CN110501892B - Method and device for preparing chiral multi-lobe microstructure - Google Patents
Method and device for preparing chiral multi-lobe microstructure Download PDFInfo
- Publication number
- CN110501892B CN110501892B CN201910670289.0A CN201910670289A CN110501892B CN 110501892 B CN110501892 B CN 110501892B CN 201910670289 A CN201910670289 A CN 201910670289A CN 110501892 B CN110501892 B CN 110501892B
- Authority
- CN
- China
- Prior art keywords
- microstructure
- lobed
- chiral
- reference point
- hologram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/0402—Recording geometries or arrangements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/18—Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
- G03H1/182—Post-exposure processing, e.g. latensification
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
- G03H1/2202—Reconstruction geometries or arrangements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
Abstract
Description
技术领域technical field
本发明涉及微纳制造技术领域,尤其涉及一种手性多瓣微结构的制备方法和装置。The invention relates to the technical field of micro-nano manufacturing, in particular to a preparation method and device of a chiral multi-lobed microstructure.
背景技术Background technique
手性,表示物体的一种对称特性。手性结构是指该结构不能通过旋转或者平移而与其镜像完全重合。自然界里存在很多手性结构,如氨基酸、DNA分子、手、贝壳、螺旋星系等等。手性结构在日常生活中也有着很广泛的应用,如螺钉、螺旋弹簧、螺旋楼梯、螺旋叶片、螺旋轴等等。在微纳尺度下,手性结构具有独特的光学响应特性,多样化的手性微纳结构快速制备是研究其光学特性的基石。Chirality, which represents a symmetrical property of an object. A chiral structure means that the structure cannot be rotated or translated exactly to its mirror image. There are many chiral structures in nature, such as amino acids, DNA molecules, hands, shells, spiral galaxies and so on. Chiral structures are also widely used in daily life, such as screws, coil springs, spiral stairs, spiral blades, spiral shafts, and so on. At the micro-nano scale, chiral structures have unique optical response characteristics, and the rapid preparation of diverse chiral micro-nano structures is the cornerstone of studying their optical properties.
随着微纳加工手段的发展,手性微纳结构也越来越方便的制备出来。目前手性微纳结构的加工手段可以分为两大类,分别是自上而下的加工技术和自下而上的组装技术。对于白上而下的加工技术,常见的有飞秒激光直写、光刻、聚焦离子束刻蚀、电子束光刻等等。相对来说,飞秒激光直写具有真三维加工的独特优势,是理想的手性微纳结构加工手段,但是飞秒激光直写需要采取单焦点扫描策略,因此加工效率低下,需要克服。而对于自下而上的组装技术,其主要原理是在液相环境中利用手性材料诱导手性微纳结构形成,而这类技术的缺点是制备的手性结构只能依附在手性材料上,难以获得所需要的手形结构单体,且其形态无法自由控制。With the development of micro-nano processing methods, chiral micro-nano structures are more and more convenient to prepare. At present, the processing methods of chiral micro-nano structures can be divided into two categories, namely top-down processing technology and bottom-up assembly technology. For top-to-bottom processing technologies, femtosecond laser direct writing, lithography, focused ion beam etching, electron beam lithography, etc. are common. Relatively speaking, femtosecond laser direct writing has the unique advantages of true three-dimensional processing and is an ideal method for processing chiral micro-nano structures. However, femtosecond laser direct writing requires a single-focus scanning strategy, so the processing efficiency is low and needs to be overcome. For bottom-up assembly technology, the main principle is to use chiral materials to induce the formation of chiral micro-nano structures in a liquid environment. The disadvantage of this type of technology is that the prepared chiral structures can only be attached to chiral materials. However, it is difficult to obtain the desired hand-shaped structural monomer, and its morphology cannot be freely controlled.
常规的手性微纳结构的制备一般是利用自上而下的加工技术或者自下而上的组装技术来单独实现的,制备的结构一般是整体且单手性的,结构的大小和高度往往无法任意控制。因此,同时结合上面两种方法,实现一种多瓣、可控手性、可变结构尺寸、可变结构形状的多样化手性微纳结构的高效制备方法,在研究手性微结构的光学特性中意义重大。The preparation of conventional chiral micro-nano structures is generally achieved by using top-down processing technology or bottom-up assembly technology. can not be arbitrarily controlled. Therefore, by combining the above two methods at the same time, an efficient preparation method of multi-lobed, controllable chirality, variable structural size, and variable structural shape of diverse chiral micro-nano structures is realized. features are significant.
发明内容SUMMARY OF THE INVENTION
(一)要解决的技术问题(1) Technical problems to be solved
本发明提供了一种手性多瓣微结构的制备方法和装置,以至少部分解决以上所提出的技术问题。The present invention provides a method and device for preparing a chiral multi-lobed microstructure to at least partially solve the above technical problems.
(二)技术方案(2) Technical solutions
根据本发明的一个方面,提供了一种手性多瓣微结构的制备方法,所述方法包括:According to one aspect of the present invention, there is provided a method for preparing a chiral multi-lobed microstructure, the method comprising:
计算手性多瓣微结构的全息图;Calculate holograms of chiral multi-lobed microstructures;
根据所述全息图,使用飞秒全息加工系统对光刻胶材料样品进行加工,得到待显影手性多瓣微结构样品;According to the hologram, use a femtosecond holographic processing system to process the photoresist material sample to obtain a chiral multi-lobed microstructure sample to be developed;
将所述待显影手性多瓣微结构样品放入显影液中进行显影,得到离散外扩的手性多瓣微结构;Putting the chiral multi-lobed microstructure sample to be developed into a developing solution for development to obtain a discrete and outwardly expanded chiral multi-lobed microstructure;
所述离散外扩的手性多瓣微结构从所述显影液取出后,经过表面残存的所述显影液的毛细力作用后内拢,得到离散态或组装态的手性多瓣微结构。After the discrete and outwardly expanding chiral multi-lobed microstructures are taken out from the developing solution, they are closed inward by the capillary force of the developing solution remaining on the surface to obtain discrete or assembled chiral multi-lobed microstructures.
在一些实施例中,计算手性多瓣微结构的全息图,包括:In some embodiments, computing a hologram of a chiral multi-lobed microstructure includes:
设置所述手性多瓣微结构的方形全息图的像素尺寸,对所述方形全息图进行网格划分,定义所述方形全息图上各点的像素坐标,并初始化各像素点的总相位值;Set the pixel size of the square hologram of the chiral multi-lobe microstructure, perform grid division on the square hologram, define the pixel coordinates of each point on the square hologram, and initialize the total phase value of each pixel point ;
根据所述方形全息图的像素尺寸和飞秒激光光束圆形光斑特征,添加半径合适的外部圆形掩膜,屏蔽所述圆形掩膜外无效区域,获得圆形全息图;According to the pixel size of the square hologram and the circular spot characteristics of the femtosecond laser beam, an outer circular mask with a suitable radius is added to shield the invalid area outside the circular mask to obtain a circular hologram;
根据离散叠加原理在所述圆形全息图上添加中心正多边形掩膜图形;计算所述中心正多边形掩膜图形外部任一点的相位值;将所述相位值转换为灰度值,并生成所述手性多瓣微结构的全息图。Add a central regular polygon mask figure to the circular hologram according to the principle of discrete superposition; calculate the phase value of any point outside the central regular polygon mask figure; convert the phase value into a gray value, and generate all the A hologram of the described chiral multi-lobed microstructure.
在一些实施例中,计算所述中心正多边形掩膜图形外部任一点的相位值,包括:In some embodiments, calculating the phase value of any point outside the central regular polygon mask pattern, including:
选取所述中心正多边形掩膜图形的任意一个顶点作为起始参考点;Select any vertex of the central regular polygon mask graphic as a starting reference point;
计算所述中心正多边形掩膜图形外部任一点与所述起始参考点的像素距离;Calculate the pixel distance between any point outside the central regular polygon mask graphic and the starting reference point;
利用所述像素距离,计算所述中心正多边形掩膜图形外部任一点相对于所述起始参考点的方位角;Using the pixel distance, calculate the azimuth angle of any point outside the central regular polygon mask graphic relative to the starting reference point;
根据所述方位角,计算所述中心正多边形掩膜图形外部任一点相对于所述起始参考点的相位值,并将所述相位值累计到所述总相位值;According to the azimuth angle, calculate the phase value of any point outside the central regular polygon mask pattern relative to the starting reference point, and accumulate the phase value to the total phase value;
按预设步距更新所述起始参考点得到新的参考点,并根据所述新的参考点重新计算所述中心正多边形掩膜图形外部任一点相对于所述新的参考点的相位值,将其累计到所述总相位值;循环此步骤,直到所述新的参考点返回到所述起始参考点,则得到的所述总相位值即为所述中心正多边形掩膜图形外部任一点的相位值。Update the starting reference point at a preset step to obtain a new reference point, and recalculate the phase value of any point outside the central regular polygon mask graphic relative to the new reference point according to the new reference point , accumulate it to the total phase value; repeat this step until the new reference point returns to the starting reference point, then the total phase value obtained is the outside of the central regular polygon mask figure Phase value at any point.
在一些实施例中,根据所述方位角,计算所述中心正多边形掩膜图形外部任一点相对于所述参考点的方位角,包括:In some embodiments, according to the azimuth angle, calculating the azimuth angle of any point outside the central regular polygon mask graphic relative to the reference point, including:
若所述中心正多边形掩膜图形外部任一点位于所述参考点的左侧,采用第一计算公式计算所述中心正多边形掩膜图形外部任一点相对于所述参考点的方位角;If any point outside the central regular polygon mask graphic is located on the left side of the reference point, use the first calculation formula to calculate the azimuth angle of any point outside the central regular polygon mask graphic relative to the reference point;
若所述中心正多边形掩膜图形外部任一点位于所述参考点的右侧,采用第二计算公式计算所述中心正多边形掩膜图形外部任一点相对于所述参考点的方位角。If any point outside the central regular polygon mask figure is located on the right side of the reference point, the second calculation formula is used to calculate the azimuth angle of any point outside the central regular polygon mask figure relative to the reference point.
在一些实施例中,所述离散外扩的手性多瓣微结构经过所述显影液的毛细力作用后,得到离散态或组装态的手性多瓣微结构,包括:In some embodiments, after the discrete outwardly expanding chiral multi-lobed microstructure is subjected to the capillary force of the developer, a discrete or assembled chiral multi-lobed microstructure is obtained, including:
当所述离散外扩的手性多瓣微结构的高度高于预设高度时,所述离散外扩的手性多瓣微结构经过所述显影液的毛细力作用后,得到组装态的手性多瓣微结构;When the height of the discretely expanded chiral multi-lobed microstructure is higher than a preset height, the discretely expanded chiral multi-lobed microstructure is subjected to the capillary force of the developer to obtain an assembled hand. Sexual multi-lobed microstructure;
当所述离散外扩的手性多瓣微结构的高度低于预设高度时,所述离散外扩的手性多瓣微结构经过所述显影液的毛细力作用后,仍为离散态的手性多瓣微结构。When the height of the discretely expanded chiral multi-lobed microstructure is lower than a preset height, the discretely expanded chiral multi-lobed microstructure is still in a discrete state after being acted by the capillary force of the developer. Chiral multi-lobed microstructures.
根据本发明的另一个方面,提供了一种手性多瓣微结构的制备装置,所述装置包括:According to another aspect of the present invention, there is provided a device for preparing a chiral multi-lobed microstructure, the device comprising:
全息图计算单元,用于计算手性多瓣微结构的全息图;The hologram calculation unit is used to calculate the hologram of the chiral multi-lobed microstructure;
第一获取单元,用于根据所述全息图,使用飞秒全息加工系统对光刻胶材料样品进行加工,得到待显影手性多瓣微结构样品;a first acquisition unit, configured to process a photoresist material sample using a femtosecond holographic processing system according to the hologram to obtain a chiral multi-lobe microstructure sample to be developed;
第二获取单元,用于将所述待显影手性多瓣微结构样品放入显影液中进行显影,得到离散外扩的手性多瓣微结构;The second acquisition unit is used to put the chiral multi-lobed microstructure sample to be developed into a developing solution for development, and obtain a discrete and outwardly expanded chiral multi-lobed microstructure;
第三获取单元,所述离散外扩的手性多瓣微结构从所述显影液取出后,经过表面残存的所述显影液的毛细力作用后内拢,得到离散态或组装态的手性多瓣微结构。The third acquisition unit, after the discrete and outwardly expanding chiral multi-lobed microstructures are taken out from the developing solution, they are closed inward by the capillary force of the developing solution remaining on the surface to obtain discrete or assembled chirality Multi-lobed microstructure.
在一些实施例中,全息图计算单元包括:In some embodiments, the hologram computing unit includes:
第一设置子单元,设置所述手性多瓣微结构的方形全息图的像素尺寸,对所述方形全息图进行网格划分,定义所述方形全息图上各点的像素坐标,并初始化各像素点的总相位值;The first setting subunit is used to set the pixel size of the square hologram of the chiral multi-lobe microstructure, perform grid division on the square hologram, define the pixel coordinates of each point on the square hologram, and initialize each point. The total phase value of the pixel point;
第二设置子单元,用于根据所述方形全息图的像素尺寸和飞秒激光光束圆形光斑特征,添加预设半径的外部圆形掩膜,屏蔽所述圆形掩膜外无效区域,获得圆形全息图;The second setting subunit is used for adding an outer circular mask with a preset radius according to the pixel size of the square hologram and the circular spot characteristics of the femtosecond laser beam, and shielding the invalid area outside the circular mask to obtain circular hologram;
掩膜图形获取子单元,根据离散叠加原理在所述圆形全息图上添加中心正多边形掩膜图形;a mask pattern acquiring subunit, adding a central regular polygon mask pattern on the circular hologram according to the discrete superposition principle;
相位值计算子单元,用于计算所述中心正多边形掩膜图形外部任一点的相位值;a phase value calculation subunit, used to calculate the phase value of any point outside the central regular polygon mask figure;
全息图获取子单元,用于将所述相位值转换为灰度值,并生成所述手性多瓣微结构的全息图。The hologram acquisition sub-unit is used for converting the phase value into a gray value and generating a hologram of the chiral multi-lobed microstructure.
在一些实施例中,所述相位值计算子单元包括:参考点选取子单元,用于选取所述中心正多边形掩膜图形的任意一个顶点作为起始参考点;In some embodiments, the phase value calculation subunit includes: a reference point selection subunit, configured to select any vertex of the central regular polygon mask graph as a starting reference point;
像素距离计算子单元,用于计算所述中心正多边形掩膜图形外部任一点与所述起始参考点的像素距离;a pixel distance calculation subunit, used to calculate the pixel distance between any point outside the central regular polygon mask figure and the starting reference point;
方位角计算子单元,用于计算所述中心正多边形掩膜图形外部任一点相对于所述起始参考点的方位角;an azimuth angle calculation subunit, used to calculate the azimuth angle of any point outside the central regular polygon mask figure relative to the starting reference point;
在一些实施例中,所述方位角计算子单元包括:In some embodiments, the azimuth angle calculation subunit includes:
左侧方位角计算单元,用于若所述中心正多边形掩膜图形外部任一点位于所述参考点的左侧,采用第一计算公式计算所述中心正多边形掩膜图形外部任一点相对于所述参考点的方位角;The left side azimuth angle calculation unit is used to calculate, if any point outside the central regular polygon mask figure is located on the left side of the reference point, using the first calculation formula to calculate the relative relationship between any point outside the central regular polygon mask figure relative to the reference point. the azimuth of the reference point;
右侧方位角计算单元,用于若所述中心正多边形掩膜图形外部任一点位于所述参考点的右侧,采用第二计算公式计算所述中心正多边形掩膜图形外部任一点相对于所述参考点的方位角。The right side azimuth angle calculation unit is used to calculate the relative position of any point outside the central regular polygon mask graphic relative to the The azimuth of the reference point.
相位值计算子单元,用于根据所述方位角,计算所述中心正多边形掩膜图形外部任一点相对于所述起始参考点的相位值,并将所述相位值累计到所述总相位值;a phase value calculation subunit, configured to calculate the phase value of any point outside the central regular polygon mask figure relative to the starting reference point according to the azimuth angle, and accumulate the phase value to the total phase value;
相位值获取子单元,按预设步距更新所述起始参考点得到新的参考点,并根据所述新的参考点重新计算所述中心正多边形掩膜图形外部任一点相对于所述新的参考点的相位值,将其累计到所述总相位值;循环此步骤,直到所述新的参考点返回到所述起始参考点,则得到的总相位值即为所述中心正多边形掩膜图形外部任一点的相位值。The phase value acquisition sub-unit updates the starting reference point at a preset step to obtain a new reference point, and recalculates the relative relationship between any point outside the central regular polygon mask graph according to the new reference point relative to the new reference point. The phase value of the reference point is accumulated to the total phase value; this step is repeated until the new reference point returns to the starting reference point, then the total phase value obtained is the central regular polygon Phase value at any point outside the mask pattern.
在一些实施例中,所述第三获取单元包括:In some embodiments, the third obtaining unit includes:
组装态获取子单元,用于当所述离散外扩的手性多瓣微结构的高度高于预设高度时,所述离散外扩的手性多瓣微结构经过所述显影液的毛细力作用后,得到组装态的手性多瓣微结构;The assembled state acquisition subunit is used for, when the height of the discretely expanded chiral multi-lobed microstructure is higher than a preset height, the discrete and expanded chiral multi-lobed microstructure passes through the capillary force of the developer After the action, an assembled chiral multi-lobed microstructure is obtained;
离散态获取子单元,用于当所述离散外扩的手性多瓣微结构的高度低于预设高度时,所述离散外扩的手性多瓣微结构经过所述显影液的毛细力作用后,仍为离散态的手性多瓣微结构。The discrete state acquisition subunit is used for, when the height of the discretely expanded chiral multi-lobed microstructure is lower than a preset height, the discrete expanded chiral multi-lobed microstructure passes through the capillary force of the developer After the action, it is still a discrete chiral multi-lobed microstructure.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明手性多瓣微结构的制备方法和装置至少具有以下有益效果其中之一或其中一部分:As can be seen from the above technical solutions, the preparation method and device of the chiral multi-lobed microstructure of the present invention have at least one or a part of the following beneficial effects:
(1)本发明提供的手性多瓣微结构的制备方法和装置,将飞秒激光全息高效加工技术和毛细力驱动自组装技术相结合,可以灵活快速实现三维手性多瓣微结构的制备,提高了加工效率。(1) The method and device for preparing a chiral multi-lobe microstructure provided by the present invention combine the femtosecond laser holography high-efficiency processing technology with the capillary force-driven self-assembly technology, which can flexibly and quickly realize the preparation of a three-dimensional chiral multi-lobe microstructure , improve the processing efficiency.
(2)本发明提供的手性多瓣微结构的制备方法和装置,通过改变全息图的中心掩膜形状控制手性多瓣微结构的瓣数;通过改变全息图的拓扑电荷数的正负,可以实现左、右双手性结构的加工;通过控制全息图的叠加次数,即拓扑电荷数,可以控制手性结构横向尺寸;通过控制曝光深度,可以控制手性结构的纵向尺寸。(2) The preparation method and device of the chiral multi-lobed microstructure provided by the present invention can control the number of petals of the chiral multi-lobed microstructure by changing the shape of the central mask of the hologram; by changing the positive and negative of the topological charge number of the hologram , the left and right chiral structures can be processed; by controlling the number of superpositions of the hologram, that is, the number of topological charges, the lateral size of the chiral structure can be controlled; by controlling the exposure depth, the vertical size of the chiral structure can be controlled.
(3)本发明提供的手性多瓣微结构的制备方法和装置,通过控制手性多瓣微结构的纵向尺寸即高度,可以控制手性结构经过毛细力驱动后的形态为离散或组装两种状态。(3) The preparation method and device of the chiral multi-lobed microstructure provided by the present invention can control the shape of the chiral structure after being driven by capillary force to be discrete or assembled by controlling the longitudinal dimension, that is, the height of the chiral multi-lobed microstructure. state.
附图说明Description of drawings
图1为本发明实施例提供的手性多瓣微结构的制备方法流程图;Fig. 1 is the flow chart of the preparation method of the chiral multi-lobed microstructure provided in the embodiment of the present invention;
图2A-2F为本发明实施例提供的手性三瓣微结构的全息图生成过程;2A-2F are the hologram generation process of the chiral three-lobed microstructure provided by the embodiment of the present invention;
图3A为本发明实施例提供的在正三角形掩膜(N=3)中,不同外接圆半径的掩膜下部分拓扑电荷数的全息图;3A is a hologram of partial topological charge numbers under the mask with different circumscribed circle radii in an equilateral triangle mask (N=3) provided by an embodiment of the present invention;
图3B为本发明实施例提供的正四边形掩膜(N=4)、正五边形掩膜(N=5)、正六边形掩膜(N=6)的全息图;3B is a hologram of a regular quadrilateral mask (N=4), a regular pentagon mask (N=5), and a regular hexagonal mask (N=6) provided by an embodiment of the present invention;
图4为本发明实施例提供的飞秒全息加工系统示意图;4 is a schematic diagram of a femtosecond holography processing system provided by an embodiment of the present invention;
图5A为本发明实施例提供的正三角形掩膜(N=3)时,全息图在图3加工系统中透镜11(f=600mm)后不同位置的光场仿真图;5A is a simulation diagram of the light field of the hologram at different positions behind the lens 11 (f=600mm) in the processing system of FIG. 3 when the equilateral triangular mask (N=3) is provided in the embodiment of the present invention;
图5B为本发明实施例提供的正四边形掩膜(N=4)、正五边形掩膜(N=5)、正六边形掩膜(N=6)在透镜11焦点处的光场仿真图;5B is a light field simulation of a regular quadrilateral mask (N=4), a regular pentagonal mask (N=5), and a regular hexagonal mask (N=6) provided at the focal point of the
图6A为本发明实施例提供的正三角形掩膜(N=3)的加工结构电镜图,包含了不同的大小、形态;6A is an electron microscope diagram of a processing structure of an equilateral triangular mask (N=3) provided by an embodiment of the present invention, including different sizes and shapes;
图6B为本发明实施例提供的正四边形掩膜(N=4)、正五边形掩膜(N=5)、正六边形掩膜(N=6)加工加工结构电镜图;6B is an electron microscope diagram of a processing structure of a regular quadrilateral mask (N=4), a regular pentagon mask (N=5), and a regular hexagonal mask (N=6) provided by an embodiment of the present invention;
图7为本发明实施例提供的手性多瓣微结构的制备装置结构图。FIG. 7 is a structural diagram of a device for preparing a chiral multi-lobed microstructure according to an embodiment of the present invention.
上述附图中,附图标记含义具体如下:In the above drawings, the meanings of the reference numerals are as follows:
1-激光器;2-半波片;3-偏振分光棱镜;4,5-透镜;6-光闸;7-衰减片;8-高反透镜;9-空间光调制器;10,12-透镜;11-光阑;13-反射镜;14-油镜;15-压电台;16-光刻胶样品;17-卤素灯;18-CCD;19-电脑。1-laser; 2-half-wave plate; 3-polarization beam splitter prism; 4,5-lens; 6-shutter; 7-attenuator; 8-high reflection lens; 9-spatial light modulator; 10,12-lens ; 11-diaphragm; 13-reflector; 14-oil mirror; 15-voltage station; 16-photoresist sample; 17-halogen lamp; 18-CCD; 19-computer.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
根据本发明的一个方面,提供了一种手性多瓣微结构的制备方法,如图1所示,该方法包括:According to one aspect of the present invention, there is provided a method for preparing a chiral multi-lobed microstructure, as shown in FIG. 1 , the method includes:
S11,计算手性多瓣微结构的全息图;S11, calculate the hologram of the chiral multi-lobed microstructure;
S12,根据全息图,根据全息图,使用飞秒全息加工系统对光刻胶材料样品进行加工,得到待显影手性多瓣微结构样品;S12, according to the hologram, use a femtosecond holographic processing system to process the photoresist material sample according to the hologram to obtain a chiral multi-lobed microstructure sample to be developed;
S13,将待显影手性多瓣微结构样品放入液体显影液中进行显影,得到离散外扩的手性多瓣微结构;S13, putting the chiral multi-lobed microstructure sample to be developed into a liquid developing solution for development to obtain a discrete and outwardly expanded chiral multi-lobed microstructure;
S14,离散外扩的手性多瓣微结构从显影液取出后,经过表面残存的显影液的毛细力作用后内拢,得到离散态或组装态的手性多瓣微结构。S14 , after the discrete and outwardly expanded chiral multi-lobed microstructures are taken out from the developing solution, the chiral multi-lobed microstructures in a discrete state or an assembled state are obtained after the capillary force of the remaining developing solution on the surface is applied.
本发明提供的手性多瓣微结构的制备方法,将飞秒激光全息高效加工技术和毛细力驱动自组装技术相结合,可以灵活快速实现了三维手性多瓣微结构的制备,提高了加工效率。The preparation method of the chiral multi-lobed microstructure provided by the present invention combines the femtosecond laser holography high-efficiency processing technology and the capillary force-driven self-assembly technology, which can flexibly and quickly realize the preparation of the three-dimensional chiral multi-lobed microstructure, and improves the processing speed. efficiency.
在本实施例中,步骤S11具体包括如下子步骤:In this embodiment, step S11 specifically includes the following sub-steps:
设置手性多瓣微结构的方形全息图的像素尺寸,对方形全息图进行网格划分,定义方形全息图上各点的像素坐标,并初始化各像素点的总相位值;Set the pixel size of the square hologram of the chiral multi-lobe microstructure, divide the square hologram into grids, define the pixel coordinates of each point on the square hologram, and initialize the total phase value of each pixel point;
根据方形全息图的像素尺寸和飞秒激光光束圆形光斑特征,添加预设半径的外部圆形掩膜,屏蔽圆形掩膜外无效区域,获得圆形全息图;According to the pixel size of the square hologram and the circular spot characteristics of the femtosecond laser beam, an outer circular mask with a preset radius is added to shield the invalid area outside the circular mask to obtain a circular hologram;
根据离散叠加原理在圆形全息图上添加中心正多边形掩膜图形;其中,中心正多边形掩膜的大小由其外接圆半径控制,中心正多边形掩膜覆盖区域也被屏蔽;Add a central regular polygon mask pattern on the circular hologram according to the principle of discrete superposition; wherein, the size of the central regular polygon mask is controlled by its circumscribed circle radius, and the coverage area of the central regular polygon mask is also shielded;
计算中心正多边形掩膜图形外部任一点的相位值;Calculate the phase value of any point outside the central regular polygon mask figure;
将相位值转换为灰度值,并生成手性多瓣微结构的全息图。Convert phase values to grayscale values and generate holograms of chiral multilobed microstructures.
其中,计算掩膜图形外部任一点的相位值,包括:Among them, the phase value of any point outside the mask pattern is calculated, including:
选取中心正多边形掩膜图形的任意一个顶点作为起始参考点;计算所述中心正多边形掩膜图形外部任一点与起始参考点的像素距离利用像素距离,计算中心正多边形掩膜图形外部任一点相对于起始参考点的方位角:若中心正多边形掩膜图形任一点位于起始参考点的左侧,采用第一计算公式theta=arccos(j-y0)/r]计算掩膜图形外部任一点相对于起始参考点的方位角;若中心正多边形掩膜图形外部任一点位于起始参考点的右侧,采用第二计算公式theta=2冗-arccos[(j-y0)/r]计算掩膜图形外部任一点相对于所述参考点的方位角,其中,j为所述中心正多边形掩膜图形外部任一点的纵坐标,y0为所述起始参考点的纵坐标,r为所述中心正多边形掩膜图形外部任一点与起始参考点的像素距离;按预设步距更新起始参考点得到新的参考点,并根据新的参考点重新计算中心正多边形掩膜图形外部任一点相对于新的参考点的相位值,将其累计到总相位值;循环此步骤,直到新的参考点返回到起始参考点,则得到的总相位值即为中心正多边形掩膜图形外部任一点的相位值。Select any vertex of the central regular polygon mask graphic as the starting reference point; calculate the pixel distance between any point outside the central regular polygon mask graphic and the starting reference point Using the pixel distance, calculate the azimuth angle of any point outside the central regular polygon mask graphic relative to the starting reference point: if any point on the central regular polygon mask graphic is located on the left side of the starting reference point, the first calculation formula theta=arccos is used. (j-y0)/r] Calculate the azimuth angle of any point outside the mask graphic relative to the starting reference point; if any point outside the central regular polygon mask graphic is located on the right side of the starting reference point, the second calculation formula theta is used =2×-arccos[(j-y0)/r] Calculate the azimuth angle of any point outside the mask figure relative to the reference point, where j is the ordinate of any point outside the central regular polygon mask figure, y0 is the ordinate of the starting reference point, r is the pixel distance between any point outside the central regular polygon mask graphic and the starting reference point; update the starting reference point by the preset step distance to obtain a new reference point, And recalculate the phase value of any point outside the central regular polygon mask graph relative to the new reference point according to the new reference point, and accumulate it to the total phase value; this step is repeated until the new reference point returns to the starting reference point , then the total phase value obtained is the phase value of any point outside the central regular polygon mask figure.
本发明提供的手性多瓣微结构的制备方法,通过改变全息图的中心掩膜形状控制手性多瓣微结构的瓣数;通过改变全息图的拓扑电荷数的正负,可以实现左、右双手性结构的加工;通过控制全息图的叠加次数,即拓扑电荷数,可以控制手性结构横向尺寸;通过控制曝光深度,可以控制手性结构的纵向尺寸。In the preparation method of the chiral multi-lobed microstructure provided by the present invention, the number of petals of the chiral multi-lobed microstructure is controlled by changing the shape of the central mask of the hologram; by changing the positive and negative of the topological charge number of the hologram, left, Processing of the right chiral structure; by controlling the number of superpositions of the hologram, that is, the number of topological charges, the lateral size of the chiral structure can be controlled; by controlling the exposure depth, the vertical size of the chiral structure can be controlled.
在本实施例中,步骤S14具体包括:In this embodiment, step S14 specifically includes:
当离散外扩的手性多瓣微结构的高度高于预设高度时,离散外扩的手性多瓣微结构经过显影液的毛细力作用后,得到组装态的手性多瓣微结构;When the height of the discretely expanded chiral multi-lobed microstructure is higher than the preset height, the assembled chiral multi-lobed microstructure is obtained after the capillary force of the developing solution is applied to the discretely expanded chiral multi-lobed microstructure;
当离散外扩的手性多瓣微结构的高度低于预设高度时,离散外扩的手性多瓣微结构经过显影液的毛细力作用后,仍为离散态的手性多瓣微结构。When the height of the discretely expanded chiral multi-lobed microstructure is lower than the preset height, the discretely expanded chiral multi-lobed microstructure is still a discrete chiral multi-lobed microstructure after the capillary force of the developer. .
本发明提供的手性多瓣微结构的制备方法,通过控制手性多瓣微结构的纵向尺寸即高度,可以控制手性结构经过毛细力驱动后的形态为离散或组装两种状态。The preparation method of the chiral multi-lobed microstructure provided by the present invention can control the shape of the chiral structure driven by capillary force to be discrete or assembled by controlling the longitudinal dimension, that is, the height of the chiral multi-lobed microstructure.
在一具体实施例中,三瓣手性微结构的中心正三角形掩膜全息图的计算过程的生成图,如图2A-2F所示,计算过程为:In a specific embodiment, the generation diagram of the calculation process of the central equilateral triangle mask hologram of the three-lobed chiral microstructure is shown in Figures 2A-2F, and the calculation process is:
1)设置全息图尺寸为1080*1080(单位:像素),即横向尺寸column=1080,纵向尺寸row=1080,通过Matlab内置函数meshgrid进行网格划分,以左下角为起点,坐标为(0,0),右上角为终点,坐标为(1080,1080),中心坐标为(540,540),网格顶点的坐标记为(i,j),i,j∈(0,1080),然后利用phase1(i,j)=0,i,j∈(0,1080)将全息图各点初始相位置零,从而生成全息图背景网格,如图2A所示;1) Set the size of the hologram to 1080*1080 (unit: pixel), that is, the horizontal size column=1080, the vertical size row=1080, and the grid is divided by the built-in function meshgrid of Matlab, with the lower left corner as the starting point, and the coordinates are (0, 0), the upper right corner is the end point, the coordinates are (1080, 1080), the center coordinates are (540, 540), and the coordinates of the mesh vertices are marked as (i, j), i, j ∈ (0, 1080), and then use phase1(i, j)=0, i, j∈(0, 1080) zeros the initial phase position of each point of the hologram, thereby generating the background grid of the hologram, as shown in Figure 2A;
2)由于飞秒激光的光斑为圆形高斯光斑,图2A中全息图背景的有效使用部分为以中心坐标为(540,540)为圆心,半径R=540的圆内部分,圆外部分通过掩膜mask1(i,j)=0屏蔽相位,显示为黑色,如图2B所示;2) Since the light spot of the femtosecond laser is a circular Gaussian light spot, the effective use part of the hologram background in Figure 2A is the inner part of the circle with the center coordinate as (540, 540) and the radius R=540, and the outer part of the circle passes through. The mask mask1(i, j)=0 shields the phase and displays it in black, as shown in Figure 2B;
3)设置掩膜图形的中心像素坐标值为(540,540),对应空间光调制器(1080*1080)的中心像素坐标,掩膜图形的外接圆半径为r0,结合全息图尺寸,选择r0∈(200,500)较为合适,掩模形状可以是正三角形、正四边形、正五边形、正六边形,分别对应3瓣、4瓣、5瓣、6瓣手性结构的加工。如图2C所示,以正三角形掩模为例,对于给定外接圆半径r0,那么三个顶点的坐标分别为然后通过掩膜mask2(i,j)=0屏蔽三角形内部区域相位,显示为黑色;3) Set the coordinate value of the center pixel of the mask pattern to (540, 540), corresponding to the center pixel coordinate of the spatial light modulator (1080*1080), and the radius of the circumcircle of the mask pattern to be r 0 . Combined with the size of the hologram, select r 0 ∈ (200, 500) is more suitable, and the shape of the mask can be regular triangle, regular quadrilateral, regular pentagon, regular hexagon, corresponding to the processing of 3-lobed, 4-lobed, 5-lobed, and 6-lobed chiral structures, respectively. As shown in Figure 2C, taking the equilateral triangle mask as an example, for a given circumcircle radius r 0 , the coordinates of the three vertices are Then, the phase of the inner area of the triangle is shielded by the mask mask2(i, j)=0, which is displayed as black;
4)相位写入:图中黑色区域被屏蔽,不再写入相位;从掩膜图形一个顶点开始,在掩膜图形外部写入相位,从掩膜图形的任意一个顶点作为参考点出发,沿顺时针按步距dxy=l/ntuopuhe获得参考点的坐标,如图2D所示,标出了掩膜三角形每个边界上的参考点位置及编号,其中ntuopuhe∈(1,20),代表每条边上的参考点个数,l为掩膜图形的边长,当前参考点的坐标记为(x0,y0),除去屏蔽区域外任意一点的像素坐标为(i,j)(i,j∈(1,1080)),那么此两点的像素距离为r:如图2E所示;4) Phase writing: The black area in the figure is shielded, and the phase is no longer written; starting from a vertex of the mask pattern, the phase is written outside the mask pattern, starting from any vertex of the mask pattern as a reference point, along the Clockwise, the coordinates of the reference point are obtained according to the step distance dxy=l/ntuopuhe. As shown in Figure 2D, the position and number of the reference point on each boundary of the mask triangle are marked, where ntuopuhe ∈ (1, 20), representing each The number of reference points on the edge, l is the side length of the mask graphic, the coordinates of the current reference point are (x 0 , y 0 ), and the pixel coordinates of any point outside the masked area are (i, j)(i , j∈(1, 1080)), then the pixel distance between these two points is r: As shown in Figure 2E;
a)当任一点(i,j)在当前参考点(x0,y0)左侧时,即i≤x0时,如图2E所示,该点相对于参考点的方位角为theta=arccos[(j-y0)/r),相位值为phase(i,j)=(theta)*q;a) When any point (i, j) is on the left side of the current reference point (x 0 , y 0 ), i.e. i≤x 0 , as shown in Figure 2E, the azimuth of the point relative to the reference point is theta= arccos[(jy 0 )/r), the phase value is phase(i, j)=(theta)*q;
b)当任一点(i,j)在当前参考点(x0,y0)右侧时,即i>x0时,如图2F所示,该点相对于参考点的方位角为theta=arccos[(j-y0)/r],相位值为phase(i,j)=(theta)*q。b) When any point (i, j) is on the right side of the current reference point (x 0 , y 0 ), i.e. i>x 0 , as shown in Figure 2F, the azimuth of the point relative to the reference point is theta= arccos[(jy 0 )/r], the phase value is phase(i, j)=(theta)*q.
5)完成上述操作后,拓扑电荷数自增1,使任一点(i,j)的相位值按照phase1(i,j)=phase1(i,j)+phase(i,j)更新;按照给定步距dxy更新参考点,然后重复4)的过程,直至更新后的参考点返回到出发的参考点;5) After completing the above operations, the number of topological charges is automatically increased by 1, so that the phase value of any point (i, j) is updated according to phase1(i,j)=phase1(i,j)+phase(i,j); Update the reference point with a fixed step distance dxy, and then repeat the process of 4) until the updated reference point returns to the starting reference point;
6)将任一点(i,j)的相位值phase1(i,j)转换为灰度值ho log rams tan dard(i,j),ho log rams tan dard(i,j)和phase1(i,j)的数值对应关系为:ho log rams tandard(i,j)=mod(phase1(i,j)*255/(2*pi),255),然后将全息图保存,得到如图3A所示的全息图。6) Convert the phase value phase1(i,j) of any point (i,j) into gray value ho log rams tan dard(i, j), ho log rams tan dard(i, j) and phase1(i, The numerical correspondence of j) is: ho log rams tandard(i, j)=mod(phase1(i, j)*255/(2*pi), 255), and then save the hologram, as shown in Figure 3A hologram.
按照上述方法,可以获得掩膜形状为正三角形、正四边形、正五边形、正六边形的全息图,如图3B所示,掩膜图形的边数对应了后续加工的瓣数;全息图的拓扑电荷数的正负决定了加工结构的手性方向;拓扑电荷数绝对值的大小决定了加工结构的大小。According to the above method, a hologram whose mask shape is a regular triangle, a regular quadrilateral, a regular pentagon and a regular hexagon can be obtained. As shown in FIG. 3B , the number of sides of the mask graphic corresponds to the number of lobes for subsequent processing; the hologram The positive or negative topological charge number determines the chirality direction of the processed structure; the absolute value of the topological charge number determines the size of the processed structure.
在一具体实施例中,采用如图4所示的飞秒全息加工系统,根据图3A中的全息图,加工出的手性三瓣微结构的过程为:In a specific embodiment, using the femtosecond holographic processing system as shown in FIG. 4 , according to the hologram in FIG. 3A , the process of processing the chiral three-lobed microstructure is:
1)准备待加工样品:使用SU2080液态光刻胶作为加工材料,其材料初始形态为液态,使用移液器将10uL液态光刻胶滴在通用载玻片上,然后放在热板上面加热,控制温度为100℃,加热时间为45min,使光刻胶完全固化;1) Prepare the sample to be processed: use SU2080 liquid photoresist as the processing material, the initial form of which is liquid, use a pipette to drop 10uL of liquid photoresist on a universal glass slide, and then place it on a hot plate to heat, control The temperature is 100°C and the heating time is 45min to completely cure the photoresist;
2)对待加工样品进行加工:激光器1产生飞秒激光,经过半波片2和偏振分光棱镜3控制激光的偏振方向,获得线偏振高斯光;然后经过透镜组4、5对光束进行扩束,以匹配空间光调制器9的面板尺寸;光闸6由电脑19控制可以实现光路的通断,光束的能量通过衰减片7控制,调整好能量的飞秒激光束经过高反透镜8的反射后照射在空间光调制器9上;空间光调制器9连接电脑19,电脑19播放的全息图可以加载到空间光调制器9上,按照全息图相位信息对光束进行相位调制,从而将线偏振高斯光调制生成所需的手性离散光场,光场经过透镜组10、12进行缩束(透镜10、12的焦距分别为600mm和200mm),通过光阑11使得只有手性离散光场的第一级光进入显微镜系统,而其它级次的光被遮挡,第一级光经过反射镜13进入60倍油镜14入瞳,经过其聚焦垂直入射在光刻胶样品16内部;光刻胶样品16正置固定在压电台15上,电脑19可以控制压电台15的移动,从而调整光束焦点在光刻胶样品16中的空间位置;光刻胶样品16在卤素灯17照射下发出荧光,通过CCD18接收,然后传递到电脑19上,通过电脑19上面安装的CCD驱动程序显示接收的图像,可实现加工进程的监测。其中,光束功率的大小是在光阑11后5cm处使用功率计检测的,可以通过衰减片7调节功率至合适值;曝光时间为0.5s通过电脑19控制光闸6,如图5A所示,正三角形掩膜(N=3),全息图在图3加工系统中透镜11(f=600mm)后不同位置的光场仿真图,而图5B为正四边形掩膜(N=4)、正五边形掩膜(N=5)、正六边形掩膜(N=6)在透镜11焦点处的光场仿真图;2) Process the sample to be processed: the
3)完成加工:将前烘的光刻胶样品16固定在压电台15上,在60倍油镜14下找到焦平面,打开光闸6,光刻胶样品16胶中经飞秒激光手性离散光场照射的区域发生双光子聚合,得到离散外扩的手性多瓣微结构,未经照射的区域保持原样。3) Finish processing: fix the
在一具体实施例中,对上述加工完成的光刻胶样品16放于正丙醇中显影30min,未经聚合的区域完全溶解,聚合的区域留下;取出得到离散外扩的手性微结构,然后将光刻胶样品16,水平放置,使其表面残存的正丙醇快速挥发,在液体挥发完全之前光刻胶样品16受到液体毛细力作用,在毛细力作用下,当光刻胶样品16的高度较低时,该手性微结构仍旧是离散的;当光刻胶样品16的高度较高时,该手性微结构自组装成一个整体结构;如图6A所示,展示了正三角形掩膜(N=3,q=±15,r0=350)的加工结构的电镜图,包含了离散和组装两种形态;而图6B简要展示了正四边形掩膜(N=4)、正五边形掩膜(N=5)、正六边形掩膜(N=6)组装结构的电镜图。In a specific embodiment, the
本发明提供的手性多瓣微结构的制备方法,可以通过控制手性多瓣微结构的高度,调节毛细力作用后手性多瓣微结构的形态,可呈现出离散态和组装态。The preparation method of the chiral multi-lobed microstructure provided by the invention can control the height of the chiral multi-lobed microstructure and adjust the shape of the chiral multi-lobed microstructure after the action of capillary force, and can present a discrete state and an assembled state.
根据本发明的另一个方面,提供了一种手性多瓣微结构的制备装置,如图7所示,该装置包括:According to another aspect of the present invention, a preparation device for a chiral multi-lobed microstructure is provided, as shown in FIG. 7 , the device includes:
全息图计算单元71,用于计算手性多瓣微结构的全息图;The hologram calculation unit 71 is used to calculate the hologram of the chiral multi-lobed microstructure;
第一获取单元72,用于根据所述全息图,使用飞秒全息加工系统对光刻胶材料样品进行加工,得到待显影手性多瓣微结构样品;The first acquisition unit 72 is configured to process the photoresist material sample by using the femtosecond holographic processing system according to the hologram to obtain the chiral multi-lobe microstructure sample to be developed;
第二获取单元73,用于将待显影手性多瓣微结构样品放入显影液中进行显影,得到离散外扩的手性多瓣微结构;The second acquisition unit 73 is used to put the chiral multi-lobed microstructure sample to be developed into a developing solution for development, and obtain a discrete and outwardly expanded chiral multi-lobed microstructure;
第三获取单元74,用于在离散外扩的手性多瓣微结构从显影液取出后,经过表面残存的显影液的毛细力作用后内拢,得到离散态或组装态的手性多瓣微结构。The third acquisition unit 74 is used for, after the discrete and outwardly expanded chiral multi-lobe microstructures are taken out from the developer, the chiral multi-lobe microstructures in a discrete state or an assembled state are obtained after the capillary force of the developer solution remaining on the surface is acted upon and closed inward. microstructure.
本发明提供的手性多瓣微结构的制备装置,将飞秒激光全息高效加工技术和毛细力驱动自组装技术相结合,可以灵活快速实现了三维手性多瓣微结构的制备,提高了加工效率。The preparation device of the chiral multi-lobe microstructure provided by the invention combines the femtosecond laser holography high-efficiency processing technology and the capillary force-driven self-assembly technology, can flexibly and quickly realize the preparation of the three-dimensional chiral multi-lobe microstructure, and improves the processing speed. efficiency.
在本实施例中,全息图计算单元71,包括以下子单元:In this embodiment, the hologram calculation unit 71 includes the following subunits:
第一设置子单元,设置手性多瓣微结构的方形全息图的像素尺寸,对方形全息图进行网格划分,定义方形全息图上各点的像素坐标,并初始化各像素点的总相位值;The first setting subunit is to set the pixel size of the square hologram of the chiral multi-lobe microstructure, divide the square hologram into grids, define the pixel coordinates of each point on the square hologram, and initialize the total phase value of each pixel point. ;
第二设置子单元,用于根据方形全息图的像素尺寸和飞秒激光光束圆形光斑特征,添加半径合适的外部圆形掩膜,屏蔽圆形掩膜外无效区域,获得圆形全息图;The second setting subunit is used to add an outer circular mask with a suitable radius according to the pixel size of the square hologram and the circular spot feature of the femtosecond laser beam, and shield the invalid area outside the circular mask to obtain a circular hologram;
掩膜图形获取子单元,根据离散叠加原理在圆形全息图上添加中心正多边形掩膜图形;The mask pattern acquisition sub-unit adds a central regular polygon mask pattern to the circular hologram according to the principle of discrete superposition;
相位值计算子单元,用于计算中心正多边形掩膜图形外部任一点的相位值;The phase value calculation subunit is used to calculate the phase value of any point outside the central regular polygon mask figure;
全息图获取子单元,用于将相位值转换为灰度值,并生成手性多瓣微结构的全息图。其中,相位值计算子单元又包括:参考点选取子单元,选取中心正多边形掩膜图形的任意一个顶点作为起始参考点;The hologram acquisition subunit is used to convert phase values to grayscale values and generate holograms of chiral multi-lobed microstructures. Wherein, the phase value calculation subunit also includes: a reference point selection subunit, and any vertex of the central regular polygon mask figure is selected as a starting reference point;
像素距离计算子单元,用于计算中心正多边形掩膜图形外部任一点与起始参考点的像素距离;The pixel distance calculation subunit is used to calculate the pixel distance between any point outside the central regular polygon mask graphic and the starting reference point;
方位角计算子单元,用于计算中心正多边形掩膜图形外部任一点相对于起始参考点的方位角;The azimuth angle calculation subunit is used to calculate the azimuth angle of any point outside the central regular polygon mask graphic relative to the starting reference point;
相位值计算子单元,用于根据方位角,计算中心正多边形掩膜图形外部任一点相对于起始参考点的相位值,并将相位值累计到总相位值;The phase value calculation subunit is used to calculate the phase value of any point outside the central regular polygon mask figure relative to the starting reference point according to the azimuth angle, and accumulate the phase value to the total phase value;
相位值获取子单元,按预设步距更新起始参考点得到新的参考点,并根据新的参考点重新计算中心正多边形掩膜图形外部任一点相对于新的参考点的相位值,将其累计到总相位值;循环此步骤,直到新的参考点返回到起始参考点,则得到的总相位值即为中心正多边形掩膜图形外部任一点的相位值。方位角计算子单元又包括:The phase value acquisition sub-unit updates the starting reference point according to the preset step distance to obtain a new reference point, and recalculates the phase value of any point outside the central regular polygon mask graph relative to the new reference point according to the new reference point. It is accumulated to the total phase value; this step is repeated until the new reference point returns to the starting reference point, then the total phase value obtained is the phase value of any point outside the central regular polygon mask graphic. The azimuth calculation subunit also includes:
左侧方位角计算单元,用于若中心正多边形掩膜图形外部任一点位于参考点的左侧,采用第一计算公式计算中心正多边形掩膜图形外部任一点相对于参考点的方位角;The left side azimuth angle calculation unit is used to calculate the azimuth angle of any point outside the central regular polygon mask graphic relative to the reference point by adopting the first calculation formula if any point outside the central regular polygon mask graphic is located on the left side of the reference point;
右侧方位角计算单元,用于若中心正多边形掩膜图形外部任一点位于参考点的右侧,采用第二计算公式计算中心正多边形掩膜图形外部任一点相对于参考点的方位角。本发明提供的手性多瓣微结构的制备装置,通过改变全息图的中心掩膜形状控制手性多瓣微结构的瓣数;通过改变全息图的拓扑电荷数的正负,可以实现左、右双手性结构的加工;通过控制全息图的叠加次数,即拓扑电荷数,可以控制手性结构横向尺寸;通过控制曝光深度,可以控制手性结构的纵向尺寸。The right side azimuth angle calculation unit is used to calculate the azimuth angle of any point outside the central regular polygon mask graphic relative to the reference point by using the second calculation formula if any point outside the central regular polygon mask graphic is located on the right side of the reference point. The device for preparing a chiral multi-lobed microstructure provided by the invention controls the number of petals of the chiral multi-lobed microstructure by changing the shape of the central mask of the hologram; Processing of the right chiral structure; by controlling the number of superpositions of the hologram, that is, the number of topological charges, the lateral size of the chiral structure can be controlled; by controlling the exposure depth, the vertical size of the chiral structure can be controlled.
在本实施例中,第三获取单元74包括以下子单元:In this embodiment, the third obtaining unit 74 includes the following subunits:
组装态获取子单元,用于当离散外扩的手性多瓣微结构的高度高于预设高度时,离散外扩的手性多瓣微结构经过显影液的毛细力作用后,得到组装态的手性多瓣微结构;The assembled state acquisition subunit is used to obtain the assembled state after the discretely expanded chiral multilobe microstructure is subjected to the capillary force of the developer when the height of the discretely expanded chiral multilobe microstructure is higher than the preset height. The chiral multi-lobed microstructure of ;
离散态获取子单元,用于当离散外扩的手性多瓣微结构的高度低于预设高度时,离散外扩的手性多瓣微结构经过显影液的毛细力作用后,仍为离散态的手性多瓣微结构。The discrete state acquisition subunit is used for when the height of the discretely expanded chiral multi-lobed microstructure is lower than the preset height, the discretely expanded chiral multi-lobed microstructure is still discrete after the capillary force of the developer. The chiral multilobed microstructure of the state.
本发明提供的手性多瓣微结构的制备装置,通过控制手性多瓣微结构的纵向尺寸即高度,可以控制手性结构经过毛细力驱动后的形态为离散和组装两种状态。The preparation device of the chiral multi-lobed microstructure provided by the present invention can control the shape of the chiral structure driven by capillary force into two states of discrete and assembled by controlling the longitudinal dimension, that is, the height of the chiral multi-lobed microstructure.
至此,已经结合附图对本实施例进行了详细描述。依据以上描述,本领域技术人员应当对本发明有了清楚的认识。So far, the present embodiment has been described in detail with reference to the accompanying drawings. From the above description, those skilled in the art should have a clear understanding of the present invention.
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。It should be noted that, in the accompanying drawings or the text of the description, the implementations that are not shown or described are in the form known to those of ordinary skill in the technical field, and are not described in detail.
还需要说明的是,本文可提供包含特定值的参数的示范,但这些参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应值。实施例中提到的方向用语,仅是参考附图的方向,并非用来限制本发明的保护范围。此外,除非特别描述或必须依序发生的步骤,上述步骤的顺序并无限制于以上所列,且可根据所需设计而变化或重新安排。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。It should also be noted that demonstrations of parameters including specific values may be provided herein, but these parameters need not be exactly equal to the corresponding values, but may be approximated within acceptable error tolerances or design constraints. The direction terms mentioned in the embodiments are only for referring to the directions of the drawings, and are not used to limit the protection scope of the present invention. Furthermore, unless the steps are specifically described or must occur sequentially, the order of the above steps is not limited to those listed above, and may be varied or rearranged according to the desired design. And the above embodiments can be mixed and matched with each other or with other embodiments based on the consideration of design and reliability, that is, the technical features in different embodiments can be freely combined to form more embodiments.
应注意,贯穿附图,相同的元素由相同或相近的附图标记来表示。在以上描述中,一些具体实施例仅用于描述目的,而不应该理解为对本发明有任何限制,而只是本发明实施例的示例。在可能导致对本发明的理解造成混淆时,将省略常规结构或构造。应注意,图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本发明实施例的内容。It should be noted that throughout the drawings, the same elements are denoted by the same or similar reference numerals. In the above description, some specific embodiments are only for the purpose of description, and should not be construed as any limitation to the present invention, but are only examples of embodiments of the present invention. Conventional structures or constructions will be omitted when it may lead to obscuring the understanding of the present invention. It should be noted that the shapes and sizes of the components in the figures do not reflect the actual size and proportion, but merely illustrate the contents of the embodiments of the present invention.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in further detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910670289.0A CN110501892B (en) | 2019-07-23 | 2019-07-23 | Method and device for preparing chiral multi-lobe microstructure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910670289.0A CN110501892B (en) | 2019-07-23 | 2019-07-23 | Method and device for preparing chiral multi-lobe microstructure |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110501892A CN110501892A (en) | 2019-11-26 |
| CN110501892B true CN110501892B (en) | 2020-08-25 |
Family
ID=68586691
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910670289.0A Active CN110501892B (en) | 2019-07-23 | 2019-07-23 | Method and device for preparing chiral multi-lobe microstructure |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110501892B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113296370B (en) * | 2021-05-20 | 2022-09-02 | 中国科学技术大学 | Rapid preparation method of chiral nanoneedle |
| CN117464164A (en) * | 2023-11-02 | 2024-01-30 | 合肥工业大学 | Laser processing of chirality-switchable microstructures and chirality switching methods |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101802726A (en) * | 2007-05-16 | 2010-08-11 | 视瑞尔技术公司 | Holographic display device for communication |
| CN103293934A (en) * | 2012-02-29 | 2013-09-11 | Lg电子株式会社 | A holographic display device and a method for generating hologram using redundancy of 3d video |
| CN103364857A (en) * | 2013-08-08 | 2013-10-23 | 青岛大学 | Wide-spectrum polarization-irrelevant transmission-type grating and preparation method thereof |
| CN105259666A (en) * | 2015-11-30 | 2016-01-20 | 南开大学 | Device for manufacturing microstructure through focal field trajectory based on dynamic control |
| CN109946771A (en) * | 2019-05-05 | 2019-06-28 | 韩山师范学院 | A kind of triangular chiral structure and preparation method thereof |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7660024B2 (en) * | 2000-08-07 | 2010-02-09 | Physical Optics Corporation | 3-D HLCD system and method of making |
| KR100555789B1 (en) * | 2003-04-30 | 2006-03-03 | 주식회사 대우일렉트로닉스 | Holographic ROM system |
| EP2028653A1 (en) * | 2007-08-21 | 2009-02-25 | Deutsche Thomson OHG | Phase mask for holographic data storage |
| US8790534B2 (en) * | 2010-04-30 | 2014-07-29 | Corporation For National Research Initiatives | System and method for precision fabrication of micro- and nano-devices and structures |
| CN104749890B (en) * | 2013-12-25 | 2017-02-15 | 昆山国显光电有限公司 | Exposure method and system of photoetching technology |
| CN109848565A (en) * | 2019-04-02 | 2019-06-07 | 西安交通大学 | Femtosecond laser nanofabrication method and system based on plasmonic nanostructure assistance |
-
2019
- 2019-07-23 CN CN201910670289.0A patent/CN110501892B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101802726A (en) * | 2007-05-16 | 2010-08-11 | 视瑞尔技术公司 | Holographic display device for communication |
| CN103293934A (en) * | 2012-02-29 | 2013-09-11 | Lg电子株式会社 | A holographic display device and a method for generating hologram using redundancy of 3d video |
| CN103364857A (en) * | 2013-08-08 | 2013-10-23 | 青岛大学 | Wide-spectrum polarization-irrelevant transmission-type grating and preparation method thereof |
| CN105259666A (en) * | 2015-11-30 | 2016-01-20 | 南开大学 | Device for manufacturing microstructure through focal field trajectory based on dynamic control |
| CN109946771A (en) * | 2019-05-05 | 2019-06-28 | 韩山师范学院 | A kind of triangular chiral structure and preparation method thereof |
Non-Patent Citations (2)
| Title |
|---|
| 基于空间光调制器的飞秒激光并行加工技术研究;杨亮;《中国博士学位论文全文数据库 信息科技辑》;20150915(第9期);第I135-3篇 第43-46页 * |
| 毛细力辅助飞秒激光直写制备各向异性及多级结构;苏亚辉等;《光学精密工程》;20170831;第25卷(第8期);第2058-2060页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110501892A (en) | 2019-11-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TW516097B (en) | Illumination optical apparatus and exposure apparatus having the same | |
| WO2017016362A1 (en) | Maskless photolithographic system in cooperative working mode for cross-scale structure | |
| US10564550B2 (en) | Illumination optical assembly, exposure device, and device manufacturing method | |
| CN109188672B (en) | Controllable rotation operation device and method of optical tweezers system | |
| CN110501892B (en) | Method and device for preparing chiral multi-lobe microstructure | |
| CN112596349A (en) | Two-photon parallel direct writing device and method based on multi-point array generation and independent control | |
| Cao et al. | Design and fabrication of a multifocal bionic compound eye for imaging | |
| CN105510001A (en) | Continuous attenuation system used for energy simulation in optical scene | |
| WO2019098262A1 (en) | Light generation device, exposure device comprising light generation device, exposure system, light generation method, and exposed photoresist production method | |
| CN112596232A (en) | Infrared light field imaging device based on polarization-independent lens and preparation method | |
| CN109343320A (en) | a light control device | |
| CN110262032B (en) | High contrast telescope using super surface phase modulation | |
| Smith et al. | Imaging with diffractive axicons rapidly milled on sapphire by femtosecond laser ablation | |
| CN110510887A (en) | Manufacturing method and optical device of multifocal optical curved surface | |
| CN115453752B (en) | Design method of vortex beam mask plate with abnormal radius | |
| CN117538966A (en) | Processing method of multi-focal-length microlens array | |
| CN101216684B (en) | A Spherical Photolithography System with Area Differentiation | |
| WO2021077485A1 (en) | Metasurface sparse aperture lens | |
| CN107390373A (en) | A kind of apparatus and method based on axicon detection vortex light topological charge number | |
| CN119216763A (en) | Method and device for preparing three-dimensional periodic structure | |
| CN206331228U (en) | A kind of micro-nano structure Written Device interfered based on rotary sample and double laser beams | |
| CN113296370A (en) | Rapid preparation method of chiral nanoneedle | |
| CN103226248A (en) | Method for controlling focus rotation by utilizing orthogonal polarized beam | |
| CN110955054A (en) | A method for producing nano-optical needles based on angularly polarized light | |
| CN104708196B (en) | Manufacturing method for increasing effective photosensitive area of photoelectric material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |