CN110534584A - A kind of high efficiency rectifier and its manufacturing method - Google Patents
A kind of high efficiency rectifier and its manufacturing method Download PDFInfo
- Publication number
- CN110534584A CN110534584A CN201910712156.5A CN201910712156A CN110534584A CN 110534584 A CN110534584 A CN 110534584A CN 201910712156 A CN201910712156 A CN 201910712156A CN 110534584 A CN110534584 A CN 110534584A
- Authority
- CN
- China
- Prior art keywords
- region
- trench gate
- conductivity type
- electrode layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 230000004888 barrier function Effects 0.000 claims abstract description 48
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 238000002955 isolation Methods 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 16
- 229920005591 polysilicon Polymers 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 229910000676 Si alloy Inorganic materials 0.000 claims description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000002513 implantation Methods 0.000 claims description 6
- 229910021332 silicide Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 4
- XRZCZVQJHOCRCR-UHFFFAOYSA-N [Si].[Pt] Chemical compound [Si].[Pt] XRZCZVQJHOCRCR-UHFFFAOYSA-N 0.000 claims description 3
- FQNKXXHWTIMQJM-UHFFFAOYSA-N [Si].[Pt].[Ni] Chemical compound [Si].[Pt].[Ni] FQNKXXHWTIMQJM-UHFFFAOYSA-N 0.000 claims description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 238000011084 recovery Methods 0.000 abstract description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
- H10D8/605—Schottky-barrier diodes of the trench conductor-insulator-semiconductor barrier type, e.g. trench MOS barrier Schottky rectifiers [TMBS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/01—Manufacture or treatment
- H10D8/051—Manufacture or treatment of Schottky diodes
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种高效整流器及其制造方法,高效整流器包括下电极层、重掺杂第一导电类型衬底层、第一导电类型漂移层、沟槽栅介质区、沟槽栅填充区、肖特基势垒接触区、隔离介质区和上电极层。制造方法步骤为:1)准备重掺杂第一导电类型衬底层;2)形成第一导电类型漂移层;3)在第一导电类型漂移层表面刻蚀出槽型;4)形成沟槽栅介质区;5)形成沟槽栅填充区;6)形成隔离介质区;7)形成肖特基势垒接触区;8)形成上电极层;9)形成下电极层。本发明在不增加制造工艺步骤和制造成本的基础上获得反向恢复时间短,开关损耗小的性能。
The invention discloses a high-efficiency rectifier and a manufacturing method thereof. The high-efficiency rectifier comprises a lower electrode layer, a heavily doped substrate layer of the first conductivity type, a drift layer of the first conductivity type, a trench gate dielectric region, a trench gate filling region, and a The special base barrier contact area, the isolation dielectric area and the upper electrode layer. The steps of the manufacturing method are: 1) prepare a heavily doped substrate layer of the first conductivity type; 2) form a drift layer of the first conductivity type; 3) etch a groove pattern on the surface of the drift layer of the first conductivity type; 4) form a trench gate 5) Forming a trench gate filling area; 6) Forming an isolation dielectric area; 7) Forming a Schottky barrier contact area; 8) Forming an upper electrode layer; 9) Forming a lower electrode layer. The invention achieves the performance of short reverse recovery time and low switching loss without increasing manufacturing process steps and manufacturing cost.
Description
技术领域technical field
本发明涉及半导体器件领域,具体是一种高效整流器及其制造方法。The invention relates to the field of semiconductor devices, in particular to a high-efficiency rectifier and a manufacturing method thereof.
背景技术Background technique
肖特基势垒二极管(SBD)是中低压应用领域的常用功率整流器,但由于镜像电荷导致的势垒降低效应,SBD的漏电水平随着反向电压接近击穿电压而显著增大。沟槽肖特基势垒二极管,也称为沟槽MOS势垒肖特基(TMBS)整流器,由于引入沟槽MOS结构的电场夹断效应使反向漏电水平得到显著降低,同时外延漂移层电场得到增强,从而使正向导通压降也得到显著降低。但是现有TMBS结构中,由于沟槽MOS结构的存在,使势垒电容显著增大,从而现有TMBS的反向恢复时间较长,开关损耗较大。Schottky barrier diodes (SBDs) are commonly used power rectifiers in medium and low voltage applications, but due to the barrier-lowering effect caused by image charges, the leakage level of SBDs increases significantly as the reverse voltage approaches the breakdown voltage. Trench Schottky barrier diodes, also known as trench MOS barrier Schottky (TMBS) rectifiers, due to the electric field pinch-off effect introduced into the trench MOS structure, the reverse leakage level is significantly reduced, while the electric field of the epitaxial drift layer Be enhanced, so that the forward voltage drop is also significantly reduced. However, in the existing TMBS structure, due to the existence of the trench MOS structure, the barrier capacitance is significantly increased, so the reverse recovery time of the existing TMBS is relatively long, and the switching loss is relatively large.
发明内容Contents of the invention
本发明的目的是解决现有技术中存在的问题。The purpose of the present invention is to solve the problems existing in the prior art.
为实现本发明目的而采用的技术方案是这样的,一种高效整流器,主要包括下电极层、重掺杂第一导电类型衬底层、第一导电类型漂移层、沟槽栅介质区、沟槽栅填充区、肖特基势垒接触区、隔离介质区和上电极层。The technical solution adopted to achieve the purpose of the present invention is as follows: a high-efficiency rectifier mainly includes a lower electrode layer, a heavily doped substrate layer of the first conductivity type, a drift layer of the first conductivity type, a trench gate dielectric region, a trench Gate filling region, Schottky barrier contact region, isolation dielectric region and upper electrode layer.
所述重掺杂第一导电类型衬底层覆盖于下电极层之上。The heavily doped first conductive type substrate layer covers the lower electrode layer.
所述第一导电类型漂移层覆盖于重掺杂第一导电类型衬底层之上。The drift layer of the first conductivity type covers the heavily doped substrate layer of the first conductivity type.
所述沟槽栅介质区为U型槽。The trench gate dielectric region is a U-shaped trench.
所述沟槽栅介质区覆盖在第一导电类型漂移层之上的部分表面。The trench gate dielectric region covers part of the surface above the drift layer of the first conductivity type.
进一步,所述沟槽栅介质区由一个或多个重复且不相联的结构单元构成。Further, the trench gate dielectric region is composed of one or more repeated and unconnected structural units.
所述沟槽栅填充区填充在沟槽栅介质区内。The trench gate filling region is filled in the trench gate dielectric region.
进一步,所述沟槽栅填充区和上电极层不接触。Further, the trench gate filling region is not in contact with the upper electrode layer.
所述肖特基势垒接触区覆盖在第一导电类型漂移层之上的部分表面。The Schottky barrier contact region covers part of the surface above the drift layer of the first conductivity type.
所述肖特基势垒接触区和沟槽栅介质区间隔分布。The Schottky barrier contact region and the trench gate dielectric region are distributed at intervals.
进一步,所述肖特基势垒接触区由一个或多个重复且不相联的结构单元构成。Further, the Schottky barrier contact region is composed of one or more repeated and unconnected structural units.
所述介质隔离区完全覆盖在沟槽栅填充区之上。The dielectric isolation region completely covers the trench gate filling region.
所述上电极层覆盖在肖特基势垒接触区和介质隔离区之上。The upper electrode layer covers the Schottky barrier contact region and the dielectric isolation region.
优选的,所述介质隔离区覆盖沟槽栅介质区的部分表面。所述上电极层还覆盖沟槽栅介质区的部分表面。Preferably, the dielectric isolation region covers part of the surface of the trench gate dielectric region. The upper electrode layer also covers part of the surface of the trench gate dielectric region.
优选的,所述介质隔离区完全覆盖在沟槽栅介质区之上。Preferably, the dielectric isolation region completely covers the trench gate dielectric region.
一种高效整流器的制造方法,主要包括以下步骤:A method for manufacturing a high-efficiency rectifier mainly includes the following steps:
1)准备重掺杂第一导电类型衬底层。1) Prepare a heavily doped substrate layer of the first conductivity type.
2)形成第一导电类型漂移层。2) Forming a drift layer of the first conductivity type.
所述重掺杂第一导电类型衬底层和第一导电类型漂移层采用半导体材料,主要包括硅和碳化硅。The heavily doped substrate layer of the first conductivity type and the drift layer of the first conductivity type use semiconductor materials, mainly including silicon and silicon carbide.
3)在第一导电类型漂移层表面刻蚀出槽型。3) Etching grooves on the surface of the drift layer of the first conductivity type.
4)形成沟槽栅介质区。4) Forming a trench gate dielectric region.
所述沟槽栅介质区的材料为二氧化硅材料、氮氧化硅或氧化铪。The material of the trench gate dielectric region is silicon dioxide, silicon oxynitride or hafnium oxide.
5)形成沟槽栅填充区。5) Forming trench gate filling regions.
所述沟槽栅填充区的材料为多晶硅。所述多晶硅材料通过原味掺杂方式或者杂质注入后退火的方式完成掺杂。The material of the trench gate filling region is polysilicon. The polysilicon material is doped by original doping or annealing after impurity implantation.
6)形成隔离介质区。6) Forming an isolation dielectric region.
7)形成肖特基势垒接触区。7) Forming a Schottky barrier contact region.
所述肖特基势垒接触区的材料为肖特基势垒金属或高级硅化物。所述高级硅化物包括钛硅合金、铂硅合金和镍铂硅合金。The material of the Schottky barrier contact region is Schottky barrier metal or advanced silicide. The high-grade silicides include titanium-silicon alloys, platinum-silicon alloys and nickel-platinum-silicon alloys.
8)形成上电极层。8) Forming the upper electrode layer.
9)形成下电极层。9) Forming the lower electrode layer.
本发明的技术效果是毋庸置疑的。针对器件反向恢复时间较长,开关损耗较大等问题,本发明通过器件新型结构设计和制造工艺的优化,达到在不增加制造工艺步骤和制造成本的基础上获得反向恢复时间短,开关损耗小的性能。与现有沟槽肖特基二极管(也称TMBS)整流器相比,本发明通过器件新型结构设计和制造工艺的优化,达到在不增加制造工艺步骤和制造成本的基础上获得反向恢复时间短,开关损耗小的性能。The technical effect of the present invention is beyond doubt. Aiming at the problems of long reverse recovery time and large switching loss of the device, the present invention achieves short reverse recovery time and high switching loss without increasing the manufacturing process steps and manufacturing cost through the design of the new structure of the device and the optimization of the manufacturing process. Performance with little loss. Compared with the existing trench Schottky diode (also known as TMBS) rectifier, the present invention achieves short reverse recovery time without increasing manufacturing process steps and manufacturing cost through device novel structure design and manufacturing process optimization. , The performance of switching loss is small.
附图说明Description of drawings
图1为本发明提供的一种高效整流器的实施例5结构示意图;Fig. 1 is a schematic structural view of Embodiment 5 of a high-efficiency rectifier provided by the present invention;
图2为本发明提供的一种高效整流器的实施例6结构示意图;Fig. 2 is a schematic structural diagram of Embodiment 6 of a high-efficiency rectifier provided by the present invention;
图3为本发明提供的一种高效整流器制造方法的实施例7结构示意图;Fig. 3 is a schematic structural diagram of Embodiment 7 of a method for manufacturing a high-efficiency rectifier provided by the present invention;
图4为本发明提供的一种高效整流器制造方法的实施例7结构示意图;Fig. 4 is a schematic structural diagram of Embodiment 7 of a method for manufacturing a high-efficiency rectifier provided by the present invention;
图5为本发明提供的一种高效整流器制造方法的实施例7结构示意图;FIG. 5 is a schematic structural diagram of Embodiment 7 of a method for manufacturing a high-efficiency rectifier provided by the present invention;
图6为本发明提供的一种高效整流器制造方法的实施例7结构示意图;FIG. 6 is a schematic structural diagram of Embodiment 7 of a method for manufacturing a high-efficiency rectifier provided by the present invention;
图7为本发明提供的一种高效整流器制造方法的实施例7结构示意图;FIG. 7 is a schematic structural diagram of Embodiment 7 of a method for manufacturing a high-efficiency rectifier provided by the present invention;
图8为本发明提供的一种高效整流器制造方法的实施例7结构示意图;Fig. 8 is a schematic structural diagram of Embodiment 7 of a method for manufacturing a high-efficiency rectifier provided by the present invention;
图9为本发明提供的一种高效整流器制造方法的实施例7结构示意图;Fig. 9 is a schematic structural diagram of Embodiment 7 of a method for manufacturing a high-efficiency rectifier provided by the present invention;
图中:包括下电极层1、重掺杂第一导电类型衬底层2、第一导电类型漂移层3、沟槽栅介质区4、沟槽栅填充区5、肖特基势垒接触区6、隔离介质区7和上电极层8。In the figure: including lower electrode layer 1, heavily doped first conductivity type substrate layer 2, first conductivity type drift layer 3, trench gate dielectric region 4, trench gate filling region 5, Schottky barrier contact region 6 , isolating the dielectric region 7 and the upper electrode layer 8 .
具体实施方式Detailed ways
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。The present invention will be further described below in conjunction with the examples, but it should not be understood that the scope of the subject of the present invention is limited to the following examples. Without departing from the above-mentioned technical ideas of the present invention, various replacements and changes made according to common technical knowledge and conventional means in this field shall be included in the protection scope of the present invention.
实施例1:Example 1:
一种高效整流器,主要包括下电极层1、重掺杂第一导电类型衬底层2、第一导电类型漂移层3、沟槽栅介质区4、沟槽栅填充区5、肖特基势垒接触区6、隔离介质区7和上电极层8。A high-efficiency rectifier, mainly comprising a lower electrode layer 1, a heavily doped first conductivity type substrate layer 2, a first conductivity type drift layer 3, a trench gate dielectric region 4, a trench gate filling region 5, and a Schottky barrier Contact region 6, isolation dielectric region 7 and upper electrode layer 8.
所述重掺杂第一导电类型衬底层2覆盖于下电极层1之上。The heavily doped first conductive type substrate layer 2 covers the lower electrode layer 1 .
所述第一导电类型漂移层3覆盖于重掺杂第一导电类型衬底层2之上。The drift layer 3 of the first conductivity type covers the heavily doped substrate layer 2 of the first conductivity type.
所述沟槽栅介质区4为U型槽。The trench gate dielectric region 4 is a U-shaped trench.
所述沟槽栅介质区4覆盖在第一导电类型漂移层3之上的部分表面。The trench gate dielectric region 4 covers part of the surface above the drift layer 3 of the first conductivity type.
进一步,所述沟槽栅介质区4由一个或多个重复且不相联的结构单元构成。Further, the trench gate dielectric region 4 is composed of one or more repeated and unconnected structural units.
所述沟槽栅填充区5填充在沟槽栅介质区4内。The trench gate filling region 5 is filled in the trench gate dielectric region 4 .
进一步,所述沟槽栅填充区5和上电极层8不接触。Further, the trench gate filling region 5 is not in contact with the upper electrode layer 8 .
所述肖特基势垒接触区6覆盖在第一导电类型漂移层3之上的部分表面。The Schottky barrier contact region 6 covers part of the surface above the drift layer 3 of the first conductivity type.
所述肖特基势垒接触区6和沟槽栅介质区4间隔分布。The Schottky barrier contact region 6 and the trench gate dielectric region 4 are distributed at intervals.
进一步,所述肖特基势垒接触区6由一个或多个重复且不相联的结构单元构成。Further, the Schottky barrier contact region 6 is composed of one or more repeated and unconnected structural units.
所述介质隔离区7完全覆盖在沟槽栅填充区5之上。The dielectric isolation region 7 completely covers the trench gate filling region 5 .
进一步,所述介质隔离区7覆盖沟槽栅介质区4的部分表面。Further, the dielectric isolation region 7 covers part of the surface of the trench gate dielectric region 4 .
所述上电极层8覆盖在沟槽栅介质区4的部分表面、肖特基势垒接触区6和介质隔离区7之上。所述上电极层8还覆盖沟槽栅介质区4的部分表面。The upper electrode layer 8 covers part of the surface of the trench gate dielectric region 4 , the Schottky barrier contact region 6 and the dielectric isolation region 7 . The upper electrode layer 8 also covers part of the surface of the trench gate dielectric region 4 .
实施例2:Example 2:
一种高效整流器,主要包括下电极层1、重掺杂第一导电类型衬底层2、第一导电类型漂移层3、沟槽栅介质区4、沟槽栅填充区5、肖特基势垒接触区6、隔离介质区7和上电极层8。A high-efficiency rectifier, mainly comprising a lower electrode layer 1, a heavily doped first conductivity type substrate layer 2, a first conductivity type drift layer 3, a trench gate dielectric region 4, a trench gate filling region 5, and a Schottky barrier Contact region 6, isolation dielectric region 7 and upper electrode layer 8.
所述重掺杂第一导电类型衬底层2覆盖于下电极层1之上。The heavily doped first conductive type substrate layer 2 covers the lower electrode layer 1 .
所述第一导电类型漂移层3覆盖于重掺杂第一导电类型衬底层2之上。The drift layer 3 of the first conductivity type covers the heavily doped substrate layer 2 of the first conductivity type.
所述沟槽栅介质区4为U型槽。The trench gate dielectric region 4 is a U-shaped trench.
所述沟槽栅介质区4覆盖在第一导电类型漂移层3之上的部分表面。The trench gate dielectric region 4 covers part of the surface above the drift layer 3 of the first conductivity type.
进一步,所述沟槽栅介质区4由一个或多个重复且不相联的结构单元构成。Further, the trench gate dielectric region 4 is composed of one or more repeated and unconnected structural units.
所述沟槽栅填充区5填充在沟槽栅介质区4内。The trench gate filling region 5 is filled in the trench gate dielectric region 4 .
进一步,所述沟槽栅填充区5和上电极层8不接触。Further, the trench gate filling region 5 is not in contact with the upper electrode layer 8 .
所述肖特基势垒接触区6覆盖在第一导电类型漂移层3之上的部分表面。The Schottky barrier contact region 6 covers part of the surface above the drift layer 3 of the first conductivity type.
所述肖特基势垒接触区6和沟槽栅介质区4间隔分布。The Schottky barrier contact region 6 and the trench gate dielectric region 4 are distributed at intervals.
进一步,所述肖特基势垒接触区6由一个或多个重复且不相联的结构单元构成。Further, the Schottky barrier contact region 6 is composed of one or more repeated and unconnected structural units.
所述介质隔离区7完全覆盖在沟槽栅填充区5之上。The dielectric isolation region 7 completely covers the trench gate filling region 5 .
进一步,所述介质隔离区7完全覆盖在沟槽栅介质区4之上。Further, the dielectric isolation region 7 completely covers the trench gate dielectric region 4 .
所述上电极层8覆盖在肖特基势垒接触区6和介质隔离区7之上。The upper electrode layer 8 covers the Schottky barrier contact region 6 and the dielectric isolation region 7 .
实施例3:Example 3:
一种高效整流器的制造方法,主要包括以下步骤:A method for manufacturing a high-efficiency rectifier mainly includes the following steps:
1)准备重掺杂第一导电类型衬底层2。1) Preparing the heavily doped substrate layer 2 of the first conductivity type.
2)形成第一导电类型漂移层3。2) Forming the drift layer 3 of the first conductivity type.
所述重掺杂第一导电类型衬底层2和第一导电类型漂移层3采用半导体材料,主要包括硅和碳化硅。The heavily doped substrate layer 2 of the first conductivity type and the drift layer 3 of the first conductivity type are made of semiconductor materials, mainly including silicon and silicon carbide.
3)在第一导电类型漂移层3表面刻蚀出槽型。3) Etching grooves on the surface of the drift layer 3 of the first conductivity type.
4)形成沟槽栅介质区4。4) Forming the trench gate dielectric region 4 .
所述沟槽栅介质区4的材料为二氧化硅材料、氮氧化硅或氧化铪。The material of the trench gate dielectric region 4 is silicon dioxide, silicon oxynitride or hafnium oxide.
5)形成沟槽栅填充区5。5) Forming the trench gate filling region 5 .
所述沟槽栅填充区5的材料为多晶硅。所述多晶硅材料通过原味掺杂方式或者杂质注入后退火的方式完成掺杂。The material of the trench gate filling region 5 is polysilicon. The polysilicon material is doped by original doping or annealing after impurity implantation.
6)形成隔离介质区7。6) Forming the isolation dielectric region 7 .
7)形成肖特基势垒接触区6。7) Forming the Schottky barrier contact region 6 .
所述肖特基势垒接触区6的材料为肖特基势垒金属或高级硅化物。所述高级硅化物包括钛硅合金、铂硅合金和镍铂硅合金。The material of the Schottky barrier contact region 6 is Schottky barrier metal or advanced silicide. The high-grade silicides include titanium-silicon alloys, platinum-silicon alloys and nickel-platinum-silicon alloys.
8)形成上电极层8。8) Forming the upper electrode layer 8 .
9)形成下电极层1。9) Forming the lower electrode layer 1 .
实施例4:Example 4:
一种高效整流器的制作方法,包括以下步骤:A method for manufacturing a high-efficiency rectifier, comprising the following steps:
1)选取第一导电类型为N型;1) Selecting the first conductivity type as N type;
2)准备重掺杂N型衬底层2,重掺杂N型衬底层所用材料选择为单晶硅;2) Preparing heavily doped N-type substrate layer 2, the material used for the heavily doped N-type substrate layer is selected as monocrystalline silicon;
3)形成N型漂移层3,N型漂移层所用材料选择为单晶硅;3) forming an N-type drift layer 3, and the material used for the N-type drift layer is selected as single crystal silicon;
4)在N型漂移层3表面刻蚀出槽型;4) Etching grooves on the surface of the N-type drift layer 3;
5)形成U型沟槽栅介质区4,栅介质区材料选择二氧化硅材料;5) Forming a U-shaped trench gate dielectric region 4, and selecting a silicon dioxide material for the gate dielectric region;
6)形成沟槽栅填充区5,沟槽栅填充区材料选择多晶硅材料,多晶硅材料通过杂质注入后退火的方式完成掺杂;6) Forming the trench gate filling region 5, the material of the trench gate filling region is polysilicon material, and the polysilicon material is doped by annealing after impurity implantation;
7)形成隔离介质区7,隔离介质7材料选择TEOS介质;7) forming an isolation medium region 7, the material of which is TEOS medium;
8)形成肖特基势垒接触区6,肖特基势垒接触区材料选择钛硅合金;8) Forming the Schottky barrier contact region 6, the material of the Schottky barrier contact region is titanium-silicon alloy;
9)形成上电极层8;9) forming an upper electrode layer 8;
10)形成下电极层1。10) Forming the lower electrode layer 1 .
本实施例给出的一种高效整流器的制作方法,在不增加制造工艺步骤和制造成本的基础上能够获得反向恢复时间短,开关损耗小性能的高效整流器。The manufacturing method of a high-efficiency rectifier given in this embodiment can obtain a high-efficiency rectifier with short reverse recovery time and low switching loss without increasing manufacturing process steps and manufacturing costs.
实施例5:Example 5:
选择第一导电类型为N型,采用实施例4所给出的制造方法制造的一种高效整流器,如图1所示,包括下电极层1、重掺杂N型衬底层2、N型漂移层3、沟槽栅介质区4、沟槽栅填充区5、肖特基势垒接触区6、隔离介质区7和上电极层8;The first conductivity type is selected as N-type, and a high-efficiency rectifier manufactured by the manufacturing method given in Example 4, as shown in Figure 1, includes a lower electrode layer 1, a heavily doped N-type substrate layer 2, an N-type drift Layer 3, trench gate dielectric region 4, trench gate filling region 5, Schottky barrier contact region 6, isolation dielectric region 7 and upper electrode layer 8;
所述重掺杂N型衬底层2位于下电极层1之上,重掺杂N型衬底材料选择单晶硅,杂质选择砷,掺杂浓度选择约20次方,厚度选择400-600微米;The heavily doped N-type substrate layer 2 is located on the lower electrode layer 1, the heavily doped N-type substrate material is selected from single crystal silicon, the impurity is selected from arsenic, the doping concentration is selected to the power of about 20, and the thickness is selected to be 400-600 microns ;
所述N型漂移层3位于重掺杂N型衬底层2之上,N型漂移层选择单晶硅,杂质选择磷,掺杂浓度选择约15次方,厚度选择4-8微米;The N-type drift layer 3 is located on the heavily doped N-type substrate layer 2, the N-type drift layer is selected from single crystal silicon, the impurity is selected from phosphorus, the doping concentration is selected to the power of about 15, and the thickness is selected to be 4-8 microns;
所述沟槽栅介质区4呈U型槽结构,位于N型漂移层3的部分区域之上,栅介质区材料选择二氧化硅,U型槽结构中二氧化硅材料的厚度选择0.2-0.6微米;The trench gate dielectric region 4 has a U-shaped groove structure and is located on a part of the N-type drift layer 3. The gate dielectric region is made of silicon dioxide, and the thickness of the silicon dioxide material in the U-shaped groove structure is selected to be 0.2-0.6. Micron;
所述沟槽栅填充区5位于沟槽栅介质区4的U型槽内部,沟槽栅填充区材料选择多晶硅,多晶硅材料通过杂质注入后退火的方式完成掺杂杂质注入条件选择磷杂质和注入剂量约15次方;The trench gate filling region 5 is located inside the U-shaped groove of the trench gate dielectric region 4, the material of the trench gate filling region is polysilicon, and the polysilicon material is impurity implanted and then annealed to complete doping. The dosage is about 15 times;
所述肖特基势垒接触区6位于第一导电类型漂移层3的部分区域之上;肖特基势垒接触区6与沟槽栅介质区4间隔排布;The Schottky barrier contact region 6 is located on a part of the drift layer 3 of the first conductivity type; the Schottky barrier contact region 6 is spaced apart from the trench gate dielectric region 4;
所述隔离介质区7位于沟槽栅填充区5和沟槽栅介质区4之上,隔离介质材料选择TEOS介质;The isolation dielectric region 7 is located on the trench gate filling region 5 and the trench gate dielectric region 4, and the isolation dielectric material is TEOS medium;
所述上电极层8位于肖特基势垒接触区6和隔离介质区7之上;所述沟槽栅填充区5和上电极层8不接触。The upper electrode layer 8 is located on the Schottky barrier contact region 6 and the isolation dielectric region 7; the trench gate filling region 5 is not in contact with the upper electrode layer 8 .
所述下电极层1在形成前还需对重掺杂N型衬底层2进行减薄工艺处理。Before the lower electrode layer 1 is formed, the heavily doped N-type substrate layer 2 needs to be thinned.
本实施例给出的一种高效整流器,能够获得反向恢复时间短,开关损耗小的性能。The high-efficiency rectifier provided in this embodiment can obtain the performance of short reverse recovery time and small switching loss.
实施例6:Embodiment 6:
选择第一导电类型为N型,采用实施例4所给出的制造方法制造的一种高效整流器,如图2所示,包括下电极层1、重掺杂N型衬底层2、N型漂移层3、沟槽栅介质区4、沟槽栅填充区5、肖特基势垒接触区6、隔离介质区7和上电极层8;The first conductivity type is selected as N-type, and a high-efficiency rectifier manufactured by the manufacturing method given in Example 4, as shown in Figure 2, includes a lower electrode layer 1, a heavily doped N-type substrate layer 2, an N-type drift Layer 3, trench gate dielectric region 4, trench gate filling region 5, Schottky barrier contact region 6, isolation dielectric region 7 and upper electrode layer 8;
所述重掺杂N型衬底层2位于下电极层1之上,重掺杂N型衬底材料选择单晶硅,杂质选择砷,掺杂浓度选择约20次方,厚度选择400-600微米;The heavily doped N-type substrate layer 2 is located on the lower electrode layer 1, the heavily doped N-type substrate material is selected from single crystal silicon, the impurity is selected from arsenic, the doping concentration is selected to the power of about 20, and the thickness is selected to be 400-600 microns ;
所述N型漂移层3位于重掺杂N型衬底层2之上,N型漂移层选择单晶硅,杂质选择磷,掺杂浓度选择约15次方,厚度选择4-8微米;The N-type drift layer 3 is located on the heavily doped N-type substrate layer 2, the N-type drift layer is selected from single crystal silicon, the impurity is selected from phosphorus, the doping concentration is selected to the power of about 15, and the thickness is selected to be 4-8 microns;
所述沟槽栅介质区4呈U型槽结构,位于N型漂移层3的部分区域之上,栅介质区材料选择二氧化硅,U型槽结构中二氧化硅材料的厚度选择0.2-0.6微米;The trench gate dielectric region 4 has a U-shaped groove structure and is located on a part of the N-type drift layer 3. The gate dielectric region is made of silicon dioxide, and the thickness of the silicon dioxide material in the U-shaped groove structure is selected to be 0.2-0.6. Micron;
所述沟槽栅填充区5位于沟槽栅介质区4的U型槽内部,沟槽栅填充区材料选择多晶硅,多晶硅材料通过杂质注入后退火的方式完成掺杂杂质注入条件选择磷杂质和注入剂量约15次方;The trench gate filling region 5 is located inside the U-shaped groove of the trench gate dielectric region 4, the material of the trench gate filling region is polysilicon, and the polysilicon material is impurity implanted and then annealed to complete doping. The dose is about 15 times;
所述肖特基势垒接触区6位于第一导电类型漂移层3的部分区域之上;肖特基势垒接触区6与沟槽栅介质区4间隔排布;The Schottky barrier contact region 6 is located on a part of the drift layer 3 of the first conductivity type; the Schottky barrier contact region 6 is spaced apart from the trench gate dielectric region 4;
所述隔离介质区7位于沟槽栅填充区5和部分沟槽栅介质区4之上,隔离介质材料选择TEOS介质;The isolation dielectric region 7 is located on the trench gate filling region 5 and part of the trench gate dielectric region 4, and the isolation dielectric material is TEOS medium;
所述上电极层8位于肖特基势垒接触区6、隔离介质区7和部分沟槽栅介质区4之上;所述沟槽栅填充区5和上电极层8不接触。The upper electrode layer 8 is located on the Schottky barrier contact region 6 , the isolation dielectric region 7 and part of the trench gate dielectric region 4 ; the trench gate filling region 5 is not in contact with the upper electrode layer 8 .
所述下电极层1在形成前还需对重掺杂N型衬底层2进行减薄工艺处理。Before the lower electrode layer 1 is formed, the heavily doped N-type substrate layer 2 needs to be thinned.
本实施例给出的一种高效整流器,能够获得反向恢复时间短,开关损耗小的性能。The high-efficiency rectifier provided in this embodiment can obtain the performance of short reverse recovery time and small switching loss.
实施例7:Embodiment 7:
一种高效整流器的制作方法,包括以下步骤:A method for manufacturing a high-efficiency rectifier, comprising the following steps:
1)选择第一导电类型为N型。1) Select the first conductivity type as N type.
2)准备重掺杂N型衬底层2,重掺杂N型衬底材料选择单晶硅,杂质选择砷,掺杂浓度选择约20次方,厚度选择600微米;2) Prepare a heavily doped N-type substrate layer 2, select single crystal silicon as the material for the heavily doped N-type substrate, select arsenic as the impurity, select the doping concentration to the power of about 20, and select the thickness to be 600 microns;
3)如图3所示,在重掺杂N型衬底层2之上形成N型漂移层3,N型漂移层选择单晶硅,杂质选择磷,掺杂浓度选择约15次方,厚度选择6微米;3) As shown in Figure 3, an N-type drift layer 3 is formed on the heavily doped N-type substrate layer 2, the N-type drift layer is selected from single crystal silicon, the impurity is selected from phosphorus, the doping concentration is selected to the power of about 15, and the thickness is selected 6 microns;
4)在N型漂移层3表面刻蚀出多个槽型,刻蚀深度选择约3微米,槽型宽度分为两类,其中一类选择约1.5微米,另一类选择约10微米以上;4) Etching multiple grooves on the surface of the N-type drift layer 3, the etching depth is selected to be about 3 microns, and the width of the grooves is divided into two types, one of which is about 1.5 microns, and the other is about 10 microns or more;
5)形成U型沟槽栅介质区4,栅介质区材料选择二氧化硅材料,其厚度选择约0.45微米;5) Forming a U-shaped trench gate dielectric region 4, the material of the gate dielectric region is silicon dioxide material, and its thickness is selected to be about 0.45 microns;
6)形成沟槽栅填充区5,沟槽栅填充区材料选择多晶硅材料,多晶硅材料通过杂质注入后退火的方式完成掺杂杂质注入条件选择磷杂质和注入剂量约15次方;如图4所示,此时较窄的一类沟槽填充区被掺杂多晶硅填满,而较宽的一类沟槽填充区只有侧壁有部分掺杂多晶硅;6) Forming the trench gate filling region 5, the material of the trench gate filling region is polysilicon material, and the polysilicon material is impurity implanted and then annealed to complete the doping impurity implantation condition, phosphorus impurity and implantation dose are selected to the power of about 15; as shown in Figure 4 It shows that at this time, the narrower type of trench-filling region is filled with doped polysilicon, while the wider type of trench-filling region has only side walls partially doped with polysilicon;
7)形成隔离介质区7。隔离介质7材料选择TEOS介质,其形成工艺是先进行TEOS淀积,厚度约0.3-1.2um,如图5所示;之后根据版图设置进行TEOS刻蚀工艺,只有较宽一类沟槽(此时作为高效整流器的终端截止沟槽)上剩余TEOS介质的形成常规TMBS结构,如图6所示,较窄一类沟槽上也剩余TEOS介质的形成本发明专利所给出的一种高效整流器结构,如图7所示。7) Forming the isolation dielectric region 7 . The material of the isolation dielectric 7 is TEOS dielectric, and its formation process is to first deposit TEOS with a thickness of about 0.3-1.2um, as shown in Figure 5; then perform a TEOS etching process according to the layout setting, and only a wider type of trench (this As shown in Figure 6, the formation of the remaining TEOS dielectric on the terminal cut-off groove of the high-efficiency rectifier is a conventional TMBS structure, and the formation of the remaining TEOS dielectric on the narrower type of groove is a kind of high-efficiency rectifier given by the patent of the present invention structure, as shown in Figure 7.
8)形成肖特基势垒接触区6,肖特基势垒接触区材料选择钛硅合金;8) Forming the Schottky barrier contact region 6, the material of the Schottky barrier contact region is titanium-silicon alloy;
9)形成上电极层8;9) forming an upper electrode layer 8;
10)形成下电极层1。下电极层1在形成前还需对重掺杂N型衬底层2进行减薄工艺处理。10) Forming the lower electrode layer 1 . Before the lower electrode layer 1 is formed, the heavily doped N-type substrate layer 2 needs to be thinned.
最终形成的包括有源区和终端结构的一类常规TMBS结构如图8所示,形成的本发明高效整流器结构如图9所示。The finally formed conventional TMBS structure including the active region and the terminal structure is shown in FIG. 8 , and the formed high-efficiency rectifier structure of the present invention is shown in FIG. 9 .
本实施例给出的一种高效整流器的制作方法,在不增加制造工艺步骤和制造成本的基础上能够获得反向恢复时间短,开关损耗小性能的高效整流器。The manufacturing method of a high-efficiency rectifier given in this embodiment can obtain a high-efficiency rectifier with short reverse recovery time and low switching loss without increasing manufacturing process steps and manufacturing costs.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910712156.5A CN110534584A (en) | 2019-08-02 | 2019-08-02 | A kind of high efficiency rectifier and its manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910712156.5A CN110534584A (en) | 2019-08-02 | 2019-08-02 | A kind of high efficiency rectifier and its manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN110534584A true CN110534584A (en) | 2019-12-03 |
Family
ID=68661350
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910712156.5A Pending CN110534584A (en) | 2019-08-02 | 2019-08-02 | A kind of high efficiency rectifier and its manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110534584A (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050191809A1 (en) * | 2004-02-09 | 2005-09-01 | International Rectifier Corp. | Common MOSFET process for plural devices |
| CN209029379U (en) * | 2018-12-10 | 2019-06-25 | 西安电子科技大学 | A New Wide Bandgap Power Semiconductor Device |
-
2019
- 2019-08-02 CN CN201910712156.5A patent/CN110534584A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050191809A1 (en) * | 2004-02-09 | 2005-09-01 | International Rectifier Corp. | Common MOSFET process for plural devices |
| CN209029379U (en) * | 2018-12-10 | 2019-06-25 | 西安电子科技大学 | A New Wide Bandgap Power Semiconductor Device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3413250B2 (en) | Semiconductor device and manufacturing method thereof | |
| CN1822389B (en) | Semiconductor device having deep trench charge compensation regions and method | |
| EP3869566A1 (en) | Trench gate depletion-type vdmos device and manufacturing method therefor | |
| US11855184B2 (en) | Method of manufacturing a power semiconductor device having source region and body contact region formed between trench-type gate electrodes | |
| TW201937726A (en) | Schottky diode integrated into superjunction power MOSFETs | |
| CN111211168A (en) | RC-IGBT chip and manufacturing method thereof | |
| US10797182B2 (en) | Trench semiconductor device having shaped gate dielectric and gate electrode structures and method | |
| CN105810754A (en) | Metal oxide semiconductor diode with accumulation layer | |
| US9406788B2 (en) | Structure of a trench MOS rectifier and method of forming the same | |
| CN111192871B (en) | Transistor structure for electrostatic protection and method of making the same | |
| US10304971B2 (en) | High speed Schottky rectifier | |
| CN107946371A (en) | The super barrier rectifier and its manufacture method of a kind of Schottky Barrier Contact | |
| CN110610996A (en) | A Trench Schottky Rectifier | |
| CN114744035A (en) | Super-barrier Schottky rectifier and manufacturing method thereof | |
| CN110534584A (en) | A kind of high efficiency rectifier and its manufacturing method | |
| CN115207091A (en) | A trench type super-barrier diode with mixed trench Schottky and preparation method | |
| CN109980009B (en) | A method of manufacturing a semiconductor device and an integrated semiconductor device | |
| CN111199970A (en) | Transistor structure for electrostatic protection and method of making the same | |
| CN111415999A (en) | A semiconductor power device structure and its manufacturing method | |
| KR102820470B1 (en) | Semicondictor protection device | |
| CN111180421B (en) | Transistor structure for electrostatic protection and manufacturing method thereof | |
| CN107946351B (en) | Schottky contact super barrier rectifier and manufacturing method thereof | |
| CN107946352B (en) | Ohmic contact and Schottky contact super barrier rectifier and manufacturing method thereof | |
| TW449861B (en) | Schottky diode with dielectric trench | |
| CN107946301A (en) | The groove-shaped super barrier rectifier and its manufacture method of a kind of Schottky Barrier Contact |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191203 |
|
| WD01 | Invention patent application deemed withdrawn after publication |