CN110631050B - A mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station - Google Patents
A mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station Download PDFInfo
- Publication number
- CN110631050B CN110631050B CN201911040211.7A CN201911040211A CN110631050B CN 110631050 B CN110631050 B CN 110631050B CN 201911040211 A CN201911040211 A CN 201911040211A CN 110631050 B CN110631050 B CN 110631050B
- Authority
- CN
- China
- Prior art keywords
- water vapor
- pipeline
- synthesis gas
- steam
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
技术领域technical field
本发明属于IGCC电站燃气轮机领域,特别涉及一种IGCC电站燃气轮机合成气燃料的混合加热系统及方法。The invention belongs to the field of gas turbines in IGCC power stations, and in particular relates to a mixed heating system and method for syngas fuel of gas turbines in IGCC power stations.
背景技术Background technique
IGCC电站是一种将煤炭等固体燃料气化产生的合成气用于燃气–蒸汽循环的发电技术。作为IGCC的燃料,煤在气化炉中发生化学反应生成的合成气,其成分主要包括H2和CO。由于含有较多H2,化学反应速度快,为了避免富氢燃烧时的回火现象,因此,实际操作中,会使用惰性气体如水蒸汽等将合成气进一步稀释。经稀释后的合成气虽然燃烧速度降低,不会发生回火现象,但是稀释后的合成气在燃烧时,可能出现燃烧振荡,火焰面周期性的剧烈变化以及高幅值的压力脉动等燃烧不稳定现象,从而对燃气轮机的正常运行产生严重影响。IGCC power plant is a power generation technology that uses the synthesis gas produced by the gasification of coal and other solid fuels for the gas-steam cycle. As the fuel of IGCC, the syngas produced by the chemical reaction of coal in the gasifier mainly includes H2 and CO. Because it contains more H 2 , the chemical reaction speed is fast. In order to avoid the tempering phenomenon during hydrogen-rich combustion, in practice, inert gases such as water vapor are used to further dilute the synthesis gas. Although the combustion speed of the diluted syngas is reduced and tempering will not occur, when the diluted syngas is combusted, combustion oscillations, periodic drastic changes of the flame surface, and high-amplitude pressure pulsations may occur. Stabilization phenomenon, which has a serious impact on the normal operation of the gas turbine.
某IGCC电站的燃机系统在夏季环境温度较高时,燃烧较为稳定,能够稳定的运行。而冬季环境温度低于0℃时,燃烧室内火焰燃烧不稳定,主要表现为燃烧室内路蜂鸣监视系统检测出压力波动大于80mbar的持续时间大于0.4s的报警信号频繁出现。而且环境温度与蜂鸣信号具有一致的相关性,环境温度越高,蜂鸣消失;环境温度越低,蜂鸣越频繁。频繁的蜂鸣报警,不仅能导致过燃料切换回燃油工况或跳机事件,也有可能造成燃烧室隔热瓦裂纹等事故。The gas turbine system of an IGCC power station has relatively stable combustion and can operate stably when the ambient temperature is high in summer. In winter, when the ambient temperature is lower than 0°C, the flame combustion in the combustion chamber is unstable, which is mainly manifested in the frequent occurrence of alarm signals with a pressure fluctuation greater than 80 mbar and a duration greater than 0.4 s detected by the buzzer monitoring system in the combustion chamber. Moreover, the ambient temperature has a consistent correlation with the buzzer signal, the higher the ambient temperature, the buzzer disappears; the lower the ambient temperature, the more frequent the buzzer. Frequent beeping alarms can not only lead to over-fuel switching back to fuel oil conditions or tripping events, but also may cause accidents such as cracks in the combustion chamber heat insulation tiles.
根据运行经验可知,在冬季环境温度较低,提高合成气燃料的华白值,可以显著的降低燃机蜂鸣报警信号出现的频率。但是在合成气燃料流量不变的情况下,单纯提高其华白值,会使得燃烧室出口燃气超温,有烧损透平叶片的风险。According to the operating experience, in winter when the ambient temperature is low, increasing the Wobbe value of the syngas fuel can significantly reduce the frequency of gas turbine buzzer alarm signals. However, under the condition that the fuel flow rate of syngas remains unchanged, simply increasing its Wobbe value will cause the gas at the outlet of the combustor to overheat, and there is a risk of burning the turbine blades.
发明内容Contents of the invention
本发明的目的在于提供一种IGCC电站燃气轮机合成气燃料的混合加热系统及方法,以解决上述技术问题。The object of the present invention is to provide a mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station, so as to solve the above-mentioned technical problems.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种IGCC电站燃气轮机合成气燃料的混合加热系统,包括:合成气管道、水蒸气主管道、第一水蒸气副管道、第二水蒸气副管道、换热器和混合器;A mixed heating system for gas turbine synthesis gas fuel in an IGCC power station, comprising: a synthesis gas pipeline, a water vapor main pipeline, a first water vapor sub-pipe, a second water vapor sub-pipe, a heat exchanger and a mixer;
合成气管道的出口连接换热器的低温入口,换热器的低温出口连接合成气水蒸气混合器的合成气入口;The outlet of the synthesis gas pipeline is connected to the low temperature inlet of the heat exchanger, and the low temperature outlet of the heat exchanger is connected to the synthesis gas inlet of the synthesis gas steam mixer;
水蒸气主管道的出口分为两路:第一水蒸气副管道、第二水蒸气副管道;第一水蒸气副管道连接合成气水蒸气混合器的水蒸气入口;第二水蒸气副管道连接换热器的高温入口;The outlet of the main steam pipe is divided into two paths: the first water vapor auxiliary pipe and the second water vapor auxiliary pipe; the first water vapor auxiliary pipe is connected to the water vapor inlet of the synthesis gas steam mixer; the second water vapor auxiliary pipe is connected to High temperature inlet of heat exchanger;
合成气水蒸气混合器的出口连接燃烧室的入口。The outlet of the syngas-steam mixer is connected to the inlet of the combustion chamber.
进一步的,还包括旁路水蒸气管道;旁路水蒸气管道入口连接第一水蒸气副管道,出口连接燃烧室的入口;水蒸气管道上设有第一调节阀。Further, it also includes a bypass water vapor pipe; the inlet of the bypass water vapor pipe is connected to the first water vapor auxiliary pipe, and the outlet is connected to the inlet of the combustion chamber; the water vapor pipe is provided with a first regulating valve.
进一步的,第一水蒸气副管道上设有第二调节阀。Further, a second regulating valve is provided on the first water vapor auxiliary pipeline.
进一步的,第二水蒸气副管道上设有第三调节阀。Further, a third regulating valve is provided on the second water vapor auxiliary pipeline.
进一步的,上游气化炉产生的经过除尘、净化后的合成气进入合成气管道内,首先与第二水蒸气副管道在换热器内进行加热,然后进入混合器中与第二水蒸气副管道的水蒸气进行混合,最后送入燃烧室的燃烧器内参入燃烧。Further, the dust-removed and purified syngas produced by the upstream gasifier enters the syngas pipeline, firstly heats up with the second water vapor sub-pipe in the heat exchanger, and then enters the mixer to be connected with the second water vapor sub-pipe The water vapor is mixed, and finally sent to the burner in the combustion chamber for combustion.
一种IGCC电站燃气轮机合成气燃料的混合加热方法,包括:A mixed heating method for gas turbine synthesis gas fuel in an IGCC power station, comprising:
水蒸气主管道2中的水蒸气为中压蒸汽,压力约4.85Mpa,温度为260℃。合成气管道1中的合成气为上游气化炉产生的经过除尘、净化后的合成气,其The water vapor in the water vapor
首先,合成气管道1中压力2.5Mpa,温度100℃的合成气通过换热器与第二水蒸气副管道中压力4.85Mpa,温度260℃的水蒸气换热,提高合成气温度至200℃;加热后的合成气与第一水蒸气副管道的水蒸气在混合器中进行混合,混和后的合成气进入燃烧室参与燃烧。First, the synthesis gas in the
进一步的,在冬季运行模式下,打开旁路水蒸气管道上的第一调节阀,使得第一水蒸气副管道与合成气混合的水蒸气相应减少,相应地提高了混合器出口的华白值;同时相应旁路水蒸气管道内的水蒸气直接进入燃烧室,与燃烧器燃烧产生的高温燃气混合,并降低其温度,使燃烧室出口温度不变。Further, in the winter operation mode, the first regulating valve on the bypass steam pipeline is opened, so that the water vapor mixed with the syngas in the first steam sub-pipeline is correspondingly reduced, and the Wobbe value at the outlet of the mixer is correspondingly increased ; At the same time, the water vapor in the corresponding bypass water vapor pipe directly enters the combustion chamber, mixes with the high-temperature gas generated by the burner combustion, and reduces its temperature, so that the outlet temperature of the combustion chamber remains unchanged.
进一步的,旁路水蒸气管道中水蒸气流量为第一水蒸气副管道中的水蒸气流量的10%~20%。Further, the water vapor flow rate in the bypass water vapor pipeline is 10%-20% of the water vapor flow rate in the first water vapor auxiliary pipeline.
相对于现有技术,本发明具有以下有益效果:本发明提出一种IGCC电站合成气燃料的混合加热系统,在冬季环境温度较低的情况下运行时,可以调节燃烧器进口的合成气燃料的华白值,提高燃烧的稳定性,而且能够保证燃烧室出口燃气温度不变。Compared with the prior art, the present invention has the following beneficial effects: the present invention proposes a hybrid heating system for syngas fuel in an IGCC power station, which can adjust the temperature of the syngas fuel at the burner inlet when operating in winter when the ambient temperature is low. The Wobbe value improves the stability of combustion and ensures that the gas temperature at the outlet of the combustion chamber remains unchanged.
在冬季环境温度较低,燃机蜂鸣报警较为频繁时,打开旁路第一调节阀,使得一部分水蒸汽等惰性气体不直接参与合成气混合稀释,直接进入燃烧室与高温燃气混合;由于主管路中缺少了一部分与合成气混合的惰性气体,则相应的提高了进入燃机燃烧室的华白值从而提高燃烧稳定性。而旁路水蒸气管道中的水蒸气最终也进入燃烧室内,从而也保证了能够保证燃烧室出口燃气温度不变,消除了烧损透平叶片的风险。In winter, when the ambient temperature is low and the buzzer alarm of the gas turbine is relatively frequent, the first regulating valve of the bypass is opened, so that a part of the inert gas such as water vapor does not directly participate in the mixing and dilution of the syngas, and directly enters the combustion chamber to mix with the high-temperature gas; The lack of a part of the inert gas mixed with the syngas in the road will correspondingly increase the Wobbe value entering the combustion chamber of the gas turbine, thereby improving the combustion stability. The water vapor in the bypass water vapor pipe finally enters the combustion chamber, thereby ensuring that the gas temperature at the exit of the combustion chamber remains unchanged and eliminating the risk of burning the turbine blades.
本发明能偶根据环境温度的变化,通过流量调节阀的开度来旁路水蒸气管道的水蒸气量。冬季环境温度越低,阀门开度越大;夏季环境温度提高,适度地减小阀门开度,直至关闭阀门。The invention can bypass the water vapor volume of the water vapor pipe through the opening degree of the flow regulating valve according to the change of the ambient temperature. The lower the ambient temperature in winter, the larger the valve opening; the higher the ambient temperature in summer, moderately reduce the valve opening until the valve is closed.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of the present application are used to provide a further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:
图1为本发明一种IGCC电站燃气轮机合成气燃料的混合加热系统的结构示意图。Fig. 1 is a structural schematic diagram of a hybrid heating system of a gas turbine syngas fuel in an IGCC power station according to the present invention.
具体实施方式Detailed ways
下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。The present invention will be described in detail below with reference to the accompanying drawings and examples. It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other.
以下详细说明均是示例性的说明,旨在对本发明提供进一步的详细说明。除非另有指明,本发明所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本发明所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本发明的示例性实施方式。The following detailed descriptions are all exemplary descriptions, and are intended to provide further detailed descriptions of the present invention. Unless otherwise specified, all technical terms used in the present invention have the same meaning as commonly understood by those of ordinary skill in the art to which the present application belongs. Terms used in the present invention are only for describing specific embodiments, and are not intended to limit exemplary embodiments according to the present invention.
请参阅图1所示,本发明提供一种IGCC电站合成气燃料的混合加热系统,包括合成气管道1、水蒸气主管道2、第一水蒸气副管道3、第二水蒸气副管道4、旁路水蒸气管道5、合成气加热换热器6和合成气水蒸气混合器7。Please refer to shown in Fig. 1, the present invention provides a kind of mixed heating system of syngas fuel of IGCC power station, comprise
合成气管道1的出口连接换热器6的低温入口,换热器6的低温出口连接合成气水蒸气混合器7的合成气入口。水蒸气主管道2的出口分为两路:第一水蒸气副管道3、第二水蒸气副管道4;第一水蒸气副管道3连接合成气水蒸气混合器7的水蒸气入口;合成气水蒸气混合器7的出口连接燃烧室8的入口。第二水蒸气副管道4连接换热器6的高温入口。The outlet of the
带第一调节阀的旁路水蒸气管道5入口连接第一水蒸气副管道3,出口连接燃烧室8的入口。通过关闭/开启第一调节阀能够控制在旁路水蒸气管道5是否工作分流第一水蒸气副管道3中的水蒸气。The inlet of the bypass
第一水蒸气副管道3上设有第二调节阀,第二水蒸气副管道4上设有第三调节阀,通过调节第二调节阀和第三调节阀的开度,能够调整第一水蒸气副管道3和第二水蒸气副管道4的流量比例。The first water vapor
水蒸气主管道2中的水蒸气为中压蒸汽,压力约4.85Mpa,温度为260℃。合成气管道1中的合成气为上游气化炉产生的经过除尘、净化后的合成气,其压力约2.5Mpa,温度约100℃。The water vapor in the water vapor
首先合成气管道1需要通过换热器6提高自身温度至200℃左右,然后与第一水蒸气副管道3的水蒸气在混合器7中进行混合,混和后的合成气才能够进入燃烧室8参与燃烧。该部分为IGCC电站燃气轮机的合成气燃料混合加热系统。其主要目的为调节合成气的华白值。First, the
华白值是不同燃料可互换性的指标,相同的华白值表示在保持运行工况如压力和阀开度不变的情况下,保证释放的热能相同,这有利于燃气轮机运行在稳定的工况下。因此,为了保证燃烧室出口温度不变,水蒸气与合成气的比例应根据预定的华白值Wsp调整。华白值的定义为燃料高热值Hsg与其相对密度平方根的比值,参考密度通常为同等条件空气的密度ρair,如下式所示:The Wobbe value is an indicator of the interchangeability of different fuels. The same Wobbe value means that the released heat energy is guaranteed to be the same when the operating conditions such as pressure and valve opening are kept constant, which is conducive to the stable operation of the gas turbine. Under working conditions. Therefore, in order to keep the outlet temperature of the combustion chamber constant, the ratio of water vapor to syngas should be adjusted according to the predetermined Wobbe value Wsp . The Wobbe value is defined as the ratio of the fuel high calorific value H sg to the square root of its relative density, and the reference density is usually the density ρ air of air under the same conditions, as shown in the following formula:
其中,ρsg为合成气密度。Among them, ρ sg is the density of syngas.
一般来说合成气燃料的华白值越高,其燃烧稳定越好,但是容易造成燃烧室出口温度超温。Generally speaking, the higher the Wobbe value of the syngas fuel, the better its combustion stability, but it is easy to cause the outlet temperature of the combustion chamber to overheat.
则在燃机稳定运行的工况下,为了保证燃机燃烧室出口温度不变,首先要保证进入燃烧室中纯合成气的量和水蒸气的量呈合适的比例,而且其总量保证不变。即保证合成气管道1中合成气流量不变、第一水蒸气副管道3和旁路水蒸气管道5中的水蒸气总量不变。Then, under the stable operation condition of the gas turbine, in order to ensure that the outlet temperature of the combustion chamber of the gas turbine remains unchanged, it is first necessary to ensure that the amount of pure syngas entering the combustion chamber and the amount of water vapor are in an appropriate ratio, and the total amount must not exceed Change. That is to ensure that the synthesis gas flow rate in the
而减少或增加旁路水蒸气管道5中水蒸气的量,则相应的增加或减少第一水蒸气副管道3中的水蒸气的量。一般旁路水蒸气管道5中水蒸气量约为第一水蒸气副管道3中的水蒸气量的10%~20%。When reducing or increasing the amount of water vapor in the bypass
其运行方式为,首先保证合成气管道1、水蒸气主管道2中相应的气体总量不变。Its operation mode is as follows: firstly, it is ensured that the total amount of corresponding gas in the
在冬季环境温度较低时,那么需要打开旁路水蒸气管道5上的阀门,使得第一水蒸气副管道3与合成气混合的水蒸气相应减少,则相应地提高了混合器7出口的华白值,保证了燃烧室燃烧稳定性。同时相应旁路水蒸气管道5内的一部分水蒸气直接进入燃烧室8,与燃烧器燃烧产生的高温燃气混合,并降低其温度,保证了燃烧室出口温度不变。When the ambient temperature is low in winter, it is necessary to open the valve on the
在夏季环境温度较高时,关闭旁路水蒸气管道5上的阀门,使得水蒸气主管道2中的水蒸气除了通过第二水蒸气副管道4用于加热合成气外,其余全部在混合器7中与合成气混和。When the ambient temperature is high in summer, close the valve on the bypass
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。It can be known from common technical knowledge that the present invention can be realized through other embodiments without departing from its spirit or essential features. Accordingly, the above-disclosed embodiments are, in all respects, illustrative and not exclusive. All changes within the scope of the present invention or within the scope equivalent to the present invention are embraced by the present invention.
Claims (6)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911040211.7A CN110631050B (en) | 2019-10-29 | 2019-10-29 | A mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station |
| PCT/CN2020/124534 WO2021083237A1 (en) | 2019-10-29 | 2020-10-28 | Mixed heating system for syngas fuel of igcc power station gas turbine and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911040211.7A CN110631050B (en) | 2019-10-29 | 2019-10-29 | A mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110631050A CN110631050A (en) | 2019-12-31 |
| CN110631050B true CN110631050B (en) | 2023-06-02 |
Family
ID=68978505
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911040211.7A Active CN110631050B (en) | 2019-10-29 | 2019-10-29 | A mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN110631050B (en) |
| WO (1) | WO2021083237A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110631050B (en) * | 2019-10-29 | 2023-06-02 | 中国华能集团有限公司 | A mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station |
| CN112648081A (en) * | 2020-12-23 | 2021-04-13 | 华能(天津)煤气化发电有限公司 | IGCC (integrated gasification combined cycle) -based power generation fuel heat value regulation and control method |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004027220A1 (en) * | 2002-09-17 | 2004-04-01 | Foster Wheeler Energy Corporation | Advanced hybrid coal gasification cycle utilizing a recycled working fluid |
| CN101776268A (en) * | 2010-02-25 | 2010-07-14 | 华北电力大学 | Method for cooling fuel spray nozzle of combustion chamber of high-hydrogen combustion turbine |
| CN203223296U (en) * | 2013-04-28 | 2013-10-02 | 中国电力工程顾问集团西北电力设计院 | Regulating system for synthesis gas heat value of IGCC (integrated gasification combined cycle) power station |
| CN103670712A (en) * | 2013-12-13 | 2014-03-26 | 中国大唐集团科学技术研究院有限公司 | Power generation system of combustion gas turbine |
| CN106246252A (en) * | 2016-09-13 | 2016-12-21 | 中国华能集团公司 | A kind of peak load stations integrating IGCC and supercritical unit and peak regulating method |
| CN206205996U (en) * | 2016-11-14 | 2017-05-31 | 中国华能集团清洁能源技术研究院有限公司 | A kind of gas stabilized-pressure energy recycle device for gas turbine front end |
| CN109489071A (en) * | 2018-11-28 | 2019-03-19 | 中国华能集团有限公司 | A kind of low NOxCombustion chamber, gas turbine engine systems, the starting method of gas turbine engine systems and the load adjusting method of discharge |
| CN210891764U (en) * | 2019-10-29 | 2020-06-30 | 中国华能集团有限公司 | Mixed heating system of synthetic gas fuel of gas turbine of IGCC power station |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6779333B2 (en) * | 2002-05-21 | 2004-08-24 | Conocophillips Company | Dual fuel power generation system |
| JP2005344528A (en) * | 2004-05-31 | 2005-12-15 | Toshiba Corp | Combined cycle power plant and start-up operation method thereof |
| US7980082B2 (en) * | 2007-08-01 | 2011-07-19 | General Electric Company | Wobbe control and enhanced operability through in-line fuel reforming |
| CN103265980B (en) * | 2013-04-28 | 2015-07-01 | 中国电力工程顾问集团西北电力设计院有限公司 | Adjusting system and adjusting method for calorific value of synthetic gas of IGCC power station |
| CN105674329B (en) * | 2016-03-21 | 2018-08-28 | 中国华能集团清洁能源技术研究院有限公司 | Using the gas turbine burner and control method of synthesis gas fuel |
| US9782718B1 (en) * | 2016-11-16 | 2017-10-10 | Membrane Technology And Research, Inc. | Integrated gas separation-turbine CO2 capture processes |
| CN110631050B (en) * | 2019-10-29 | 2023-06-02 | 中国华能集团有限公司 | A mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station |
-
2019
- 2019-10-29 CN CN201911040211.7A patent/CN110631050B/en active Active
-
2020
- 2020-10-28 WO PCT/CN2020/124534 patent/WO2021083237A1/en not_active Ceased
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004027220A1 (en) * | 2002-09-17 | 2004-04-01 | Foster Wheeler Energy Corporation | Advanced hybrid coal gasification cycle utilizing a recycled working fluid |
| CN101776268A (en) * | 2010-02-25 | 2010-07-14 | 华北电力大学 | Method for cooling fuel spray nozzle of combustion chamber of high-hydrogen combustion turbine |
| CN203223296U (en) * | 2013-04-28 | 2013-10-02 | 中国电力工程顾问集团西北电力设计院 | Regulating system for synthesis gas heat value of IGCC (integrated gasification combined cycle) power station |
| CN103670712A (en) * | 2013-12-13 | 2014-03-26 | 中国大唐集团科学技术研究院有限公司 | Power generation system of combustion gas turbine |
| CN106246252A (en) * | 2016-09-13 | 2016-12-21 | 中国华能集团公司 | A kind of peak load stations integrating IGCC and supercritical unit and peak regulating method |
| CN206205996U (en) * | 2016-11-14 | 2017-05-31 | 中国华能集团清洁能源技术研究院有限公司 | A kind of gas stabilized-pressure energy recycle device for gas turbine front end |
| CN109489071A (en) * | 2018-11-28 | 2019-03-19 | 中国华能集团有限公司 | A kind of low NOxCombustion chamber, gas turbine engine systems, the starting method of gas turbine engine systems and the load adjusting method of discharge |
| CN210891764U (en) * | 2019-10-29 | 2020-06-30 | 中国华能集团有限公司 | Mixed heating system of synthetic gas fuel of gas turbine of IGCC power station |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110631050A (en) | 2019-12-31 |
| WO2021083237A1 (en) | 2021-05-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110700945B (en) | A gas turbine fuel gas intake adjustment system and method with combustion gas injection and calorific value adjustment functions | |
| CN110631050B (en) | A mixed heating system and method for gas turbine synthesis gas fuel of IGCC power station | |
| CN206205996U (en) | A kind of gas stabilized-pressure energy recycle device for gas turbine front end | |
| CN113482775B (en) | A gas turbine burning solid fuel | |
| CN109489071B (en) | A low NOx emission combustion chamber, a gas turbine system, a starting method and a load adjustment method of the gas turbine system | |
| CN204901785U (en) | Ultralow concentration gas combustion system | |
| JP2012087789A (en) | System and method for controlling semiclosed power cycle system | |
| CN210891764U (en) | Mixed heating system of synthetic gas fuel of gas turbine of IGCC power station | |
| CN106906004A (en) | Pulverized coal gasification control method and pulverized coal gasification device | |
| CN201810401U (en) | Coal gas calorific value adjustment device in underground coal gasification combined cycle power generation system | |
| CN102492477B (en) | Combined nozzle with staged oxygen supply and controllable flame coal-water slurry entrained flow | |
| CN201141615Y (en) | Blast furnace gas supplying structure for high-proportion mixed burning blast furnace gas coal-fired boiler | |
| CN219571904U (en) | Immersed combustion type heating system | |
| CN217057509U (en) | Ultra-low load deep peak regulation operation system of biomass gasification storage auxiliary coal-fired unit | |
| CN117348464A (en) | Switching control system of biomass gas afterburning device | |
| CN211038839U (en) | A regulating system for gas turbine fuel gas intake | |
| CN111441866B (en) | A system for reducing NOx emissions from a syngas gas turbine | |
| US8869502B2 (en) | Fuel reformer system for a turbomachine system | |
| JPH0216040Y2 (en) | ||
| CN109974463A (en) | Car Bottom Roaster Furnace Energy Saving and Emission Reduction System | |
| CN119642190B (en) | Oxygen-enriched hydrogen-adding ammonia system of power station boiler and working method thereof | |
| JP2011163294A (en) | Coal-gasified gas supply plant | |
| CN206692605U (en) | A kind of coal slurry gasifier Oxygen control pipeline system | |
| CN214528871U (en) | Precise control system for calorific value of Integrated Gasification Combined Cycle (IGCC) synthesis gas | |
| Hannemann et al. | Hydrogen and syngas combustion: pre-condition for IGCC and ZEIGCC |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |