496 Lysophospholipid acyltransferase Proteins 0.000 description 1
- 102100038805 Lysophospholipid acyltransferase 2 Human genes 0.000 description 1
- 101710163746 Lysophospholipid acyltransferase 2 Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 102100031538 Phosphatidylcholine-sterol acyltransferase Human genes 0.000 description 1
- 101710172946 Probable 1-acyl-sn-glycerol-3-phosphate acyltransferase Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 101710176279 Tubulin beta-2 chain Proteins 0.000 description 1
- GCYZRQQEBNFQTK-UHFFFAOYSA-N [2,3-dihydroxypropoxy(hydroxy)phosphoryl] phosphono hydrogen phosphate Chemical compound OCC(O)COP(O)(=O)OP(O)(=O)OP(O)(O)=O GCYZRQQEBNFQTK-UHFFFAOYSA-N 0.000 description 1
- YVNQAIFQFWTPLQ-UHFFFAOYSA-O [4-[[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfophenyl)methyl]amino]-2-methylphenyl]methylidene]-3-methylcyclohexa-2,5-dien-1-ylidene]-ethyl-[(3-sulfophenyl)methyl]azanium Chemical compound C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S(O)(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S(O)(=O)=O)C)C=C1 YVNQAIFQFWTPLQ-UHFFFAOYSA-O 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 150000001841 cholesterols Chemical class 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000000459 effect on growth Effects 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- WCYAALZQFZMMOM-UHFFFAOYSA-N methanol;sulfuric acid Chemical compound OC.OS(O)(=O)=O WCYAALZQFZMMOM-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/01—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
- C12Y203/01158—Phospholipid:diacylglycerol acyltransferase (2.3.1.158)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于生物基因工程技术领域,涉及将目的基因转入莱茵衣藻基因组中,强化莱茵衣藻脂肪酸积累并与生长同步化,尤其强化了总脂肪酸以及TAG的积累,涉及一种含有叶绿体转运肽的基因序列的应用。The invention belongs to the technical field of biological genetic engineering, and relates to transferring a target gene into the genome of Chlamydomonas reinhardtii, enhancing the accumulation of fatty acids in Chlamydomonas reinhardtii and synchronizing with growth, especially enhancing the accumulation of total fatty acids and TAG, and relates to a chloroplast transit peptide containing application of gene sequences.
背景技术Background technique
微藻一直是作为生物柴油的一个有吸引力的潜在来源,它是一个在真核生物中很好的模型,用它来研究通过多途径合成甘油三酯(TAG)。为了获得更多的 TAG,在微藻中通常采用胁迫条件的培养方式,胁迫状态会限制藻细胞的生长,所以总体TAG的产率是有限的。经过大量的实验,仍然不能实现TAG的积累和藻细胞生长的同步化。为了有效积累TAG,实现TAG积累与藻细胞生长同步化被认为是未来理想策略的特征之一。Microalgae have been an attractive potential source of biodiesel, and it is a good model in eukaryotes to study the synthesis of triglycerides (TAGs) through multiple pathways. In order to obtain more TAGs, microalgae are usually cultured under stress conditions, which limit the growth of algal cells, so the overall TAG yield is limited. After extensive experiments, the synchronization of TAG accumulation and algal cell growth was still not achieved. To efficiently accumulate TAG, achieving synchronization of TAG accumulation with algal cell growth is considered as one of the characteristics of an ideal strategy in the future.
为了提高TAG的产率,除了工程类手段,其中另一种方式是:采用分子生物学的手段,修饰微藻中与TAG合成有关的基因。现在,大部分的研究者集中在对酰基转移酶基因的修饰,例如甘油三磷酸酰基转移酶(GPAT,EC 2.3.1.15),溶血磷脂酸酰基转移酶(LPAAT,EC2.3.1.51),酰基转移酶:基转移酶(DGAT,EC 2.3.1.20)和磷脂:酰基甘油酰基转移酶(PDAT,EC 2.3.1.158)。在上面的酰基转移酶中,PDAT是唯一一种不依赖酰基CoA,而是通过磷脂的酰基作为供体合成 TAG的酰基转移酶,这一结论是Anders和他的同事在蓖麻中第一次确定的 (Dahlqvist A et al.2000)。在那之前,DGAT被认为是在DAG到TAG的合成过程中唯一的酶,而且认为酰基CoA是合成过程中不可缺少的。In order to improve the yield of TAG, in addition to engineering methods, another method is to use molecular biology methods to modify genes related to TAG synthesis in microalgae. Now, most researchers focus on the modification of acyltransferase genes, such as glycerol triphosphate acyltransferase (GPAT, EC 2.3.1.15), lysophosphatidic acid acyltransferase (LPAAT, EC 2.3.1.51), acyl Transferases: syltransferases (DGAT, EC 2.3.1.20) and phospholipids: acylglycerol acyltransferases (PDAT, EC 2.3.1.158). Among the above acyltransferases, PDAT is the only acyltransferase that does not rely on acyl CoA, but synthesizes TAG through the acyl group of phospholipid as a donor. This conclusion is the first in castor oil by Anders and his colleagues. sub-determined (Dahlqvist A et al. 2000). Until then, DGAT was thought to be the only enzyme in the synthesis of DAG to TAG, and acyl-CoAs were thought to be indispensable for the synthesis.
在Anders等人提出关于PDAT这一新观点后,更多的研究者集中研究PDAT,研究来源中不同物种中PDAT的功能并且进一步去指导TAG的生产,例如,张等人(Chisti Y.etal.2007)研究结果表明:在拟南芥中,PDAT1影响花粉和种子的正常发育和生长;并且Yoon等人(Yoon K et al.2012)指出CrPDAT具有广泛的底物特异性和不同种脂肪酶功能,CrPDAT能够水解糖脂,极性脂和中性脂,胆固醇脂(类似于LCAT功能),CrPDAT更倾向于作用于带负电的磷脂(PA/PS/PI/PG)。而其他来源的PDAT,包括LuPDAT/ScPDAT/AtPDAT,更去倾向于使用带正电的磷脂(PC/PE)作为酰基供体。该研究结果也展现了CrPDAT 的重要性。After Anders et al. proposed this new idea about PDAT, more researchers focused on PDAT, studying the function of PDAT in different species in the source and further to direct TAG production, for example, Zhang et al. (Chisti Y. et al. 2007) showed that: in Arabidopsis, PDAT1 affects the normal development and growth of pollen and seeds; and Yoon et al. (Yoon K et al. 2012) pointed out that CrPDAT has broad substrate specificity and diverse lipase functions , CrPDAT can hydrolyze glycolipids, polar and neutral lipids, cholesterol lipids (similar to LCAT function), CrPDAT is more inclined to act on negatively charged phospholipids (PA/PS/PI/PG). While other sources of PDAT, including LuPDAT/ScPDAT/AtPDAT, tend to use positively charged phospholipids (PC/PE) as acyl donors. The results of this study also demonstrate the importance of CrPDAT.
通过对比莱茵衣藻和其他物种的PDAT序列,发现ScPDAT(GenBank: NM_001183185)和CrPDAT有高度的相似性,相似度达到35%。通过序列比对分析,CrPDAT有2个独特的GAP区,GAP1(570-700)带有14个连续不断的SG 重复序列,GAP2(840-930)带有30个氨基酸残基A和13个G。在这里,我们将ScPDAT看作是CrPDAT去掉GAP区后的突变体,因此将ScPDAT过表达在莱茵衣藻中。这一研究将会有助于探索PDAT在TAG积累机制中的调节功能。By comparing the PDAT sequences of Chlamydomonas reinhardtii and other species, it was found that ScPDAT (GenBank: NM_001183185) and CrPDAT are highly similar, with a similarity of 35%. Through sequence alignment analysis, CrPDAT has 2 unique GAP regions, GAP1 (570-700) with 14 consecutive SG repeats, GAP2 (840-930) with 30 amino acid residues A and 13 G . Here, we regard ScPDAT as a mutant of CrPDAT with the GAP region removed, thus overexpressing ScPDAT in C. reinhardtii. This study will help to explore the regulatory function of PDAT in the mechanism of TAG accumulation.
与胞质蛋白不同,核编码的叶绿体蛋白需要经过叶绿体转运肽(chloroplasttransit peptide,cTP)的帮助定位并正确折叠于叶绿体内进而发挥功能,所以,对于外源基因,还需要在其功能域上游插入叶绿体转运肽片段。Unlike cytoplasmic proteins, nuclear-encoded chloroplast proteins require the help of chloroplast transit peptide (cTP) to locate and correctly fold in the chloroplast to function. Therefore, for exogenous genes, they also need to be inserted upstream of their functional domains. Chloroplast transit peptide fragment.
发明内容SUMMARY OF THE INVENTION
本方法的目的就是一种与生长同步化的提高微藻油脂积累的方法。The purpose of this method is a method for increasing the oil accumulation of microalgae in synchronization with growth.
为实现上述目的,本发明提供一种能够定位于叶绿体的磷脂二酰基甘油酰基转移酶基因和表达载体,转化重组表达载体得到转基因衣藻,该转基因衣藻提高脂肪酸积累并与生长同步化。To achieve the above object, the present invention provides a phospholipid diacylglycerol acyltransferase gene and an expression vector that can be localized in chloroplasts, and transforms the recombinant expression vector to obtain transgenic Chlamydomonas, which increases fatty acid accumulation and synchronizes with growth.
一种含有叶绿体转运肽的基因序列的应用,其特征在于,在叶绿体转运肽的基因序列下游插入目的基因,使得目的基因的编码蛋白定位于叶绿体。An application of a gene sequence containing a chloroplast transit peptide is characterized in that a target gene is inserted downstream of the gene sequence of the chloroplast transit peptide, so that the encoded protein of the target gene is located in the chloroplast.
所述含有叶绿体转运肽的基因序列为序列表SEQ ID NO.2所示。The gene sequence containing the chloroplast transit peptide is shown in SEQ ID NO. 2 of the sequence table.
所述目的基因为含有编码磷脂二酰基甘油酰基转移酶功能域的基因碱基序列。The target gene is a gene base sequence encoding the functional domain of phospholipid diacylglycerol acyltransferase.
所述目的基因为SEQ ID NO.1;Described target gene is SEQ ID NO.1;
或,所述磷脂二酰基甘油酰基转移酶的基因序列为所编码蛋白的氨基酸序列与SEQ ID NO.1基因编码的氨基酸序列相似度达30%或以上的基因序列。Or, the gene sequence of the phospholipid diacylglycerol acyltransferase is a gene sequence whose amino acid sequence of the encoded protein has a similarity of 30% or more with the amino acid sequence encoded by the gene of SEQ ID NO.1.
应用于提高衣藻脂肪酸积累并与生长同步化。Applied to increase fatty acid accumulation in Chlamydomonas and synchronize with growth.
一种重组质粒,其特征在于:该质粒含有权利要求1所述叶绿体转运肽的基因序列及其下游插入目的基因所述的片段。A recombinant plasmid is characterized in that: the plasmid contains the gene sequence of the chloroplast transit peptide of claim 1 and the fragment inserted into the target gene downstream.
所述叶绿体转运肽的基因序列为SEQ ID NO.2;The gene sequence of the chloroplast transit peptide is SEQ ID NO.2;
所述目的基因序列为SEQ ID NO.1,Described target gene sequence is SEQ ID NO.1,
或,所编码蛋白的氨基酸序列与SEQ ID NO.1基因编码的氨基酸序列相似度达30%或以上的基因序列;Or, the amino acid sequence of the encoded protein has a similarity of 30% or more with the amino acid sequence encoded by the SEQ ID NO.1 gene sequence;
一种含有所述的重组质粒的转基因衣藻。A transgenic Chlamydomonas containing the recombinant plasmid.
所述转基因衣藻在提高衣藻脂肪酸积累并与生长同步化过程中的应用。The application of the transgenic Chlamydomonas in the process of increasing fatty acid accumulation in Chlamydomonas and synchronizing with growth.
转基因衣藻的构建方法,步骤如下:The construction method of transgenic Chlamydomonas, the steps are as follows:
获得了含有叶绿体转运肽序列的磷脂:二酰基甘油酰基转移酶基因;Obtained phospholipids containing chloroplast transit peptide sequence: diacylglycerol acyltransferase gene;
构建叶绿体型磷脂:二酰基甘油酰基转移酶基因重组表达载体;Construction of chloroplast-type phospholipid: diacylglycerol acyltransferase gene recombinant expression vector;
将所述的重组表达载体转化至莱茵衣藻细胞中,得到转基因莱茵衣藻;Transforming the recombinant expression vector into Chlamydomonas reinhardtii cells to obtain transgenic Chlamydomonas reinhardtii;
所述转化方法采用电转法,也可以采用玻璃珠法,基因枪法等;The transformation method adopts electroporation method, glass bead method, gene gun method, etc.;
通过将所述的转基因衣藻选用正常TAP培养基进行培养;测定所述转基因衣藻的生长指标,包括藻细胞密度,叶绿素荧光;同时测定外源基因的蛋白表达量以及脂肪酸含量,对比野生型莱茵衣藻的各个指标,获得了一种与生长同步化的提高微藻油脂积累的转基因衣藻。By culturing the transgenic Chlamydomonas in normal TAP medium; measuring the growth indicators of the transgenic Chlamydomonas, including algal cell density and chlorophyll fluorescence; simultaneously measuring the protein expression and fatty acid content of exogenous genes, and comparing the wild type Various indicators of Chlamydomonas reinhardtii were obtained, and a transgenic Chlamydomonas that was synchronized with the growth and increased the oil accumulation of microalgae was obtained.
本发明克服基因沉默技术或者其他物理化学技术中的不稳定因素,提供了一种通过基因优化改造来提高莱茵衣藻脂肪酸积累并与生长同步化的方法。在磷脂:二酰基甘油酰基转移酶外源基因的前端融合了叶绿体转运肽,并转化于莱茵衣藻中,从而获得提高脂肪酸积累与生长同步化的转基因衣藻。The invention overcomes the unstable factors in gene silencing technology or other physical and chemical technologies, and provides a method for improving the accumulation of fatty acids in Chlamydomonas reinhardtii and synchronizing with growth through genetic optimization and modification. A chloroplast transit peptide was fused to the front end of the exogenous gene of phospholipid:diacylglycerol acyltransferase, and transformed into Chlamydomonas reinhardtii, thereby obtaining a transgenic Chlamydomonas with improved fatty acid accumulation and growth synchronization.
本发明技术方案如下:The technical scheme of the present invention is as follows:
(1)转基因受体藻株及其培养(1) Transgenic recipient algal strain and its culture
在温度为22~25℃,光照为50μmol photons m-2s-1条件下,用TAP培养基培养莱茵衣藻,选择野生型的莱茵衣藻CC-137作为目的基因的受体。C. reinhardtii was cultured in TAP medium under the conditions of temperature of 22-25℃ and light of 50μmol photons m -2 s -1 , and wild-type C. reinhardtii CC-137 was selected as the receptor of the target gene.
(2)目的基因表达载体的构建(2) Construction of target gene expression vector
按照如图1方式基于pChlamy质粒、并融合ScPDAT的表达系统,构建重组表达载体pChlamy-ScPDAT,其中如图1所示。The recombinant expression vector pChlamy-ScPDAT was constructed based on the expression system of pChlamy plasmid and fused with ScPDAT as shown in FIG. 1 , as shown in FIG. 1 .
其中ScPDAT目的基因包括ScPDAT基因(如序列表SEQ ID No.1所示)和在其基因前端融合的279bp叶绿体转运肽(cTP)(如序列表SEQ ID No.2所示),除此之外,pChlamy载体序列中还包括673bp的PUCori;495bp的Hsp70A-RbcS2 杂合启动子;144bp的Int-1Rbc S2;312bp的β2-tubulin;1310bp Hygromycin; 860bp的Ampicilin;51bp的Pbla。The ScPDAT target gene includes the ScPDAT gene (as shown in SEQ ID No. 1 in the sequence table) and the 279bp chloroplast transit peptide (cTP) fused to the front end of the gene (as shown in SEQ ID No. 2 in the sequence table), in addition to , pChlamy vector sequence also includes 673bp PUCori; 495bp Hsp70A-RbcS2 hybrid promoter; 144bp Int-1Rbc S2; 312bp β2-tubulin; 1310bp Hygromycin; 860bp Ampicilin; 51bp Pbla.
(3)将重组表达载体转入莱茵衣藻,使之整合到衣藻核基因组(3) Transfer the recombinant expression vector into Chlamydomonas reinhardtii, and integrate it into the Chlamydomonas nuclear genome
用电转法将重组质粒进行线性化,转化到野生型莱茵衣藻CC-137中,在含有潮霉素抗性的TAP平板上进行筛选,挑选阳性藻落,进行单藻落PCR检测,并通过western blot方法检测ScPDAT蛋白表达量。The recombinant plasmid was linearized by electroporation, transformed into wild-type Chlamydomonas reinhardtii CC-137, screened on TAP plate containing hygromycin resistance, and positive algal colonies were selected for single colony PCR detection. The expression of ScPDAT protein was detected by western blot method.
(4)转化株和野生株生长测定(4) Growth assay of transformed strains and wild strains
在正常光照和温度下培养下,筛选得到的转基因莱茵衣藻,每株藻设三个平行,每天测定一次细胞的光密度值,同时培养野生型莱茵衣藻cc-137,测定生长曲线及叶绿素荧光曲线;并对转基因衣藻的脂肪酸及总脂含量进行测定。Under normal light and temperature, the transgenic Chlamydomonas reinhardtii were screened. Three parallels were set for each algae, and the optical density of the cells was measured once a day. At the same time, the wild-type Chlamydomonas reinhardtii cc-137 was cultivated, and the growth curve and chlorophyll were measured. Fluorescence curve; and the fatty acid and total lipid content of transgenic Chlamydomonas were measured.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明与现有技术相比,具有以下优点和效果:Compared with the prior art, the present invention has the following advantages and effects:
1、本发明证明在野生型莱茵衣藻中表达带有叶绿体转运肽的磷脂:二酰基甘油酰基转移酶基因,得到了在一定条件下培养,可以实现与生长偶联表达外源蛋白,并促使TAG积累与生长同步化的转基因衣藻。1. The present invention proves that the phospholipid with chloroplast transit peptide is expressed in wild-type Chlamydomonas reinhardtii: the diacylglycerol acyltransferase gene is cultivated under certain conditions, which can realize the coupled expression of exogenous proteins with growth, and promote the expression of exogenous proteins. Transgenic Chlamydomonas in which TAG accumulation and growth are synchronized.
2、获得的转基因衣藻和野生型莱茵衣藻相同条件培养下,总脂肪酸和TAG 分别提高22%和32%,外源蛋白表达和脂肪酸的积累,都与衣藻生长同步化。2. Under the same conditions of the obtained transgenic Chlamydomonas and wild-type Chlamydomonas reinhardtii, the total fatty acid and TAG were increased by 22% and 32% respectively, and the expression of exogenous protein and the accumulation of fatty acid were synchronized with the growth of Chlamydomonas reinhardtii.
3、这种转基因衣藻提高了脂肪酸积累,并与生长同步化,也将有助于微藻的下游产业的发展。3. This transgenic Chlamydomonas improves fatty acid accumulation and synchronizes with growth, which will also contribute to the development of downstream industries of microalgae.
4、在微藻的开发应用中,不采用胁迫培养的方式,实现油脂积累与藻细胞生长同步化,这是对于微藻生物能源开发的一个重要的意义。4. In the development and application of microalgae, the method of stress culture is not adopted to realize the synchronization of oil accumulation and algal cell growth, which is an important significance for the development of microalgae bioenergy.
附图说明Description of drawings
图1:pChlamy-ScPDAT质粒序列。Figure 1: pChlamy-ScPDAT plasmid sequence.
图2:转基因衣藻Scpdat的PCR验证。g泳道是PC-F/R引物验证结果,h 泳道是ScPDAT-F/R引物验证结果。Figure 2: PCR validation of transgenic Chlamydomonas Scpdat. The g lane is the PC-F/R primer verification result, and the h lane is the ScPDAT-F/R primer verification result.
图3:转基因衣藻Scpdat的western blot验证,及转基因衣藻Scpdat和野生株CC-137生长曲线。Figure 3: Western blot validation of transgenic Chlamydomonas Scpdat, and growth curves of transgenic Chlamydomonas Scpdat and wild strain CC-137.
图4:转基因衣藻Scpdat和野生株CC-137叶绿素荧光。Figure 4: Chlorophyll fluorescence of transgenic Chlamydomonas Scpdat and wild strain CC-137.
图5:转基因衣藻Scpdat和野生株CC-137的总脂肪酸含量。Figure 5: Total fatty acid content of transgenic Chlamydomonas Scpdat and wild strain CC-137.
图6:转基因衣藻Scpdat和野生株CC-137的SFA,MUFA和PUFA含量。Figure 6: SFA, MUFA and PUFA content of transgenic Chlamydomonas Scpdat and wild strain CC-137.
图7:转基因衣藻Scpdat和野生株CC-137的脂质含量。Figure 7: Lipid content of transgenic Chlamydomonas Scpdat and wild strain CC-137.
图8:转基因衣藻Scpdat和野生株CC-137在SQDG,MGDG,DGDG,DGTS 和TAG中有明显差异的脂肪酸含量。Figure 8: Significantly different fatty acid content in SQDG, MGDG, DGDG, DGTS and TAG between transgenic Chlamydomonas Scpdat and wild strain CC-137.
具体实施方式Detailed ways
本发明通过转化过表达ScPDAT基因,而提供一种转基因衣藻,能够高效积累油脂。我们在ScPDAT基因上游插入一段叶绿体转运肽(cTP),同时采用 Hsp70-RBSC2杂合启动子,在莱茵衣藻CC-137中表达ScPDAT,获得转化藻株,命名为Scpdat,研究对比Scpdat和CC-137的不同,尤其分析油脂积累和脂肪酸变化。以这种方式,我们可以深入的了解PDAT在油脂积累中的功能。The present invention provides a transgenic Chlamydomonas by transforming and overexpressing the ScPDAT gene, which can efficiently accumulate oil. We inserted a piece of chloroplast transit peptide (cTP) upstream of the ScPDAT gene, and at the same time used the Hsp70-RBSC2 hybrid promoter to express ScPDAT in Chlamydomonas reinhardtii CC-137 to obtain a transformed algal strain named Scpdat. 137, especially for lipid accumulation and fatty acid changes. In this way, we can gain insight into the function of PDAT in lipid accumulation.
用RF克隆技术构建重组表达载体,其中插入带有抗性基因和高效 Hsp70-RBSC2杂合启动子的表达载体,转化至野生型莱茵衣藻CC-137基因组中,通过筛选获得转基因衣藻,经过多次传代证明其遗传稳定性。将筛选出的转基因衣藻进行培养,测定藻细胞密度、叶绿素荧光、脂肪酸含量等指标并进行分析。A recombinant expression vector was constructed by RF cloning technology, into which an expression vector with a resistance gene and a high-efficiency Hsp70-RBSC2 hybrid promoter was inserted, transformed into the genome of wild-type Chlamydomonas reinhardtii CC-137, and the transgenic Chlamydomonas was obtained by screening. Multiple passages demonstrate its genetic stability. The screened transgenic Chlamydomonas was cultured, and the algal cell density, chlorophyll fluorescence, fatty acid content and other indicators were measured and analyzed.
实施例1:磷脂:二酰基甘油酰基转移酶基因表达载体的构建Example 1: Construction of phospholipid:diacylglycerol acyltransferase gene expression vector
本实施例选用的藻株为野生型莱茵衣藻CC-137作为转基因操作的受体。The algal strain selected in this example is wild-type Chlamydomonas reinhardtii CC-137 as the receptor for transgenic operation.
莱茵衣藻培养时使用的培养基为TAP培养基,TAP培养基配方如下:The medium used when Chlamydomonas reinhardtii is cultivated is TAP medium, and the TAP medium formula is as follows:
母液1(盐溶液):将20gNH4Cl,5g MgSO4·7H2O,2.5gCaCl2·2H2O定容于 500ml去离子水;Mother liquor 1 (salt solution): dilute 20g NH 4 Cl, 5g MgSO 4 ·7H 2 O, 2.5g CaCl 2 ·2H 2 O to 500ml deionized water;
母液2(磷酸盐溶液):将10.8gK2HPO4,5.6gKH2PO4定容于500ml去离子水;Mother liquor 2 (phosphate solution): dilute 10.8g K 2 HPO 4 and 5.6g KH 2 PO 4 in 500 ml of deionized water;
母液3(Hutner’s微量金属盐溶液):将50.0gNa2-EDTA·2H2O,22 gZnSO4·7H2O,5.06gMnCl2·4H2O,1.61gCoCl2·6H2O,1.57gCuSO4·5H2O,1.10 g(NH4)6Mo7O24·4H2O,4.99gFeSO4·7H2O定容于500ml去离子水;Nitrilotriacetic acid溶解,用大约7.3g KOH将pH调至7.0,将其他盐分别溶解,合并,用NaOH 或H2SO4将pH调至6.8Mother liquor 3 (Hutner's trace metal salt solution): 50.0 g Na 2 -EDTA·2H 2 O, 22 g ZnSO 4 ·7H 2 O, 5.06 g MnCl 2 ·4H 2 O, 1.61 g CoCl 2 ·6H 2 O, 1.57 g CuSO 4 ·5H 2 O, 1.10 g (NH 4 ) 6 Mo 7 O 24 · 4H 2 O, 4.99 g FeSO 4 · 7H 2 O in 500 ml deionized water; dissolve Nitrilotriacetic acid, adjust the pH to 7.0 with about 7.3 g KOH , Dissolve other salts separately, combine and adjust pH to 6.8 with NaOH or H2SO4
配置1L TAP,需要加入:20ml的1M Tris(sigma),10ml盐溶液(母液1),1 ml磷酸盐溶液(母液2),1mlHutner’s微量元素(母液3),1ml冰乙酸,定容于1L。To configure 1L TAP, you need to add: 20ml of 1M Tris (sigma), 10ml of salt solution (mother solution 1), 1 ml of phosphate solution (mother solution 2), 1ml of Hutner's trace elements (mother solution 3), 1ml of glacial acetic acid, and the volume is adjusted to 1L.
莱茵衣藻培养条件如下:在温度为22~25℃,光照为50~100μmolphotons m-2s-1条件下连续光照培养,其生长周期为5天。The culture conditions of Chlamydomonas reinhardtii are as follows: the temperature is 22~25℃ and the illumination is 50~100μmolphotons m -2 s -1 under the condition of continuous light culture, and the growth period is 5 days.
(1)目的基因表达载体的构建(1) Construction of target gene expression vector
采用人工合成ScPDAT基因而得到pPICZαA-ScPDAT质粒,利用RF克隆的方法,将pPICZαA-ScPDAT表达载体上的1957bp的ScPDAT片段扩增出来,具体的PCR体系:50μl体系,pPICZαA-ScPDAT质粒80~100ng,0.4μM的ScPDAT 特异性引物(ScPDAT-F/R),25μlPrimeSTAR Max DNA Polymerase(TaKaRa,大连市,CodeNo.R045Q),反应条件:94℃预变性5min;然后94℃变性30s; 55℃退火30s;72℃延伸30s;30个循环;最后72min延伸7min,反应完成后保持在4℃,得到ScPDAT片段。再以ScPDAT片段作为引物,将其整合到 pChlamy表达载体上,具体PCR反应体系如表1所示,反应条件:98℃预变性 5min;然后98℃变性10s;60℃退火5s;72℃延伸2min;30个循环;最后72min 延伸7min,反应完成后保持在4℃。得到重组质粒pChlamy-ScPDAT,得到的 PCR产物转化至E.coli DH5α感受态细胞,然后涂布于含有氨苄抗生素的LB培养皿上,37℃过夜培养。挑取单克隆,提取质粒,得到重组质粒,并经过测序验证。The pPICZαA-ScPDAT plasmid was obtained by artificially synthesizing the ScPDAT gene, and the 1957bp ScPDAT fragment on the pPICZαA-ScPDAT expression vector was amplified by the method of RF cloning. The specific PCR system: 50μl system, pPICZαA-ScPDAT plasmid 80~100ng, 0.4μM ScPDAT-specific primer (ScPDAT-F/R), 25μl PrimeSTAR Max DNA Polymerase (TaKaRa, Dalian, CodeNo.R045Q), reaction conditions: pre-denaturation at 94°C for 5min; then denaturation at 94°C for 30s; annealing at 55°C for 30s; Extend at 72°C for 30s; 30 cycles; the last 72min extension for 7min, and keep at 4°C after the reaction is completed to obtain the ScPDAT fragment. Then the ScPDAT fragment was used as a primer, and it was integrated into the pChlamy expression vector. The specific PCR reaction system is shown in Table 1. The reaction conditions: pre-denaturation at 98°C for 5 min; then denaturation at 98°C for 10s; annealing at 60°C for 5s; extension at 72°C for 2 min ; 30 cycles; the last 72min extension 7min, after the completion of the reaction kept at 4 ℃. The recombinant plasmid pChlamy-ScPDAT was obtained, and the obtained PCR product was transformed into E. coli DH5α competent cells, then spread on LB dishes containing ampicillin, and cultured at 37°C overnight. Single clones were picked, plasmids were extracted, and recombinant plasmids were obtained, which were verified by sequencing.
表1 PCR反应体系(50μl)Table 1 PCR reaction system (50μl)
实施例中,ScPDAT特异性引物ScPDAT-F:5’In the embodiment, ScPDAT-specific primer ScPDAT-F: 5'
GATTCGAGGTACCCTTCACCACGACCCCA ACAAAAGGCA 3’。GATTCGAGGTACCCTTCACCACGACCCCA ACAAAAGGCA 3'.
实施例2:莱茵衣藻的遗传转化Example 2: Genetic Transformation of Chlamydomonas reinhardtii
采用常规的SDS碱裂解法抽提重组质粒pChlamy-ScPDATThe recombinant plasmid pChlamy-ScPDAT was extracted by conventional SDS alkaline lysis method
“电转法”具体步骤如下:The specific steps of "electric transfer method" are as follows:
(1)获得线性化的质粒(1) Obtain a linearized plasmid
利用质粒抽提试剂盒进行抽提质粒,测定质粒浓度,用Sca I或Pvu I限制性内切酶将质粒进行线性化,反应结束后,直接将线性化重组质粒进行醇沉回收。The plasmid was extracted using a plasmid extraction kit, the concentration of the plasmid was determined, and the plasmid was linearized with Sca I or Pvu I restriction enzymes. After the reaction, the linearized recombinant plasmid was directly recovered by alcohol precipitation.
(2)莱茵衣藻的培养(2) Cultivation of Chlamydomonas reinhardtii
从TAP平板挑取莱茵衣藻野生型CC-137单克隆到无菌的六孔板中TAP培养,放在24h光照培养箱,28℃,50~100μE m-2s-1,莱茵衣藻CC-137的 OD750=0.6~0.7,取藻细胞稀释到50ml TAP培养基OD750=0.05~0.06,藻细胞在100ml锥形瓶中培养24h后,测定藻细胞密度达到0.3~0.5之间;若细胞密度没有达到,则需要继续培养;若细胞密度超过了标准值,则需要重新培养。Pick out the wild-type CC-137 single clone of C. reinhardtii from the TAP plate and put it into a sterile six-well plate for TAP culture, put it in a 24h light incubator, 28℃, 50~100μE m -2 s -1 , Chlamydomonas reinhardtii CC -137 OD 750 = 0.6~0.7, take algal cells and dilute them to 50ml TAP medium OD 750 = 0.05~0.06, after algal cells are cultured in a 100ml conical flask for 24h, the density of algal cells is determined to reach 0.3~0.5; if If the cell density is not reached, it needs to continue to culture; if the cell density exceeds the standard value, it needs to be re-cultured.
(3)藻细胞和线性化重组质粒混合并进行电击(3) The algal cells and the linearized recombinant plasmid are mixed and electroshocked
取合适的莱茵衣藻15ml,2500rpm,离心10min,将上清液除净,可采用枪头吸取上清,用250μl的40mM蔗糖TAP溶液重悬藻细胞并加入电击杯中,向电击杯中加入2~3μg的线性化质粒,轻轻晃动电击杯混匀,常温放置5min 后进行电击,电压=600V,电容=50μF,电阻=无限大。(空白对照不加质粒,只加对应体积的无菌水即可)Take 15ml of suitable Chlamydomonas reinhardtii, centrifuge at 2500rpm for 10min, remove the supernatant, use a pipette tip to aspirate the supernatant, resuspend the algal cells with 250μl of 40mM sucrose TAP solution and add it to the electric shock cup. 2-3 μg of linearized plasmid, shake the electric shock cup gently to mix, and place it at room temperature for 5 minutes before electric shock, voltage=600V, capacitance=50μF, resistance=infinite. (No plasmid is added to the blank control, only the corresponding volume of sterile water can be added)
(4)恢复培养(4) Recovery culture
电击结束约5min后,在孔板中加5ml的40mM蔗糖TAP溶液,将电击后混合物分别加入六孔板中2个孔中各125μl,再用1ml 40mM蔗糖TAP溶液冲洗,再分别加入孔板中各500μl,放在光照培养箱培养24h。About 5 minutes after the electric shock, add 5 ml of 40 mM sucrose TAP solution to the well plate, add 125 μl of the mixture after electric shock to 2 wells of the six-well plate, rinse with 1 ml of 40 mM sucrose TAP solution, and then add them to the well plate respectively. Each 500μl was placed in a lighted incubator for 24h.
(5)涂板筛选(5) Screening of coated plates
取六孔板中2ml的藻细胞放在15ml离心管中,2500rpm,离心10min,先用枪头吸出上清,用150μl的40mM蔗糖TAP溶液重悬藻细胞,涂布在含有 10μg/mL潮霉素的TAP平板上,观察藻细胞生长,做好藻细胞出现记录。Take 2ml of algal cells in the six-well plate and put them in a 15ml centrifuge tube, centrifuge at 2500rpm for 10min, first suck out the supernatant with a pipette tip, resuspend the algal cells with 150μl of 40mM sucrose TAP solution, and spread them on a 10μg/mL hygromycin solution. The growth of algal cells was observed on the TAP plate of virgin algal cells, and the appearance of algal cells was recorded.
实施例3:转基因莱茵衣藻的筛选与鉴定Example 3: Screening and identification of transgenic Chlamydomonas reinhardtii
由于重组质粒表达载体上含有潮霉素抗性基因,因此阳性转基因衣藻可以在含有潮霉素抗性的TAP平板上生长。转基因衣藻的检测包括基因水平的单藻落 PCR验证和蛋白水平的western blot验证。Since the recombinant plasmid expression vector contains the hygromycin resistance gene, positive transgenic Chlamydomonas can grow on TAP plates containing hygromycin resistance. The detection of transgenic Chlamydomonas includes single colony PCR verification at the gene level and western blot verification at the protein level.
(1)转基因衣藻Scpdat的单藻落在基因水平上PCR验证(1) PCR verification of single algal drop of transgenic Chlamydomonas Scpdat at the gene level
挑取平板上的单藻落到PCR管中,加入10μl的无菌水重悬藻细胞,98℃煮 20~30min,离心取上清,先用PC-F/R引物,再用重组表达载体的ScPDAT特异性引物(ScPDAT-F/R),利用PCR技术从藻体中扩增出ScPDAT片段,使用PrimeSTAR Max DNA Polymerase,反应体系为25μl,反应条件:98℃预变性15min;然后98℃变性10s;55℃退火10s;72℃延伸10s;30个循环;反应完成后保持在4℃。通过电泳条带确定目的基因片段ScPDAT已经转入到莱茵衣藻中。Pick a single algae on the plate and drop it into a PCR tube, add 10 μl of sterile water to resuspend the algal cells, cook at 98°C for 20-30min, centrifuge to take the supernatant, use PC-F/R primer first, and then use the recombinant expression vector The ScPDAT-specific primer (ScPDAT-F/R) was used to amplify the ScPDAT fragment from the algae by PCR technology, using PrimeSTAR Max DNA Polymerase, the reaction system was 25 μl, and the reaction conditions: 98 ℃ pre-denaturation for 15min; 10s; annealing at 55°C for 10s; extension at 72°C for 10s; 30 cycles; kept at 4°C after the reaction was completed. It was confirmed that the target gene fragment ScPDAT had been transferred into Chlamydomonas reinhardtii by electrophoresis bands.
实施例中,载体本身的引物PC-F:5’GATTCGAGGTACCCTTCACC 3’。In the example, the primer PC-F of the vector itself: 5' GATTCGAGGTACCCTTCACC 3'.
(2)转基因衣藻Scpdat在蛋白水平上western blot验证(2) Western blot verification of transgenic Chlamydomonas Scpdat at the protein level
采用western blot技术检测Scpdat藻细胞中ScPDAT蛋白的表达,由于 ScPDAT的末端带有组氨酸标签,采用His-Taq抗体检测ScPDAT蛋白表达。具体流程如下:Western blot was used to detect the expression of ScPDAT protein in Scpdat algal cells. Since the end of ScPDAT was tagged with histidine, His-Taq antibody was used to detect the expression of ScPDAT protein. The specific process is as follows:
a)藻细胞样品处理:每天定时收获50ml Scpdat和CC-137藻细胞,以12000 g转速在冷冻离心机离心10min,去除上清液后将藻细胞放入液氮中速冻,再放入-80℃冰箱保存并过夜存放。a) Algal cell sample processing: 50 ml of Scpdat and CC-137 algal cells were harvested regularly every day, centrifuged at 12,000 g for 10 min in a refrigerated centrifuge, the supernatant was removed, and the algal cells were quickly frozen in liquid nitrogen, and then placed in -80 Store in the refrigerator at °C and store overnight.
b)藻细胞蛋白样品提取:将每个藻细胞样品取出,冰上解冻,每个样品中加入20~30ml无水乙醇,为了去除色素,这个操作再重复一遍后,再用去离子水冲洗两遍后得到藻细胞,每个样品中加入1ml裂解液,同时加入蛋白酶抑制剂,放在组织细胞振荡器进行细胞破碎,完成后放在冰上放置1~2h,以便藻细胞被充分裂解,然后以12000g转速冷冻离心20min,吸取上清液,得到藻细胞的蛋白样品,并用考马斯亮蓝法测定每个样品的蛋白浓度。b) Extraction of algal cell protein samples: Take out each algal cell sample, thaw it on ice, add 20-30 ml of absolute ethanol to each sample, and repeat this operation to remove the pigment, and then rinse with deionized water for two times. After the algal cells were obtained, 1 ml of lysis buffer was added to each sample, and protease inhibitors were added at the same time, and the cells were disrupted on a tissue cell shaker. Refrigerate and centrifuge at 12000g for 20min, suck the supernatant to obtain protein samples of algal cells, and measure the protein concentration of each sample by Coomassie brilliant blue method.
c)SDS-PAGE电泳分离蛋白:统一将每个样品蛋白上样量,将蛋白和loadingbuffer(Coomassie Brilliant Blue G-250)混匀加热变性,加到10%的 SDS-PAGE胶中,进行恒压90V电泳分离蛋白。c) Protein separation by SDS-PAGE electrophoresis: uniformly load the protein of each sample, mix the protein and loading buffer (Coomassie Brilliant Blue G-250), heat and denature them, add them to a 10% SDS-PAGE gel, and conduct constant pressure Proteins were separated by electrophoresis at 90V.
d)PVDF转膜及蛋白显色:首先切去SDS-PAGE胶的浓缩胶部分,留下目的蛋白位置的胶放入转膜液中,同时将剪好和胶大小一致的PVDF膜放入甲醇溶液中10min,取出PVDF膜放入转膜液中,将胶和膜夹好放入电转仪进行电转,考虑ScPDAT蛋白大小,电转设定250mA恒流转1h,完成后,将PVDF膜在5%的牛奶中封闭1h,用1×PBST简单冲洗两遍,放入一抗溶液中孵育过夜,在这里每个时间点的样品需要分别孵育 His-Taq和GAPDH抗体,一抗均为1:1000稀释,一抗孵育结束后,用1 ×PBST冲洗三遍/6min,放入二抗溶液孵育2h,完成后,将膜洗净后,放入在TanonTMHigh-sig ECL Western Blotting Substrate进行曝光显色,这一步骤是在Multifunctional imager:FUSION-FX5-820进行操作。Western blot结果如图3所示d) PVDF membrane transfer and protein color development: first cut off the concentrated gel part of the SDS-PAGE gel, leave the gel at the position of the target protein and put it into the transfer solution, and at the same time put the cut PVDF membrane with the same size as the gel into methanol In the solution for 10min, take out the PVDF membrane and put it in the transfer solution, put the glue and membrane into the electroporator for electroporation. Considering the size of the ScPDAT protein, the electroporation is set to 250mA and the constant current is transferred for 1h. Blocked in milk for 1 hour, briefly rinsed twice with 1×PBST, and incubated overnight in the primary antibody solution. Here, the samples at each time point need to be incubated with His-Taq and GAPDH antibodies respectively, and the primary antibodies are both diluted 1:1000. After the primary antibody incubation, wash three times/6min with 1 × PBST, put in the secondary antibody solution and incubate for 2h. After completion, wash the membrane and put it on Tanon TM High-sig ECL Western Blotting Substrate for exposure and color development. This step is performed on the Multifunctional imager: FUSION-FX5-820. Western blot results are shown in Figure 3
实施例4:转基因莱茵衣藻的培养Example 4: Cultivation of transgenic Chlamydomonas reinhardtii
(1)转基因衣藻的生长曲线和叶绿素荧光测定(1) Growth curve and chlorophyll fluorescence measurement of transgenic Chlamydomonas
通过对转基因衣藻和野生株连续5天的培养,定时测定OD750和Fv/Fm,同时结合ScPDAT蛋白表达量,如图3所示,可以看出外源ScPDAT表达情况及对生长的影响。ScPDAT转化株在生长初期起始出现了约一天的延迟,ScPDAT的表达量伴随生长在指数期末期达到最大,随后开始下降。同时观察Fv/Fm变化,如图4所示,对叶绿素荧光动力学参数Fv/Fm的影响主要表现在对生长速率最快的第二天,有可能是干扰了叶绿体内的系统的合成。By culturing the transgenic Chlamydomonas and wild strains for 5 consecutive days, OD 750 and F v /F m were measured regularly, and combined with the expression of ScPDAT protein, as shown in Figure 3, the expression of exogenous ScPDAT and its effect on growth can be seen . The ScPDAT transformants showed a delay of about one day in the initial growth stage, and the expression of ScPDAT reached the maximum at the end of the exponential phase with the growth, and then began to decline. At the same time, the changes of F v /F m were observed. As shown in Figure 4, the effect on the chlorophyll fluorescence kinetic parameter F v / F m was mainly manifested in the second day when the growth rate was the fastest, which may have interfered with the system in the chloroplast. Synthesis.
(2)转基因莱茵衣藻的脂肪酸组分及总脂含量(2) Fatty acid composition and total lipid content of transgenic Chlamydomonas reinhardtii
取5mg左右的藻细胞,加入5%硫酸甲醇溶液,同时加入内标C17,进过 70℃油浴转酯化1h,加入正己烷和去离子水,震荡取上层,去水分后将其放入色谱瓶中,经气相色谱进行数据分析,如图5所示,转基因衣藻在总脂肪酸含量的变化,ScPDAT的转入引起了转基因衣藻总脂肪酸含量提高了22%。图6所示,是对不同饱和度脂肪酸含量的分析,结果表明ScPDAT主要是引起转基因衣藻中多不饱和脂肪酸的积累。Take about 5 mg of algal cells, add 5% sulfuric acid methanol solution, and add internal standard C17 at the same time, transesterify in an oil bath at 70 °C for 1 h, add n-hexane and deionized water, shake to take the upper layer, remove moisture and put it in In the chromatographic bottle, the data was analyzed by gas chromatography. As shown in Figure 5, the changes in the total fatty acid content of the transgenic Chlamydomonas, the transfer of ScPDAT caused the total fatty acid content of the transgenic Chlamydomonas to increase by 22%. Figure 6 shows the analysis of the content of fatty acids with different degrees of saturation. The results showed that ScPDAT mainly caused the accumulation of polyunsaturated fatty acids in transgenic Chlamydomonas.
通过对各个样品进行提油,再通过TLC分离,得到相应的酯,将MGDG, DGDG,SQDG,DGTS,TAG这些酯进行定量转酯化,进而确定各种酯的脂肪酸组成和含量,如图7所示,对不同功能酯类含量的分析,ScPDAT的转化导致了重要光合系统脂类MGDG的下降,是Fv/Fm降低的一个原因,但同时促进了 TAG的生产。再从脂肪酸的角度进行分析,如图8所示,是不同脂类中脂肪酸含量变化明显的组分,ScPDAT的转入强化了叶绿体中脂类向TAG的转移。By extracting oil from each sample and then separating it by TLC, the corresponding esters were obtained, and the esters of MGDG, DGDG, SQDG, DGTS, and TAG were quantitatively transesterified to determine the fatty acid composition and content of various esters, as shown in Figure 7. As shown in the analysis of the content of different functional esters, the transformation of ScPDAT leads to the decrease of MGDG, an important lipid of the photosynthetic system, which is a reason for the decrease of Fv / Fm, but at the same time promotes the production of TAG. From the perspective of fatty acids, as shown in Figure 8, it is a component with obvious changes in fatty acid content in different lipids. The transfer of ScPDAT enhanced the transfer of lipids to TAG in chloroplasts.
实施例5:ScPDAT基因定位在叶绿体中的证明Example 5: Demonstration of ScPDAT gene localization in chloroplasts
通过杨等人(Miao Y et al.2017)对于叶绿体特征脂肪酸构成的研究结果,从图8中发现构建的转基因衣藻中C16系列的脂肪酸得到了大量积累,尤其表现在TAG积累中的C16:4n3,C16:3n6,这都是通过叶绿体原核途径所合成的脂肪酸,表明,所引入的外源PDAT在叶绿体中发挥了作用。Through the research results of Yang et al. (Miao Y et al. 2017) on the characteristic fatty acid composition of chloroplasts, it is found from Figure 8 that the C16 series of fatty acids in the constructed transgenic Chlamydomonas have accumulated a lot, especially C16 in the accumulation of TAG: 4n3, C16:3n6, these are fatty acids synthesized through the chloroplast prokaryotic pathway, indicating that the introduced exogenous PDAT played a role in the chloroplast.
(a)序列特征:(a) Sequence features:
*长度:1674bp*Length: 1674bp
*类型:核酸*Type: Nucleic acid
*链型:双链*Chain type: double chain
*拓扑结构:线性*Topology: Linear
(b)分子类型:cDNA(b) Molecular type: cDNA
(c)假设:否(c) Assumption: No
(d)反义:否(d) Antonym: No
(e)最初来源:人工合成(e) Original Source: Synthetic
(a)序列特征:(a) Sequence features:
*长度:279bp*Length: 279bp
*类型:核酸*Type: Nucleic acid
*链型:双链*Chain type: double chain
*拓扑结构:线性*Topology: Linear
(b)分子类型:cDNA(b) Molecular type: cDNA
(c)假设:否(c) Assumption: No
(d)反义:否(d) Antonym: No
(e)最初来源:人工合成。(e) Original Source: Synthetic.
序列表sequence listing
<110> 中国科学院大连化学物理研究所<110> Dalian Institute of Chemical Physics, Chinese Academy of Sciences
<120> 一种含有叶绿体转运肽的基因序列的应用<120> Application of a gene sequence containing a chloroplast transit peptide
<160> 2<160> 2
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1674<211> 1674
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
gatagcgact tgtttgacaa ctttgtaaat tttgattcac ttaaagtgta tttggatgat 60gatagcgact tgtttgacaa ctttgtaaat tttgattcac ttaaagtgta tttggatgat 60
tggaaagatg ttctcccaca aggtataagt tcgtttattg atgatattca ggctggtaac 120tggaaagatg ttctcccaca aggtataagt tcgtttattg atgatattca ggctggtaac 120
tactccacat cttctttaga tgatctcagt gaaaattttg ccgttggtaa acaactctta 180tactccacat cttctttaga tgatctcagt gaaaattttg ccgttggtaa acaactctta 180
cgtgattata atatcgaggc caaacatcct gttgtaatgg ttcctggtgt catttctacg 240cgtgattata atatcgaggc caaacatcct gttgtaatgg ttcctggtgt catttctacg 240
ggaattgaaa gctggggagt tattggagac gatgagtgcg atagttctgc gcattttcgt 300ggaattgaaa gctggggagt tattggagac gatgagtgcg atagttctgc gcattttcgt 300
aaacggctgt ggggaagttt ttacatgctg agaacaatgg ttatggataa agtttgttgg 360aaacggctgt ggggaagttt ttacatgctg agaacaatgg ttatggataa agtttgttgg 360
ttgaaacatg taatgttaga tcctgaaaca ggtctggacc caccgaactt tacgctacgt 420ttgaaacatg taatgttaga tcctgaaaca ggtctggacc caccgaactt tacgctacgt 420
gcagcacagg gcttcgaatc aactgattat ttcatcgcag ggtattggat ttggaacaaa 480gcagcacagg gcttcgaatc aactgattat ttcatcgcag ggtattggat ttggaacaaa 480
gttttccaaa atctgggagt aattggctat gaacccaata aaatgacgag tgctgcgtat 540gttttccaaa atctgggagt aattggctat gaacccaata aaatgacgag tgctgcgtat 540
gattggaggc ttgcatattt agatctagaa agacgcgata ggtactttac gaagctaaag 600gattggaggc ttgcatattt agatctagaa agacgcgata ggtactttac gaagctaaag 600
gaacaaatcg aactgtttca tcaattgagt ggtgaaaaag tttgtttaat tggacattct 660gaacaaatcg aactgtttca tcaattgagt ggtgaaaaag tttgtttaat tggacattct 660
atgggttctc agattatctt ttactttatg aaatgggtcg aggctgaagg ccctctttac 720atgggttctc agattatctt ttactttatg aaatgggtcg aggctgaagg ccctctttac 720
ggtaatggtg gtcgtggctg ggttaacgaa cacatagatt cattcattaa tgcagcaggg 780ggtaatggtg gtcgtggctg ggttaacgaa cacatagatt cattcattaa tgcagcaggg 780
acgcttctgg gcgctccaaa ggcagttcca gctctaatta gtggtgaaat gaaagatacc 840acgcttctgg gcgctccaaa ggcagttcca gctctaatta gtggtgaaat gaaagatacc 840
attcaattaa atacgttagc catgtatggt ttggaaaagt tcttctcaag aattgagaga 900attcaattaa atacgttagc catgtatggt ttggaaaagt tcttctcaag aattgagaga 900
gtaaaaatgt tacaaacgtg gggtggtata ccatcaatgc taccaaaggg agaagaggtc 960gtaaaaatgt tacaaacgtg gggtggtata ccatcaatgc taccaaaggg agaagaggtc 960
atttgggggg atatgaagtc atcttcagag gatgcattga ataacaacac tgacacatac 1020atttgggggg atatgaagtc atcttcagag gatgcattga ataacaacac tgacacatac 1020
ggcaatttca ttcgatttga aaggaatacg agcgatgctt tcaacaaaaa tttgacaatg 1080ggcaatttca ttcgatttga aaggaatacg agcgatgctt tcaacaaaaa tttgacaatg 1080
aaagacgcca ttaacatgac attatcgata tcacctgaat ggctccaaag aagagtacat 1140aaagacgcca ttaacatgac attatcgata tcacctgaat ggctccaaag aagagtacat 1140
gagcagtact cgttcggcta ttccaagaat gaagaagagt taagaaaaaa tgagctacac 1200gagcagtact cgttcggcta ttccaagaat gaagaagagt taagaaaaaa tgagctacac 1200
cacaagcact ggtcgaatcc aatggaagta ccacttccag aagctcccca catgaaaatc 1260cacaagcact ggtcgaatcc aatggaagta ccacttccag aagctcccca catgaaaatc 1260
tattgtatat acggggtgaa caacccaact gaaagggcat atgtatataa ggaagaggat 1320tattgtatat acggggtgaa caacccaact gaaagggcat atgtatataa ggaagaggat 1320
gactcctctg ctctgaattt gaccatcgac tacgaaagca agcaacctgt attcctcacc 1380gactcctctg ctctgaattt gaccatcgac tacgaaagca agcaacctgt attcctcacc 1380
gagggggacg gaaccgttcc gctcgtggcg cattcaatgt gtcacaaatg ggcccagggt 1440gagggggacg gaaccgttcc gctcgtggcg cattcaatgt gtcacaaatg ggcccagggt 1440
gcttcaccgt acaaccctgc cggaattaac gttactattg tggaaatgaa acaccagcca 1500gcttcaccgt acaaccctgc cggaattaac gttactattg tggaaatgaa acaccagcca 1500
gatcgatttg atatacgtgg tggagcaaaa agcgccgaac acgtagacat cctcggcagc 1560gatcgatttg atatacgtgg tggagcaaaa agcgccgaac acgtagacat cctcggcagc 1560
gcggagttga acgattacat cttgaaaatt gcaagcggta atggcgatct cgtcgagcca 1620gcggagttga acgattacat cttgaaaatt gcaagcggta atggcgatct cgtcgagcca 1620
cgccaattgt ctaatttgag ccagtgggtt tctcagatgc ccttcccaat gtga 1674cgccaattgt ctaatttgag ccagtgggtt tctcagatgc ccttcccaat gtga 1674
<210> 2<210> 2
<211> 279<211> 279
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
acgaccccaa caaaaggcaa tagcaatgct cgacaacgaa agaagggagg aaccagtgcc 60acgaccccaa caaaaggcaa tagcaatgct cgacaacgaa agaagggagg aaccagtgcc 60
gaggcgtccg cggcgacacc gtcaaaagcc aagcctggaa gggaccataa cgtgcacgca 120gaggcgtccg cggcgacacc gtcaaaagcc aagcctggaa gggaccataa cgtgcacgca 120
acccccagcc actcgcactc gcactcgcac tcccagtctc agcagcaccg gcaaggaccg 180acccccagcc actcgcactc gcactcgcac tcccagtctc agcagcaccg gcaaggaccg 180
catgctgccc aaccaaaatc ggagcggcgt ctggtgctat ggctggcggc ggcgggggtg 240catgctgccc aaccaaaatc ggagcggcgt ctggtgctat ggctggcggc ggcgggggtg 240
gtgctgctgc cgctggtgct gctgccgccc gcactaagc 279gtgctgctgc cgctggtgct gctgccgccc gcactaagc 279
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810365955.5A CN110386966A (en) | 2018-04-23 | 2018-04-23 | Application of a gene sequence containing chloroplast transit peptide |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810365955.5A CN110386966A (en) | 2018-04-23 | 2018-04-23 | Application of a gene sequence containing chloroplast transit peptide |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN110386966A true CN110386966A (en) | 2019-10-29 |
Family
ID=68284390
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810365955.5A Pending CN110386966A (en) | 2018-04-23 | 2018-04-23 | Application of a gene sequence containing chloroplast transit peptide |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110386966A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114085278A (en) * | 2022-01-20 | 2022-02-25 | 北京市农林科学院 | Application of Lsa25711 transit peptide in chloroplast genetic transformation |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1362994A (en) * | 1999-04-01 | 2002-08-07 | 巴斯夫植物科学股份有限公司 | Enzymes of the biosynthetic pathway for the production of triacylglycerol and recombinant DNA molecules encoding these enzymes |
| CN102559727A (en) * | 2010-12-10 | 2012-07-11 | 财团法人工业技术研究院 | Expression vector and method for producing grease by using microalgae |
| CN104202967A (en) * | 2012-02-01 | 2014-12-10 | 陶氏益农公司 | Chloroplast transit peptide |
| CN105164266A (en) * | 2012-12-19 | 2015-12-16 | 波士顿医疗中心有限公司 | Methods for elevating fat/oil content in plants |
| KR101701129B1 (en) * | 2015-08-20 | 2017-02-01 | 전북대학교산학협력단 | Method for producing transgenic plant with increased triacylglycerol biosynthesis using AtMYB96 gene and plant thereof |
| JP2017192363A (en) * | 2016-04-22 | 2017-10-26 | 国立大学法人埼玉大学 | Method of increasing fat accumulation in algae |
-
2018
- 2018-04-23 CN CN201810365955.5A patent/CN110386966A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1362994A (en) * | 1999-04-01 | 2002-08-07 | 巴斯夫植物科学股份有限公司 | Enzymes of the biosynthetic pathway for the production of triacylglycerol and recombinant DNA molecules encoding these enzymes |
| CN102559727A (en) * | 2010-12-10 | 2012-07-11 | 财团法人工业技术研究院 | Expression vector and method for producing grease by using microalgae |
| CN104202967A (en) * | 2012-02-01 | 2014-12-10 | 陶氏益农公司 | Chloroplast transit peptide |
| CN105164266A (en) * | 2012-12-19 | 2015-12-16 | 波士顿医疗中心有限公司 | Methods for elevating fat/oil content in plants |
| KR101701129B1 (en) * | 2015-08-20 | 2017-02-01 | 전북대학교산학협력단 | Method for producing transgenic plant with increased triacylglycerol biosynthesis using AtMYB96 gene and plant thereof |
| JP2017192363A (en) * | 2016-04-22 | 2017-10-26 | 国立大学法人埼玉大学 | Method of increasing fat accumulation in algae |
Non-Patent Citations (5)
| Title |
|---|
| ANDERS DAHLQVIST等: "Phospholipid:diacylglycerol acyltransferase:An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants", 《PNAS》 * |
| KANGSUP YOON等: "Phospholipid:Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii", 《THE PLANT CELL》 * |
| 李想等: "水稻Rubisco激酶基因叶绿体转运肽增强转基因表达", 《福建农业学报》 * |
| 欧阳五庆等: "《细胞生物学》", 31 December 2007 * |
| 邓晓东等: "莱茵衣藻磷脂二脂酰甘油酰基转移酶3在三酰甘油", 《水生生物学报》 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114085278A (en) * | 2022-01-20 | 2022-02-25 | 北京市农林科学院 | Application of Lsa25711 transit peptide in chloroplast genetic transformation |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Shin et al. | Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production | |
| Manandhar-Shrestha et al. | Characterization and manipulation of a DGAT2 from the diatom Thalassiosira pseudonana: improved TAG accumulation without detriment to growth, and implications for chloroplast TAG accumulation | |
| Chen et al. | Overexpression of acetyl-CoA carboxylase increases fatty acid production in the green alga Chlamydomonas reinhardtii | |
| US11332764B2 (en) | Microorganisms having increased lipid productivity | |
| Mao et al. | Characterization of type I and type II diacylglycerol acyltransferases from the emerging model alga Chlorella zofingiensis reveals their functional complementarity and engineering potential | |
| CN104651236B (en) | It is a kind of to be used to improve transgenosis chlamydomonas, construction method of Chlamydomonas reinhardtii content of fatty acid and application thereof | |
| Kang et al. | Heterologous overexpression of sfCherry fluorescent protein in Nannochloropsis salina | |
| CN105420211B (en) | A kind of thermophilic esterase AFEST mutant and its screening technique and application | |
| Yang et al. | PDAT regulates PE as transient carbon sink alternative to triacylglycerol in Nannochloropsis | |
| CN118109508B (en) | Application of GhGPAT gene in regulation and control of vegetable oil accumulation | |
| US10280431B2 (en) | Acyltransferases and methods of using | |
| CN110386966A (en) | Application of a gene sequence containing chloroplast transit peptide | |
| CN105755034A (en) | Recombinant expression vector of Chlamydomonas reinhardtii Dof (DNA binding with one finger) gene as well as construction method and application of recombinant expression vector | |
| CN108531491B (en) | Lysophosphatidic acid acyltransferase gene and its application in notch-margined green algae | |
| US11124798B2 (en) | Algal lipid productivity via genetic modification of a TPR domain containing protein | |
| CN108588099B (en) | Gene Sequence and Functional Identification of Diacylglycerol Acyltransferase (MiDGAT2C) from Chlorella nick-margin | |
| KR20220136947A (en) | Recombinant microalga with highly improved tolerances towards high CO2 and/or low pH conditions | |
| CN102586129B (en) | Produce oil rhodococcus Rhodococcus sp.RHA-MLDS knocking out MLDS gene and uses thereof | |
| CN118516400B (en) | Application of gma-miR169c gene in regulating plant fatty acid synthesis | |
| US11718857B2 (en) | Broad host range genetic tools for engineering microalgae | |
| CN105219649A (en) | A kind of method utilizing metabolic gene engineering to improve diatom fat content | |
| CN104357467A (en) | Potato hytophthora infestans diacylglycerol acyltransferase gene DGAT2-4 and application thereof | |
| CN116925939A (en) | Construction method and application of engineering bacteria for producing fatty acid esters | |
| Adiguzel | The Use of Omics Technologies, Random Mutagenesis, and Genetic Transformation Techniques to Improve Algae for Biodiesel Industry | |
| US10533232B2 (en) | Parasitic phytophthora-derived omega-3 fatty acid desaturase for synthesizing polyunsaturated fatty acids, carrier containing fatty acid desaturase, recombinant microorganisms, and application thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191029 |