[go: up one dir, main page]

CN110534415A - A kind of more size grids and its manufacturing method - Google Patents

A kind of more size grids and its manufacturing method Download PDF

Info

Publication number
CN110534415A
CN110534415A CN201910847413.6A CN201910847413A CN110534415A CN 110534415 A CN110534415 A CN 110534415A CN 201910847413 A CN201910847413 A CN 201910847413A CN 110534415 A CN110534415 A CN 110534415A
Authority
CN
China
Prior art keywords
layer
hard mask
patterned
mask layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910847413.6A
Other languages
Chinese (zh)
Inventor
杨渝书
伍强
李艳丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
Original Assignee
Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Integrated Circuit Research and Development Center Co Ltd filed Critical Shanghai Integrated Circuit Research and Development Center Co Ltd
Priority to CN201910847413.6A priority Critical patent/CN110534415A/en
Publication of CN110534415A publication Critical patent/CN110534415A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明提供的一种多尺寸栅极及其制造方法,在多尺寸栅极的制造方法中,在形成图形化的栅极膜层时,以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,同时对第一区和第二区进行刻蚀工艺,使得整个刻蚀过程产生的聚合物的材料完全相同,因此,这些聚合物没有对后续形成的栅极的形貌造成影响,降低了工艺难度,提高了工艺稳定性。

The present invention provides a multi-size gate and its manufacturing method. In the multi-size gate manufacturing method, when forming a patterned gate film layer, a patterned first hard mask layer and a patterned The second hard mask layer is a mask, and the etching process is performed on the first region and the second region at the same time, so that the polymer material produced during the entire etching process is exactly the same, so these polymers have no effect on the subsequently formed gate. The shape of the process is affected, which reduces the difficulty of the process and improves the stability of the process.

Description

一种多尺寸栅极及其制造方法A multi-size grid and its manufacturing method

技术领域technical field

本发明涉及一种半导体集成电路制造方法,特别是涉及一种多尺寸栅极及其制造方法。The invention relates to a method for manufacturing a semiconductor integrated circuit, in particular to a multi-size gate and a method for manufacturing the same.

背景技术Background technique

随着半导体技术的发展,先进逻辑芯片工艺已经达到28nm节点以下的工艺制程。栅极工艺作为先进逻辑芯片工艺的核心技术,在进入28nm技术节点以后,栅极工艺由传统的多晶硅栅极转变为高介质常数(HK)栅介质层的金属栅极(MG),通常简称HKMG。HKMG的形成工艺中,需要先生成多晶硅伪栅形貌(dummy gate),在氧化硅隔离层填充后,再进行多晶硅去除,接着再填充金属,最后形成多尺寸栅极(即gate last技术),整个过程很是复杂。With the development of semiconductor technology, advanced logic chip technology has reached the technology process below 28nm node. Gate technology is the core technology of advanced logic chip technology. After entering the 28nm technology node, the gate technology has changed from a traditional polysilicon gate to a metal gate (MG) with a high dielectric constant (HK) gate dielectric layer, usually referred to as HKMG. . In the formation process of HKMG, it is necessary to generate a polysilicon dummy gate first, and then remove the polysilicon after filling the silicon oxide isolation layer, then fill it with metal, and finally form a multi-size gate (that is, gate last technology). The whole process is very complicated.

随着芯片尺寸的进一步微缩,例如是在进入14nm Finfet(鳍式场效应晶体管)技术节点后,特别是从12/10nm节点开始,由于多晶硅伪栅形貌图形周期已经超出传统光刻机(例如是193浸没式光刻机)的曝光极限,因此,引进了自对准双重成像技术(SADP:SelfAligned Double Patterning)来定义栅极的线条图形,但是,采用这种技术形成的栅极图形中栅极线条的尺寸单一,必须借助其他的工艺步骤来形成不同尺寸的栅极,以满足芯片各种器件的要求,例如典型的设计方法中,器件区的栅极线宽以及图形周期均为最小的,而逻辑区所需的栅极线宽是器件区的栅极线宽的两倍,逻辑区所需的图形周期同样也会器件区的图形周期的两倍。因此,为了得到不同尺寸的栅极线条,通常在图形密集的器件区用SADP形成氧化硅硬掩膜线条,然后利用有机复合阻挡层(tri-layer mask)形成逻辑区有机复合掩模线条图形,再通过干法刻蚀把图形传递到氮化硅硬掩膜层,接着以氮化硅硬掩膜层为掩模形成最终的不同尺寸的栅极线条,最终形成多尺寸栅极。整个过程存在以下问题:With the further shrinking of the chip size, for example, after entering the 14nm Finfet (Fin Field Effect Transistor) technology node, especially starting from the 12/10nm node, the pattern cycle of the polysilicon dummy gate shape has exceeded the traditional photolithography machine (such as is the exposure limit of the 193 immersion lithography machine), so the self-aligned double imaging technology (SADP: SelfAligned Double Patterning) was introduced to define the line pattern of the gate. However, the gate pattern formed by this technology The size of the electrode lines is single, and other process steps must be used to form gates of different sizes to meet the requirements of various devices on the chip. For example, in typical design methods, the gate line width and pattern period of the device area are the smallest. , and the gate line width required by the logic area is twice the gate line width of the device area, and the pattern period required by the logic area is also twice the pattern period of the device area. Therefore, in order to obtain gate lines of different sizes, SADP is usually used to form silicon oxide hard mask lines in the densely patterned device area, and then an organic composite barrier layer (tri-layer mask) is used to form an organic composite mask line pattern in the logic area. Then transfer the pattern to the silicon nitride hard mask layer by dry etching, and then use the silicon nitride hard mask layer as a mask to form final gate lines of different sizes, and finally form multi-size gates. The whole process has the following problems:

a.工艺步骤较复杂;a. The process steps are more complicated;

b.逻辑区栅极的关键尺寸波动较大,不利于工艺稳定性较差;b. The critical size of the gate in the logic area fluctuates greatly, which is not conducive to poor process stability;

c.工艺难度较大,使得栅极图形不能精确的复制,造成整个工艺的工艺窗口很窄,不利于工艺稳定性。c. The process is difficult, so that the gate pattern cannot be accurately copied, resulting in a narrow process window of the entire process, which is not conducive to process stability.

发明内容Contents of the invention

本发明的目的在于提供一种多尺寸栅极及其制造方法,能够优化工艺,提高逻辑区栅极的关键尺寸的稳定性,降低工艺难度,提高工艺窗口,从而达到降低成本,提高工艺稳定性。The purpose of the present invention is to provide a multi-size gate and its manufacturing method, which can optimize the process, improve the stability of the key dimensions of the gate in the logic region, reduce the difficulty of the process, and increase the process window, thereby reducing costs and improving process stability. .

为了解决上述问题,本发明提供了一种多尺寸栅极的制造方法,包括以下步骤:In order to solve the above problems, the present invention provides a method for manufacturing a multi-size gate, comprising the following steps:

提供一基底,所述基底包括第一区和第二区,所述基底上形成有栅极膜层、硅材料层和图形化的第一光刻胶层,图形化的所述第一光刻胶层在第一区具有第一图形,在第二区具有第二图形,第一图形具有第一开口,第二图形具有第二开口;A substrate is provided, the substrate includes a first region and a second region, a gate film layer, a silicon material layer and a patterned first photoresist layer are formed on the substrate, and the patterned first photoresist layer The adhesive layer has a first pattern in the first area, a second pattern in the second area, the first pattern has a first opening, and the second pattern has a second opening;

以图形化的所述第一光刻胶层为掩模刻蚀所述硅材料层,并将所述第一图形和第二图形复制至所述硅材料层中;Etching the silicon material layer using the patterned first photoresist layer as a mask, and copying the first pattern and the second pattern into the silicon material layer;

在所述基底上形成第一硬掩模层,所述第一硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第一硬掩模层,以形成图形化的第一硬掩模层;Forming a first hard mask layer on the substrate, the first hard mask layer covers the surface of the silicon material layer, and the sidewalls of the first opening and the second opening, and then etching the The first hard mask layer on the surface of the silicon material layer to form a patterned first hard mask layer;

在所述基底上形成图形化的第二光刻胶层,并以图形化的所述第二光刻胶层为掩模,刻蚀去除所述第二开口侧壁上的第一硬掩模层;Forming a patterned second photoresist layer on the substrate, and using the patterned second photoresist layer as a mask, etching and removing the first hard mask on the sidewall of the second opening Floor;

在所述基底上形成第二硬掩模层,所述第二硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第二硬掩模层,以形成图形化的第二硬掩模层;以及Form a second hard mask layer on the substrate, the second hard mask layer covers the surface of the silicon material layer, and the sidewalls of the first opening and the second opening, and then etch the the second hard mask layer on the surface of the silicon material layer to form a patterned second hard mask layer; and

以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中,以形成图形化的栅极膜层。Using the patterned first hard mask layer and the patterned second hard mask layer as a mask, sequentially etch the silicon material layer and the gate film layer, and stop the gate film layer at a partial depth In order to form a patterned gate film layer.

可选的,在所述基底上形成第一硬掩模层,所述第一硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第一硬掩模层,以形成图形化的第一硬掩模层包括以下步骤:Optionally, a first hard mask layer is formed on the substrate, the first hard mask layer covers the surface of the silicon material layer and the sidewalls of the first opening and the second opening, and then Etching the first hard mask layer on the surface of the silicon material layer to form a patterned first hard mask layer includes the following steps:

采用ALD原子层沉积工艺在所述基底上沉积均匀厚度的第一硬掩模层,所述第一硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁;以及Depositing a first hard mask layer with a uniform thickness on the substrate by using an ALD atomic layer deposition process, the first hard mask layer covers the surface of the silicon material layer, and the first opening and the second opening side walls of the

采用干法刻蚀工艺刻蚀所述硅材料层表面上的所述第一硬掩模层,以形成图形化的第一硬掩模层。The first hard mask layer on the surface of the silicon material layer is etched by a dry etching process to form a patterned first hard mask layer.

进一步的,在所述基底上形成图形化的第二光刻胶层,并以图形化的所述第二光刻胶层为掩模刻蚀去除所述第二开口侧壁上的第一硬掩模层包括以下步骤:Further, a patterned second photoresist layer is formed on the substrate, and the first hard layer on the sidewall of the second opening is etched and removed by using the patterned second photoresist layer as a mask. The mask layer includes the following steps:

在所述基底上形成第二光刻胶层Forming a second photoresist layer on the substrate

利用KRF光刻机使用双次光刻法对所述第二光刻胶层进行光刻,以形成图形化的第二光刻胶层;Using a KRF lithography machine to perform photoetching on the second photoresist layer using a double photolithography method to form a patterned second photoresist layer;

以图形化的所述第二光刻胶层为掩模,采用湿法刻蚀工艺刻蚀去除所述第二开口侧壁上的第一硬掩模层;以及Using the patterned second photoresist layer as a mask, using a wet etching process to etch and remove the first hard mask layer on the sidewall of the second opening; and

通过灰化方式和清洗工艺去除剩余所述第二光刻胶层。The remaining second photoresist layer is removed by ashing and cleaning processes.

进一步的,在所述基底上形成第二硬掩模层,所述第二硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第二硬掩模层,以形成图形化的第二硬掩模层包括以下步骤:Further, a second hard mask layer is formed on the substrate, the second hard mask layer covers the surface of the silicon material layer, and the sidewalls of the first opening and the second opening, and then Etching the second hard mask layer on the surface of the silicon material layer to form a patterned second hard mask layer comprises the following steps:

采用ALD原子层沉积工艺在所述基底上沉积均匀厚度的第二硬掩模层,所述第二硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁;以及Depositing a second hard mask layer with a uniform thickness on the substrate by using an ALD atomic layer deposition process, the second hard mask layer covers the surface of the silicon material layer, and the first opening and the second opening side walls of the

采用干法刻蚀工艺刻蚀所述硅材料层表面上的所述第二硬掩模层,以形成图形化的第二硬掩模层。The second hard mask layer on the surface of the silicon material layer is etched by a dry etching process to form a patterned second hard mask layer.

进一步的,所述第一硬掩模层的厚度为16nm-20nm;所述第二硬掩模层的厚度为16nm-20nm。Further, the thickness of the first hard mask layer is 16nm-20nm; the thickness of the second hard mask layer is 16nm-20nm.

进一步的,所述第一硬掩模层和第二硬掩模层的厚度相同。Further, the first hard mask layer and the second hard mask layer have the same thickness.

进一步的,所述第一硬掩模层的材料包括氧化硅、氮氧化硅;所述第二硬掩模层的材料包括氧化硅、氮氧化硅。Further, the material of the first hard mask layer includes silicon oxide and silicon oxynitride; the material of the second hard mask layer includes silicon oxide and silicon oxynitride.

进一步的,所述第一硬掩模层和第二硬掩模层的材料相同。Further, the first hard mask layer and the second hard mask layer are made of the same material.

进一步的,以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中,以形成图形化的栅极膜层具体包括:Further, using the patterned first hard mask layer and the patterned second hard mask layer as masks, sequentially etch the silicon material layer and the gate film layer, and stop the gate at a partial depth. In the pole film layer, to form a patterned gate film layer specifically includes:

在所述第一区,以图形化的所述第一硬掩模层和图形化的所述第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中;同时,在所述第二区,以图形化的所述第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中,形成图形化的栅极膜层。In the first region, using the patterned first hard mask layer and the patterned second hard mask layer as a mask, sequentially etch the silicon material layer and the gate film layer, and stop in the gate film layer at a partial depth; at the same time, in the second region, using the patterned second hard mask layer as a mask, sequentially etch the silicon material layer and the gate film layer, and stop in the gate film layer at a partial depth to form a patterned gate film layer.

本发明还提供了一种多尺寸栅极,采用上述的制造方法制备而成。The present invention also provides a multi-size grid, which is prepared by the above-mentioned manufacturing method.

与现有技术相比存在以下有益效果:Compared with the prior art, there are the following beneficial effects:

本发明提供的一种多尺寸栅极及其制造方法,在多尺寸栅极的制造方法中,在形成图形化的栅极膜层时,以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,同时对第一区和第二区进行刻蚀工艺,使得整个刻蚀过程产生的聚合物的材料完全相同,因此,这些聚合物没有对后续形成的栅极的形貌造成影响,降低了工艺难度,提高了工艺稳定性。The present invention provides a multi-size gate and its manufacturing method. In the multi-size gate manufacturing method, when forming a patterned gate film layer, a patterned first hard mask layer and a patterned The second hard mask layer is a mask, and the etching process is performed on the first region and the second region at the same time, so that the materials of the polymers produced during the entire etching process are exactly the same, so these polymers have no effect on the subsequently formed gate. The morphology is affected, which reduces the difficulty of the process and improves the stability of the process.

进一步的,在多尺寸栅极的制造方法中,第一硬掩模层和第二硬掩模层均通过ALD原子层沉积工艺形成,该工艺可以提高第一硬掩模层和第二硬掩模层的均匀性,且在形成图形化的栅极膜层时,第一区以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模进行刻蚀工艺,其中,所述第一硬掩模层和第二硬掩模层的材料相同,其降低了刻蚀工艺的难度,同时,在第一区后续形成的栅极关键尺寸较为稳定,从而提高了工艺品质。另外,图形化的第一光刻胶层通过浸润式光刻曝光系统曝光得到,图形化的第二光刻胶层通过利用KRF光刻机使用双次光刻法得到,相较于现有技术中采用两次的浸润式光刻曝光系统曝光工艺相比,其工艺成本较低。Further, in the manufacturing method of the multi-size gate, the first hard mask layer and the second hard mask layer are formed by an ALD atomic layer deposition process, which can improve the first hard mask layer and the second hard mask layer. The uniformity of the mold layer, and when forming the patterned gate film layer, the first region uses the patterned first hard mask layer and the patterned second hard mask layer as a mask to perform an etching process, wherein , the material of the first hard mask layer and the second hard mask layer is the same, which reduces the difficulty of the etching process, and at the same time, the critical dimension of the gate subsequently formed in the first region is relatively stable, thereby improving the process quality . In addition, the patterned first photoresist layer is obtained by exposing the immersion photolithography exposure system, and the patterned second photoresist layer is obtained by using a KRF photolithography machine using a double photolithography method. Compared with the prior art Compared with the exposure process of the immersion lithography exposure system which adopts twice in the present invention, the process cost is lower.

附图说明Description of drawings

图1a-1g为一种多尺寸栅极的制造方法各步骤中的结构示意图;1a-1g are structural schematic diagrams in each step of a manufacturing method of a multi-size gate;

图2为本发明一实施例的多尺寸栅极的制造方法的流程示意图;2 is a schematic flowchart of a method for manufacturing a multi-size gate according to an embodiment of the present invention;

图3a-3j为本发明一实施例的多尺寸栅极的制造方法各步骤中的结构示意图。3a-3j are structural schematic diagrams in each step of a method for manufacturing a multi-size gate according to an embodiment of the present invention.

附图标记说明:Explanation of reference signs:

图1a-1g中:In Figures 1a-1g:

I-逻辑区;II-器件区;10-硅衬底;11-第一多晶硅层;12-第一氧化层;13-氮化硅层;14-第二多晶硅层;20-第二氧化层;30-第二复合有机层阻挡层;40-第二光刻胶层;a-开口;I-logic area; II-device area; 10-silicon substrate; 11-first polysilicon layer; 12-first oxide layer; 13-silicon nitride layer; 14-second polysilicon layer; 20- The second oxide layer; 30-the second composite organic layer barrier layer; 40-the second photoresist layer; a-opening;

图3a-3j中:In Figures 3a-3j:

I-第一区;II-第二区;a-第一开口;b-第二开口;I-first zone; II-second zone; a-first opening; b-second opening;

100-基底;110-栅极膜层;120-初始硬掩模层;130-硅材料层;140-有机复合层;150-第一光刻胶层;100-substrate; 110-gate film layer; 120-initial hard mask layer; 130-silicon material layer; 140-organic composite layer; 150-first photoresist layer;

200-第一硬掩模层;200 - a first hard mask layer;

300-第二光刻胶层;300-the second photoresist layer;

400-第二硬掩模层。400 —Second hard mask layer.

具体实施方式Detailed ways

传统的多尺寸栅极的制造方法包括以下步骤:A conventional method for manufacturing a multi-size gate includes the following steps:

步骤S11:请参阅图1a,提供一硅衬底10,所述硅衬底10上依次形成有第一多晶硅层11、第一氧化层12、氮化硅层13、第二多晶硅层14、第一复合有机层阻挡层和图形化的第一光刻胶层,所述硅衬底10包括逻辑区I和器件区II,图形化的所述第一光刻胶层在所述器件区II具有第二图形,以图形化的所述第一光刻胶层为掩模,依次刻蚀所述第一复合有机层阻挡层和第二多晶硅层14,将第二图形复制至所述第二多晶硅层14中,以形成图形化的第二多晶硅层14,且图形化的所述第二多晶硅层14在所述器件区II具有第二图形处具有开口a,且在所述逻辑区I暴露出所述第二多晶硅层14,其中,图形化的所述第一光刻胶使用浸润式光刻曝光系统曝光得到;Step S11: Referring to FIG. 1a, a silicon substrate 10 is provided, and a first polysilicon layer 11, a first oxide layer 12, a silicon nitride layer 13, and a second polysilicon layer are sequentially formed on the silicon substrate 10. layer 14, a first composite organic layer barrier layer and a patterned first photoresist layer, the silicon substrate 10 includes a logic region I and a device region II, and the patterned first photoresist layer is in the Device region II has a second pattern, using the patterned first photoresist layer as a mask, sequentially etching the first composite organic barrier layer and the second polysilicon layer 14, and copying the second pattern into the second polysilicon layer 14 to form a patterned second polysilicon layer 14, and the patterned second polysilicon layer 14 has a second pattern at the device region II Opening a, and exposing the second polysilicon layer 14 in the logic region I, wherein the patterned first photoresist is exposed by using an immersion photolithography exposure system;

步骤S12:请参阅图1b,在所述第二多晶硅层14上形成第二氧化层20,所述第二氧化层20还覆盖了所述开口a的底部和侧壁;Step S12: Referring to FIG. 1b, a second oxide layer 20 is formed on the second polysilicon layer 14, and the second oxide layer 20 also covers the bottom and sidewall of the opening a;

步骤S13:请参阅图1c,依次刻蚀所述第二氧化层20和第二多晶硅层14,并保留所述开口a侧壁上的第二氧化层20,以构成了第二图形,并形成图形化的第二氧化层20;Step S13: Referring to FIG. 1c, etch the second oxide layer 20 and the second polysilicon layer 14 in sequence, and retain the second oxide layer 20 on the sidewall of the opening a to form a second pattern, and forming a patterned second oxide layer 20;

步骤S14:请参阅图1d,在所述氮化硅层13上形成第二复合有机层阻挡层30,并在逻辑区I的第二复合有机层阻挡层30上形成图形化的第二光刻胶层40,所述第二复合有机层阻挡层30覆盖所述第二氧化层20,图形化的第二光刻胶层40在所述逻辑区I具有第一图形;Step S14: Please refer to FIG. 1d, forming a second composite organic layer barrier layer 30 on the silicon nitride layer 13, and forming a patterned second photolithography layer on the second composite organic layer barrier layer 30 in the logic region I. A glue layer 40, the second composite organic layer barrier layer 30 covers the second oxide layer 20, and the patterned second photoresist layer 40 has a first pattern in the logic region I;

步骤S15:请参阅图1e,以图形化的第二光刻胶层40为掩模刻蚀所述第二复合有机层阻挡层30,将第一图形复制至所述第二复合有机层阻挡层30中,以形成图形化的第二复合有机层阻挡层30,同时暴露出所述第一图形,其中,图形化的所述第二光刻胶层40使用浸润式光刻曝光系统曝光得到;Step S15: Please refer to FIG. 1e, use the patterned second photoresist layer 40 as a mask to etch the second composite organic layer barrier layer 30, and copy the first pattern to the second composite organic layer barrier layer 30 to form a patterned second composite organic barrier layer 30 while exposing the first pattern, wherein the patterned second photoresist layer 40 is obtained by exposure using an immersion photolithography exposure system;

步骤S16:请参阅图1f,在逻辑区I中,以图形化的第二光刻胶层40和第二复合有机层阻挡层30为掩模进一步刻蚀所述氮化硅层13,将所述第二图形复制至所述氮化硅层13中,在器件区II,以所述第二氧化层20为掩模进一步刻蚀所述氮化硅层13,将所述第一图形复制至所述氮化硅层13中,以形成图形化的氮化硅层13,并暴露所述第一氧化层12,再去除所述第二氧化层20和第二复合有机层阻挡层30;以及Step S16: Please refer to FIG. 1f. In the logic region I, the silicon nitride layer 13 is further etched using the patterned second photoresist layer 40 and the second composite organic barrier layer 30 as a mask, and the The second pattern is copied to the silicon nitride layer 13, and in the device region II, the silicon nitride layer 13 is further etched using the second oxide layer 20 as a mask, and the first pattern is copied to In the silicon nitride layer 13, a patterned silicon nitride layer 13 is formed to expose the first oxide layer 12, and then the second oxide layer 20 and the second composite organic layer barrier layer 30 are removed; and

步骤S17:请参阅图1g,以图形化的氮化硅层13为掩模,进一步刻蚀所述第一氧化层12和第一多晶硅层11,并刻蚀停止在所述第一多晶硅层11中,将所述第一图形和第二图形复制至所述第一多晶硅层11中,以形成栅极图形,最终形成多尺寸栅极。Step S17: Please refer to FIG. 1g, use the patterned silicon nitride layer 13 as a mask to further etch the first oxide layer 12 and the first polysilicon layer 11, and stop the etching at the first polysilicon layer In the polysilicon layer 11, the first pattern and the second pattern are copied to the first polysilicon layer 11 to form a gate pattern, and finally form a multi-size gate.

发明人研究发现,在上述的制造方法中,需要经过2次使用浸润式光刻曝光系统曝光工艺,其工艺成本较高。在步骤S16的逻辑区中,以图形化的第二光刻胶层和复合有机层阻挡层为掩模进一步的刻蚀来确定栅极关键尺寸(CD,Critical Dimension),由于其抗刻蚀能力较差,使得侧向的刻蚀速率很容易受到周围环境的影响,造成逻辑区栅极的关键尺寸波动较大,从而造成工艺稳定性较差。同时,在步骤S16的逻辑区中,以图形化的第二光刻胶层和复合有机层阻挡层为掩模进一步的刻蚀过程中,掩模材料为有机材料;器件区中以所述第二氧化层为掩模进一步的刻蚀,该过程掩模材料为氧化物,两个区域在整个刻蚀过程所产生的聚合物的材料完全不同,这些完全不一样的聚合物增加了图形精度传递(包括精确的尺寸和垂直的侧壁形貌)的困难程度,使得栅极图形的尺寸不够精确和/或栅极图形在垂直方向存在倾斜角,造成了整个工艺的工艺窗口很窄,工艺稳定性较差。The inventors have found that, in the above-mentioned manufacturing method, two exposure processes using an immersion photolithography exposure system are required, and the process cost is relatively high. In the logic area of step S16, further etching with the patterned second photoresist layer and the composite organic barrier layer as a mask determines the critical dimension (CD, Critical Dimension) of the gate, due to its etching resistance Poor, so that the lateral etching rate is easily affected by the surrounding environment, resulting in large fluctuations in the critical dimension of the gate of the logic region, resulting in poor process stability. Simultaneously, in the logic region of step S16, in the further etching process using the patterned second photoresist layer and the composite organic barrier layer as a mask, the mask material is an organic material; The oxide layer is used as a mask for further etching. The mask material in this process is oxide. The polymer materials produced in the two regions during the entire etching process are completely different. These completely different polymers increase the transfer of pattern accuracy. The degree of difficulty (including precise size and vertical sidewall morphology) makes the size of the gate pattern inaccurate and/or the gate pattern has an inclination angle in the vertical direction, resulting in a narrow process window for the entire process and stable process Sex is poor.

基于上述研究,本发明提供的一种多尺寸栅极及其制造方法,本发明的核心思想在于,在多尺寸栅极的制造方法中,在形成图形化的栅极膜层时,以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,同时对第一区和第二区进行刻蚀工艺,使得整个刻蚀过程产生的聚合物的材料完全相同,因此,这些聚合物没有对后续形成的栅极的形貌造成影响,降低了工艺难度,提高了工艺稳定性。Based on the above research, the present invention provides a multi-size gate and its manufacturing method. The core idea of the present invention is that, in the multi-size gate manufacturing method, when forming a patterned gate film layer, the patterned The first hard mask layer and the patterned second hard mask layer are masks, and the etching process is performed on the first region and the second region at the same time, so that the polymer material produced during the entire etching process is exactly the same, so , these polymers do not affect the morphology of the subsequently formed gate, which reduces the difficulty of the process and improves the stability of the process.

进一步的,在多尺寸栅极的制造方法中,第一硬掩模层和第二硬掩模层均通过ALD原子层沉积工艺形成,该工艺可以提高第一硬掩模层和第二硬掩模层的均匀性,且在形成图形化的栅极膜层时,第一区以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模进行刻蚀工艺,其中,所述第一硬掩模层和第二硬掩模层的材料相同,其降低了刻蚀工艺的难度,同时,在第一区后续形成的栅极关键尺寸较为稳定,从而提高了工艺品质。另外,图形化的第一光刻胶层通过浸润式光刻曝光系统曝光得到,图形化的第二光刻胶层通过利用KRF光刻机使用双次光刻法得到,相较于现有技术中采用两次的浸润式光刻曝光系统曝光工艺相比,其工艺成本较低。Further, in the manufacturing method of the multi-size gate, the first hard mask layer and the second hard mask layer are formed by an ALD atomic layer deposition process, which can improve the first hard mask layer and the second hard mask layer. The uniformity of the mold layer, and when forming the patterned gate film layer, the first region uses the patterned first hard mask layer and the patterned second hard mask layer as a mask to perform an etching process, wherein , the material of the first hard mask layer and the second hard mask layer is the same, which reduces the difficulty of the etching process, and at the same time, the critical dimension of the gate subsequently formed in the first region is relatively stable, thereby improving the process quality . In addition, the patterned first photoresist layer is obtained by exposing the immersion photolithography exposure system, and the patterned second photoresist layer is obtained by using a KRF photolithography machine using a double photolithography method. Compared with the prior art Compared with the exposure process of the immersion lithography exposure system which adopts twice in the present invention, the process cost is lower.

以下将对本发明的一种多尺寸栅极及其制造方法作进一步的详细描述。下面将参照附图对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。A multi-size gate and its manufacturing method of the present invention will be further described in detail below. The invention will now be described in more detail with reference to the accompanying drawings, in which preferred embodiments of the invention are shown, it being understood that those skilled in the art may modify the invention described herein and still achieve the advantageous effects of the invention. Therefore, the following description should be understood as the broad knowledge of those skilled in the art, but not as a limitation of the present invention.

为了清楚,不描述实际实施例的全部特征。在下列描述中,不详细描述公知的功能和结构,因为它们会使本发明由于不必要的细节而混乱。应当认为在任何实际实施例的开发中,必须做出大量实施细节以实现开发者的特定目标,例如按照有关系统或有关商业的限制,由一个实施例改变为另一个实施例。另外,应当认为这种开发工作可能是复杂和耗费时间的,但是对于本领域技术人员来说仅仅是常规工作。In the interest of clarity, not all features of an actual implementation are described. In the following description, well-known functions and constructions are not described in detail since they would obscure the invention with unnecessary detail. It should be appreciated that in the development of any actual embodiment, numerous implementation details must be worked out to achieve the developer's specific goals, such as changing from one embodiment to another in accordance with system-related or business-related constraints. Additionally, it should be recognized that such a development effort might be complex and time consuming, but would nevertheless be merely a routine undertaking for those skilled in the art.

为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。In order to make the purpose and features of the present invention more comprehensible, the specific implementation manners of the present invention will be further described below in conjunction with the accompanying drawings. It should be noted that the drawings are all in a very simplified form and use imprecise ratios, which are only used to facilitate and clearly assist the purpose of illustrating the embodiments of the present invention.

本实施例所提供的一种多尺寸栅极的制造方法。图2为本实施例的多尺寸栅极的制造方法的流程示意图。如图2所示,该制造方法包括以下步骤:This embodiment provides a method for manufacturing a multi-size gate. FIG. 2 is a schematic flowchart of a method for manufacturing a multi-size gate in this embodiment. As shown in Figure 2, the manufacturing method comprises the following steps:

步骤S21:提供一基底,所述基底包括第一区和第二区,所述基底上形成有栅极膜层、硅材料层和图形化的第一光刻胶层,图形化的所述第一光刻胶层在第一区具有第一图形,在第二区具有第二图形,第一图形具有第一开口,第二图形具有第二开口;Step S21: providing a substrate, the substrate includes a first region and a second region, a gate film layer, a silicon material layer and a patterned first photoresist layer are formed on the substrate, and the patterned first A photoresist layer has a first pattern in the first area, a second pattern in the second area, the first pattern has a first opening, and the second pattern has a second opening;

步骤S22:以图形化的所述第一光刻胶层为掩模,刻蚀所述硅材料层,并将所述第一图形和第二图形复制至所述硅材料层中;Step S22: using the patterned first photoresist layer as a mask, etching the silicon material layer, and copying the first pattern and the second pattern into the silicon material layer;

步骤S23:在所述基底上形成第一硬掩模层,所述第一硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第一硬掩模层,以形成图形化的第一硬掩模层;Step S23: forming a first hard mask layer on the substrate, the first hard mask layer covers the surface of the silicon material layer, and the sidewalls of the first opening and the second opening, and then engraving etching the first hard mask layer on the surface of the silicon material layer to form a patterned first hard mask layer;

步骤S24:在所述基底上形成图形化的第二光刻胶层,并以图形化的所述第二光刻胶层为掩模,刻蚀去除所述第二开口侧壁上的第一硬掩模层;Step S24: forming a patterned second photoresist layer on the substrate, and using the patterned second photoresist layer as a mask, etching and removing the first layer on the sidewall of the second opening. hard mask layer;

步骤S25:在所述基底上形成第二硬掩模层,所述第二硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第二硬掩模层,以形成图形化的第二硬掩模层;以及Step S25: forming a second hard mask layer on the substrate, the second hard mask layer covers the surface of the silicon material layer and the sidewalls of the first opening and the second opening, and then engraving etching the second hard mask layer on the surface of the silicon material layer to form a patterned second hard mask layer; and

步骤S26:以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中,以形成图形化的栅极膜层。Step S26: Using the patterned first hard mask layer and the patterned second hard mask layer as masks, sequentially etch the silicon material layer and the gate film layer, and stop the gate at a partial depth. In the pole film layer, to form a patterned gate film layer.

下面结合具体实施例和图3a-3j详细说明本发明的多尺寸栅极的制造方法。The manufacturing method of the multi-size gate of the present invention will be described in detail below with reference to specific embodiments and FIGS. 3a-3j.

如图3a所示,首先执行步骤S21,提供一基底100,所述基底100包括第一区I和第二区II,所述基底100上形成有栅极膜层110、硅材料层130和图形化的第一光刻胶层150,图形化的所述第一光刻胶层150在第一区I具有第一图形,在第二区II具有第二图形,第一图形具有第一开口a,第二图形具有第二开口b。所述基底100上还形成有初始硬掩模层120和复合有机层阻挡层140,所述初始硬掩模层120位于所述栅极膜层110、硅材料层130之间,所述复合有机层阻挡层140形成于所述硅材料层130和图形化的第一光刻胶层150之间。As shown in FIG. 3a, step S21 is first performed to provide a substrate 100, which includes a first region I and a second region II, and a gate film layer 110, a silicon material layer 130 and a pattern are formed on the substrate 100. A patterned first photoresist layer 150, the patterned first photoresist layer 150 has a first pattern in the first region I, a second pattern in the second region II, and the first pattern has a first opening a , the second pattern has a second opening b. An initial hard mask layer 120 and a composite organic barrier layer 140 are also formed on the substrate 100, the initial hard mask layer 120 is located between the gate film layer 110 and the silicon material layer 130, and the composite organic layer A layer blocking layer 140 is formed between the silicon material layer 130 and the patterned first photoresist layer 150 .

本步骤具体包括以下步骤:This step specifically includes the following steps:

具体的,首先,提供一基底100,在所述基底100上依次形成栅极膜层110、初始硬掩模层120、硅材料层130和有机复合层140。在本实施例中,所述基底100为平面基底,所述基底100的材料为硅衬底、硅锗基底、碳化硅基底、绝缘体上硅(SOI)基底、绝缘体上锗(GOI)基底、玻璃基底或III-V族化合物基底(例如氮化镓基底或砷化镓基底等)。在另一实施例中,所述基底包括衬底、以及位于衬底表面的鳍部,还可以包括:位于基底表面的隔离层,所述隔离层覆盖部分鳍部的侧壁,且所述隔离层的表面低于所述鳍部的顶部表面。后续形成的栅极膜覆盖于所述鳍部的顶部表面和侧壁表面,栅极膜还覆盖于隔离层表面。Specifically, firstly, a substrate 100 is provided, and a gate film layer 110 , an initial hard mask layer 120 , a silicon material layer 130 and an organic composite layer 140 are sequentially formed on the substrate 100 . In this embodiment, the substrate 100 is a planar substrate, and the material of the substrate 100 is a silicon substrate, a silicon-germanium substrate, a silicon carbide substrate, a silicon-on-insulator (SOI) substrate, a germanium-on-insulator (GOI) substrate, glass substrate or a III-V compound substrate (such as a gallium nitride substrate or a gallium arsenide substrate, etc.). In another embodiment, the base includes a substrate and a fin located on the surface of the substrate, and may further include: an isolation layer located on the surface of the base, the isolation layer covers part of the sidewalls of the fin, and the isolation The surface of the layer is lower than the top surface of the fin. The subsequently formed gate film covers the top surface and the sidewall surface of the fin, and the gate film also covers the surface of the isolation layer.

所述基底100包括若干第一区I和若干第二区II,所述第一区I例如是图形较为稀疏的逻辑区,所述第二区II例如是图形较为密集的器件区,例如存储器的存储区等。所述栅极膜层110为后续形成栅极提供工艺基础;所述栅极膜层110的材料为多晶硅或掺杂的多晶硅;所述栅极膜层110采用化学气相沉积法、物理气相沉积法或原子层沉积法形成。所述基底100上还具有栅介质膜(图中未示出),所述栅介质膜用于后续形成栅介质层;所述栅介质膜的材料为氧化硅、氮化硅或氮氧化硅。所述初始硬掩模层120和硅材料层130为后续形成栅极图形层提供工艺基础。所述初始硬掩模层120的材料为氧化硅、氮化硅、氮氧化硅、碳化硅、碳氧化硅、碳氮氧化硅或无定形碳中的一种或组合;所述硅材料层130的材料为单晶硅、多晶硅或非晶硅。在本实施例中,所述初始硬掩模层120包括依次形成于栅极膜层110上的氧化硅层和氮化硅层;所述硅材料层130的材料为多晶硅。所述氧化硅层的厚度为所述氮化硅层的厚度为所述硅材料层130的厚度为所述有机复合层140例如是包括但不限于有机材料层(Spin-on-Coating,SOC)和含硅抗反射涂层(Silicon_Containing-Anti_Reflective-Coating-Layer,SiARC)。所述有机材料层的厚度为所述含硅抗反射涂层的厚度为 The substrate 100 includes several first regions I and several second regions II. The first regions I are, for example, logic regions with relatively sparse patterns, and the second regions II are, for example, device regions with relatively dense patterns, such as memory storage area, etc. The gate film layer 110 provides a process basis for the subsequent gate formation; the material of the gate film layer 110 is polysilicon or doped polysilicon; the gate film layer 110 adopts chemical vapor deposition method, physical vapor deposition method Or formed by atomic layer deposition. There is also a gate dielectric film (not shown in the figure) on the substrate 100, and the gate dielectric film is used for subsequent formation of a gate dielectric layer; the material of the gate dielectric film is silicon oxide, silicon nitride or silicon oxynitride. The initial hard mask layer 120 and the silicon material layer 130 provide a process basis for the subsequent formation of a gate pattern layer. The material of the initial hard mask layer 120 is one or a combination of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, silicon oxycarbonitride or amorphous carbon; the silicon material layer 130 The material is monocrystalline silicon, polycrystalline silicon or amorphous silicon. In this embodiment, the initial hard mask layer 120 includes a silicon oxide layer and a silicon nitride layer sequentially formed on the gate film layer 110; the material of the silicon material layer 130 is polysilicon. The thickness of the silicon oxide layer is The thickness of the silicon nitride layer is The thickness of the silicon material layer 130 is The organic composite layer 140 includes, but is not limited to, an organic material layer (Spin-on-Coating, SOC) and a silicon-containing anti-reflective coating (Silicon_Containing-Anti_Reflective-Coating-Layer, SiARC). The thickness of the organic material layer is The thickness of the silicon-containing anti-reflection coating is

接着,在所述有机复合层140上形成第一光刻胶层150,并使用浸润式光刻曝光系统曝光所述第一光刻胶层150,以形成图形化的第一光刻胶层150。图形化的所述第一光刻胶层150在第一区I具有第一图形,在第二区II具有第二图形,第一图形具有第一开口a,第二图形具有第二开口b。Next, form a first photoresist layer 150 on the organic composite layer 140, and expose the first photoresist layer 150 using an immersion photolithography exposure system to form a patterned first photoresist layer 150 . The patterned first photoresist layer 150 has a first pattern in the first region I and a second pattern in the second region II, the first pattern has a first opening a, and the second pattern has a second opening b.

其中,所述第一光刻胶层150的厚度为 Wherein, the thickness of the first photoresist layer 150 is

如图3b所示,接着执行步骤S22,以图形化的所述第一光刻胶层150为掩模,依次刻蚀所述复合有机层阻挡层140和硅材料层130,并将所述第一图形和第二图形复制至所述硅材料层130中。As shown in FIG. 3b, step S22 is then performed, using the patterned first photoresist layer 150 as a mask to sequentially etch the composite organic barrier layer 140 and the silicon material layer 130, and the first A pattern and a second pattern are replicated into the silicon material layer 130 .

在本步骤中,图形化的所述硅材料层130暴露出了第一开口a和第二开口b正下方的所述初始硬掩模层120。In this step, the patterned silicon material layer 130 exposes the initial hard mask layer 120 directly under the first opening a and the second opening b.

接着,通过灰化方式和清洗工艺去除剩余的有机复合层140。Next, the remaining organic composite layer 140 is removed by ashing and cleaning processes.

如图3c和图3d所示,接着执行步骤S23,在所述基底100上形成第一硬掩模层200,所述第一硬掩模层200覆盖了所述硅材料层130的表面,以及所述第一开口a和第二开口b的侧壁,再刻蚀所述硅材料层130的表面上的所述第一硬掩模层200,以形成图形化的第一硬掩模层200。As shown in FIG. 3c and FIG. 3d, step S23 is then performed to form a first hard mask layer 200 on the substrate 100, the first hard mask layer 200 covers the surface of the silicon material layer 130, and The sidewalls of the first opening a and the second opening b, and then etch the first hard mask layer 200 on the surface of the silicon material layer 130 to form a patterned first hard mask layer 200 .

本步骤具体包括以下步骤:This step specifically includes the following steps:

如图3c所示,首先,采用ALD(Atomic Layer Deposition)原子层沉积工艺在所述基底100上沉积均匀厚度的第一硬掩模层200,即形成的第一硬掩模层200在不同位置上的膜厚偏差较小,例如是小于3%,该工艺可以提高第一硬掩模层200的均匀性,使得后续形成的栅极关键尺寸较为稳定。可知此时,所述第一硬掩模层200不仅覆盖了所述硅材料层130的上表面,还覆盖了所述开口a和第二开口b的侧壁和底部。其中,所述第一硬掩模层200的材料例如是包括氧化硅、氮化硅、氮氧化硅、碳化硅、碳氧化硅、碳氮氧化硅或无定形碳中的一种或组合。所述第一硬掩模层200的厚度为16nm-20nm。As shown in FIG. 3c, first, a first hard mask layer 200 with a uniform thickness is deposited on the substrate 100 using an ALD (Atomic Layer Deposition) atomic layer deposition process, that is, the formed first hard mask layer 200 is formed at different positions. The thickness deviation of the first hard mask layer 200 is relatively small, for example, less than 3%, and this process can improve the uniformity of the first hard mask layer 200, so that the critical dimension of the subsequently formed gate is relatively stable. It can be seen that at this time, the first hard mask layer 200 not only covers the upper surface of the silicon material layer 130 , but also covers the sidewalls and bottoms of the opening a and the second opening b. Wherein, the material of the first hard mask layer 200 includes, for example, one or a combination of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, silicon oxycarbonitride or amorphous carbon. The thickness of the first hard mask layer 200 is 16nm-20nm.

如图3d所示,接着,采用干法刻蚀工艺刻蚀所述硅材料层130表面上的所述第一硬掩模层200,以形成图形化的第一硬掩模层200。As shown in FIG. 3 d , next, the first hard mask layer 200 on the surface of the silicon material layer 130 is etched by a dry etching process to form a patterned first hard mask layer 200 .

在本步骤中,刻蚀所述硅材料层130表面上的所述第一硬掩模层200,并暴露出所述第一硬掩模层200所覆盖了的硅材料层130表面,还暴露出所述第一开口a和第二开口b槽底的所述初始硬掩模层120,保留了所述第一开口a和第二开口b侧壁上的部分高度的所述第一硬掩模层200。In this step, the first hard mask layer 200 on the surface of the silicon material layer 130 is etched, and the surface of the silicon material layer 130 covered by the first hard mask layer 200 is exposed, and the Out of the initial hard mask layer 120 at the groove bottom of the first opening a and the second opening b, part of the height of the first hard mask on the side walls of the first opening a and the second opening b is reserved. mold layer 200 .

如图3e和图3f所示,接着执行步骤S24,在所述基底100上形成图形化的第二光刻胶层300,并以图形化的所述第二光刻胶层300为掩模刻蚀所述第二开口b侧壁上的第一硬掩模层200,并保留所述第二区II的硅材料层130。As shown in FIG. 3e and FIG. 3f, step S24 is then performed to form a patterned second photoresist layer 300 on the substrate 100, and use the patterned second photoresist layer 300 as a mask to etch etch the first hard mask layer 200 on the sidewall of the second opening b, and retain the silicon material layer 130 in the second region II.

本步骤具体包括:This step specifically includes:

首先,如图3e所示,在所述基底100上形成第二光刻胶层300,所述第二光刻胶层300为KRF光刻胶,所述第二光刻胶层300的厚度为 First, as shown in FIG. 3e, a second photoresist layer 300 is formed on the substrate 100, the second photoresist layer 300 is KRF photoresist, and the thickness of the second photoresist layer 300 is

接着,例如是利用KRF光刻机使用双次光刻法对所述第二光刻胶层300进行光刻,以形成图形化的第二光刻胶层300,可知,与现有技术中采用浸润式光刻曝光系统曝光工艺相比,其工艺成本较低。此时,图形化的第二光刻胶层300暴露出所述第二区II,覆盖了所述第一区I。Next, for example, the second photoresist layer 300 is photoetched using a KRF photolithography machine using a double photolithography method to form a patterned second photoresist layer 300. Compared with the exposure process of the immersion lithography exposure system, its process cost is lower. At this time, the patterned second photoresist layer 300 exposes the second region II and covers the first region I.

接着,如图3f所示,以图形化的所述第二光刻胶层300为掩模,例如是使用DHF溶液湿法刻蚀所述第二区II的第一硬掩模层200,以将第二区II中第二开口b侧壁上的第一硬掩模层200去除。由于DHF溶液对硅材料层130与初始硬掩模层120几乎没有消耗,第二开口b的形貌几乎没有受到影响。此时,第二区II的第一硬掩模层200被去除,保留了第一区I的第一硬掩模层200。Next, as shown in FIG. 3f, using the patterned second photoresist layer 300 as a mask, for example, wet etching the first hard mask layer 200 of the second region II by using DHF solution, to The first hard mask layer 200 on the sidewall of the second opening b in the second region II is removed. Since the DHF solution hardly consumes the silicon material layer 130 and the initial hard mask layer 120 , the morphology of the second opening b is hardly affected. At this time, the first hard mask layer 200 of the second region II is removed, and the first hard mask layer 200 of the first region I remains.

接着,通过灰化方式和清洗工艺去除剩余所述第二光刻胶层300。Next, the remaining second photoresist layer 300 is removed by ashing and cleaning processes.

如图3g和图3h所示,接着执行步骤S25,在所述基底100上形成第二硬掩模层400,所述第二硬掩模层400覆盖了所述硅材料层130的表面,以及所述第一开口a和第二开口b的侧壁,再刻蚀所述硅材料层130表面上的所述第二硬掩模层400,以形成图形化的第二硬掩模层400。As shown in FIG. 3g and FIG. 3h, step S25 is then performed to form a second hard mask layer 400 on the substrate 100, the second hard mask layer 400 covers the surface of the silicon material layer 130, and The sidewalls of the first opening a and the second opening b are then etched to form the second hard mask layer 400 on the surface of the silicon material layer 130 to form a patterned second hard mask layer 400 .

本步骤中,如图3g所示,首先,采用ALD(Atomic Layer Deposition)原子层沉积工艺在所述基底100上沉积均匀厚度的第二硬掩模层400,该工艺可以提高第二硬掩模层400的均匀性,进一步使得后续形成的栅极关键尺寸较为稳定。可知此时,所述第二硬掩模层400不仅覆盖了所述硅材料层130的上表面,还覆盖了所述开口a和第二开口b的侧壁和底部。其中,所述第二硬掩模层400的材料例如是包括氧化硅、氮化硅、氮氧化硅、碳化硅、碳氧化硅、碳氮氧化硅或无定形碳中的一种或组合。所述第二硬掩模层400的厚度为16nm-20nm。优选的,所述第一硬掩模层200和第二硬掩模层400的厚度相同,使得在所述开口a侧壁上的第一硬掩模层200和第二硬掩模层400的总厚度是所述第二开口b的侧壁上的第二硬掩模层400厚度的2倍,从而在所述开口a侧壁下方形成的栅极线宽是第二开口b侧壁下方形成的栅极线宽的2倍。所述第一硬掩模层200和第二硬掩模层400的材料相同,例如均是氧化硅或氮氧化硅。In this step, as shown in FIG. 3g, first, a second hard mask layer 400 with a uniform thickness is deposited on the substrate 100 by using an ALD (Atomic Layer Deposition) atomic layer deposition process, which can improve the second hard mask. The uniformity of the layer 400 further makes the critical dimension of the subsequently formed gate more stable. It can be seen that at this time, the second hard mask layer 400 not only covers the upper surface of the silicon material layer 130 , but also covers the sidewalls and bottoms of the opening a and the second opening b. Wherein, the material of the second hard mask layer 400 includes, for example, one or a combination of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, silicon oxycarbonitride or amorphous carbon. The thickness of the second hard mask layer 400 is 16nm-20nm. Preferably, the first hard mask layer 200 and the second hard mask layer 400 have the same thickness, so that the thickness of the first hard mask layer 200 and the second hard mask layer 400 on the sidewall of the opening a The total thickness is twice the thickness of the second hard mask layer 400 on the sidewall of the second opening b, so that the gate line width formed under the sidewall of the opening a is equal to that formed under the sidewall of the second opening b. 2 times the width of the gate line. The first hard mask layer 200 and the second hard mask layer 400 are made of the same material, such as silicon oxide or silicon oxynitride.

接着,如图3h所示,采用干法刻蚀工艺刻蚀所述硅材料层130表面上的所述第二硬掩模层400,以形成图形化的第二硬掩模层400。Next, as shown in FIG. 3h , the second hard mask layer 400 on the surface of the silicon material layer 130 is etched by a dry etching process to form a patterned second hard mask layer 400 .

在本步骤中,刻蚀所述硅材料层130表面上的所述第二硬掩模层400,并暴露出所述第二硬掩模层400所覆盖了的硅材料层130表面,还暴露出所述第一开口a和第二开口b槽底的所述初始硬掩模层120,保留了所述第一开口a侧壁上的部分高度的所述第一硬掩模层200和第二硬掩模层400,以及所述第二开口b侧壁上的部分高度的所述第二硬掩模层400。In this step, the second hard mask layer 400 on the surface of the silicon material layer 130 is etched, and the surface of the silicon material layer 130 covered by the second hard mask layer 400 is exposed, and the The initial hard mask layer 120 protrudes from the groove bottom of the first opening a and the second opening b, and part of the height of the first hard mask layer 200 and the second hard mask layer 200 on the sidewall of the first opening a are reserved Two hard mask layers 400, and part of the height of the second hard mask layer 400 on the sidewall of the second opening b.

如图3i和图3j所示,接着执行步骤S26,以图形化的所述第一硬掩模层200和图形化的第二硬掩模层400为掩模,刻蚀所述硅材料层130、初始硬掩模层120和栅极膜层110,并停止在部分深度的所述栅极膜层中,以形成图形化的栅极膜层。可知,该步骤由于所述第一硬掩模层200和第二硬掩模层400均为硅材料,这个刻蚀过程中产生的聚合物的材料相同,因此,这些聚合物没有对后续形成的栅极的形貌造成影响,降低了工艺难度,提高了工艺稳定性。As shown in FIG. 3i and FIG. 3j, step S26 is then performed, using the patterned first hard mask layer 200 and the patterned second hard mask layer 400 as masks to etch the silicon material layer 130 , the initial hard mask layer 120 and the gate film layer 110, and stop in the gate film layer at a partial depth to form a patterned gate film layer. It can be seen that in this step, since the first hard mask layer 200 and the second hard mask layer 400 are made of silicon, the materials of the polymers produced during this etching process are the same, so these polymers have no effect on the subsequent formation. The shape of the gate is affected, which reduces the difficulty of the process and improves the stability of the process.

在本步骤中,在所述第一区I,以图形化的所述第一硬掩模层200和图形化的所述第二硬掩模层400为掩模,刻蚀所述硅材料层130、初始硬掩模层120和栅极膜层110;在所述第二区II,以图形化的所述第二硬掩模层400为掩模,刻蚀所述硅材料层130、初始硬掩模层120和栅极膜层110。In this step, in the first region I, the silicon material layer is etched using the patterned first hard mask layer 200 and the patterned second hard mask layer 400 as masks. 130. Initial hard mask layer 120 and gate film layer 110; in the second region II, using the patterned second hard mask layer 400 as a mask, etch the silicon material layer 130, initial hard mask layer 120 and gate film layer 110 .

本步骤具体包括:如图3i所示,首先,刻蚀去除所述硅材料层130;如图3j所示,接着,以所述第一硬掩模层200和第二硬掩模层400为掩模,刻蚀所述初始硬掩模层120和栅极膜层110,并停止在部分深度的所述栅极膜层中,以形成图形化的栅极膜层。This step specifically includes: as shown in FIG. 3i, first, etching and removing the silicon material layer 130; as shown in FIG. 3j, then, using the first hard mask layer 200 and the second hard mask layer 400 as mask, etch the initial hard mask layer 120 and the gate film layer 110, and stop in the gate film layer at a partial depth to form a patterned gate film layer.

本实施例还提供了一种多尺寸栅极,采用上述制造方法制备而成。This embodiment also provides a multi-size gate, which is prepared by the above-mentioned manufacturing method.

综上所述,本发明提供的一种多尺寸栅极及其制造方法,在多尺寸栅极的制造方法中包括以下步骤:提供一基底,所述基底包括第一区和第二区,所述基底上形成有栅极膜层、硅材料层和图形化的第一光刻胶层,图形化的所述第一光刻胶层在第一区具有第一图形,在第二区具有第二图形,第一图形具有第一开口,第二图形具有第二开口;以图形化的所述第一光刻胶层为掩模,刻蚀所述硅材料层,并将所述第一图形和第二图形复制至所述硅材料层中;在所述基底上形成第一硬掩模层,所述第一硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第一硬掩模层,以形成图形化的第一硬掩模层;在所述基底上形成图形化的第二光刻胶层,并以图形化的所述第二光刻胶层为掩模,刻蚀去除所述第二开口侧壁上的第一硬掩模层;在所述基底上形成第二硬掩模层,所述第二硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第二硬掩模层,以形成图形化的第二硬掩模层;以及以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中,以形成图形化的栅极膜层。本发明通过在形成图形化的栅极膜层时,以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,同时对第一区和第二区进行刻蚀工艺,使得整个刻蚀过程产生的聚合物的材料完全相同,因此,这些聚合物没有对后续形成的栅极的形貌造成影响,降低了工艺难度,提高了工艺稳定性。In summary, the present invention provides a multi-size gate and its manufacturing method. The manufacturing method of the multi-size gate includes the following steps: providing a substrate, the substrate includes a first region and a second region, the A gate film layer, a silicon material layer, and a patterned first photoresist layer are formed on the substrate, and the patterned first photoresist layer has a first pattern in the first region and a first pattern in the second region. Two patterns, the first pattern has a first opening, and the second pattern has a second opening; using the patterned first photoresist layer as a mask, etch the silicon material layer, and place the first pattern and the second pattern are copied into the silicon material layer; a first hard mask layer is formed on the substrate, the first hard mask layer covers the surface of the silicon material layer, and the first opening and the sidewall of the second opening, and then etch the first hard mask layer on the surface of the silicon material layer to form a patterned first hard mask layer; form a patterned first hard mask layer on the substrate Two photoresist layers, and using the patterned second photoresist layer as a mask, etch to remove the first hard mask layer on the sidewall of the second opening; form a second hard mask layer on the substrate A hard mask layer, the second hard mask layer covers the surface of the silicon material layer, and the sidewalls of the first opening and the second opening, and then etches the silicon material layer on the surface second hard mask layer to form a patterned second hard mask layer; and using the patterned first hard mask layer and the patterned second hard mask layer as masks to etch the silicon in sequence material layer and the gate film layer, and stop in the gate film layer at a partial depth to form a patterned gate film layer. The present invention uses the patterned first hard mask layer and the patterned second hard mask layer as masks to simultaneously etch the first region and the second region when forming the patterned gate film layer The process makes the materials of the polymers produced in the whole etching process exactly the same, therefore, these polymers do not affect the morphology of the subsequently formed gate, which reduces the difficulty of the process and improves the stability of the process.

进一步的,在多尺寸栅极的制造方法中,第一硬掩模层和第二硬掩模层均通过ALD原子层沉积工艺形成,该工艺可以提高第一硬掩模层和第二硬掩模层的均匀性,且在形成图形化的栅极膜层时,第一区以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模进行刻蚀工艺,其中,所述第一硬掩模层和第二硬掩模层的材料相同,其降低了刻蚀工艺的难度,同时,在第一区后续形成的栅极关键尺寸较为稳定,从而提高了工艺品质。另外,图形化的第一光刻胶层通过浸润式光刻曝光系统曝光得到,图形化的第二光刻胶层通过利用KRF光刻机使用双次光刻法得到,相较于现有技术中采用两次的浸润式光刻曝光系统曝光工艺相比,其工艺成本较低。Further, in the manufacturing method of the multi-size gate, the first hard mask layer and the second hard mask layer are formed by an ALD atomic layer deposition process, which can improve the first hard mask layer and the second hard mask layer. The uniformity of the mold layer, and when forming the patterned gate film layer, the first region uses the patterned first hard mask layer and the patterned second hard mask layer as a mask to perform an etching process, wherein , the material of the first hard mask layer and the second hard mask layer is the same, which reduces the difficulty of the etching process, and at the same time, the critical dimension of the gate subsequently formed in the first region is relatively stable, thereby improving the process quality . In addition, the patterned first photoresist layer is obtained by exposing the immersion photolithography exposure system, and the patterned second photoresist layer is obtained by using a KRF photolithography machine using a double photolithography method. Compared with the prior art Compared with the exposure process of the immersion lithography exposure system which adopts twice in the present invention, the process cost is lower.

此外,需要说明的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”等的描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。In addition, it should be noted that, unless otherwise specified or pointed out, the descriptions of the terms "first", "second", etc. in the specification are only used to distinguish each component, element, step, etc. in the specification, rather than to express The logical relationship or sequential relationship between various components, elements, and steps, etc.

可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。It can be understood that although the present invention has been disclosed above with preferred embodiments, the above embodiments are not intended to limit the present invention. For any person skilled in the art, without departing from the scope of the technical solution of the present invention, the technical content disclosed above can be used to make many possible changes and modifications to the technical solution of the present invention, or be modified to be equivalent to equivalent changes. Example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.

Claims (10)

1.一种多尺寸栅极的制造方法,其特征在于,包括以下步骤:1. A method for manufacturing a multi-size gate, comprising the following steps: 提供一基底,所述基底包括第一区和第二区,所述基底上形成有栅极膜层、硅材料层和图形化的第一光刻胶层,图形化的所述第一光刻胶层在第一区具有第一图形,在第二区具有第二图形,所述第一图形具有第一开口,所述第二图形具有第二开口;A substrate is provided, the substrate includes a first region and a second region, a gate film layer, a silicon material layer and a patterned first photoresist layer are formed on the substrate, and the patterned first photoresist layer The adhesive layer has a first pattern in the first area and a second pattern in the second area, the first pattern has a first opening, and the second pattern has a second opening; 以图形化的所述第一光刻胶层为掩模,刻蚀所述硅材料层,并将所述第一图形和第二图形复制至所述硅材料层中;Using the patterned first photoresist layer as a mask, etching the silicon material layer, and copying the first pattern and the second pattern into the silicon material layer; 在所述基底上形成第一硬掩模层,所述第一硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第一硬掩模层,以形成图形化的第一硬掩模层;Forming a first hard mask layer on the substrate, the first hard mask layer covers the surface of the silicon material layer, and the sidewalls of the first opening and the second opening, and then etching the The first hard mask layer on the surface of the silicon material layer to form a patterned first hard mask layer; 在所述基底上形成图形化的第二光刻胶层,并以图形化的所述第二光刻胶层为掩模,刻蚀去除所述第二开口侧壁上的第一硬掩模层;Forming a patterned second photoresist layer on the substrate, and using the patterned second photoresist layer as a mask, etching and removing the first hard mask on the sidewall of the second opening Floor; 在所述基底上形成第二硬掩模层,所述第二硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第二硬掩模层,以形成图形化的第二硬掩模层;以及Form a second hard mask layer on the substrate, the second hard mask layer covers the surface of the silicon material layer, and the sidewalls of the first opening and the second opening, and then etch the the second hard mask layer on the surface of the silicon material layer to form a patterned second hard mask layer; and 以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中,以形成图形化的栅极膜层。Using the patterned first hard mask layer and the patterned second hard mask layer as a mask, sequentially etch the silicon material layer and the gate film layer, and stop the gate film layer at a partial depth In order to form a patterned gate film layer. 2.如权利要求1所述的制造方法,其特征在于,在所述基底上形成第一硬掩模层,所述第一硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第一硬掩模层,以形成图形化的第一硬掩模层包括以下步骤:2. The manufacturing method according to claim 1, wherein a first hard mask layer is formed on the substrate, the first hard mask layer covers the surface of the silicon material layer, and the The sidewalls of the first opening and the second opening, and then etching the first hard mask layer on the surface of the silicon material layer to form a patterned first hard mask layer include the following steps: 采用ALD原子层沉积工艺在所述基底上沉积均匀厚度的第一硬掩模层,所述第一硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁;以及Depositing a first hard mask layer with a uniform thickness on the substrate by using an ALD atomic layer deposition process, the first hard mask layer covers the surface of the silicon material layer, and the first opening and the second opening side walls of the 采用干法刻蚀工艺刻蚀所述硅材料层表面上的所述第一硬掩模层,以形成图形化的第一硬掩模层。The first hard mask layer on the surface of the silicon material layer is etched by a dry etching process to form a patterned first hard mask layer. 3.如权利要求2所述的制造方法,其特征在于,在所述基底上形成图形化的第二光刻胶层,并以图形化的所述第二光刻胶层为掩模刻蚀去除所述第二开口侧壁上的第一硬掩模层包括以下步骤:3. The manufacturing method according to claim 2, wherein a patterned second photoresist layer is formed on the substrate, and the patterned second photoresist layer is used as a mask for etching Removing the first hard mask layer on the sidewall of the second opening comprises the following steps: 在所述基底上形成第二光刻胶层Forming a second photoresist layer on the substrate 利用KRF光刻机使用双次光刻法对所述第二光刻胶层进行光刻,以形成图形化的第二光刻胶层;Using a KRF lithography machine to perform photoetching on the second photoresist layer using a double photolithography method to form a patterned second photoresist layer; 以图形化的所述第二光刻胶层为掩模,采用湿法刻蚀工艺刻蚀去除所述第二开口侧壁上的第一硬掩模层;以及Using the patterned second photoresist layer as a mask, using a wet etching process to etch and remove the first hard mask layer on the sidewall of the second opening; and 通过灰化方式和清洗工艺去除剩余所述第二光刻胶层。The remaining second photoresist layer is removed by ashing and cleaning processes. 4.如权利要求3所述的制造方法,其特征在于,在所述基底上形成第二硬掩模层,所述第二硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁,再刻蚀所述硅材料层表面上的所述第二硬掩模层,以形成图形化的第二硬掩模层包括以下步骤:4. The manufacturing method according to claim 3, wherein a second hard mask layer is formed on the substrate, the second hard mask layer covers the surface of the silicon material layer, and the The sidewalls of the first opening and the second opening, and etching the second hard mask layer on the surface of the silicon material layer to form a patterned second hard mask layer include the following steps: 采用ALD原子层沉积工艺在所述基底上沉积均匀厚度的第二硬掩模层,所述第二硬掩模层覆盖了所述硅材料层的表面,以及所述第一开口和第二开口的侧壁;以及Depositing a second hard mask layer with a uniform thickness on the substrate by using an ALD atomic layer deposition process, the second hard mask layer covers the surface of the silicon material layer, and the first opening and the second opening side walls of the 采用干法刻蚀工艺刻蚀所述硅材料层表面上的所述第二硬掩模层,以形成图形化的第二硬掩模层。The second hard mask layer on the surface of the silicon material layer is etched by a dry etching process to form a patterned second hard mask layer. 5.如权利要求2或4所述的制造方法,其特征在于,所述第一硬掩模层的厚度为16nm-20nm;所述第二硬掩模层的厚度为16nm-20nm。5. The manufacturing method according to claim 2 or 4, wherein the thickness of the first hard mask layer is 16nm-20nm; the thickness of the second hard mask layer is 16nm-20nm. 6.如权利要求5所述的制造方法,其特征在于,所述第一硬掩模层和第二硬掩模层的厚度相同。6. The manufacturing method according to claim 5, wherein the first hard mask layer and the second hard mask layer have the same thickness. 7.如权利要求6所述的制造方法,其特征在于,所述第一硬掩模层的材料包括氧化硅、氮化硅、氮氧化硅、碳化硅、碳氧化硅、碳氮氧化硅或无定形碳中的一种或组合;所述第二硬掩模层的材料包括氧化硅、氮化硅、氮氧化硅、碳化硅、碳氧化硅、碳氮氧化硅或无定形碳中的一种或组合。7. The manufacturing method according to claim 6, wherein the material of the first hard mask layer comprises silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, silicon oxycarbonitride or One or a combination of amorphous carbon; the material of the second hard mask layer includes one of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, silicon oxycarbonitride or amorphous carbon species or combinations. 8.如权利要求7所述的制造方法,其特征在于,所述第一硬掩模层和第二硬掩模层的材料相同。8. The manufacturing method according to claim 7, wherein the first hard mask layer and the second hard mask layer are made of the same material. 9.如权利要求8所述的制造方法,其特征在于,以图形化的第一硬掩模层和图形化的第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中,以形成图形化的栅极膜层具体包括:9. The manufacturing method according to claim 8, wherein, using the patterned first hard mask layer and the patterned second hard mask layer as a mask, the silicon material layer and the gate layer are sequentially etched. Pole film layer, and stop in the described gate film layer of partial depth, to form patterned gate film layer specifically include: 在所述第一区,以图形化的所述第一硬掩模层和图形化的所述第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中;同时,在所述第二区,以图形化的所述第二硬掩模层为掩模,依次刻蚀所述硅材料层和栅极膜层,并停止在部分深度的所述栅极膜层中,形成图形化的栅极膜层。In the first region, using the patterned first hard mask layer and the patterned second hard mask layer as a mask, sequentially etch the silicon material layer and the gate film layer, and stop in the gate film layer at a partial depth; at the same time, in the second region, using the patterned second hard mask layer as a mask, sequentially etch the silicon material layer and the gate film layer, and stop in the gate film layer at a partial depth to form a patterned gate film layer. 10.一种多尺寸栅极,其特征在于,由权利要求1-9中任一项所述的制造方法制备而成。10. A multi-size grid, characterized in that it is prepared by the manufacturing method according to any one of claims 1-9.
CN201910847413.6A 2019-09-02 2019-09-02 A kind of more size grids and its manufacturing method Pending CN110534415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910847413.6A CN110534415A (en) 2019-09-02 2019-09-02 A kind of more size grids and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910847413.6A CN110534415A (en) 2019-09-02 2019-09-02 A kind of more size grids and its manufacturing method

Publications (1)

Publication Number Publication Date
CN110534415A true CN110534415A (en) 2019-12-03

Family

ID=68667663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910847413.6A Pending CN110534415A (en) 2019-09-02 2019-09-02 A kind of more size grids and its manufacturing method

Country Status (1)

Country Link
CN (1) CN110534415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403276A (en) * 2020-03-24 2020-07-10 长江存储科技有限责任公司 Preparation method of semiconductor structure
CN113725081A (en) * 2021-08-30 2021-11-30 上海华力微电子有限公司 Method for improving photoetching development defects of NAND flash memory active area

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103843114A (en) * 2011-10-06 2014-06-04 国际商业机器公司 Sidewall image transfer process with multiple critical dimensions
US20150318181A1 (en) * 2014-05-02 2015-11-05 GlobalFoundries, Inc. Methods for fabricating integrated circuits using self-aligned quadruple patterning
US20160218010A1 (en) * 2015-01-23 2016-07-28 Bok-Young LEE Method of forming minute patterns and method of manufacturing a semiconductor device using the same
CN110098109A (en) * 2019-05-14 2019-08-06 上海集成电路研发中心有限公司 Metal gates and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103843114A (en) * 2011-10-06 2014-06-04 国际商业机器公司 Sidewall image transfer process with multiple critical dimensions
US20150318181A1 (en) * 2014-05-02 2015-11-05 GlobalFoundries, Inc. Methods for fabricating integrated circuits using self-aligned quadruple patterning
US20160218010A1 (en) * 2015-01-23 2016-07-28 Bok-Young LEE Method of forming minute patterns and method of manufacturing a semiconductor device using the same
CN110098109A (en) * 2019-05-14 2019-08-06 上海集成电路研发中心有限公司 Metal gates and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111403276A (en) * 2020-03-24 2020-07-10 长江存储科技有限责任公司 Preparation method of semiconductor structure
CN113725081A (en) * 2021-08-30 2021-11-30 上海华力微电子有限公司 Method for improving photoetching development defects of NAND flash memory active area
CN113725081B (en) * 2021-08-30 2024-08-06 上海华力微电子有限公司 A method for improving NAND flash memory active area photolithography development defects

Similar Documents

Publication Publication Date Title
US20220262626A1 (en) Methods of forming electronic devices using pitch reduction
KR101926298B1 (en) Method for integrated circuit patterning
CN110047737B (en) Methods of manufacturing semiconductor devices
JP5385551B2 (en) Double frequency using spacer mask
KR101449772B1 (en) Efficient pitch multiplication process
JP5236996B2 (en) Triple frequency using spacer mask with intervening area
CN100521090C (en) Mask material conversion
US20090017631A1 (en) Self-aligned pillar patterning using multiple spacer masks
CN101416278A (en) Simplified pitch doubling process flow
CN106200272B (en) Self-aligned dual-pattern imaging method
CN103367258A (en) Semiconductor circuit structure and manufacturing process thereof
WO2015023877A1 (en) Sidewall image transfer with a spin-on hardmask
CN107591371B (en) Device and method for forming SADP on SRAM and SAQP on logic
CN110534415A (en) A kind of more size grids and its manufacturing method
CN112086346B (en) Semiconductor device and method of forming the same
CN110148585A (en) Metal gates and its manufacturing method
CN110098109B (en) Metal gate and method of making the same
CN104299899B (en) Spacer layer double-exposure etching method
CN112908836B (en) Semiconductor structure and forming method thereof
CN106601610A (en) Method for forming small-spacing fin body
CN101339361A (en) Frequency doubling with spacer mask
CN112614775A (en) Semiconductor device and method for manufacturing the same
US11652003B2 (en) Gate formation process
KR101368544B1 (en) Simplified pitch doubling process flow
KR100894102B1 (en) Manufacturing method of highly integrated semiconductor memory device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191203

RJ01 Rejection of invention patent application after publication