CN110514212A - A smart car map landmark positioning method integrating monocular vision and differential GNSS - Google Patents
A smart car map landmark positioning method integrating monocular vision and differential GNSS Download PDFInfo
- Publication number
- CN110514212A CN110514212A CN201910684352.6A CN201910684352A CN110514212A CN 110514212 A CN110514212 A CN 110514212A CN 201910684352 A CN201910684352 A CN 201910684352A CN 110514212 A CN110514212 A CN 110514212A
- Authority
- CN
- China
- Prior art keywords
- landmark
- terrestrial reference
- image
- monocular vision
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 239000000284 extract Substances 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 6
- 238000004364 calculation method Methods 0.000 claims abstract description 5
- 238000000605 extraction Methods 0.000 claims abstract 4
- 230000009466 transformation Effects 0.000 claims description 7
- 230000004807 localization Effects 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000013135 deep learning Methods 0.000 claims description 3
- HUTDUHSNJYTCAR-UHFFFAOYSA-N ancymidol Chemical compound C1=CC(OC)=CC=C1C(O)(C=1C=NC=NC=1)C1CC1 HUTDUHSNJYTCAR-UHFFFAOYSA-N 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 abstract 1
- 230000009977 dual effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/10—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
Abstract
本发明公开了一种融合单目视觉和差分GNSS的智能车地图地标定位方法,包括传感器同步、数据预处理、地标检测和地标特征点提取、地标跟踪和定位和地标描述子计算五个步骤。本发明利用传感器同步得到图像对应的车辆和相机的空间坐标;通过数据处理对图像地标进行检测和提取地标特征点;利用光流法对图像特征点跟踪;通过对同一个地标提取多个特征点进行跟踪,最终取平均值来计算此地标的位置。地标定位成功后对最后检测到的地标提取特征对此地标进行唯一性描述,并把地标位置、类型及特征描述放入数据库中保存。
The invention discloses a method for locating a landmark on a map of an intelligent vehicle fused with monocular vision and differential GNSS, comprising five steps of sensor synchronization, data preprocessing, landmark detection and landmark feature point extraction, landmark tracking and positioning, and landmark descriptor calculation. The present invention utilizes the sensor to synchronously obtain the spatial coordinates of the vehicle and the camera corresponding to the image; detects the image landmarks and extracts the landmark feature points through data processing; uses the optical flow method to track the image feature points; and extracts multiple feature points from the same landmark is tracked and eventually averaged to calculate the position of this landmark. After the landmark positioning is successful, the features of the last detected landmark are extracted to uniquely describe the landmark, and the landmark position, type and feature description are stored in the database.
Description
技术领域technical field
本发明涉及无人驾驶地图定位领域,尤其涉及一种融合单目视觉和差分GNSS的智能车地图地标定位方法。The invention relates to the field of unmanned driving map positioning, in particular to a smart car map landmark positioning method that integrates monocular vision and differential GNSS.
背景技术Background technique
随着位置服务的蓬勃发展与大型建筑的日益增多,人们对位置服务的需求不断增加,进行快速精准的定位成为了迫切需要。With the vigorous development of location-based services and the increasing number of large buildings, people's demand for location-based services continues to increase, and fast and accurate positioning has become an urgent need.
目前,智能车地图主要分为激光雷达建图和视觉建图两种方式。基于激光雷达建图,利用点云坐标得到地标空间位置,该方法计算量大,对硬件有一定要求,实时性低;基于视觉的智能车地图地标定位,采用双目相机,通过双目匹配可以直接得到地标空间位置,但该方法鲁棒性低、误差大。At present, smart car maps are mainly divided into two methods: lidar mapping and visual mapping. Based on lidar mapping, using point cloud coordinates to obtain the spatial position of landmarks, this method has a large amount of calculation, has certain requirements for hardware, and has low real-time performance; the landmark positioning of smart car maps based on vision uses binocular cameras, and can be achieved through binocular matching. Directly obtain the spatial position of landmarks, but this method has low robustness and large error.
发明内容Contents of the invention
本发明的目的在于,针对上述问题,提出一种融合单目视觉和差分GNSS的智能车地图地标定位方法。The object of the present invention is to, in view of the above problems, propose a kind of intelligent vehicle map landmark location method of fusion monocular vision and differential GNSS.
一种融合单目视觉和差分GNSS的智能车地图地标定位方法,包括如下步骤:A method for locating landmarks on a smart car map fused with monocular vision and differential GNSS, comprising the steps of:
S1:传感器同步得到图像对应的车辆和相机空间坐标;S1: The sensor synchronously obtains the vehicle and camera space coordinates corresponding to the image;
S2:数据处理对图像地标进行检测和提取地标特征点;S2: Data processing detects image landmarks and extracts landmark feature points;
S3:利用光流法对图像特征点跟踪;S3: Use the optical flow method to track the image feature points;
S4:计算获取地标位置并描述子计算。S4: Calculate and obtain the landmark position and describe the sub-calculation.
一种融合单目视觉和差分GNSS的智能车地图地标定位方法,S1包括如下子步骤:A method for locating landmarks on a smart car map that combines monocular vision and differential GNSS, S1 includes the following sub-steps:
S11:搭建采集系统,在车顶安装相机和差分GNSS双定位天线,使相机和GNSS天线在同一平面,相机方向和双天线方向相同,相机和定位天线距离为d;S11: Build the acquisition system, install the camera and differential GNSS dual positioning antennas on the roof, make the camera and GNSS antennas on the same plane, the direction of the camera is the same as that of the dual antennas, and the distance between the camera and the positioning antennas is d;
S12:利用不同传感器数据的时间戳进行时间最近邻同步,每一帧图像得到一组标准化数据,需要满足:S12: Use the time stamps of different sensor data to perform temporal nearest neighbor synchronization, and obtain a set of standardized data for each frame of image, which needs to meet:
ei=(pi,Vi)e i =(p i , V i )
其中,Pi表示每帧图像对应的车辆位置和姿态,即(xi,yi,zi,αi,βi,γi),其中(xi,yi,zi)为车辆上相机坐标,(αi,βi,γi)是车辆上相机姿态的三个角度,Vi表示当前位姿对应的图像;Among them, P i represents the position and attitude of the vehicle corresponding to each frame image, namely ( xi , y i , zi , α i , β i , γ i ), where ( xi , y i , zi ) is the Camera coordinates, (α i , β i , γ i ) are the three angles of the camera pose on the vehicle, V i represents the image corresponding to the current pose;
S13:利用相机畸变参数矫正图像得到矫正后图像,通过GNSS得到的位置利用传感器间相对位置变换得到相机位置。S13: Use the camera distortion parameters to correct the image to obtain the corrected image, and use the position obtained by GNSS to obtain the camera position by using the relative position transformation between the sensors.
S2包括如下子步骤:S2 includes the following sub-steps:
S21:利用深度学习算法检测图像中的地标,检测结果为地标类型(ID)及在图像中的二维位置;S21: Use a deep learning algorithm to detect landmarks in the image, and the detection result is the landmark type (ID) and the two-dimensional position in the image;
S22:对检测到地标的图像区域提取ORB特征;S22: Extracting ORB features from the image region where the landmark is detected;
所述步骤S3包括如下子步骤:The step S3 includes the following sub-steps:
S31:判断出现在连续两帧图像I、J中某一局部区域是否为同一目标,需要满足:S31: Judging whether a local area appearing in two consecutive frames of images I and J is the same target, it needs to meet:
I(x,y,t)=J(x′,y′,t+Δ)I(x,y,t)=J(x',y',t+Δ)
其中,所有(x,y)都向一个方向移动了(dx,dy),从而得到(x′,y′)。Among them, all (x, y) are moved in one direction (d x , d y ), thus obtaining (x′, y′).
S32:t时刻的(x,y)点在t+τ时刻为(x+dx,y+dy),所以寻求匹配的问题可化为对下式寻求最小值,需要满足:S32: The (x, y) point at time t is (x+d x , y+d y ) at time t+τ, so the problem of finding a match can be reduced to finding the minimum value of the following formula, which needs to be satisfied:
其中,wx和wy分别表示W窗口的1/2,ux和uy分别表示待匹配点的图像坐标。为了得到最佳匹配,使得ε最小,令上式导数为0,求取极小值,解得的d即为跟踪的偏移量。Among them, w x and w y respectively represent 1/2 of the W window, u x and u y represent the image coordinates of the points to be matched respectively. In order to get the best match, make ε the smallest, let the derivative of the above formula be 0, find the minimum value, and the obtained d is the tracking offset.
所述步骤S4还包括如下子步骤:Said step S4 also includes the following sub-steps:
S41:获取地标定位时从t时刻到t+N续(N+1)中的成像点;S41: Acquiring imaging points from time t to t+N (N+1) during landmark positioning;
S42:利用坐标系变换关系,得到图像地标位置,变换关系满足:S42: Use the coordinate system transformation relationship to obtain the image landmark position, and the transformation relationship satisfies:
z0=Z*cosθ1 z 0 =Z*cosθ 1
其中,(x0,y0,z0)为利用多个图像帧(位置已知)观测到的同一个地标点即可计算出此地标点的位置;Among them, (x0, y0, z0) is the same landmark point observed by using multiple image frames (the position is known), and the position of this landmark point can be calculated;
S43:对同一个地标提取多个特征点进行跟踪,最终取平均值来计算此地标的位置。S43: Extract multiple feature points for the same landmark to track, and finally take the average value to calculate the position of the landmark.
附图说明Description of drawings
图1:地标定位系统框架图;Figure 1: Framework diagram of landmark positioning system;
图2:地标点在不同时刻图像中成像图;Figure 2: The image of landmark points in images at different times;
图3:地标定位原理图。Figure 3: Schematic diagram of landmark localization.
具体实施方式Detailed ways
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式。In order to have a clearer understanding of the technical features, purposes and effects of the present invention, the specific implementation manners of the present invention will now be described with reference to the accompanying drawings.
本实施例中,一种融合单目视觉和差分GNSS的智能车地图地标定位方法,包括如下步骤:In this embodiment, a method for locating landmarks on a smart car map that combines monocular vision and differential GNSS includes the following steps:
S1:传感器同步得到图像对应的车辆和相机空间坐标;S1: The sensor synchronously obtains the vehicle and camera space coordinates corresponding to the image;
S2:数据处理对图像地标进行检测和提取地标特征点;S2: Data processing detects image landmarks and extracts landmark feature points;
S3:利用光流法对图像特征点跟踪;S3: Use the optical flow method to track the image feature points;
S4:计算获取地标位置并描述子计算。S4: Calculate and obtain the landmark position and describe the sub-calculation.
一种融合单目视觉和差分GNSS的智能车地图地标定位方法,S1包括如下子步骤:A method for locating landmarks on a smart car map that combines monocular vision and differential GNSS, S1 includes the following sub-steps:
S11:搭建采集系统,在车顶安装相机和差分GNSS双定位天线,使相机和GNSS天线在同一平面,相机方向和双天线方向相同,相机和定位天线距离为d;S11: Build the acquisition system, install the camera and differential GNSS dual positioning antennas on the roof, make the camera and GNSS antennas on the same plane, the direction of the camera is the same as that of the dual antennas, and the distance between the camera and the positioning antennas is d;
S12:利用不同传感器数据的时间戳进行时间最近邻同步,每一帧图像得到一组标准化数据,需要满足:S12: Use the time stamps of different sensor data to perform temporal nearest neighbor synchronization, and obtain a set of standardized data for each frame of image, which needs to meet:
ei=(Pi,Vi)e i =(P i , V i )
其中,Pi表示每帧图像对应的车辆位置和姿态,即(xi,yi,zi,αi,βi,γi),其中(xi,yi,zi)为车辆上相机坐标,(αi,βi,γi)是车辆上相机姿态的三个角度,Vi表示当前位姿对应的图像;Among them, P i represents the position and attitude of the vehicle corresponding to each frame image, namely ( xi , y i , zi , α i , β i , γ i ), where ( xi , y i , zi ) is the Camera coordinates, (α i , β i , γ i ) are the three angles of the camera pose on the vehicle, V i represents the image corresponding to the current pose;
S13:利用相机畸变参数矫正图像得到矫正后图像,通过GNSS得到的位置利用传感器间相对位置变换得到相机位置。S13: Use the camera distortion parameters to correct the image to obtain the corrected image, and use the position obtained by GNSS to obtain the camera position by using the relative position transformation between the sensors.
一种融合单目视觉和差分GNSS的智能车地图地标定位方法,S2包括如下子步骤:A method for locating landmarks on a smart car map that combines monocular vision and differential GNSS, S2 includes the following sub-steps:
S21:使用深度学习算法检测图像中的地标(如交通灯,交通标志,地面标志等),检测结果为地标类型(ID)及在图像中的二维位置,用两个像素点表达地标在图像的位置Rect(T1,T2,B1,B2)。S21: Use a deep learning algorithm to detect landmarks in the image (such as traffic lights, traffic signs, ground signs, etc.), the detection result is the landmark type (ID) and the two-dimensional position in the image, and two pixels are used to express the landmark in the image The position of Rect(T 1 ,T 2 ,B 1 ,B 2 ).
S22:对检测到地标的图像区域提取ORB特征;S22: Extracting ORB features from the image region where the landmark is detected;
一种融合单目视觉和差分GNSS的智能车地图地标定位方法,所述步骤S3包括如下子步骤:A kind of intelligent vehicle map landmark location method of fusion monocular vision and difference GNSS, described step S3 comprises following sub-steps:
S31:利用光流法进行帧间特征点跟踪,如有特征点在某一帧中出现在地标检测框外,则删除该特征点,光流法的实现基于目标在视频流中,只产生一致性的小位移,亮度恒定且相邻帧有相似运动的假设。判断出现在连续两帧图像I、J中某一局部区域是否为同一目标,需要满足:S31: Use the optical flow method to track inter-frame feature points. If a feature point appears outside the landmark detection frame in a certain frame, delete the feature point. The implementation of the optical flow method is based on the target in the video stream, and only consistent The assumption of constant small displacement, constant brightness and similar motion of adjacent frames. To judge whether a certain local area in two consecutive frames of images I and J is the same target, it needs to meet:
I(x,y,t)=J(x′,y′,t+Δ)I(x,y,t)=J(x',y',t+Δ)
其中所有(x,y)都向一个方向移动了(dx,dy),从而得到(x′,y′)。All (x, y) are moved in one direction (d x , d y ), thus obtaining (x′, y′).
S32:t时刻的(x,y)点在t+τ时刻为(x+dx,y+dy),所以寻求匹配的问题可化为对下式寻求最小值,需要满足:S32: The (x, y) point at time t is (x+d x , y+d y ) at time t+τ, so the problem of finding a match can be reduced to finding the minimum value of the following formula, which needs to be satisfied:
其中wx和wy分别表示W窗口的1/2,ux和uy分别表示待匹配点的图像坐标。为了得到最佳匹配,使得ε最小,令上式导数为0,求取极小值,解得的d即为跟踪的偏移量。Where w x and w y represent 1/2 of the W window, u x and u y respectively represent the image coordinates of the points to be matched. In order to get the best match, make ε the smallest, let the derivative of the above formula be 0, find the minimum value, and the obtained d is the tracking offset.
所述步骤S4还包括如下子步骤:Said step S4 also includes the following sub-steps:
S41:如图2所示,地标定位时从t时刻到t+N时刻连续(N+1)张图像中相同三维地标点在不同图像中的成像点,O为每时刻相机中心,Z表示三维地标点与不同时刻相机的距离(Z未知) S42:图3为地标定位原理图,根据相机小孔成像原理从图像可知地标点到相机中心向量的两个角度根据坐标系变换关系:S41: As shown in Figure 2, during landmark positioning, the imaging point of the same 3D landmark point in different images in consecutive (N+1) images from time t to time t+N, O is the camera center at each time, and Z represents three-dimensional The distance between the landmark point and the camera at different times (Z is unknown) S42: Figure 3 is the principle diagram of landmark positioning. According to the camera pinhole imaging principle, the two angles from the landmark point to the camera center vector can be known from the image According to the coordinate system transformation relationship:
z0=Z*cosθ1 z 0 =Z*cosθ 1
其中(x0,y0,z0),利用多个图像帧(位置已知)观测到的同一个地标点即可计算出此地标点的位置;Among them (x 0 , y 0 , z 0 ), the position of this landmark point can be calculated by using the same landmark point observed by multiple image frames (with known positions);
S43:对同一个地标提取多个特征点进行跟踪,最终取平均值来计算此地标的位置。S43: Extract multiple feature points for the same landmark to track, and finally take the average value to calculate the position of the landmark.
本发明提出了一种融合单目视觉和差分GNSS的智能车地图地标定位方法,能实现快速,高精度的地标定位。以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The invention proposes a method for locating landmarks on a smart car map that combines monocular vision and differential GNSS, which can realize fast and high-precision landmark positioning. The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the industry should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have Variations and improvements are possible, which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910684352.6A CN110514212A (en) | 2019-07-26 | 2019-07-26 | A smart car map landmark positioning method integrating monocular vision and differential GNSS |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910684352.6A CN110514212A (en) | 2019-07-26 | 2019-07-26 | A smart car map landmark positioning method integrating monocular vision and differential GNSS |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN110514212A true CN110514212A (en) | 2019-11-29 |
Family
ID=68624160
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910684352.6A Pending CN110514212A (en) | 2019-07-26 | 2019-07-26 | A smart car map landmark positioning method integrating monocular vision and differential GNSS |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110514212A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111273674A (en) * | 2020-03-12 | 2020-06-12 | 深圳冰河导航科技有限公司 | Distance measurement method, vehicle operation control method and control system |
| CN111337950A (en) * | 2020-05-21 | 2020-06-26 | 深圳市西博泰科电子有限公司 | Data processing method, device, equipment and medium for improving landmark positioning accuracy |
| CN111611913A (en) * | 2020-05-20 | 2020-09-01 | 北京海月水母科技有限公司 | Human-shaped positioning technology of monocular face recognition probe |
| CN111856499A (en) * | 2020-07-30 | 2020-10-30 | 浙江大华技术股份有限公司 | Map construction method and device based on laser radar |
| CN113358125A (en) * | 2021-04-30 | 2021-09-07 | 西安交通大学 | Navigation method and system based on environmental target detection and environmental target map |
| CN114708482A (en) * | 2022-02-24 | 2022-07-05 | 之江实验室 | Topological graph scene recognition method and device based on density filtering and landmark saliency |
| CN114742885A (en) * | 2022-06-13 | 2022-07-12 | 山东省科学院海洋仪器仪表研究所 | Target consistency judgment method in binocular vision system |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080167814A1 (en) * | 2006-12-01 | 2008-07-10 | Supun Samarasekera | Unified framework for precise vision-aided navigation |
| CN105674993A (en) * | 2016-01-15 | 2016-06-15 | 武汉光庭科技有限公司 | Binocular camera-based high-precision visual sense positioning map generation system and method |
| CN108534782A (en) * | 2018-04-16 | 2018-09-14 | 电子科技大学 | A kind of instant localization method of terrestrial reference map vehicle based on binocular vision system |
| CN108801274A (en) * | 2018-04-16 | 2018-11-13 | 电子科技大学 | A kind of terrestrial reference ground drawing generating method of fusion binocular vision and differential satellite positioning |
| CN108986037A (en) * | 2018-05-25 | 2018-12-11 | 重庆大学 | Monocular vision odometer localization method and positioning system based on semi-direct method |
| CN109544636A (en) * | 2018-10-10 | 2019-03-29 | 广州大学 | A kind of quick monocular vision odometer navigation locating method of fusion feature point method and direct method |
| CN109583409A (en) * | 2018-12-07 | 2019-04-05 | 电子科技大学 | A kind of intelligent vehicle localization method and system towards cognitive map |
-
2019
- 2019-07-26 CN CN201910684352.6A patent/CN110514212A/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080167814A1 (en) * | 2006-12-01 | 2008-07-10 | Supun Samarasekera | Unified framework for precise vision-aided navigation |
| CN105674993A (en) * | 2016-01-15 | 2016-06-15 | 武汉光庭科技有限公司 | Binocular camera-based high-precision visual sense positioning map generation system and method |
| CN108534782A (en) * | 2018-04-16 | 2018-09-14 | 电子科技大学 | A kind of instant localization method of terrestrial reference map vehicle based on binocular vision system |
| CN108801274A (en) * | 2018-04-16 | 2018-11-13 | 电子科技大学 | A kind of terrestrial reference ground drawing generating method of fusion binocular vision and differential satellite positioning |
| CN108986037A (en) * | 2018-05-25 | 2018-12-11 | 重庆大学 | Monocular vision odometer localization method and positioning system based on semi-direct method |
| CN109544636A (en) * | 2018-10-10 | 2019-03-29 | 广州大学 | A kind of quick monocular vision odometer navigation locating method of fusion feature point method and direct method |
| CN109583409A (en) * | 2018-12-07 | 2019-04-05 | 电子科技大学 | A kind of intelligent vehicle localization method and system towards cognitive map |
Non-Patent Citations (3)
| Title |
|---|
| 李承等: "基于GPS与图像融合的智能车辆高精度定位算法", 《交通运输系统工程与信息》 * |
| 李承等: "面向智能车定位的道路环境视觉地图构建", 《中国公路学报》 * |
| 骆佩佩: "面向认知地图的智能车定位系统及其应用", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技II辑》 * |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111273674A (en) * | 2020-03-12 | 2020-06-12 | 深圳冰河导航科技有限公司 | Distance measurement method, vehicle operation control method and control system |
| CN111611913A (en) * | 2020-05-20 | 2020-09-01 | 北京海月水母科技有限公司 | Human-shaped positioning technology of monocular face recognition probe |
| CN111337950A (en) * | 2020-05-21 | 2020-06-26 | 深圳市西博泰科电子有限公司 | Data processing method, device, equipment and medium for improving landmark positioning accuracy |
| CN111337950B (en) * | 2020-05-21 | 2020-10-30 | 深圳市西博泰科电子有限公司 | Data processing method, device, equipment and medium for improving landmark positioning accuracy |
| CN111999745A (en) * | 2020-05-21 | 2020-11-27 | 深圳市西博泰科电子有限公司 | Data processing method, device and equipment for improving landmark positioning precision |
| CN111856499A (en) * | 2020-07-30 | 2020-10-30 | 浙江大华技术股份有限公司 | Map construction method and device based on laser radar |
| CN113358125A (en) * | 2021-04-30 | 2021-09-07 | 西安交通大学 | Navigation method and system based on environmental target detection and environmental target map |
| CN113358125B (en) * | 2021-04-30 | 2023-04-28 | 西安交通大学 | Navigation method and system based on environment target detection and environment target map |
| CN114708482A (en) * | 2022-02-24 | 2022-07-05 | 之江实验室 | Topological graph scene recognition method and device based on density filtering and landmark saliency |
| CN114742885A (en) * | 2022-06-13 | 2022-07-12 | 山东省科学院海洋仪器仪表研究所 | Target consistency judgment method in binocular vision system |
| CN114742885B (en) * | 2022-06-13 | 2022-08-26 | 山东省科学院海洋仪器仪表研究所 | Target consistency judgment method in binocular vision system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110514212A (en) | A smart car map landmark positioning method integrating monocular vision and differential GNSS | |
| CN109579843B (en) | A multi-robot cooperative localization and fusion mapping method from multiple perspectives in open space | |
| US10909395B2 (en) | Object detection apparatus | |
| Tardif et al. | Monocular visual odometry in urban environments using an omnidirectional camera | |
| CN111882612A (en) | A vehicle multi-scale localization method based on 3D laser detection of lane lines | |
| CN109583409A (en) | A kind of intelligent vehicle localization method and system towards cognitive map | |
| CN105352509B (en) | Unmanned plane motion target tracking and localization method under geography information space-time restriction | |
| US8059887B2 (en) | System and method for providing mobile range sensing | |
| WO2017080108A1 (en) | Flying device, flying control system and method | |
| WO2017080102A1 (en) | Flying device, flying control system and method | |
| US20160238394A1 (en) | Device for Estimating Position of Moving Body and Method for Estimating Position of Moving Body | |
| CN106548173A (en) | A kind of improvement no-manned plane three-dimensional information getting method based on classification matching strategy | |
| KR101709317B1 (en) | Method for calculating an object's coordinates in an image using single camera and gps | |
| CN114332158A (en) | A 3D real-time multi-target tracking method based on fusion of camera and lidar | |
| CN114370871A (en) | A tightly coupled optimization method for visible light positioning and lidar inertial odometry | |
| CN116128966B (en) | A semantic localization method based on environmental objects | |
| CN113790728B (en) | Loose coupling multi-sensor fusion positioning algorithm based on visual odometer | |
| CN103456027B (en) | Time sensitivity target detection positioning method under airport space relation constraint | |
| KR20130034528A (en) | Position measuring method for street facility | |
| Majdik et al. | Micro air vehicle localization and position tracking from textured 3d cadastral models | |
| CN103456026A (en) | Method for detecting ground moving object under road landmark constraints | |
| CN112985388B (en) | Combined navigation method and system based on large-displacement optical flow method | |
| CN116151320A (en) | Visual odometer method and device for resisting dynamic target interference | |
| CN116259001A (en) | Multi-view fusion three-dimensional pedestrian posture estimation and tracking method | |
| CN114993293A (en) | Synchronous positioning and mapping method for mobile unmanned system in indoor weak texture environment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191129 |