[go: up one dir, main page]

CN110632814A - Lighting system and projection device - Google Patents

Lighting system and projection device Download PDF

Info

Publication number
CN110632814A
CN110632814A CN201910150598.5A CN201910150598A CN110632814A CN 110632814 A CN110632814 A CN 110632814A CN 201910150598 A CN201910150598 A CN 201910150598A CN 110632814 A CN110632814 A CN 110632814A
Authority
CN
China
Prior art keywords
light
wavelength conversion
color
color light
lighting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910150598.5A
Other languages
Chinese (zh)
Inventor
潘浩炜
徐若涵
谢启堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coretronic Corp
Original Assignee
Coretronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coretronic Corp filed Critical Coretronic Corp
Priority to US16/392,587 priority Critical patent/US10948811B2/en
Priority to TW108121937A priority patent/TWI690765B/en
Publication of CN110632814A publication Critical patent/CN110632814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1026Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)

Abstract

An illumination system is used for providing an illumination beam and comprises an excitation light source and a wavelength conversion module. The excitation light source is used for emitting an excitation light beam. The wavelength conversion module is located on the transmission path of the excitation light beam and is provided with an annular wavelength conversion area. A first part of the excitation light beam is incident on the annular wavelength conversion region and converted into first color light, and a second part of the excitation light beam is incident on the wavelength conversion module and formed into second color light. The ratio of the excitation beam to the excitation beam of the second portion ranges in value from 5% to 30%. In addition, a projection device is also provided. The illumination system and the projection device have simple structures and concise light path layouts.

Description

照明系统以及投影装置Lighting system and projection device

技术领域technical field

本发明是有关于一种光学系统以及包含上述光学系统的光学装置,且特别是有关于一种照明系统以及投影装置。The present invention relates to an optical system and an optical device including the above optical system, and in particular to an illumination system and a projection device.

背景技术Background technique

近来以发光二极管(light-emitting diode,LED)和激光二极管(laser diode)等固态光源为主的投影装置渐渐在市场上占有一席之地。由于激光二极管具有高于约20%的发光效率,为了突破发光二极管的光源限制,因此渐渐发展了以激光光源激发荧光粉而产生投影机所需用的纯色光源。Recently, projection devices based on solid-state light sources such as light-emitting diodes (LEDs) and laser diodes (laser diodes) gradually occupy a place in the market. Since laser diodes have a luminous efficiency higher than about 20%, in order to break through the light source limitation of light emitting diodes, laser light sources are used to excite phosphors to produce pure color light sources for projectors.

现有一种多片式数字光处理(Digital Light Processing,DLP)投影机的架构,其主要使用了两组以上的蓝光激光光源,一组蓝光激光光源透过发出蓝色激光光束来照射荧光轮的荧光粉与反射区(或透射区)以输出黄光与蓝光,再透过投影机中的分色镜将黄光分色出红光与绿光以形成两种基色光,并被导引至后续的光阀。另一组蓝光激光光源则提供蓝色激光光束,蓝色激光光束在经由其间的激光光斑消除装置(如:独立的蓝光扩散片或散光轮)来消除激光散斑现象(laser speckle)后,被后续的光学元件导引至后续的光阀。如此一来,可以构成蓝、绿、红三种色光。There is a multi-chip digital light processing (Digital Light Processing, DLP) projector architecture, which mainly uses more than two sets of blue laser light sources, and one set of blue light laser light sources emits blue laser beams to irradiate the fluorescent wheel. Phosphor powder and reflective area (or transmissive area) to output yellow light and blue light, and then through the dichroic mirror in the projector, the yellow light is separated into red light and green light to form two primary color lights, which are guided to follow the light valve. Another group of blue laser light sources provides blue laser beams. After the blue laser beams pass through the laser spot elimination device (such as: independent blue light diffusion sheet or astigmatism wheel) to eliminate laser speckle phenomenon (laser speckle), the blue laser beam is eliminated. Subsequent optical elements lead to subsequent light valves. In this way, three color lights of blue, green and red can be formed.

“背景技术”部分只是用来帮助了解本发明内容,因此在“背景技术”部分所揭露的内容可能包含一些没有构成本领域技术人员所知道的公知技术。在“背景技术”部分所揭露的内容,不代表该内容或者本发明一个或多个实施例所要解决的问题,在本发明申请前已被本领域技术人员所知晓或认知。The "Background Technology" section is only used to help understand the content of the present invention, so the content disclosed in the "Background Technology" section may contain some known technologies that are not known to those skilled in the art. The content disclosed in the "Background Technology" section does not mean that the content or the problems to be solved by one or more embodiments of the present invention have been known or recognized by those skilled in the art before the application of the present invention.

发明内容Contents of the invention

本发明提供一种照明系统,具有简单的结构。The present invention provides a lighting system with a simple structure.

本发明提供一种投影装置,具有简单的结构。The present invention provides a projection device with a simple structure.

本发明的其他目的和优点可以从本发明所揭露的技术特征中得到进一步的了解。Other purposes and advantages of the present invention can be further understood from the technical features disclosed in the present invention.

为达上述之一或部分或全部目的或是其他目的,本发明的一实施例提出一种照明系统。照明系统用于提供一照明光束,且包括一激发光源以及一波长转换模块。激发光源用于发出一激发光束。波长转换模块位于激发光束的传递路径上,且具有一环状波长转换区,当激发光束被传递至波长转换模块时,激发光束于波长转换模块上形成一光斑,至少部分光斑位于环状波长转换区上,且一第一部分的激发光束入射于环状波长转换区而转换为一第一色光,一第二部分的激发光束入射于波长转换模块而形成一第二色光,其中第一色光与第二色光同时自波长转换模块出光,而照明光束包括第一色光与第二色光,且第二部分的激发光束与激发光束的比例数值范围介于5%至30%。To achieve one or part or all of the above objectives or other objectives, an embodiment of the present invention provides a lighting system. The illumination system is used to provide an illumination beam, and includes an excitation light source and a wavelength conversion module. The excitation light source is used to emit an excitation light beam. The wavelength conversion module is located on the transmission path of the excitation beam and has an annular wavelength conversion region. When the excitation beam is transmitted to the wavelength conversion module, the excitation beam forms a spot on the wavelength conversion module, and at least part of the spot is located in the annular wavelength conversion area. area, and a first part of the excitation beam is incident on the annular wavelength conversion region and converted into a first color light, and a second part of the excitation beam is incident on the wavelength conversion module to form a second color light, wherein the first color light Simultaneously with the second color light, the light is emitted from the wavelength conversion module, and the illumination light beam includes the first color light and the second color light, and the ratio of the excitation light beam to the excitation light beam in the second part ranges from 5% to 30%.

为达上述之一或部分或全部目的或是其他目的,本发明的一实施例提出一种投影装置。投影装置包括一前述的照明系统、一分合光单元、至少二光阀以及一投影镜头。分合光单元位于照明光束的传递路径上,且用于将照明光束转换成多个子照明光束。至少二光阀位于多个子照明光束的传递路径上且用于将对应的多个子照明光束转换成多个影像光束。一投影镜头位于多个影像光束的传递路径上且用于将多个影像光束转换成一投影光束,其中多个影像光束经由分合光单元传递至投影镜头。To achieve one or part or all of the above objectives or other objectives, an embodiment of the present invention provides a projection device. The projection device includes the aforementioned lighting system, a light splitting and combining unit, at least two light valves and a projection lens. The light splitting and combining unit is located on the transmission path of the illumination beam, and is used for converting the illumination beam into multiple sub-illumination beams. At least two light valves are located on the transmission path of the plurality of sub-illumination beams and are used for converting the corresponding plurality of sub-illumination beams into a plurality of image beams. A projection lens is located on the transmission path of the plurality of image beams and is used for converting the plurality of image beams into a projection beam, wherein the plurality of image beams are transmitted to the projection lens through the splitting and combining unit.

基于上述,本发明的实施例至少具有以下其中一个优点或功效。在本发明的实施例中,照明系统与投影装置借由波长转换模块的环状波长转换区的配置,可使来自同一激发光源的激发光束的一部分被转换为第一色光,另一部分形成第二色光。如此,将可使得照明系统与投影装置在只需配置一激发光源的情况下,即可形成蓝、绿、红三种色光,而具有简单的结构以及简洁的光路布局。并且,由于照明系统以及投影装置的光路布局能被有效简化,因此亦可同时增加系统中其他构件的布局弹性。此外,由于照明系统与投影装置只需配置一激发光源,因此光源能量会被集中于一处,而能使得散热模块的设计复杂度降低,亦可有助于增加系统布局的设计弹性。Based on the above, the embodiments of the present invention have at least one of the following advantages or functions. In an embodiment of the present invention, the lighting system and the projection device can convert a part of the excitation light beam from the same excitation light source into the first color light through the configuration of the annular wavelength conversion region of the wavelength conversion module, and the other part forms the first color light. Dichroic light. In this way, the lighting system and the projection device can form blue, green, and red colors of light with only one exciting light source, and have a simple structure and a concise optical path layout. Moreover, since the light path layout of the lighting system and the projection device can be effectively simplified, the layout flexibility of other components in the system can also be increased at the same time. In addition, since the lighting system and the projection device only need to be equipped with one exciting light source, the energy of the light source will be concentrated in one place, which can reduce the design complexity of the cooling module and help increase the design flexibility of the system layout.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.

附图说明Description of drawings

图1A是本发明一实施例的一种投影装置的架构示意图。FIG. 1A is a schematic structural diagram of a projection device according to an embodiment of the present invention.

图1B是图1A的一种波长转换模块的正视示意图。FIG. 1B is a schematic front view of a wavelength conversion module in FIG. 1A .

图1C是图1B的波长转换模块的剖面示意图。FIG. 1C is a schematic cross-sectional view of the wavelength conversion module in FIG. 1B .

图1D是图1A的另一种波长转换模块的剖面示意图。FIG. 1D is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A .

图1E是图1A的另一种波长转换模块的剖面示意图。FIG. 1E is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A .

图1F是图1A的另一种波长转换模块的剖面示意图。FIG. 1F is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A .

图2A至图3C是图1A的各种照明系统的架构示意图。2A to 3C are structural diagrams of various lighting systems in FIG. 1A .

图4A是图1A的另一种波长转换模块的正视示意图。FIG. 4A is a schematic front view of another wavelength conversion module in FIG. 1A .

图4B是图4A的波长转换模块的剖面示意图。FIG. 4B is a schematic cross-sectional view of the wavelength conversion module in FIG. 4A .

图4C是图1A的另一种波长转换模块的剖面示意图。FIG. 4C is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A .

图4D是图1A的另一种波长转换模块的正视示意图。FIG. 4D is a schematic front view of another wavelength conversion module in FIG. 1A .

图4E至图4G是图1A的各种波长转换模块的剖面示意图。4E to 4G are schematic cross-sectional views of various wavelength conversion modules in FIG. 1A .

图5A是图1A的另一种照明系统的架构示意图。FIG. 5A is a schematic structural diagram of another lighting system in FIG. 1A .

图5B是图5A的一种波长转换模块的俯视示意图。FIG. 5B is a schematic top view of a wavelength conversion module in FIG. 5A .

图5C是图5B的波长转换模块的剖面示意图。FIG. 5C is a schematic cross-sectional view of the wavelength conversion module in FIG. 5B .

图5D是图5A的另一种波长转换模块的俯视示意图。FIG. 5D is a schematic top view of another wavelength conversion module of FIG. 5A .

图5E是图5D的波长转换模块的剖面示意图。FIG. 5E is a schematic cross-sectional view of the wavelength conversion module in FIG. 5D .

图5F是图5A的另一种波长转换模块的剖面示意图。FIG. 5F is a schematic cross-sectional view of another wavelength conversion module in FIG. 5A .

图6A至图6C是图1A的各种照明系统的架构示意图。6A to 6C are structural diagrams of various lighting systems in FIG. 1A .

图7A是图1A的另一种照明系统的架构示意图。FIG. 7A is a schematic structural diagram of another lighting system in FIG. 1A .

图7B是图7A的一种分光元件的俯视示意图。FIG. 7B is a schematic top view of a light splitting element in FIG. 7A .

图8A是图1A的另一种照明系统的架构示意图。FIG. 8A is a schematic structural diagram of another lighting system in FIG. 1A .

图8B是图8A的一种分光元件的俯视示意图。FIG. 8B is a schematic top view of a light splitting element of FIG. 8A .

图9A是图1A的另一种照明系统的架构示意图。FIG. 9A is a schematic structural diagram of another lighting system in FIG. 1A .

图9B是图9A的一种波长转换模块的俯视示意图。FIG. 9B is a schematic top view of a wavelength conversion module in FIG. 9A .

图9C是图9B的波长转换模块的剖面示意图。FIG. 9C is a schematic cross-sectional view of the wavelength conversion module in FIG. 9B .

图9D是图9A的另一种波长转换模块的俯视示意图。FIG. 9D is a schematic top view of another wavelength conversion module of FIG. 9A .

图9E是图9D的波长转换模块的剖面示意图。FIG. 9E is a schematic cross-sectional view of the wavelength conversion module in FIG. 9D .

图10至图11B是图1A的各种照明系统的架构示意图。10 to 11B are schematic structural diagrams of various lighting systems in FIG. 1A .

图12是本发明一实施例的另一种投影装置的架构示意图。FIG. 12 is a schematic structural diagram of another projection device according to an embodiment of the present invention.

具体实施方式Detailed ways

有关本发明之前述及其他技术内容、特点与功效,在以下配合参考图式之一较佳实施例的详细说明中,将可清楚地呈现。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the drawings. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front or back, etc., are only referring to the directions of the drawings. Accordingly, the directional terms are used to illustrate and not to limit the invention.

图1A是本发明一实施例的一种投影装置的架构示意图。图1B是图1A的一种波长转换模块的正视示意图。图1C是图1B的波长转换模块的剖面示意图。请参照图1A,在本实施例中,投影装置100包括一照明系统100A、一分合光单元DC、至少二光阀LV以及一投影镜头PL。举例而言,在本实施例中,光阀LV的数量为三个,而分别为光阀LV1、LV2、LV3,但本发明不局限于此。在本实施例中,光阀LV例如为数字微镜元件(digital micro-mirror device,DMD),但本发明不局限于此。在其他实施例中,亦可以是硅基液晶面板(liquid-crystal-on-silicon panel,LCOS panel)、液晶面板(Liquid Crystal Panel,LCD)或其他光束调变器。FIG. 1A is a schematic structural diagram of a projection device according to an embodiment of the present invention. FIG. 1B is a schematic front view of a wavelength conversion module in FIG. 1A . FIG. 1C is a schematic cross-sectional view of the wavelength conversion module in FIG. 1B . Referring to FIG. 1A , in this embodiment, the projection device 100 includes an illumination system 100A, a light splitting unit DC, at least two light valves LV, and a projection lens PL. For example, in this embodiment, the number of light valves LV is three, which are respectively light valves LV1 , LV2 , and LV3 , but the present invention is not limited thereto. In this embodiment, the light valve LV is, for example, a digital micro-mirror device (DMD), but the invention is not limited thereto. In other embodiments, it may also be a liquid-crystal-on-silicon panel (LCOS panel), a liquid crystal panel (Liquid Crystal Panel, LCD) or other beam modulators.

具体而言,如图1A所示,照明系统100A用于提供一照明光束70,且包括一激发光源110、一波长转换模块120、一第一分色元件130以及一光传递模块140。激发光源110用于发出一激发光束50。举例而言,在本实施例中,在本实施例中,激发光源110为蓝光激光光源,而激发光束50为蓝色激光光束。激发光源110例如可包括多个排成阵列的蓝光激光二极管(未绘示),但本发明不局限于此。Specifically, as shown in FIG. 1A , the illumination system 100A is used to provide an illumination beam 70 and includes an excitation light source 110 , a wavelength conversion module 120 , a first dichroic element 130 and a light transfer module 140 . The excitation light source 110 is used for emitting an excitation beam 50 . For example, in this embodiment, the excitation light source 110 is a blue laser light source, and the excitation beam 50 is a blue laser beam. The excitation light source 110 may include, for example, a plurality of blue laser diodes (not shown) arranged in an array, but the invention is not limited thereto.

具体而言,如图1A所示,在本实施例中,第一分色元件130配置于激发光束50的传递路径上,且位于激发光源110与波长转换模块120之间。具体而言,第一分色元件130可以是分色元件、部分穿透部分反射元件、偏振分光元件或其他各种可将光束分离的元件。举例而言,在本实施例中,第一分色元件130例如为具有黄光反射作用的分色镜(DichroicMirror with Yellow reflection),而可让蓝光穿透,而对黄光提供反射作用。因此,第一分色元件130可让蓝色的激发光束50穿透,如此一来,激发光源110的激发光束50可经由穿透第一分色元件130而传递至波长转换模块120。Specifically, as shown in FIG. 1A , in this embodiment, the first dichroic element 130 is disposed on the transmission path of the excitation light beam 50 and is located between the excitation light source 110 and the wavelength conversion module 120 . Specifically, the first dichroic element 130 may be a dichroic element, a partially penetrating and partially reflective element, a polarization splitting element, or other various elements capable of separating light beams. For example, in this embodiment, the first dichroic element 130 is, for example, a dichroic mirror with yellow reflection (Dichroic Mirror with Yellow reflection), which allows blue light to pass through and provides reflection for yellow light. Therefore, the first dichroic element 130 can transmit the blue excitation light beam 50 , so that the excitation light beam 50 of the excitation light source 110 can pass through the first dichroic element 130 to the wavelength conversion module 120 .

进一步而言,如图1A至图1C所示,在本实施例中,波长转换模块120位于激发光束50的传递路径上,且具有一环状波长转换区OT与非转换区NT。举例而言,如图1B所示,在本实施例中,环状波长转换区OT可为O型环状(O-ring)。进一步而言,如图1A与图1B所示,在本实施例中,当激发光束50传递至波长转换模块120时,激发光束50于波长转换模块120上形成一光斑SP。接着,一第一部分的激发光束50入射于环状波长转换区OT而使至少部分光斑SP位于环状波长转换区OT上,且所述第一部分的激发光束50转换为一第一色光60Y,一第二部分的激发光束50入射于波长转换模块120的非转换区NT而使至少部分光斑SP位于非转换区NT上,且所述第二部分的激发光束50形成一第二色光60B。举例而言,第二部分的激发光束50与激发光束50的比例数值范围介于5%至30%。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。Further, as shown in FIG. 1A to FIG. 1C , in this embodiment, the wavelength conversion module 120 is located on the transmission path of the excitation beam 50 and has an annular wavelength conversion region OT and a non-conversion region NT. For example, as shown in FIG. 1B , in this embodiment, the ring-shaped wavelength conversion region OT can be an O-ring. Further, as shown in FIG. 1A and FIG. 1B , in this embodiment, when the excitation beam 50 is delivered to the wavelength conversion module 120 , the excitation beam 50 forms a spot SP on the wavelength conversion module 120 . Next, a first part of the excitation beam 50 is incident on the ring-shaped wavelength conversion region OT so that at least part of the light spot SP is located on the ring-shaped wavelength conversion region OT, and the first part of the excitation beam 50 is converted into a first color light 60Y, A second part of the excitation beam 50 is incident on the non-conversion region NT of the wavelength conversion module 120 so that at least part of the light spot SP is located on the non-conversion region NT, and the second part of the excitation beam 50 forms a second color light 60B. For example, the ratio of the second part of the excitation beam 50 to the excitation beam 50 ranges from 5% to 30%. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

以下将针对第一色光60Y以及第二色光60B的转换过程进行进一步的解说。The conversion process of the first color light 60Y and the second color light 60B will be further explained below.

举例而言,如图1B与图1C所示,在本实施例中,波长转换模块120包括一基板121、一环状散光层122以及一环状波长转换层123。在本实施例中,基板121例如为透光基板。具体而言,在本实施例中,环状波长转换层123位于基板121上,且对应于环状波长转换区OT设置。举例而言,在本实施例中,波长转换模块120例如为一荧光粉轮(Phosphor Wheel),环状波长转换层123的材料包括可激发出黄色光束的荧光粉,而可将激发光束50转换为黄光。换言之,在本实施例中,激发光束50经由环状波长转换区OT转换而来的第一色光60Y为黄光。举例而言,在本实施例中,第一色光60Y为宽谱色光,其主波长与激发光束50的主波长差值(即第一色光60Y的主波长减去激发光束50的主波长差值)会大于等于20奈米。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。For example, as shown in FIG. 1B and FIG. 1C , in this embodiment, the wavelength conversion module 120 includes a substrate 121 , an annular light scattering layer 122 and an annular wavelength conversion layer 123 . In this embodiment, the substrate 121 is, for example, a transparent substrate. Specifically, in this embodiment, the ring-shaped wavelength conversion layer 123 is located on the substrate 121 and is disposed corresponding to the ring-shaped wavelength conversion region OT. For example, in this embodiment, the wavelength conversion module 120 is, for example, a phosphor wheel (Phosphor Wheel), and the material of the ring-shaped wavelength conversion layer 123 includes a phosphor that can excite a yellow beam, so that the excitation beam 50 can be converted For yellow light. In other words, in this embodiment, the first color light 60Y converted from the excitation beam 50 through the annular wavelength conversion region OT is yellow light. For example, in this embodiment, the first colored light 60Y is a broad-spectrum colored light, and the difference between its dominant wavelength and the dominant wavelength of the excitation beam 50 (that is, the dominant wavelength of the first colored light 60Y minus the dominant wavelength of the excitation beam 50 difference) will be greater than or equal to 20 nm. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

另一方面,如图1C所示,环状散光层122位于基板121上,且环状散光层122位于基板121与环状波长转换层123之间。另一方面,如图1B与图1C所示,环状波长转换层123没有完全覆盖于环状散光层122上,环状散光层122未被环状波长转换层123所遮挡的部分可于基板121上形成第一环状散光区OD1及第二环状散光区OD2。也就是说,如图1B所示,第一环状散光区OD1及第二环状散光区OD2位于基板121上,对应于环状波长转换区OT的环状波长转换层123位于第一环状散光区OD1与第二环状散光区OD2之间。并且,环状波长转换层123围绕第一环状散光区OD1,并被第二环状散光区OD2所围绕。On the other hand, as shown in FIG. 1C , the annular light-scattering layer 122 is located on the substrate 121 , and the annular light-scattering layer 122 is located between the substrate 121 and the annular wavelength conversion layer 123 . On the other hand, as shown in FIG. 1B and FIG. 1C, the ring-shaped wavelength conversion layer 123 does not completely cover the ring-shaped light-scattering layer 122, and the part of the ring-shaped light-scattering layer 122 that is not blocked by the ring-shaped wavelength conversion layer 123 can be placed on the substrate. A first annular astigmatism area OD1 and a second annular astigmatism area OD2 are formed on 121 . That is to say, as shown in FIG. 1B, the first annular astigmatism area OD1 and the second annular astigmatism area OD2 are located on the substrate 121, and the annular wavelength conversion layer 123 corresponding to the annular wavelength conversion area OT is located on the first annular Between the astigmatism area OD1 and the second annular astigmatism area OD2. Moreover, the annular wavelength conversion layer 123 surrounds the first annular astigmatism area OD1 and is surrounded by the second annular astigmatism area OD2 .

进一步而言,如图1B所示,在本实施例中,第一环状散光区OD1及第二环状散光区OD2对应于波长转换模块120的非转换区NT。如此,由于第一环状散光区OD1及第二环状散光区OD2可以破坏激光光束的同调性,而具有消除激光散斑(Laser Speckle)的功能,因此当激发光束50通过第一环状散光区OD1及第二环状散光区OD2时,则能形成蓝光,并消除激光散斑现象。换言之,在本实施例中,经由非转换区NT所形成的第二色光60B与激发光束50的颜色相同,即为蓝光。Further, as shown in FIG. 1B , in this embodiment, the first annular astigmatism area OD1 and the second annular astigmatism area OD2 correspond to the non-conversion area NT of the wavelength conversion module 120 . In this way, since the first annular astigmatism area OD1 and the second annular astigmatism area OD2 can destroy the coherence of the laser beam, and have the function of eliminating laser speckle (Laser Speckle), when the excitation beam 50 passes through the first annular astigmatism When the region OD1 and the second annular astigmatism region OD2 are formed, blue light can be formed and the phenomenon of laser speckle can be eliminated. In other words, in this embodiment, the second color light 60B formed through the non-converting region NT is the same color as the exciting light beam 50 , that is, blue light.

具体而言,如图1A所示,在本实施例中,由于激发光束50会同时通过波长转换模块120的环状波长转换区OT与非转换区NT,因此第一色光60Y与第二色光60B会同时自波长转换模块120出光。接着,如图1A所示,在本实施例中,波长转换模块120将第一色光60Y反射回第一分色元件130,第二色光60B则在穿透波长转换模块120后被传递至光传递模块140。Specifically, as shown in FIG. 1A, in this embodiment, since the excitation light beam 50 passes through the annular wavelength conversion region OT and the non-conversion region NT of the wavelength conversion module 120 at the same time, the first color light 60Y and the second color light 60B emits light from the wavelength conversion module 120 at the same time. Next, as shown in FIG. 1A, in this embodiment, the wavelength conversion module 120 reflects the first color light 60Y back to the first dichroic element 130, and the second color light 60B is transmitted to the light source after passing through the wavelength conversion module 120. Delivery module 140 .

具体而言,如图1A所示,在本实施例中,光传递模块140位于第二色光60B的传递路径上,用于将自波长转换模块120出射的第二色光60B传递至第一分色元件130。举例而言,在本实施例中,光传递模块140可包括多个反射元件(未标号),而将第二色光60B传递回第一分色元件130,但本发明不局限于此。Specifically, as shown in FIG. 1A , in this embodiment, the optical transmission module 140 is located on the transmission path of the second color light 60B, and is used to transmit the second color light 60B emitted from the wavelength conversion module 120 to the first color separation Element 130. For example, in this embodiment, the light transmission module 140 may include a plurality of reflective elements (not labeled) to transmit the second color light 60B back to the first dichroic element 130 , but the invention is not limited thereto.

接着,如图1A所示,在本实施例中,照明系统100A还包括一光均匀化元件150,位于第一色光60Y与第二色光60B的传递路径上。当第一色光60Y与第二色光60B被传递至第一分色元件130时,由于第一分色元件130会反射黄光且使蓝光穿透,因此第二色光60B穿透第一分色元件130,且第一色光60Y被第一分色元件130反射后,光均匀化元件150接收来自第一分色元件130的第一色光60Y及第二色光60B。在本实施例中,光均匀化元件150例如为一积分柱(IntegrationRod),但本发明不局限于此。如此,当来自波长转换模块120的第一色光60Y与第二色光60B被传递至光均匀化元件150时,光均匀化元件150可使第一色光60Y与第二色光60B均匀化后输出光均匀化元件150而形成照明光束70,并使其传递至光阀LV。Next, as shown in FIG. 1A , in this embodiment, the lighting system 100A further includes a light homogenizing element 150 located on the transmission paths of the first color light 60Y and the second color light 60B. When the first color light 60Y and the second color light 60B are transmitted to the first dichroic element 130, since the first dichroic element 130 reflects yellow light and transmits blue light, the second color light 60B passes through the first dichroic element. 130 , and after the first color light 60Y is reflected by the first dichroic element 130 , the light homogenizing element 150 receives the first color light 60Y and the second color light 60B from the first dichroic element 130 . In this embodiment, the light homogenizing element 150 is, for example, an integration rod, but the invention is not limited thereto. In this way, when the first color light 60Y and the second color light 60B from the wavelength conversion module 120 are delivered to the light homogenizing element 150 , the light homogenizing element 150 can homogenize the first color light 60Y and the second color light 60B to output The light homogenizing element 150 forms the illumination beam 70 and passes it to the light valve LV.

接着,如图1A所示,在本实施例中,分合光单元DC位于照明光束70的传递路径上,且用于将照明光束70转换成多个子照明光束70R、70G、70B。举例而言,如图1A所示,分合光单元DC可包括多个分色镜DM1、DM2,当照明光束70通过不同的分色镜DM1、DM2时,能被依序分成子照明光束70R、70G、70B后,被传递至后续所对应的光阀LV,亦即各光阀LV1、LV2、LV3上。Next, as shown in FIG. 1A , in this embodiment, the splitting and combining unit DC is located on the transmission path of the illuminating beam 70 and is used to convert the illuminating beam 70 into a plurality of sub-illuminating beams 70R, 70G, 70B. For example, as shown in FIG. 1A , the splitting and combining unit DC may include a plurality of dichroic mirrors DM1 and DM2. When the illuminating beam 70 passes through different dichroic mirrors DM1 and DM2, it can be sequentially divided into sub-illuminating beams 70R. , 70G, and 70B, it is transmitted to the subsequent corresponding light valves LV, that is, each light valve LV1, LV2, and LV3.

具体而言,如图1A所示,在本实施例中,各光阀LV1、LV2、LV3分别位于多个子照明光束70R、70G、70B的传递路径上,且用于将对应的多个子照明光束70R、70G、70B转换成多个影像光束80R、80G、80B。并且,投影镜头PL位于所述多个影像光束80R、80G、80B的传递路径上,且适于将所述多个影像光束80R、80G、80B转换成一投影光束90,并投影至一屏幕(未绘示)上,以形成影像画面。举例而言,由于各子照明光束70R、70G、70B分别会聚在对应的光阀LV1、LV2、LV3上,光阀LV1、LV2、LV3能将对应的子照明光束70R、70G、70B转换成不同颜色的影像光束80R、80G、80B,这些来自光阀LV1、LV2、LV3的影像光束80R、80G、80B会分别经由分合光单元DC传递至投影镜头PL,因此,所被投影出的影像画面便能够成为彩色画面。如此一来,照明系统100A与投影装置100借由波长转换模块120的环状波长转换区OT的配置,可使来自同一激发光源110的激发光束50的一部分转换为第一色光60Y,而另一部分形成第二色光60B。如此,将可使得照明系统100A与投影装置100在只需配置一激发光源110的情况下,即可形成蓝、绿、红三种色光,而具有简单的结构以及简洁的光路布局。并且,由于照明系统100A以及投影装置100的光路布局能被有效简化,因此亦可同时增加系统中其他构件的布局弹性。此外,由于照明系统100A与投影装置100只需配置一激发光源110,因此光源能量会被集中于一处,而能使得散热模块的设计复杂度降低,亦可有助于增加系统布局的设计弹性。此外,由于照明系统100A与投影装置100的波长转换模块120亦具有散光的功能,因此可不用额外设置消除激光散斑的散光元件,而能减少光学构件的使用,能更有效地达到节省成本以及形成简单的系统结构。此外,在其他实施例中,亦可于环状波长转换层123与基板121之间设置反射层,而使得波长转换模块能将第一色光60Y有效地反射回第一分色元件130,以下将另举实施例进行进一步的解说。Specifically, as shown in FIG. 1A , in this embodiment, each light valve LV1 , LV2 , LV3 is respectively located on the transmission path of a plurality of sub-illumination beams 70R, 70G, 70B, and is used to direct the corresponding plurality of sub-illumination beams to 70R, 70G, 70B are converted into a plurality of image beams 80R, 80G, 80B. Moreover, the projection lens PL is located on the transmission path of the plurality of image beams 80R, 80G, 80B, and is suitable for converting the plurality of image beams 80R, 80G, 80B into a projection beam 90, and projecting it onto a screen (not shown drawing) to form an image screen. For example, since each sub-illumination beam 70R, 70G, 70B converges on the corresponding light valve LV1, LV2, LV3 respectively, the light valve LV1, LV2, LV3 can convert the corresponding sub-illumination beam 70R, 70G, 70B into different The color image light beams 80R, 80G, 80B, these image light beams 80R, 80G, 80B from the light valves LV1, LV2, LV3 will be respectively transmitted to the projection lens PL through the light splitting unit DC, so the projected image picture It can become a color picture. In this way, the illumination system 100A and the projection device 100 can convert a part of the excitation light beam 50 from the same excitation light source 110 into the first color light 60Y through the configuration of the annular wavelength conversion region OT of the wavelength conversion module 120, while the other A part forms the second color light 60B. In this way, the illumination system 100A and the projection device 100 can generate blue, green, and red color lights with only one excitation light source 110 , and have a simple structure and a concise optical path layout. Moreover, since the light path layout of the illumination system 100A and the projection device 100 can be effectively simplified, the layout flexibility of other components in the system can also be increased at the same time. In addition, since the lighting system 100A and the projection device 100 only need to be equipped with one exciting light source 110, the energy of the light source will be concentrated in one place, which can reduce the design complexity of the cooling module and help increase the design flexibility of the system layout. . In addition, since the illumination system 100A and the wavelength conversion module 120 of the projection device 100 also have the function of astigmatism, there is no need to additionally install astigmatism elements to eliminate laser speckle, and the use of optical components can be reduced, which can more effectively achieve cost savings and Form a simple system structure. In addition, in other embodiments, a reflective layer may also be provided between the annular wavelength conversion layer 123 and the substrate 121, so that the wavelength conversion module can effectively reflect the first color light 60Y back to the first dichroic element 130, as follows Another example will be given for further explanation.

图1D是图1A的另一种波长转换模块的剖面示意图。在本实施例中,图1D的波长转换模块120D与图1B的波长转换模块120类似,而差异如下所述。请参照图1D,在本实施例中,波长转换模块120D还包括反射层RL,且反射层RL设置于环状波长转换层123与基板121之间,如此,第一部分的激发光束50被转换为第一色光60Y后,即可经由反射层RL有效地被反射回第一分色元件130。反射层RL例如是利用涂布(coating)的方式设置。另一方面,第二部分的激发光束50形成第二色光60B则仍可穿透环状散光层122所形成的第一环状散光区OD1与第二环状散光区OD2以及基板121,而被传递至后续的光学元件上。图1E是图1A的另一种波长转换模块的剖面示意图。在本实施例中,图1E的波长转换模块120E与图1D的波长转换模块120D类似,而差异如下所述。请参照图1E,在本实施例中,波长转换模块120E的环状波长转换层123不是覆盖于环状散光层122上,而是位于环状散光层122所形成的第一环状散光区OD1及第二环状散光区OD2之间。换句话说,波长转换模块120E的环状波长转换层123在自基板121的轴心至基板121的边缘的径向方向上位于环状散光层122所形成的第一环状散光区OD1及第二环状散光区OD2之间。反射层RL设置于环状波长转换层123与基板121之间。如此,波长转换模块120E亦可借由反射层RL的设置,来使得第一部分的激发光束50被转换为第一色光60Y后,经由反射层RL有效地被反射回第一分色元件130。另一方面,第二部分的激发光束50形成第二色光60B亦仍可穿透环状散光层122所形成的第一环状散光区OD1及第二环状散光区OD2以及基板121,而被传递至后续的光学元件上。图1F是图1A的另一种波长转换模块的剖面示意图。在本实施例中,图1F的波长转换模块120F与图1D的波长转换模块120D类似,而差异如下所述。请参照图1F,在本实施例中,波长转换模块120F不具有环状散光层122,而是于基板121F中添加散射粒子PA,以在基板121F环绕环状波长转换层123的周围区域上形成波长转换模块120F的第一环状散光区OD1及第二环状散光区OD2。也就是说,如图1F所示,第一环状散光区OD1及第二环状散光区OD2由基板121F所构成,并且环状波长转换层123亦会围绕第一环状散光区OD1,并被第二环状散光区OD2所围绕。如此,波长转换模块120F亦可借由反射层RL的设置,来使得第一部分的激发光束50被转换为第一色光60Y后,经由反射层RL有效地被反射回第一分色元件130。另一方面,第二部分的激发光束50形成第二色光60B亦仍可穿透基板121F及基板121F中的散射粒子PA所构成的第一环状散光区OD1及第二环状散光区OD2,而被传递至后续的光学元件上。如此一来,在前述实施例中,由于波长转换模块120D、120E、120F与图1B的波长转换模块120相似,而能达到相同的功能,因此波长转换模块120D、120E、120F能达到与前述的波长转换模块120类似的效果与优点,在此就不再赘述。并且,当波长转换模块120D、120E、120F应用至前述的照明系统100A、以及投影装置100时,亦能使照明系统100A以及投影装置100达到类似的效果与优点,在此就不再赘述。FIG. 1D is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A . In this embodiment, the wavelength conversion module 120D of FIG. 1D is similar to the wavelength conversion module 120 of FIG. 1B , and the differences are as follows. Please refer to FIG. 1D, in this embodiment, the wavelength conversion module 120D further includes a reflective layer RL, and the reflective layer RL is disposed between the ring-shaped wavelength conversion layer 123 and the substrate 121, so that the first part of the excitation beam 50 is converted into The first color light 60Y can be effectively reflected back to the first dichroic element 130 through the reflective layer RL. The reflective layer RL is provided by, for example, coating. On the other hand, the second part of the excitation light beam 50 to form the second color light 60B can still pass through the first annular astigmatism area OD1 and the second annular astigmatism area OD2 formed by the annular light scattering layer 122 and the substrate 121, and is passed on to subsequent optics. FIG. 1E is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A . In this embodiment, the wavelength conversion module 120E of FIG. 1E is similar to the wavelength conversion module 120D of FIG. 1D , and the differences are as follows. Please refer to FIG. 1E , in this embodiment, the annular wavelength conversion layer 123 of the wavelength conversion module 120E is not covered on the annular light-scattering layer 122 , but is located in the first annular light-scattering area OD1 formed by the annular light-scattering layer 122 and between the second annular astigmatism area OD2. In other words, the annular wavelength conversion layer 123 of the wavelength conversion module 120E is located in the first annular astigmatism region OD1 and the second annular light astigmatism area OD1 formed by the annular light scattering layer 122 in the radial direction from the axis of the substrate 121 to the edge of the substrate 121. Between the two annular astigmatism zones OD2. The reflective layer RL is disposed between the annular wavelength conversion layer 123 and the substrate 121 . In this way, the wavelength conversion module 120E can also use the reflective layer RL so that the first part of the excitation light beam 50 is converted into the first color light 60Y and then effectively reflected back to the first dichroic element 130 through the reflective layer RL. On the other hand, the second part of the excitation light beam 50 to form the second color light 60B can still pass through the first annular astigmatism area OD1 and the second annular astigmatism area OD2 formed by the annular light scattering layer 122 and the substrate 121, and is passed on to subsequent optics. FIG. 1F is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A . In this embodiment, the wavelength conversion module 120F of FIG. 1F is similar to the wavelength conversion module 120D of FIG. 1D , and the differences are as follows. Please refer to FIG. 1F. In this embodiment, the wavelength conversion module 120F does not have the annular light-scattering layer 122. Instead, scattering particles PA are added to the substrate 121F to form a The first annular astigmatism area OD1 and the second annular astigmatism area OD2 of the wavelength conversion module 120F. That is to say, as shown in FIG. 1F, the first annular astigmatism area OD1 and the second annular astigmatism area OD2 are formed by the substrate 121F, and the annular wavelength conversion layer 123 also surrounds the first annular astigmatism area OD1, and Surrounded by the second annular astigmatism area OD2. In this way, the wavelength conversion module 120F can also use the reflective layer RL so that the first part of the excitation light beam 50 is converted into the first color light 60Y and then effectively reflected back to the first dichroic element 130 through the reflective layer RL. On the other hand, the second part of the excitation light beam 50 to form the second color light 60B can still pass through the substrate 121F and the first annular astigmatism area OD1 and the second annular astigmatism area OD2 formed by the scattering particles PA in the substrate 121F, and is passed on to subsequent optical elements. In this way, in the foregoing embodiments, since the wavelength conversion modules 120D, 120E, and 120F are similar to the wavelength conversion module 120 in FIG. Similar effects and advantages of the wavelength conversion module 120 will not be repeated here. Moreover, when the wavelength conversion modules 120D, 120E, and 120F are applied to the lighting system 100A and the projection device 100 mentioned above, the lighting system 100A and the projection device 100 can also achieve similar effects and advantages, and will not be repeated here.

图2A是图1A的另一种照明系统的架构示意图。图2A的照明系统200A与图1A的照明系统100A类似,而差异如下所述。在本实施例中,照明系统200A还包括一辅助光源AL。辅助光源AL用于发出一辅助光束60R,辅助光束60R的波段与第一色光60Y的波段至少部分重叠。举例而言,在本实施例中,辅助光源AL例如为红光激光光源或红光发光二极管光源,辅助光束60R为红光。FIG. 2A is a schematic structural diagram of another lighting system shown in FIG. 1A . The lighting system 200A of FIG. 2A is similar to the lighting system 100A of FIG. 1A with the differences described below. In this embodiment, the lighting system 200A further includes an auxiliary light source AL. The auxiliary light source AL is used to emit an auxiliary light beam 60R, the wavelength band of the auxiliary light beam 60R at least partially overlaps with the wavelength band of the first color light 60Y. For example, in this embodiment, the auxiliary light source AL is, for example, a red laser light source or a red light emitting diode light source, and the auxiliary light beam 60R is red light.

具体而言,如图2A所示,在本实施例中,第一分色元件130例如为具有绿橘光反射作用的分色镜(DMGO),而可让蓝光以及红光穿透,并对绿橘光提供反射作用。此外,照明系统200A的光传递模块140中包括一第二分色元件241,位于第二色光60B及辅助光束60R的传递路径上。在本实施例中,第二分色元件241例如为具有蓝光反射作用的分色镜(DMB),而可让红光穿透,并对蓝光提供反射作用。Specifically, as shown in FIG. 2A , in this embodiment, the first dichroic element 130 is, for example, a dichroic mirror (DMGO) having a green-orange light reflection effect, which allows blue light and red light to pass through, and Green-orange light provides reflection. In addition, the light transmission module 140 of the lighting system 200A includes a second dichroic element 241 located on the transmission path of the second color light 60B and the auxiliary light beam 60R. In this embodiment, the second dichroic element 241 is, for example, a dichroic mirror (DMB) having a blue light reflection function, which allows red light to pass through and provides reflection for blue light.

如此,激发光源110的激发光束50仍可经由穿透第一分色元件130而传递至波长转换模块120。另一方面,辅助光源AL的辅助光束60R可经由穿透第二分色元件241而传递至第一分色元件130,且第二色光60B仍能经由光传递模块140而被传递至第一分色元件130。当来自波长转换模块120的第一色光60Y以及来自光传递模块140的第二色光60B与辅助光束60R皆被传递至第一分色元件130时,第一分色元件130可使第二色光60B与辅助光束60R穿透,并使部分第一色光60G反射后,将辅助光束60R、部分第一色光60G以及第二色光60B导引至光均匀化元件150。在本实施例中,第一色光60Y(黄光)中的部分会被第一分色元件130反射而形成部分第一色光60G例如为绿光。因此,辅助光束60R、部分第一色光60G以及第二色光60B即可在经过第一分色元件130及第二分色元件241后合并形成照明光束70。In this way, the excitation light beam 50 of the excitation light source 110 can still pass through the first dichroic element 130 to be transmitted to the wavelength conversion module 120 . On the other hand, the auxiliary light beam 60R of the auxiliary light source AL can be transmitted to the first dichroic element 130 by passing through the second dichroic element 241 , and the second color light 60B can still be transmitted to the first dichroic element 130 through the light transmission module 140 . Color element 130. When the first color light 60Y from the wavelength conversion module 120 and the second color light 60B and the auxiliary beam 60R from the light delivery module 140 are all delivered to the first color separation element 130, the first color separation element 130 can make the second color light 60B passes through the auxiliary light beam 60R, and after reflecting part of the first color light 60G, guides the auxiliary light beam 60R, part of the first color light 60G and the second color light 60B to the light homogenizing element 150 . In this embodiment, part of the first color light 60Y (yellow light) will be reflected by the first dichroic element 130 to form part of the first color light 60G such as green light. Therefore, the auxiliary light beam 60R, part of the first color light 60G and the second color light 60B can combine to form the illumination light beam 70 after passing through the first dichroic element 130 and the second dichroic element 241 .

如此一来,照明系统200A借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,由于照明系统200A与图1A的照明系统100A具有相同的波长转换模块120的结构,因此照明系统200A能达到与前述的照明系统100A类似的效果与优点,在此就不再赘述。并且,当照明系统200A应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the lighting system 200A can increase the proportion of red light in the lighting beam 70 through the configuration of the auxiliary light source AL, thereby improving the red color performance of the projected image. In addition, in this embodiment, since the lighting system 200A has the same wavelength conversion module 120 structure as the lighting system 100A shown in FIG. No longer. Moreover, when the lighting system 200A is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图2B是图1A的另一种照明系统的架构示意图。图2B的照明系统200B与图2A的照明系统200A类似,而差异如下所述。在本实施例中,第一分色元件130例如为具有黄光反射作用的分色镜(DMY),且第二分色元件241位于辅助光束60R以及来自第一分色元件130的第一色光60Y与第二色光60B的传递路径上。并且,在本实施例中,第二分色元件241例如为具有红光反射作用的分色镜(DMR),而可让蓝光与绿光穿透,并对红光提供反射作用。FIG. 2B is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 200B of FIG. 2B is similar to the lighting system 200A of FIG. 2A with the differences described below. In this embodiment, the first dichroic element 130 is, for example, a dichroic mirror (DMY) with a yellow light reflection effect, and the second dichroic element 241 is located between the auxiliary beam 60R and the first color from the first dichroic element 130 The transmission path of the light 60Y and the second color light 60B. Moreover, in this embodiment, the second dichroic element 241 is, for example, a dichroic mirror (DMR) having a red light reflection function, which allows blue light and green light to pass through, and provides reflection for red light.

如此,当第一色光60Y、第二色光60B以及辅助光束60R被传递至第二分色元件241时,第二分色元件241可使来自第一分色元件130的部分第一色光60G与第二色光60B穿透,并反射来自辅助光源AL的辅助光束60R,而将辅助光束60R、部分第一色光60G以及第二色光60B导引至光均匀化元件150。因此,辅助光束60R、部分第一色光60G以及第二色光60B即可在经过第一分色元件130及第二分色元件241后合并形成照明光束70。In this way, when the first color light 60Y, the second color light 60B and the auxiliary light beam 60R are delivered to the second color separation element 241, the second color separation element 241 can make part of the first color light 60G from the first color separation element 130 It penetrates the second color light 60B and reflects the auxiliary light beam 60R from the auxiliary light source AL, and guides the auxiliary light beam 60R, part of the first color light 60G and the second color light 60B to the light homogenizing element 150 . Therefore, the auxiliary light beam 60R, part of the first color light 60G and the second color light 60B can combine to form the illumination light beam 70 after passing through the first dichroic element 130 and the second dichroic element 241 .

如此一来,照明系统200B借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,由于照明系统200B与图1A的照明系统100A具有相同的波长转换模块120的结构,因此照明系统200B能达到与前述的照明系统100A类似的效果与优点,在此就不再赘述。并且,当照明系统200B应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the illumination system 200B can increase the proportion of red light in the illumination beam 70 through the configuration of the auxiliary light source AL, thereby enhancing the red color performance of the projected image. In addition, in this embodiment, since the lighting system 200B has the same wavelength conversion module 120 structure as the lighting system 100A in FIG. No longer. Moreover, when the lighting system 200B is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图3A是图1A的另一种照明系统的架构示意图。图3A的照明系统300A与图1A的照明系统100A类似,而差异如下所述。在本实施例中,第一分色元件130例如为具有蓝光反射作用的分色镜(DMB),而可让黄光穿透,而对蓝光提供反射作用。因此,如图3A所示,第一分色元件130会反射蓝色的激发光束50,而波长转换模块120可被配置在被第一分色元件130反射后的激发光束50的传递路径上。如此一来,来自激发光源110的激发光束50可经由第一分色元件130而传递至波长转换模块120。FIG. 3A is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 300A of FIG. 3A is similar to the lighting system 100A of FIG. 1A with the differences described below. In this embodiment, the first dichroic element 130 is, for example, a dichroic mirror (DMB) having a blue light reflection function, which allows the yellow light to pass through and provides reflection for the blue light. Therefore, as shown in FIG. 3A , the first dichroic element 130 reflects the blue excitation beam 50 , and the wavelength conversion module 120 can be disposed on the transmission path of the excitation beam 50 reflected by the first dichroic element 130 . In this way, the excitation light beam 50 from the excitation light source 110 can be delivered to the wavelength conversion module 120 through the first dichroic element 130 .

另一方面,如图3A所示,当第一色光60Y与第二色光60B再次被传递至第一分色元件130时,由于第一分色元件130会反射蓝光且使黄光穿透,因此第一色光60Y会穿透第一分色元件130,且第二色光60B经由光传递模块140及第一分色元件130反射后,第一色光60Y及第二色光60B皆被传递至光均匀化元件150处,而能形成照明光束70。On the other hand, as shown in FIG. 3A, when the first color light 60Y and the second color light 60B are transmitted to the first dichroic element 130 again, since the first dichroic element 130 will reflect blue light and transmit yellow light, Therefore, the first color light 60Y will pass through the first dichroic element 130, and the second color light 60B will be transmitted to the At the light homogenizing element 150 , an illuminating beam 70 can be formed.

在本实施例中,由于照明系统300A与图1A的照明系统100A具有相同的波长转换模块120的结构,因此照明系统300A能达到与前述的照明系统100A类似的效果与优点,在此就不再赘述。并且,当照明系统300A应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this embodiment, since the lighting system 300A has the same wavelength conversion module 120 structure as the lighting system 100A in FIG. repeat. Moreover, when the lighting system 300A is applied to the above-mentioned projection device 100 , the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图3B是图1A的另一种照明系统的架构示意图。图3A的照明系统300B与图3A的照明系统300A类似,而差异如下所述。在本实施例中,照明系统300B还包括一辅助光源AL。辅助光源AL用于发出一辅助光束60R,辅助光束60R的波段与第一色光60Y的波段至少部分重叠。举例而言,在本实施例中,辅助光束60R为红光。FIG. 3B is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 300B of FIG. 3A is similar to the lighting system 300A of FIG. 3A with the differences described below. In this embodiment, the lighting system 300B further includes an auxiliary light source AL. The auxiliary light source AL is used to emit an auxiliary light beam 60R, the wavelength band of the auxiliary light beam 60R at least partially overlaps with the wavelength band of the first color light 60Y. For example, in this embodiment, the auxiliary light beam 60R is red light.

具体而言,如图3B所示,在本实施例中,第一分色元件130例如为具有红光以及蓝光反射作用的分色镜(DMBR),而可让绿光穿透,并对蓝光以及红光提供反射作用。此外,照明系统300B的光传递模块140中包括第二分色元件241,第二分色元件241位于第二色光60B及辅助光束60R的传递路径上。在本实施例中,第二分色元件241例如为具有蓝光反射作用的分色镜(DMB),而可让红光穿透,并对蓝光提供反射作用。Specifically, as shown in FIG. 3B , in this embodiment, the first dichroic element 130 is, for example, a dichroic mirror (DMBR) having red light and blue light reflection functions, so that green light can pass through and blue light And red light provides reflection. In addition, the light transmission module 140 of the illumination system 300B includes a second dichroic element 241 , and the second dichroic element 241 is located on the transmission path of the second color light 60B and the auxiliary light beam 60R. In this embodiment, the second dichroic element 241 is, for example, a dichroic mirror (DMB) having a blue light reflection function, which allows red light to pass through and provides reflection for blue light.

如此,来自激发光源110的激发光束50仍可经由第一分色元件130的反射而传递至波长转换模块120。另一方面,辅助光源AL的辅助光束60R可经由穿透第二分色元件241而传递至第一分色元件130,且第二色光60B仍能经由光传递模块140而被反射至第一分色元件130。当来自波长转换模块120的第一色光60Y以及来自光传递模块140的第二色光60B与辅助光束60R皆被传递至第一分色元件130时,第一分色元件130可使部分第一色光60G穿透,并使第二色光60B与辅助光束60R反射后,将辅助光束60R、部分第一色光60G以及第二色光60B导引至光均匀化元件150。因此,辅助光束60R、部分第一色光60G以及第二色光60B即可在经过第一分色元件130及第二分色元件241后合并并经过光均匀化元件150均匀化后而形成照明光束70。In this way, the excitation light beam 50 from the excitation light source 110 can still be transmitted to the wavelength conversion module 120 through the reflection of the first dichroic element 130 . On the other hand, the auxiliary light beam 60R of the auxiliary light source AL can be transmitted to the first dichroic element 130 by passing through the second dichroic element 241 , and the second color light 60B can still be reflected to the first dichroic element 130 through the light transmission module 140 . Color element 130. When the first color light 60Y from the wavelength conversion module 120 and the second color light 60B and the auxiliary light beam 60R from the light delivery module 140 are all delivered to the first color separation element 130, the first color separation element 130 can make part of the first color light The colored light 60G passes through and reflects the second colored light 60B and the auxiliary light beam 60R, and guides the auxiliary light beam 60R, part of the first colored light 60G and the second colored light 60B to the light homogenizing element 150 . Therefore, the auxiliary beam 60R, part of the first color light 60G and the second color light 60B can be combined after passing through the first dichroic element 130 and the second dichroic element 241 and uniformized by the light homogenizing element 150 to form an illumination beam 70.

如此一来,照明系统300B借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,由于照明系统300B与图1A的照明系统100A具有相同的波长转换模块120的结构,因此照明系统300B能达到与前述的照明系统100A类似的效果与优点,在此就不再赘述。并且,当照明系统300B应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the lighting system 300B can increase the proportion of red light in the lighting beam 70 through the configuration of the auxiliary light source AL, thereby improving the red color performance of the projected image. In addition, in this embodiment, since the lighting system 300B has the same structure of the wavelength conversion module 120 as the lighting system 100A in FIG. No longer. Moreover, when the lighting system 300B is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图3C是图1A的另一种照明系统的架构示意图。图3C的照明系统300C与图3B的照明系统300B类似,而差异如下所述。在本实施例中,第一分色元件130例如为具有蓝光反射作用的分色镜(DMB),而可让黄光穿透且对蓝光提供反射作用,且第二分色元件241位于辅助光束60R以及来自第一分色元件130的第一色光60Y与第二色光60B的传递路径上。并且,在本实施例中,第二分色元件241例如为具有红光反射作用的分色镜(DMR),而可让蓝光与绿光穿透,并对红光提供反射作用。FIG. 3C is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 300C of FIG. 3C is similar to the lighting system 300B of FIG. 3B with the differences described below. In this embodiment, the first dichroic element 130 is, for example, a dichroic mirror (DMB) with blue light reflection, which allows yellow light to pass through and provides reflection for blue light, and the second dichroic element 241 is located at the auxiliary beam 60R and the transmission paths of the first color light 60Y and the second color light 60B from the first dichroic element 130 . Moreover, in this embodiment, the second dichroic element 241 is, for example, a dichroic mirror (DMR) having a red light reflection function, which allows blue light and green light to pass through, and provides reflection for red light.

如此,当第一色光60Y、第二色光60B以及辅助光束60R被传递至第二分色元件241时,第二分色元件241可使来自第一分色元件130的部分第一色光60G与第二色光60B穿透,并反射来自辅助光源AL的辅助光束60R,而将辅助光束60R、部分第一色光60G以及第二色光60B导引至光均匀化元件150。因此,辅助光束60R、部分第一色光60G以及第二色光60B即可在经过第一分色元件130及第二分色元件241后合并并经过光均匀化元件150均匀化后而形成照明光束70。In this way, when the first color light 60Y, the second color light 60B and the auxiliary light beam 60R are delivered to the second color separation element 241, the second color separation element 241 can make part of the first color light 60G from the first color separation element 130 It penetrates the second color light 60B and reflects the auxiliary light beam 60R from the auxiliary light source AL, and guides the auxiliary light beam 60R, part of the first color light 60G and the second color light 60B to the light homogenizing element 150 . Therefore, the auxiliary beam 60R, part of the first color light 60G and the second color light 60B can be combined after passing through the first dichroic element 130 and the second dichroic element 241 and uniformized by the light homogenizing element 150 to form an illumination beam 70.

如此一来,照明系统300C借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,由于照明系统300C与图1A的照明系统100A具有相同的波长转换模块120的结构,因此照明系统300C能达到与前述的照明系统100A类似的效果与优点,在此就不再赘述。并且,当照明系统300C应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the lighting system 300C can increase the proportion of red light in the lighting beam 70 through the configuration of the auxiliary light source AL, thereby improving the red color performance of the projected image. In addition, in this embodiment, since the lighting system 300C has the same wavelength conversion module 120 structure as the lighting system 100A in FIG. No longer. Moreover, when the lighting system 300C is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图4A是图1A的另一种波长转换模块的正视示意图。图4B是图4A的波长转换模块的剖面示意图。图4A的波长转换模块420A与图1B的波长转换模块120类似,而差异如下所述。在本实施例中,波长转换模块420A的环状波长转换层423A可具有多个点状微结构DA,而能使来自激发光源110的一部分激发光束50被转换为第一色光60Y。FIG. 4A is a schematic front view of another wavelength conversion module in FIG. 1A . FIG. 4B is a schematic cross-sectional view of the wavelength conversion module in FIG. 4A . The wavelength conversion module 420A of FIG. 4A is similar to the wavelength conversion module 120 of FIG. 1B , and the differences are as follows. In this embodiment, the ring-shaped wavelength conversion layer 423A of the wavelength conversion module 420A can have a plurality of dot-like microstructures DA, so that a part of the excitation light beam 50 from the excitation light source 110 can be converted into the first color light 60Y.

举例而言,如图4B所示,环状波长转换层423A的多个点状微结构DA可由波长转换材料构成,多个点状微结构DA之间具有不配置波长转换材料的空隙CA,当部分激发光束50入射至所述多个点状微结构DA时,所述部分激发光束50被转换为第一色光60Y。而这些空隙CA对应波长转换模块420A的非转换区NT,当另一部分激发光束50通过非转换区NT(这些空隙CA)后,则借由位于非转换区NT的基板121或是环状散光层122而出射第二色光60B。For example, as shown in FIG. 4B , the multiple dot-like microstructures DA of the ring-shaped wavelength conversion layer 423A may be made of wavelength conversion materials, and there are gaps CA without wavelength conversion materials between the multiple dot-like microstructures DA. When the partial excitation light beam 50 is incident on the plurality of point microstructures DA, the partial excitation light beam 50 is converted into the first color light 60Y. These gaps CA correspond to the non-converting region NT of the wavelength conversion module 420A. When another part of the excitation beam 50 passes through the non-converting region NT (these gaps CA), it passes through the substrate 121 or the annular light scattering layer located in the non-converting region NT. 122 to emit the second color light 60B.

如此一来,波长转换模块420A借由环状波长转换区OT的配置,可使来自同一激发光源110的激发光束50的一第一部分被转换为第一色光60Y,而另一第二部分形成第二色光60B。举例而言,在本实施例中,第二部分的激发光束50与激发光束50的比例数值范围介于5%至30%。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。In this way, the wavelength conversion module 420A can convert a first part of the excitation light beam 50 from the same excitation light source 110 into the first color light 60Y through the configuration of the annular wavelength conversion region OT, and the other second part forms Second color light 60B. For example, in this embodiment, the ratio of the second part of the excitation beam 50 to the excitation beam 50 ranges from 5% to 30%. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

如此,在本实施例中,波长转换模块420A与图1B的波长转换模块120相似,而能达到相同的功能,因此波长转换模块420A能达到与前述的波长转换模块120类似的效果与优点,在此就不再赘述。并且,当波长转换模块420A应用至前述的照明系统100A、200A、200B、300A、300B、300C以及投影装置100时,亦能使照明系统100A、200A、200B、300A、300B、300C以及投影装置100达到类似的效果与优点,在此就不再赘述。Thus, in this embodiment, the wavelength conversion module 420A is similar to the wavelength conversion module 120 of FIG. I won't repeat it here. Moreover, when the wavelength conversion module 420A is applied to the aforementioned lighting systems 100A, 200A, 200B, 300A, 300B, 300C and the projection device 100 , it can also make the lighting systems 100A, 200A, 200B, 300A, 300B, 300C and the projection device 100 Similar effects and advantages are achieved, which will not be repeated here.

图4C是图1A的另一种波长转换模块的剖面示意图。图4C的波长转换模块420C与图4A的波长转换模块120类似,而差异如下所述。在本实施例中,当环状波长转换层423C满足一吸光条件时,第二部分的激发光束50在通过环状波长转换层423C后形成第二色光60B,吸光条件为环状波长转换层423C中波长转换材料的体积浓度介于30%至85%之间,或是环状波长转换层423C的厚度介于0.03mm至0.3mm之间。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。FIG. 4C is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A . The wavelength conversion module 420C of FIG. 4C is similar to the wavelength conversion module 120 of FIG. 4A , and the differences are as follows. In this embodiment, when the ring-shaped wavelength conversion layer 423C satisfies a light absorption condition, the second part of the excitation light beam 50 forms the second color light 60B after passing through the ring-shaped wavelength conversion layer 423C, and the light absorption condition is that the ring-shaped wavelength conversion layer 423C The volume concentration of the medium wavelength conversion material is between 30% and 85%, or the thickness of the annular wavelength conversion layer 423C is between 0.03 mm and 0.3 mm. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

如此一来,波长转换模块420C借由环状波长转换区OT的配置,可使来自同一激发光源110的激发光束50的一第一部分被转换为第一色光60Y,而另一第二部分形成第二色光60B。举例而言,在本实施例中,第二部分的激发光束50与激发光束50的比例数值范围介于5%至30%。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。In this way, the wavelength conversion module 420C can convert a first part of the excitation light beam 50 from the same excitation light source 110 into the first color light 60Y through the configuration of the annular wavelength conversion region OT, and the other second part forms Second color light 60B. For example, in this embodiment, the ratio of the second part of the excitation beam 50 to the excitation beam 50 ranges from 5% to 30%. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

如此,在本实施例中,波长转换模块420C与图1B的波长转换模块120相似,而能达到相同的功能,因此波长转换模块420C能达到与前述的波长转换模块120类似的效果与优点,在此就不再赘述。并且,当波长转换模块420C应用至前述的照明系统100A、200A、200B、300A、300B、300C以及投影装置100时,亦能使照明系统100A、200A、200B、300A、300B、300C以及投影装置100达到类似的效果与优点,在此就不再赘述。Thus, in this embodiment, the wavelength conversion module 420C is similar to the wavelength conversion module 120 of FIG. I won't repeat it here. Moreover, when the wavelength conversion module 420C is applied to the aforementioned lighting systems 100A, 200A, 200B, 300A, 300B, 300C and the projection device 100 , it can also make the lighting systems 100A, 200A, 200B, 300A, 300B, 300C and the projection device 100 Similar effects and advantages are achieved, which will not be repeated here.

图4D是图1A的另一种波长转换模块的正视示意图。图4E是图1A的另一种波长转换模块的剖面示意图。图4D与图4E的波长转换模块420D、420E分别与图1B与图4A的波长转换模块120、420A类似,而差异如下所述。本实施例中,波长转换模块420D、420E的基板121为一散射基板,且环状波长转换层123(或是环状波长转换层423A)直接配置于基板121上,而可省略环状散光层122的配置。在图4D的实施例中,基板121未被环状波长转换层123所遮挡的部分可分别于环状波长转换层123的内侧形成第一环状散光区OD1以及于环状波长转换层123的外侧形成第二环状散光区OD2,而第一环状散光区OD1以及第二环状散光区OD2对应于波长转换模块420D的非转换区NT。在图4E的实施例中,环状波长转换层423A的多个点状微结构DA间的空隙CA与其下的基板121的区域则对应波长转换模块420E的非转换区NT。FIG. 4D is a schematic front view of another wavelength conversion module in FIG. 1A . FIG. 4E is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A . The wavelength conversion modules 420D and 420E in FIG. 4D and FIG. 4E are similar to the wavelength conversion modules 120 and 420A in FIG. 1B and FIG. 4A respectively, and the differences are as follows. In this embodiment, the substrate 121 of the wavelength conversion modules 420D and 420E is a scattering substrate, and the annular wavelength conversion layer 123 (or the annular wavelength conversion layer 423A) is directly disposed on the substrate 121, and the annular scattering layer can be omitted. 122 configuration. In the embodiment of FIG. 4D , the part of the substrate 121 that is not blocked by the annular wavelength conversion layer 123 can form the first annular astigmatism area OD1 inside the annular wavelength conversion layer 123 and the first annular light astigmatism region OD1 on the inner side of the annular wavelength conversion layer 123. The second annular astigmatism area OD2 is formed outside, and the first annular astigmatism area OD1 and the second annular astigmatism area OD2 correspond to the non-conversion area NT of the wavelength conversion module 420D. In the embodiment shown in FIG. 4E , the gap CA between the dot-like microstructures DA of the annular wavelength conversion layer 423A and the area of the substrate 121 below corresponds to the non-conversion region NT of the wavelength conversion module 420E.

如此,当激发光束50入射波长转换模块420D、420E,经由波长转换模块420D、420E使第一部分的激发光束50被转换为第一色光60Y以及使第二部分的激发光束50形成第二色光60B,而达到与前述的波长转换模块120类似的效果与优点,在此就不再赘述。并且,当波长转换模块420D、420E应用至前述的照明系统100A、200A、200B、300A、300B、300C以及投影装置100时,亦能使照明系统100A、200A、200B、300A、300B、300C以及投影装置100达到类似的效果与优点,在此就不再赘述。In this way, when the excitation beam 50 is incident on the wavelength conversion modules 420D and 420E, the first part of the excitation beam 50 is converted into the first color light 60Y and the second part of the excitation beam 50 is converted into the second color light 60B via the wavelength conversion modules 420D and 420E. , so as to achieve similar effects and advantages to those of the aforementioned wavelength conversion module 120 , which will not be repeated here. Moreover, when the wavelength conversion modules 420D and 420E are applied to the aforementioned lighting systems 100A, 200A, 200B, 300A, 300B, 300C and the projection device 100, the lighting systems 100A, 200A, 200B, 300A, 300B, 300C and the projection The device 100 achieves similar effects and advantages, which will not be repeated here.

图4F与图4G是图1A的各种波长转换模块的剖面示意图。图4F与图4G的波长转换模块420F、420G分别与图1B与图4A的波长转换模块120、420A类似,而差异如下所述。在本实施例中,图4F与图4G的环状波长转换层423F、423G的外径边缘会与基板121的外径边缘切齐,入射波长转换模块420F、420G的激发光束50入射至波长转换模块420F、420G时,激发光束50的一部分照射于环状波长转换层423F、423G上,激发光束50的另一部分则没有照射于环状波长转换层423F、423G上,例如照射于基板121之外。如此,激发光束50入射波长转换模块420F、420G后,经由波长转换模块420F、420G使第一部分的激发光束50被转换为第一色光60Y以及使第二部分的激发光束50形成第二色光60B,而达到与前述的波长转换模块120、420A类似的效果与优点,在此就不再赘述。并且,当波长转换模块420F、420G应用至前述的照明系统100A、200A、200B、300A、300B、300C以及投影装置100时,亦能使照明系统100A、200A、200B、300A、300B、300C以及投影装置100达到类似的效果与优点,在此就不再赘述。4F and 4G are schematic cross-sectional views of various wavelength conversion modules in FIG. 1A . The wavelength conversion modules 420F and 420G in FIG. 4F and FIG. 4G are similar to the wavelength conversion modules 120 and 420A in FIG. 1B and FIG. 4A respectively, and the differences are as follows. In this embodiment, the outer diameter edges of the ring-shaped wavelength conversion layers 423F and 423G in FIG. 4F and FIG. In the case of the modules 420F and 420G, a part of the excitation beam 50 is irradiated on the ring-shaped wavelength conversion layers 423F and 423G, and the other part of the excitation beam 50 is not irradiated on the ring-shaped wavelength conversion layers 423F and 423G, for example, it is irradiated outside the substrate 121 . In this way, after the excitation beam 50 is incident on the wavelength conversion modules 420F and 420G, the first part of the excitation beam 50 is converted into the first color light 60Y and the second part of the excitation beam 50 is converted into the second color light 60B via the wavelength conversion modules 420F and 420G. , so as to achieve effects and advantages similar to those of the aforementioned wavelength conversion modules 120 and 420A, which will not be repeated here. Moreover, when the wavelength conversion modules 420F and 420G are applied to the aforementioned lighting systems 100A, 200A, 200B, 300A, 300B, 300C and the projection device 100, the lighting systems 100A, 200A, 200B, 300A, 300B, 300C and the projection The device 100 achieves similar effects and advantages, which will not be repeated here.

图5A是图1A的另一种照明系统的架构示意图。图5B是图5A的一种波长转换模块的俯视示意图。图5C是图5B的波长转换模块的剖面示意图。图5A的照明系统500A与图1A的照明系统100A类似,而差异如下所述。在本实施例中,照明系统500A还包括一曲面反射元件540以及一第一光均匀化元件550A。具体而言,如图5A所示,在本实施例中,曲面反射元件540位于激发光源110与波长转换模块520之间,其中来自激发光源110的激发光束50通过曲面反射元件540上的一光通过区TR后,传递至波长转换模块520。举例而言,在本实施例中,光通过区TR1例如借由在曲面反射元件540形成一通孔,或是在曲面反射元件540的一部分区域上镀有能使蓝光穿透的分色膜而形成。FIG. 5A is a schematic structural diagram of another lighting system in FIG. 1A . FIG. 5B is a schematic top view of a wavelength conversion module in FIG. 5A . FIG. 5C is a schematic cross-sectional view of the wavelength conversion module in FIG. 5B . The lighting system 500A of FIG. 5A is similar to the lighting system 100A of FIG. 1A with the differences described below. In this embodiment, the lighting system 500A further includes a curved reflective element 540 and a first light homogenizing element 550A. Specifically, as shown in FIG. 5A, in this embodiment, the curved reflective element 540 is located between the excitation light source 110 and the wavelength conversion module 520, wherein the excitation light beam 50 from the excitation light source 110 passes through a light on the curved reflective element 540. After passing through the region TR, it is passed to the wavelength conversion module 520 . For example, in this embodiment, the light passing region TR1 is formed by, for example, forming a through hole in the curved reflective element 540, or coating a part of the curved reflective element 540 with a dichroic film that allows blue light to pass through. .

此外,在本实施例中,图5B的波长转换模块520与图1B的波长转换模块120类似,而差异如下所述。波长转换模块520的基板521为一反射基板,且环状散光层522可由漫反射物质所构成,而形成一环状反射散射层,且环状散光层522位于反射基板521以及环状波长转换层123之间。换言之,在本实施例中,波长转换模块520的环状散光层522还包括一第一环状反射区OR1与一第二环状反射区OR2,第一环状反射区OR1与第二环状反射区OR2位于基板521上且对应于波长转换模块520的非转换区NT。环状波长转换层123位于第一环状反射区OR1与第二环状反射区OR2之间,且环状波长转换层123围绕第一环状反射区OR1,并被第二环状反射区OR2所围绕。如此,由于第一环状反射区OR1及第二环状反射区OR2亦可以破坏激光光束的同调性,而具有消除激光散斑的功能,因此当激发光束50通过第一环状反射区OR1及第二环状反射区OR2时,则能形成蓝光,并消除激光散斑现象。In addition, in this embodiment, the wavelength conversion module 520 in FIG. 5B is similar to the wavelength conversion module 120 in FIG. 1B , and the differences are as follows. The substrate 521 of the wavelength conversion module 520 is a reflective substrate, and the annular light-scattering layer 522 can be made of a diffuse reflective material to form an annular reflective scattering layer, and the annular light-scattering layer 522 is located between the reflective substrate 521 and the annular wavelength conversion layer Between 123. In other words, in this embodiment, the annular light-scattering layer 522 of the wavelength conversion module 520 further includes a first annular reflective region OR1 and a second annular reflective region OR2, and the first annular reflective region OR1 and the second annular reflective region The reflection region OR2 is located on the substrate 521 and corresponds to the non-conversion region NT of the wavelength conversion module 520 . The annular wavelength conversion layer 123 is located between the first annular reflective region OR1 and the second annular reflective region OR2, and the annular wavelength conversion layer 123 surrounds the first annular reflective region OR1 and is surrounded by the second annular reflective region OR2 surrounded by. In this way, since the first annular reflective region OR1 and the second annular reflective region OR2 can also destroy the coherence of the laser beam, and have the function of eliminating laser speckle, when the excitation beam 50 passes through the first annular reflective region OR1 and In the case of the second annular reflection region OR2, blue light can be formed and laser speckle phenomenon can be eliminated.

如此一来,波长转换模块520借由环状波长转换区OT、第一环状反射区OR1及第二环状反射区OR2的配置,亦可使来自同一激发光源110的激发光束50的一第一部分被环状波长转换区OT转换为第一色光60Y,而另一第二部分则经由第一环状反射区OR1及第二环状反射区OR2而形成第二色光60B。举例而言,在本实施例中,第二部分的激发光束50与激发光束50的比例数值范围介于5%至30%。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。In this way, the wavelength conversion module 520 can also make a first excitation beam 50 from the same excitation light source 110 through the arrangement of the annular wavelength conversion region OT, the first annular reflection region OR1 and the second annular reflection region OR2. A part is converted into the first color light 60Y by the ring-shaped wavelength conversion region OT, and another second part forms the second color light 60B through the first ring-shaped reflective region OR1 and the second ring-shaped reflective region OR2. For example, in this embodiment, the ratio of the second part of the excitation beam 50 to the excitation beam 50 ranges from 5% to 30%. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

进一步而言,如图5A所示,在本实施例中,曲面反射元件540为一椭圆反射元件,来自激发光源110的激发光束50通过曲面反射元件540的光通过区TR1而汇聚至曲面反射元件540的一焦点F1,波长转换模块520位于焦点F1上,第一光均匀化元件550A的入光端IE位于曲面反射元件540的另一焦点F2。在激发光束50经由波长转换模块520而产生第一色光60Y与第二色光60B后,来自波长转换模块520的第一色光60Y与第二色光60B则可经由曲面反射元件540被反射至第一光均匀化元件550A的入光端IE。在本实施例中,第一光均匀化元件550A可为一积分柱,但本发明不局限于此。如此,当来自波长转换模块520的第一色光60Y与第二色光60B被传递至第一光均匀化元件550A时,第一光均匀化元件550A可使第一色光60Y与第二色光60B均匀化后形成照明光束70。Further, as shown in FIG. 5A , in this embodiment, the curved reflective element 540 is an elliptical reflective element, and the excitation beam 50 from the excitation light source 110 passes through the light passing region TR1 of the curved reflective element 540 and converges to the curved reflective element. 540 , the wavelength conversion module 520 is located on the focal point F1 , and the light incident end IE of the first light homogenizing element 550A is located on the other focal point F2 of the curved reflective element 540 . After the excitation beam 50 passes through the wavelength conversion module 520 to generate the first color light 60Y and the second color light 60B, the first color light 60Y and the second color light 60B from the wavelength conversion module 520 can be reflected to the first color light 60Y through the curved reflective element 540 A light incident end IE of the light homogenizing element 550A. In this embodiment, the first light homogenizing element 550A can be an integrating rod, but the invention is not limited thereto. In this way, when the first color light 60Y and the second color light 60B from the wavelength conversion module 520 are delivered to the first light homogenizing element 550A, the first light homogenizing element 550A can make the first color light 60Y and the second color light 60B After homogenization, an illumination beam 70 is formed.

在本实施例中,由于波长转换模块520与图2A的波长转换模块120具有类似的结构,因此波长转换模块520能达到与前述的波长转换模块120类似的效果与优点,在此就不再赘述。并且,由于照明系统500A采用了波长转换模块520,因此亦能达到与前述的照明系统100A类似的效果与优点,在此就不再赘述。并且,当照明系统500A应用至投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this embodiment, since the wavelength conversion module 520 has a similar structure to the wavelength conversion module 120 in FIG. 2A , the wavelength conversion module 520 can achieve similar effects and advantages as those of the aforementioned wavelength conversion module 120, and details will not be repeated here. . Moreover, since the lighting system 500A adopts the wavelength conversion module 520 , it can also achieve similar effects and advantages as the lighting system 100A mentioned above, so it will not be repeated here. Moreover, when the lighting system 500A is applied to the projection device 100 , the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图5D是图5A的另一种波长转换模块的俯视示意图。图5E是图5D的波长转换模块的剖面示意图。图5D及图5E的波长转换模块520D与图4A的波长转换模块420A类似,而差异如下所述。在本实施例中,波长转换模块520D的基板521为一反射基板,且环状散光层522可由漫反射物质所构成,而形成一环状反射散射层。FIG. 5D is a schematic top view of another wavelength conversion module of FIG. 5A . FIG. 5E is a schematic cross-sectional view of the wavelength conversion module in FIG. 5D . The wavelength conversion module 520D in FIG. 5D and FIG. 5E is similar to the wavelength conversion module 420A in FIG. 4A , and the differences are as follows. In this embodiment, the substrate 521 of the wavelength conversion module 520D is a reflective substrate, and the annular light scattering layer 522 can be made of a diffuse reflective material to form an annular reflective scattering layer.

如此一来,波长转换模块520D借由环状波长转换区OT中多个点状微结构DA的配置,可使来自同一激发光源110的激发光束50的一第一部分被转换为第一色光60Y,而另一第二部分通过非转换区NT(这些空隙CA)后形成第二色光60B。举例而言,在本实施例中,第二部分的激发光束50与激发光束50的比例数值范围介于5%至30%。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。In this way, the wavelength conversion module 520D can convert a first part of the excitation light beam 50 from the same excitation light source 110 into the first color light 60Y through the arrangement of multiple point-like microstructures DA in the annular wavelength conversion region OT. , and another second part passes through the non-converting region NT (the gaps CA) to form the second color light 60B. For example, in this embodiment, the ratio of the second part of the excitation beam 50 to the excitation beam 50 ranges from 5% to 30%. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

在本实施例中,由于波长转换模块520D与图4A的波长转换模块420A具有类似的结构,因此波长转换模块520D能达到与前述的波长转换模块420A类似的效果与优点,在此就不再赘述。并且,当波长转换模块520D应用至前述的照明系统500A以及投影装置100时,亦能使照明系统500A以及投影装置100达到类似的效果与优点,在此就不再赘述。In this embodiment, since the wavelength conversion module 520D has a similar structure to the wavelength conversion module 420A in FIG. 4A , the wavelength conversion module 520D can achieve similar effects and advantages as the aforementioned wavelength conversion module 420A, and details will not be repeated here. . Moreover, when the wavelength conversion module 520D is applied to the lighting system 500A and the projection device 100 mentioned above, the lighting system 500A and the projection device 100 can also achieve similar effects and advantages, and details will not be repeated here.

图5F是图1A的另一种波长转换模块的剖面示意图。图5F的波长转换模块520F与图5D的波长转换模块520D类似,而差异如下所述。在本实施例中,当环状波长转换层523F满足一吸光条件时,第二部分的激发光束50在通过环状波长转换层523F后形成第二色光60B,吸光条件为环状波长转换层523F中波长转换材料的体积浓度介于30%至85%之间,或是环状波长转换层523F的厚度介于0.03mm至0.3mm之间。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。FIG. 5F is a schematic cross-sectional view of another wavelength conversion module in FIG. 1A . The wavelength conversion module 520F of FIG. 5F is similar to the wavelength conversion module 520D of FIG. 5D , and the differences are as follows. In this embodiment, when the ring-shaped wavelength conversion layer 523F satisfies a light absorption condition, the second part of the excitation light beam 50 forms the second color light 60B after passing through the ring-shaped wavelength conversion layer 523F, and the light absorption condition is that the ring-shaped wavelength conversion layer 523F The volume concentration of the medium wavelength conversion material is between 30% and 85%, or the thickness of the annular wavelength conversion layer 523F is between 0.03 mm and 0.3 mm. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

如此一来,波长转换模块520F借由环状波长转换区OT的配置,可使来自同一激发光源110的激发光束50的一第一部分被转换为第一色光60Y,而另一第二部分形成第二色光60B。举例而言,在本实施例中,第二部分的激发光束50与激发光束50的比例数值范围介于5%至30%。应注意的是,此处的数值范围皆仅是作为例示说明之用,其并非用以限定本发明。In this way, the wavelength conversion module 520F can convert a first part of the excitation light beam 50 from the same excitation light source 110 into the first color light 60Y through the configuration of the annular wavelength conversion region OT, and the other second part forms Second color light 60B. For example, in this embodiment, the ratio of the second part of the excitation beam 50 to the excitation beam 50 ranges from 5% to 30%. It should be noted that the numerical ranges herein are used for illustration only, and are not intended to limit the present invention.

在本实施例中,由于波长转换模块520F与图5D的波长转换模块520D具有类似的结构,因此波长转换模块520F能达到与前述的波长转换模块520D类似的效果与优点,在此就不再赘述。并且,当波长转换模块520F应用至前述的照明系统500A以及投影装置100时,亦能使照明系统500A以及投影装置100达到类似的效果与优点,在此就不再赘述。In this embodiment, since the wavelength conversion module 520F has a similar structure to the wavelength conversion module 520D in FIG. 5D , the wavelength conversion module 520F can achieve similar effects and advantages as the aforementioned wavelength conversion module 520D, and details will not be repeated here. . Moreover, when the wavelength conversion module 520F is applied to the lighting system 500A and the projection device 100 mentioned above, the lighting system 500A and the projection device 100 can also achieve similar effects and advantages, and details will not be repeated here.

图6A是图1A的另一种照明系统的架构示意图。图6A的照明系统600A与图5A的照明系统500A类似,而差异如下所述。在本实施例中,照明系统600A还包括一辅助光源AL。辅助光源AL用于发出一辅助光束60R,辅助光束60R的波段与第一色光60Y的波段至少部分重叠,其中辅助光束60R通过曲面反射元件540后,传递至第一光均匀化元件550A的入光端IE。FIG. 6A is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 600A of FIG. 6A is similar to the lighting system 500A of FIG. 5A with the differences described below. In this embodiment, the lighting system 600A further includes an auxiliary light source AL. The auxiliary light source AL is used to emit an auxiliary light beam 60R, the wavelength band of the auxiliary light beam 60R at least partially overlaps with the wavelength band of the first color light 60Y, wherein the auxiliary light beam 60R passes through the curved surface reflective element 540, and is transmitted to the entrance of the first light homogenizing element 550A. Optical end IE.

举例而言,如图6A所示,在本实施例中,照明系统600A还包括一第三分色元件640,设置在辅助光束60R的传递路径上。第三分色元件640例如为具有红光反射作用的分色镜(DMR),而可让蓝光穿透,并对红光提供反射作用。光通过区TR1例如借由在曲面反射元件540形成一通孔,或是在曲面反射元件540的一部分区域上镀有能使蓝光及红光穿透的分色膜而形成。如此,辅助光束60R可经由第三分色元件640的传递而通过曲面反射元件540的光通过区TR1,而依序被波长转换模块520以及曲面反射元件540反射后,能被传递至第一光均匀化元件550A的入光端IE。如此,辅助光束60R、第一色光60Y以及第二色光60B即可在经过第一光均匀化元件550A后合并形成照明光束70。For example, as shown in FIG. 6A , in this embodiment, the lighting system 600A further includes a third dichroic element 640 disposed on the transmission path of the auxiliary light beam 60R. The third dichroic element 640 is, for example, a dichroic mirror (DMR) having a red light reflection function, which allows blue light to pass through and provides reflection for red light. The light passing region TR1 is formed by, for example, forming a through hole in the curved reflective element 540 , or coating a part of the curved reflective element 540 with a dichroic film that allows blue light and red light to pass through. In this way, the auxiliary light beam 60R can pass through the light passing region TR1 of the curved reflective element 540 through the transmission of the third dichroic element 640, and then be reflected by the wavelength conversion module 520 and the curved reflective element 540 in sequence, and then be transmitted to the first light beam 60R. The light incident end IE of the homogenizing element 550A. In this way, the auxiliary light beam 60R, the first color light 60Y and the second color light 60B can combine to form the illumination light beam 70 after passing through the first light homogenizing element 550A.

如此一来,照明系统600A借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,照明系统600A由于亦能采用与前述照明系统500A所能采用的波长转换模块520(或是波长转换模块520D、520F)的结构,因此照明系统600A能达到与前述的照明系统500A类似的效果与优点,在此就不再赘述。并且,当照明系统600A应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the configuration of the auxiliary light source AL in the lighting system 600A can increase the proportion of red light in the lighting beam 70 , thereby improving the red color performance of the projected image. In addition, in this embodiment, since the illumination system 600A can also adopt the structure of the wavelength conversion module 520 (or the wavelength conversion modules 520D, 520F) that can be adopted by the aforementioned illumination system 500A, the illumination system 600A can achieve the same structure as the aforementioned Similar effects and advantages of the lighting system 500A will not be repeated here. Moreover, when the lighting system 600A is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图6B是图1A的另一种照明系统的架构示意图。图6B的照明系统600B与图6A的照明系统600A类似,而差异如下所述。在本实施例中,曲面反射元件540具有另一光通过区TR2,设置在辅助光束60R的传递路径上。具体而言,如图6B所示,在本实施例中,辅助光束60R能经由光通过区TR2而直接传递至第一光均匀化元件550A的入光端IE。如此,辅助光束60R与来自波长转换模块520以及曲面反射元件540的第一色光60Y以及第二色光60B即可在经过第一光均匀化元件550A后合并形成照明光束70。FIG. 6B is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 600B of FIG. 6B is similar to the lighting system 600A of FIG. 6A with the differences described below. In this embodiment, the curved reflective element 540 has another light passing region TR2 disposed on the transmission path of the auxiliary light beam 60R. Specifically, as shown in FIG. 6B , in this embodiment, the auxiliary light beam 60R can directly pass through the light passing region TR2 to the light incident end IE of the first light homogenizing element 550A. In this way, the auxiliary light beam 60R, the first color light 60Y and the second color light 60B from the wavelength conversion module 520 and the curved reflective element 540 can be combined to form the illumination light beam 70 after passing through the first light homogenizing element 550A.

如此一来,照明系统600B借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,照明系统600B由于亦能采用与前述照明系统600A所能采用的波长转换模块520(或是波长转换模块520D、520F)的结构,因此照明系统600B能达到与前述的照明系统600A类似的效果与优点,在此就不再赘述。并且,当照明系统600B应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the lighting system 600B can increase the proportion of red light in the lighting beam 70 through the configuration of the auxiliary light source AL, thereby improving the red color performance of the projected image. In addition, in this embodiment, since the lighting system 600B can also adopt the structure of the wavelength conversion module 520 (or the wavelength conversion modules 520D, 520F) that can be used in the aforementioned lighting system 600A, the lighting system 600B can achieve the same structure as the aforementioned Similar effects and advantages of the lighting system 600A will not be repeated here. Moreover, when the lighting system 600B is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图6C是图1A的另一种照明系统的架构示意图。图6C的照明系统600C与图5A的照明系统500A类似,而差异如下所述。在本实施例中,照明系统600C还包括一辅助光源AL、一第二光均匀化元件550B以及第三分色元件640。辅助光源AL用于发出一辅助光束60R,辅助光束60R的波段与第一色光60Y的波段至少部分重叠。FIG. 6C is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 600C of FIG. 6C is similar to the lighting system 500A of FIG. 5A with the differences described below. In this embodiment, the lighting system 600C further includes an auxiliary light source AL, a second light homogenizing element 550B and a third dichroic element 640 . The auxiliary light source AL is used to emit an auxiliary light beam 60R, the wavelength band of the auxiliary light beam 60R at least partially overlaps with the wavelength band of the first color light 60Y.

具体而言,如图6C所示,第二光均匀化元件550B位于辅助光束60R的传递路径上,适于均匀化辅助光束60R。另一方面,第三分色元件640位于辅助光束60R与来自第一光均匀化元件550A的第一色光60Y与第二色光60B的传递路径上。举例而言,在本实施例中第三分色元件640能反射辅助光束60R,而使部分第一色光60G及第二色光60B穿透,但本发明不局限于此。在另一实施例中,第三分色元件640能使辅助光束60R穿透,而反射部分第一色光60G及第二色光60B。如此,来自第一光均匀化元件550A的部分第一色光60G与第二色光60B以及来自第二光均匀化元件550B的辅助光束60R在经过第三分色元件640后,能形成照明光束70。Specifically, as shown in FIG. 6C , the second light homogenizing element 550B is located on the transmission path of the auxiliary light beam 60R, and is suitable for homogenizing the auxiliary light beam 60R. On the other hand, the third dichroic element 640 is located on the transmission path of the auxiliary light beam 60R and the first color light 60Y and the second color light 60B from the first light homogenizing element 550A. For example, in this embodiment, the third dichroic element 640 can reflect the auxiliary light beam 60R and allow part of the first color light 60G and the second color light 60B to pass through, but the invention is not limited thereto. In another embodiment, the third dichroic element 640 can transmit the auxiliary light beam 60R and reflect part of the first color light 60G and the second color light 60B. In this way, part of the first color light 60G and the second color light 60B from the first light homogenizing element 550A and the auxiliary beam 60R from the second light homogenizing element 550B can form an illumination beam 70 after passing through the third dichroic element 640 .

如此一来,照明系统600C借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,照明系统600C由于亦能采用与前述照明系统500A所能采用的波长转换模块520(或是波长转换模块520D、520F)的结构,因此照明系统600C能达到与前述的照明系统500A类似的效果与优点,在此就不再赘述。并且,当照明系统600C应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the lighting system 600C can increase the proportion of red light in the lighting beam 70 through the configuration of the auxiliary light source AL, thereby improving the red color performance of the projected image. In addition, in this embodiment, since the lighting system 600C can also adopt the structure of the wavelength conversion module 520 (or the wavelength conversion modules 520D, 520F) that can be used in the aforementioned lighting system 500A, the lighting system 600C can achieve the same structure as the aforementioned Similar effects and advantages of the lighting system 500A will not be repeated here. Moreover, when the lighting system 600C is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图7A是图1A的另一种照明系统的架构示意图。图7B是图7A的一种分光元件的俯视示意图。在本实施例中,照明系统700A包括激发光源110、前述的波长转换模块520(或是波长转换模块520D、520F)、一第四分色元件730以及光均匀化元件150。关于激发光源110、波长转换模块520(或是波长转换模块520D、520F)以及光均匀化元件150的结构细节说明,请参照前述相关段落,在此不再赘述。FIG. 7A is a schematic structural diagram of another lighting system in FIG. 1A . FIG. 7B is a schematic top view of a light splitting element in FIG. 7A . In this embodiment, the illumination system 700A includes the excitation light source 110 , the aforementioned wavelength conversion module 520 (or the wavelength conversion modules 520D and 520F ), a fourth dichroic element 730 and the light homogenizing element 150 . For the structural details of the excitation light source 110 , the wavelength conversion module 520 (or the wavelength conversion modules 520D and 520F ) and the light homogenizing element 150 , please refer to the relevant paragraphs above, and details will not be repeated here.

具体而言,如图7A所示,在本实施例中,第四分色元件730位于激发光源110与波长转换模块520之间,其中第四分色元件730具有一第一区730A与一第二区730B,第二区730B环绕第一区730A。举例而言,在本实施例中,第四分色元件730的第一区730A可为一通孔,或是在其上镀有能使蓝光穿透,并反射黄光的分色膜而形成。另一方面,第四分色元件730的第二区730B其上则可镀有反射镀膜,而能反射蓝光与黄光。Specifically, as shown in FIG. 7A, in this embodiment, the fourth dichroic element 730 is located between the excitation light source 110 and the wavelength conversion module 520, wherein the fourth dichroic element 730 has a first region 730A and a first The second area 730B, the second area 730B surrounds the first area 730A. For example, in this embodiment, the first region 730A of the fourth dichroic element 730 can be formed by a through hole, or coated with a dichroic film that allows blue light to pass through and reflects yellow light. On the other hand, the second region 730B of the fourth dichroic element 730 can be coated with a reflective coating to reflect blue light and yellow light.

如此,如图7A所示,在本实施例中,第四分色元件730的第一区730A能使激发光束50穿透而传递至波长转换模块520。入射波长转换模块520的激发光束50被转换为第一色光60Y及第二色光60B后被反射回第四分色元件730。之后,第四分色元件730的第一区730A反射第一色光60Y,而第二区730B反射来自波长转换模块520的第一色光60Y及第二色光60B。如此,第一色光60Y及第二色光60B则可经由第四分色元件730而被导引至光均匀化元件150,而形成照明光束70。As such, as shown in FIG. 7A , in the present embodiment, the first region 730A of the fourth dichroic element 730 can pass the excitation beam 50 to the wavelength conversion module 520 . The excitation light beam 50 incident on the wavelength conversion module 520 is converted into the first color light 60Y and the second color light 60B and then reflected back to the fourth dichroic element 730 . Then, the first region 730A of the fourth dichroic element 730 reflects the first color light 60Y, and the second region 730B reflects the first color light 60Y and the second color light 60B from the wavelength conversion module 520 . In this way, the first color light 60Y and the second color light 60B can be guided to the light homogenizing element 150 through the fourth dichroic element 730 to form the illumination beam 70 .

此外,如图7A所示,在本实施例中,照明系统700A还可选择性地包括一辅助光源AL。辅助光源AL用于发出一辅助光束60R,辅助光束60R的波段与第一色光60Y的波段至少部分重叠。在本实施例中,辅助光束60R例如为红光。当照明系统700A包括辅助光源AL时,第四分色元件730的第一区730A可为一通孔,或是在其上镀有能使蓝光及红光穿透,并反射绿光的分色膜,第四分色元件730的第二区730B则可选择镀有能使红光穿透,并反射其他颜色光束的分色膜。如此,辅助光束60R、部分第一色光60G以及第二色光60B在经过第四分色元件730后被导引至光均匀化元件150,而合并形成照明光束70。In addition, as shown in FIG. 7A , in this embodiment, the lighting system 700A may optionally include an auxiliary light source AL. The auxiliary light source AL is used to emit an auxiliary light beam 60R, the wavelength band of the auxiliary light beam 60R at least partially overlaps with the wavelength band of the first color light 60Y. In this embodiment, the auxiliary light beam 60R is, for example, red light. When the lighting system 700A includes the auxiliary light source AL, the first area 730A of the fourth dichroic element 730 can be a through hole, or a dichroic film that can transmit blue light and red light and reflect green light can be coated on it. The second region 730B of the fourth dichroic element 730 can optionally be coated with a dichroic film that allows red light to pass through and reflect light beams of other colors. In this way, the auxiliary light beam 60R, part of the first color light 60G and the second color light 60B are guided to the light homogenizing element 150 after passing through the fourth dichroic element 730 , and combined to form the illumination light beam 70 .

如此一来,在本实施例中,照明系统700A由于亦能采用与前述照明系统500A所能采用的波长转换模块520(或是波长转换模块520D、520F)的结构,因此照明系统700A能达到与前述的照明系统500A类似的效果与优点,在此就不再赘述。并且,当照明系统700A应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。此外,照明系统700A借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。In this way, in this embodiment, since the lighting system 700A can also adopt the structure of the wavelength conversion module 520 (or the wavelength conversion modules 520D and 520F) that can be used in the aforementioned lighting system 500A, the lighting system 700A can achieve the same structure as that of the aforementioned lighting system 500A. Similar effects and advantages to the aforementioned lighting system 500A will not be repeated here. Moreover, when the lighting system 700A is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here. In addition, the configuration of the auxiliary light source AL in the lighting system 700A can increase the proportion of red light in the lighting beam 70 , thereby improving the red color performance of the projected image.

图8A是图1A的另一种照明系统的架构示意图。图8B是图8A的一种分光元件的俯视示意图。图8A的照明系统800A与图7A的照明系统700A类似,而差异如下所述。在本实施例中,第四分色元件730的第一区730A上镀有能使黄光穿透,并反射蓝光的分色膜,而能反射激发光束50且使第一色光60Y穿透。第四分色元件730的第二区730B则可为透明区域,而能使来自波长转换模块520(或是波长转换模块520D、520F)的第一色光60Y及第二色光60B穿透。FIG. 8A is a schematic structural diagram of another lighting system in FIG. 1A . FIG. 8B is a schematic top view of a light splitting element of FIG. 8A . The lighting system 800A of FIG. 8A is similar to the lighting system 700A of FIG. 7A with the differences described below. In this embodiment, the first region 730A of the fourth dichroic element 730 is coated with a dichroic film that can transmit yellow light and reflect blue light, and can reflect the excitation beam 50 and transmit the first color light 60Y. . The second region 730B of the fourth dichroic element 730 can be a transparent region, which can transmit the first color light 60Y and the second color light 60B from the wavelength conversion module 520 (or the wavelength conversion modules 520D, 520F).

如此,如图8A所示,在本实施例中,第四分色元件730的第一区730A能反射激发光束50而使其传递至波长转换模块520。入射波长转换模块520的激发光束50被转换为第一色光60Y及第二色光60B后被传递至第四分色元件730。之后,第四分色元件730的第一区730A使第一色光60Y穿透,而第二区730B使来自波长转换模块120的第一色光60Y及第二色光60B穿透。如此,第一色光60Y及第二色光60B则可经由第四分色元件730而被导引至光均匀化元件150,而形成照明光束70。In this way, as shown in FIG. 8A , in this embodiment, the first region 730A of the fourth dichroic element 730 can reflect the excitation beam 50 and transmit it to the wavelength conversion module 520 . The excitation light beam 50 incident on the wavelength conversion module 520 is converted into the first color light 60Y and the second color light 60B and then delivered to the fourth dichroic element 730 . After that, the first area 730A of the fourth dichroic element 730 allows the first color light 60Y to pass through, and the second area 730B allows the first color light 60Y and the second color light 60B from the wavelength conversion module 120 to pass through. In this way, the first color light 60Y and the second color light 60B can be guided to the light homogenizing element 150 through the fourth dichroic element 730 to form the illumination beam 70 .

此外,如图8A所示,在本实施例中,照明系统800A亦可选择性地包括一辅助光源AL。当照明系统800A包括辅助光源AL时,第四分色元件730的第一区730A上可镀有能使绿光穿透,并反射蓝光及红光的分色膜,第二区730B则可镀有能反射红光,并使其他颜色光束穿透的分色膜。如此,辅助光束60R、部分第一色光60G以及第二色光60B在经过第四分色元件730后被导引至光均匀化元件150,而合并形成照明光束70。In addition, as shown in FIG. 8A , in this embodiment, the lighting system 800A may also optionally include an auxiliary light source AL. When the lighting system 800A includes the auxiliary light source AL, the first area 730A of the fourth dichroic element 730 can be coated with a dichroic film that can transmit green light and reflect blue light and red light, and the second area 730B can be coated with There are dichroic coatings that reflect red light and allow light beams of other colors to pass through. In this way, the auxiliary light beam 60R, part of the first color light 60G and the second color light 60B are guided to the light homogenizing element 150 after passing through the fourth dichroic element 730 , and combined to form the illumination light beam 70 .

如此一来,在本实施例中,照明系统800A由于亦能采用与前述照明系统700A所能采用的波长转换模块520(或是波长转换模块520D、520F)的结构,因此照明系统800A能达到与前述的照明系统700A类似的效果与优点,在此就不再赘述。并且,当照明系统800A应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。此外,照明系统800A借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。In this way, in this embodiment, since the lighting system 800A can also adopt the structure of the wavelength conversion module 520 (or the wavelength conversion modules 520D and 520F) that can be used in the aforementioned lighting system 700A, the lighting system 800A can achieve the same structure as that of the aforementioned lighting system 700A. Similar effects and advantages to the aforementioned lighting system 700A will not be repeated here. Moreover, when the lighting system 800A is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here. In addition, the configuration of the auxiliary light source AL in the lighting system 800A can increase the proportion of red light in the lighting beam 70 , thereby enhancing the red color performance of the projected image.

图9A是图1A的另一种照明系统的架构示意图。图9B是图9A的一种波长转换模块的俯视示意图。图9C是图9B的波长转换模块的剖面示意图。在本实施例中,图9A的照明系统900A与图8A的照明系统800A类似,图9B的波长转换模块920与图5B的波长转换模块520类似,而差异如下所述。在本实施例的波长转换模块920中,环状散光层122被一镜反射层922所取代,而构成第一环状反射区OR1与第二环状反射区OR2。此外,照明系统900A不包括第四分色元件730,而是包括一第五分色元件930A、一第六分色元件930B、一第一聚光透镜组940A以及一第二聚光透镜组940B。FIG. 9A is a schematic structural diagram of another lighting system in FIG. 1A . FIG. 9B is a schematic top view of a wavelength conversion module in FIG. 9A . FIG. 9C is a schematic cross-sectional view of the wavelength conversion module in FIG. 9B . In this embodiment, the illumination system 900A of FIG. 9A is similar to the illumination system 800A of FIG. 8A , the wavelength conversion module 920 of FIG. 9B is similar to the wavelength conversion module 520 of FIG. 5B , and the differences are as follows. In the wavelength conversion module 920 of this embodiment, the annular light scattering layer 122 is replaced by a specular reflective layer 922 to form the first annular reflective region OR1 and the second annular reflective region OR2 . In addition, the lighting system 900A does not include the fourth dichroic element 730, but includes a fifth dichroic element 930A, a sixth dichroic element 930B, a first condenser lens group 940A, and a second condenser lens group 940B .

具体而言,如图9A所示,在本实施例中,第五分色元件930A位于激发光源110与波长转换模块920之间,且第一聚光透镜组940A位于第五分色元件930A、第六分色元件930B与波长转换模块920之间。在本实施例中,第五分色元件930A例如为具有蓝光反射作用的分色镜(DMB)。如此,来自激发光源110的激发光束50借由第五分色元件930A导引至第一聚光透镜组940A,再经由第一聚光透镜组940A斜向入射至波长转换模块920后转换为第一色光60Y与第二色光60B。Specifically, as shown in FIG. 9A, in this embodiment, the fifth dichroic element 930A is located between the excitation light source 110 and the wavelength conversion module 920, and the first condenser lens group 940A is located between the fifth dichroic element 930A, Between the sixth dichroic element 930B and the wavelength conversion module 920 . In this embodiment, the fifth dichroic element 930A is, for example, a dichroic mirror (DMB) having a blue light reflection function. In this way, the excitation light beam 50 from the excitation light source 110 is guided to the first condensing lens group 940A by the fifth dichroic element 930A, and then obliquely incident on the wavelength conversion module 920 through the first condensing lens group 940A and then converted into the first condensing lens group 940A. A color light 60Y and a second color light 60B.

并且,由于本实施例的波长转换模块920与图5B的波长转换模块520具有类似的结构,同样可借由环状波长转换区OT的配置,可使来自同一激发光源110的激发光束50的一第一部分被转换为第一色光60Y,而借由第一环状反射区OR1与第二环状反射区OR2的配置,另一第二部分则形成第二色光60B。因此波长转换模块920能达到与前述的波长转换模块520类似的效果与优点,在此就不再赘述。Moreover, since the wavelength conversion module 920 of this embodiment has a similar structure to the wavelength conversion module 520 in FIG. The first part is converted into the first color light 60Y, and the second part forms the second color light 60B through the configuration of the first ring-shaped reflective region OR1 and the second ring-shaped reflective region OR2. Therefore, the wavelength conversion module 920 can achieve effects and advantages similar to those of the aforementioned wavelength conversion module 520 , which will not be repeated here.

接着,如图9A所示,在本实施例中,第六分色元件930B可为蓝光的半反射半透射元件(Blue Half Mirror,BHM),而能使部分的第二色光60B穿透,并反射另一部分的第二色光60B,且能使其他颜色的光束(即第一色光60Y)穿透。Next, as shown in FIG. 9A , in this embodiment, the sixth dichroic element 930B can be a half-reflective and semi-transmissive element (Blue Half Mirror, BHM) for blue light, so that part of the second color light 60B can pass through, and Another part of the second color light 60B is reflected, and light beams of other colors (that is, the first color light 60Y) can pass through.

如此,由于经波长转换模块920的环状波长转换区OT转换而来的第一色光60Y,其发散角度较大,因此来自波长转换模块920的第一色光60Y会斜向入射至第一聚光透镜组940A,且在经过第五分色元件930A及第六分色元件930B后传递至第二聚光透镜组940B。In this way, since the first color light 60Y converted by the annular wavelength conversion region OT of the wavelength conversion module 920 has a relatively large divergence angle, the first color light 60Y from the wavelength conversion module 920 will obliquely incident on the first color light 60Y. Condensing lens group 940A, and pass through fifth dichroic element 930A and sixth dichroic element 930B to second converging lens group 940B.

另一方面,经波长转换模块920的第一环状反射区OR1或第二环状反射区OR2反射而形成的第二色光60B,由于本实施例的第一环状反射区OR1与第二环状反射区OR2是由镜反射层而构成,因此来自波长转换模块920的第二色光60B会偏心斜向入射至第一聚光透镜组940A后传递至第六分色元件930B。第六分色元件930B再使部分的第二色光60B穿透,并反射另一部分的第二色光60B。如此,经过第六分色元件930B后,部分的第二色光60B会因反射而被传递至第五分色元件930A后再被反射至第二聚光透镜组940B,而另一部分的第二色光60B则会穿透第六分色元件930B后直接传递至第二聚光透镜组940B。On the other hand, the second color light 60B formed by being reflected by the first annular reflective region OR1 or the second annular reflective region OR2 of the wavelength conversion module 920 is due to the first annular reflective region OR1 and the second annular reflective region of this embodiment. The shape reflective region OR2 is made of a specular reflective layer, so the second color light 60B from the wavelength conversion module 920 will be eccentrically and obliquely incident on the first condenser lens group 940A and then transmitted to the sixth dichroic element 930B. The sixth dichroic element 930B transmits part of the second color light 60B and reflects another part of the second color light 60B. In this way, after passing through the sixth dichroic element 930B, part of the second color light 60B will be transmitted to the fifth dichroic element 930A due to reflection, and then reflected to the second condenser lens group 940B, while the other part of the second color light 60B will pass through the sixth dichroic element 930B and then be directly transmitted to the second condenser lens group 940B.

接着,如图9A所示,在本实施例中,第二聚光透镜组940B位于来自第五分色元件930A以及第六分色元件930B的第二色光60B以及第一色光60Y的传递路径上,而用于会聚来自第五分色元件930A以及第六分色元件930B的第二色光60B以及第一色光60Y。如此,第一色光60Y以及第二色光60B在经过第二聚光透镜组940B后被导引至光均匀化元件150,而合并形成照明光束70。Next, as shown in FIG. 9A, in this embodiment, the second condensing lens group 940B is located in the transmission path of the second color light 60B and the first color light 60Y from the fifth dichroic element 930A and the sixth dichroic element 930B. , which is used to converge the second color light 60B and the first color light 60Y from the fifth dichroic element 930A and the sixth dichroic element 930B. In this way, the first color light 60Y and the second color light 60B are guided to the light homogenizing element 150 after passing through the second condenser lens group 940B, and combined to form the illumination beam 70 .

如此一来,在本实施例中,照明系统900A由于采用了能达到与前述的波长转换模块520类似的功能的波长转换模块920的结构,因此照明系统900A能达到与前述的照明系统500A类似的效果与优点,在此就不再赘述。并且,当照明系统900A应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, in this embodiment, since the lighting system 900A adopts the structure of the wavelength conversion module 920 that can achieve similar functions to the aforementioned wavelength conversion module 520, the lighting system 900A can achieve similar functions to the aforementioned lighting system 500A. The effects and advantages will not be repeated here. Moreover, when the lighting system 900A is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图9D是图9A的另一种波长转换模块的俯视示意图。图9E是图9D的波长转换模块的剖面示意图。图9D的波长转换模块920D与图5D的波长转换模块520D类似,而差异如下所述。在本实施例的波长转换模块920D中,环状散光层122被一镜反射层922所取代,而构成一环状镜反射层。如此,波长转换模块920D仍可借由环状波长转换区OT中多个点状微结构DA的配置,可使来自同一激发光源110的激发光束50的一第一部分被转换为第一色光60Y,而另一第二部分通过空隙CA后形成第二色光60B。FIG. 9D is a schematic top view of another wavelength conversion module of FIG. 9A . FIG. 9E is a schematic cross-sectional view of the wavelength conversion module in FIG. 9D . The wavelength conversion module 920D of FIG. 9D is similar to the wavelength conversion module 520D of FIG. 5D , and the differences are as follows. In the wavelength conversion module 920D of this embodiment, the annular light-scattering layer 122 is replaced by a specular reflection layer 922 to form a circular specular reflection layer. In this way, the wavelength conversion module 920D can still convert a first part of the excitation light beam 50 from the same excitation light source 110 into the first color light 60Y through the arrangement of multiple point-like microstructures DA in the annular wavelength conversion region OT. , and another second part forms the second color light 60B after passing through the gap CA.

在本实施例中,由于波长转换模块920D与图5D的波长转换模块520D具有类似的结构,因此波长转换模块920D能达到与前述的波长转换模块520D类似的效果与优点,在此就不再赘述。并且,当波长转换模块920D应用至前述的照明系统900A以及投影装置100时,亦能使照明系统900A以及投影装置100达到类似的效果与优点,在此就不再赘述。In this embodiment, since the wavelength conversion module 920D has a similar structure to the wavelength conversion module 520D shown in FIG. 5D , the wavelength conversion module 920D can achieve similar effects and advantages as the aforementioned wavelength conversion module 520D, and details will not be repeated here. . Moreover, when the wavelength conversion module 920D is applied to the lighting system 900A and the projection device 100 mentioned above, the lighting system 900A and the projection device 100 can also achieve similar effects and advantages, and details will not be repeated here.

另外,另一实施例的波长转换模块与图9D的波长转换模块920D类似,而差异为,环状散光层122被一镜反射层所取代。而波长转换模块还具有特定吸光条件的环状波长转换区,在本实施例中,具有特定吸光条件的环状波长转换区的波长转换模块与图5D的波长转换模块920D具有类似的结构,当具有特定吸光条件的环状波长转换区的波长转换模块应用至前述的照明系统900A以及投影装置100时,亦能使照明系统900A以及投影装置100达到类似的效果与优点,在此就不再赘述。In addition, the wavelength conversion module of another embodiment is similar to the wavelength conversion module 920D of FIG. 9D , but the difference is that the annular light scattering layer 122 is replaced by a mirror reflection layer. The wavelength conversion module also has a ring-shaped wavelength conversion region with a specific light absorption condition. In this embodiment, the wavelength conversion module with a ring-shaped wavelength conversion region with a specific light absorption condition has a similar structure to the wavelength conversion module 920D in FIG. 5D. When the wavelength conversion module of the ring-shaped wavelength conversion region with specific light absorption conditions is applied to the aforementioned lighting system 900A and projection device 100, the lighting system 900A and projection device 100 can also achieve similar effects and advantages, and will not be repeated here. .

图10是图1A的另一种照明系统的架构示意图。图10的照明系统1000A与图9A的照明系统900A类似,而差异如下所述。在本实施例中,照明系统1000A还包括一辅助光源AL。辅助光源AL用于发出一辅助光束60R,辅助光束60R的波段与第一色光60Y的波段至少部分重叠。在本实施例中,辅助光束60R例如为红光。FIG. 10 is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 1000A of FIG. 10 is similar to the lighting system 900A of FIG. 9A with the differences described below. In this embodiment, the lighting system 1000A further includes an auxiliary light source AL. The auxiliary light source AL is used to emit an auxiliary light beam 60R, the wavelength band of the auxiliary light beam 60R at least partially overlaps with the wavelength band of the first color light 60Y. In this embodiment, the auxiliary light beam 60R is, for example, red light.

并且,在本实施例中,第五分色元件930A例如为具有蓝光与红光反射作用的分色镜(DMBR)。第六分色元件930B为蓝光与红光的半反射半透射元件(Blue&Red Half Mirror,BRHM),而能使部分的辅助光束60R与第二色光60B穿透,并反射另一部分的辅助光束60R与第二色光60B。Moreover, in this embodiment, the fifth dichroic element 930A is, for example, a dichroic mirror (DMBR) having blue light and red light reflection functions. The sixth dichroic element 930B is a semi-reflective and semi-transmissive element (Blue & Red Half Mirror, BRHM) of blue light and red light, which can make part of the auxiliary light beam 60R and the second color light 60B penetrate, and reflect another part of the auxiliary light beam 60R and the second color light 60B. Second color light 60B.

此外,如图10所示,在本实施例中,第六分色元件930B位于辅助光束60R的传递路径上。如此,第六分色元件930B能使部分的辅助光束60R穿透而使其传递至第五分色元件930A,并反射另一部分的辅助光束60R而使其传递至第二聚光透镜组940B。并且,如图10所示,在本实施例中,第五分色元件930A能反射激发光束50,且反射来自第六分色元件930B的第二色光60B及辅助光束60R,并使来自波长转换模块920的部分第一色光60G穿透。如此,来自第五分色元件930A、第六分色元件930B的辅助光束60R、第二色光60B以及部分第一色光60G在经过第二聚光透镜组940B后合并形成照明光束70。In addition, as shown in FIG. 10 , in this embodiment, the sixth dichroic element 930B is located on the transmission path of the auxiliary light beam 60R. In this way, the sixth dichroic element 930B can pass part of the auxiliary light beam 60R to pass to the fifth dichroic element 930A, and reflect another part of the auxiliary light beam 60R to pass to the second condenser lens group 940B. Moreover, as shown in FIG. 10, in this embodiment, the fifth dichroic element 930A can reflect the excitation beam 50, and reflect the second color light 60B and the auxiliary light beam 60R from the sixth dichroic element 930B, and convert the light from the wavelength Part of the first color light 60G of the module 920 passes through. In this way, the auxiliary beam 60R, the second color light 60B and part of the first color light 60G from the fifth dichroic element 930A and the sixth dichroic element 930B combine to form the illumination beam 70 after passing through the second condenser lens group 940B.

如此一来,照明系统1000A借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,照明系统1000A由于亦能采用与前述照明系统900A所能采用的波长转换模块920(或是波长转换模块920D、920F)的结构,因此照明系统1000A能达到与前述的照明系统900A类似的效果与优点,在此就不再赘述。并且,当照明系统1000A应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the lighting system 1000A can increase the proportion of red light in the lighting beam 70 through the configuration of the auxiliary light source AL, thereby improving the red color performance of the projected image. In addition, in this embodiment, since the lighting system 1000A can also adopt the structure of the wavelength conversion module 920 (or the wavelength conversion modules 920D and 920F) that can be used in the aforementioned lighting system 900A, the lighting system 1000A can achieve the same structure as the aforementioned Similar effects and advantages of the lighting system 900A will not be repeated here. Moreover, when the lighting system 1000A is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图11A是图1A的另一种照明系统的架构示意图。图10的照明系统1100A与图9A的照明系统900A类似,而差异如下所述。在本实施例中,第五分色元件930A例如为具有黄光反射作用的分色镜(DMY),且能使蓝光穿透,即第五分色元件930A能反射来自波长转换模块920的第一色光60Y,并使激发光束50与来自波长转换模块920的第二色光60B穿透。第六分色元件930B则可同时具有蓝光的半反射半透射元件(BHM)与黄光反射作用的分色镜(DMY)的功能。举例而言,第六分色元件930B可在相对的两表面上,分别镀有不同的分色膜,而可使其一面具有蓝光的半反射半透射元件的功能,另一面则具有黄光反射作用的分色镜的功能。如此,能使来自波长转换模块920的部分的第二色光60B穿透,并反射另一部分的第二色光60B,也反射来自波长转换模块920的第一色光60Y。FIG. 11A is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 1100A of FIG. 10 is similar to the lighting system 900A of FIG. 9A with the differences described below. In this embodiment, the fifth dichroic element 930A is, for example, a dichroic mirror (DMY) with a yellow light reflection function, and can transmit blue light, that is, the fifth dichroic element 930A can reflect the first dichroic mirror from the wavelength conversion module 920 One color light 60Y, and make the excitation beam 50 and the second color light 60B from the wavelength conversion module 920 pass through. The sixth dichroic element 930B can simultaneously have the functions of a semi-reflective and semi-transmissive element (BHM) for blue light and a dichroic mirror (DMY) for reflecting yellow light. For example, the sixth dichroic element 930B can be coated with different dichroic films on two opposite surfaces, so that one side can function as a semi-reflective and semi-transmissive element for blue light, while the other side can reflect yellow light. function of the dichroic mirror. In this way, part of the second color light 60B from the wavelength conversion module 920 can pass through, reflect another part of the second color light 60B, and also reflect the first color light 60Y from the wavelength conversion module 920 .

此外,如图11A所示,在本实施例中,照明系统1100A还包括一光传递模块941。光传递模块941位于第二色光60B的传递路径上。举例而言,在本实施例中,光传递模块941可为一反射元件,而可反射第二色光60B。如此,来自第六分色元件930B的部分的第二色光60B可经由光传递模块941依序被传递至第五分色元件930A及第二聚光透镜组940B。接着,如图11A所示,在本实施例中,来自第五分色元件930A、第六分色元件930B的第一色光60Y以及第二色光60B则能在经过第二聚光透镜组940B后再传递至光均匀化元件150而合并形成照明光束70。In addition, as shown in FIG. 11A , in this embodiment, the lighting system 1100A further includes a light transmission module 941 . The light transmission module 941 is located on the transmission path of the second color light 60B. For example, in this embodiment, the light transmission module 941 can be a reflective element, and can reflect the second color light 60B. In this way, part of the second color light 60B from the sixth dichroic element 930B can be sequentially transmitted to the fifth dichroic element 930A and the second condensing lens group 940B through the light transmission module 941 . Next, as shown in FIG. 11A , in this embodiment, the first color light 60Y and the second color light 60B from the fifth dichroic element 930A and the sixth dichroic element 930B can pass through the second condensing lens group 940B Then it is transmitted to the light homogenizing element 150 to combine to form the illumination beam 70 .

在本实施例中,照明系统1100A由于亦能采用与前述照明系统900A所能采用的波长转换模块920(或是波长转换模块920D、或是具有特定吸光条件的环状波长转换区的波长转换模块)的结构,因此照明系统1100A能达到与前述的照明系统900A类似的效果与优点,在此就不再赘述。并且,当照明系统1100A应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this embodiment, because the illumination system 1100A can also adopt the wavelength conversion module 920 (or the wavelength conversion module 920D, or the wavelength conversion module with a ring-shaped wavelength conversion region with a specific light absorption condition) that can be used in the aforementioned illumination system 900A ) structure, so the lighting system 1100A can achieve effects and advantages similar to those of the aforementioned lighting system 900A, which will not be repeated here. Moreover, when the lighting system 1100A is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图11B是图1A的另一种照明系统的架构示意图。图11B的照明系统1100B与图11A的照明系统1100A类似,而差异如下所述。在本实施例中,照明系统1100B还包括一辅助光源AL。辅助光源AL用于发出一辅助光束60R,辅助光束60R的波段与第一色光60Y的波段至少部分重叠。在本实施例中,辅助光束60R例如为红光。FIG. 11B is a schematic structural diagram of another lighting system in FIG. 1A . The lighting system 1100B of FIG. 11B is similar to the lighting system 1100A of FIG. 11A with the differences described below. In this embodiment, the lighting system 1100B further includes an auxiliary light source AL. The auxiliary light source AL is used to emit an auxiliary light beam 60R, the wavelength band of the auxiliary light beam 60R at least partially overlaps with the wavelength band of the first color light 60Y. In this embodiment, the auxiliary light beam 60R is, for example, red light.

并且,如图11B所示,在本实施例中,第五分色元件930A与第六分色元件930B位于辅助光束60R的传递路径上。具体而言,在本实施例中,第五分色元件930A例如为具有绿橘光反射作用的分色镜(DMGO),且能使蓝光穿透,而能反射来自波长转换模块920的部分第一色光60G,并使激发光束50与来自波长转换模块920的第二色光60B以及来自辅助光源AL的辅助光束60R穿透。第六分色元件930B则可同时具有蓝光的半反射半透射元件(BHM)与绿橘光反射作用的分色镜(DMY)的功能。举例而言,第六分色元件930B可在相对的两表面上,分别镀有不同的分色膜,而可使其一面具有蓝光的半反射半透射元件的功能,另一面则具有绿橘光反射作用的分色镜的功能。如此,能使来自波长转换模块920的部分的第二色光60B以及来自辅助光源AL的辅助光束60R穿透,并反射另一部分的第二色光60B,也反射来自波长转换模块920的部分第一色光60G。Moreover, as shown in FIG. 11B , in this embodiment, the fifth dichroic element 930A and the sixth dichroic element 930B are located on the transmission path of the auxiliary light beam 60R. Specifically, in this embodiment, the fifth dichroic element 930A is, for example, a dichroic mirror (DMGO) having a green-orange light reflection effect, and can allow blue light to pass through, and can reflect part of the first dichroic mirror from the wavelength conversion module 920. One color light 60G, and make the excitation beam 50, the second color light 60B from the wavelength conversion module 920 and the auxiliary light beam 60R from the auxiliary light source AL pass through. The sixth dichroic element 930B can simultaneously have the functions of a semi-reflective and semi-transmissive element (BHM) for blue light and a dichroic mirror (DMY) for reflecting green and orange light. For example, the sixth dichroic element 930B can be coated with different dichroic films on two opposite surfaces, so that one side can function as a semi-reflective and semi-transmissive element for blue light, and the other side can have green-orange light. The function of the reflective dichroic mirror. In this way, part of the second color light 60B from the wavelength conversion module 920 and the auxiliary light beam 60R from the auxiliary light source AL can pass through, and reflect another part of the second color light 60B, and also reflect part of the first color light from the wavelength conversion module 920. Light 60G.

另一方面,光传递模块941例如为具有蓝光反射作用的分色镜(DMB),而能使辅助光束60R穿透并反射第二色光60B。如此,如图11B所示,在本实施例中,辅助光束60R能穿透光传递模块941而被传递至第五分色元件930A与第六分色元件930B,并再穿透第五分色元件930A与第六分色元件930B。接着,如图11B所示,在本实施例中,来自第五分色元件930A、第六分色元件930B的辅助光束60R、第二色光60B以及部分第一色光60G在经过第二聚光透镜组940B后再传递至光均匀化元件150而合并形成照明光束70。On the other hand, the light transmission module 941 is, for example, a dichroic mirror (DMB) having a blue light reflection effect, so that the auxiliary light beam 60R can pass through and reflect the second color light 60B. In this way, as shown in FIG. 11B , in this embodiment, the auxiliary light beam 60R can pass through the light transmission module 941 and be transmitted to the fifth dichroic element 930A and the sixth dichroic element 930B, and then pass through the fifth dichroic element Element 930A and sixth dichroic element 930B. Next, as shown in FIG. 11B , in this embodiment, the auxiliary light beam 60R, the second color light 60B and part of the first color light 60G from the fifth dichroic element 930A and the sixth dichroic element 930B pass through the second concentrating light The lens group 940B is then transmitted to the light homogenizing element 150 to combine to form the illumination beam 70 .

如此一来,照明系统1100B借由辅助光源AL的配置,将能增加照明光束70中的红光比例,而能提升投影画面的红色色彩表现。此外,在本实施例中,照明系统1100B由于亦能采用与前述照明系统1100A所能采用的波长转换模块920(或是波长转换模块920D、或是具有特定吸光条件的环状波长转换区的波长转换模块)的结构,因此照明系统1100B能达到与前述的照明系统1100A类似的效果与优点,在此就不再赘述。并且,当照明系统1100B应用至前述的投影装置100时,亦能使投影装置100达到类似的效果与优点,在此就不再赘述。In this way, the illumination system 1100B can increase the proportion of red light in the illumination beam 70 through the configuration of the auxiliary light source AL, thereby enhancing the red color performance of the projected image. In addition, in this embodiment, since the illumination system 1100B can also use the wavelength conversion module 920 (or the wavelength conversion module 920D, or the wavelength of the ring-shaped wavelength conversion region with specific light absorption conditions) that can be used in the aforementioned illumination system 1100A conversion module), so the lighting system 1100B can achieve effects and advantages similar to those of the aforementioned lighting system 1100A, which will not be repeated here. Moreover, when the lighting system 1100B is applied to the above-mentioned projection device 100, the projection device 100 can also achieve similar effects and advantages, which will not be repeated here.

图12是本发明一实施例的另一种投影装置的架构示意图。图12的投影装置1200与图1A的投影装置100类似,而差异如下所述。在本实施例中,光阀LV的数量为二个,分别为光阀LV1、LV2,且投影装置1200采用了前述图2A实施例中的照明系统200A。FIG. 12 is a schematic structural diagram of another projection device according to an embodiment of the present invention. The projection device 1200 of FIG. 12 is similar to the projection device 100 of FIG. 1A , and the differences are as follows. In this embodiment, there are two light valves LV, which are respectively light valves LV1 and LV2, and the projection device 1200 adopts the lighting system 200A in the aforementioned embodiment of FIG. 2A .

具体而言,如图12所示,在本实施例中,激发光源110与辅助光源AL并不同时开启,而可依时序形成不同颜色的辅助光束60R、第二色光60B以及第一色光60Y(或部分第一色光60G)。接着,如图12所示,在本实施例中,分合光单元DC位于照明光束70的传递路径上,且适于将照明光束70转换成多个子照明光束70R、70G、70B。举例而言,如图12所示,分合光单元DC可包括具有蓝光反射作用的分色镜DMB及具有红光反射作用的分色镜DMR。如此,当激发光源110开启时,具有第二色光60B以及部分第一色光60G的照明光束70通过分色镜DMB时,能被依序分成子照明光束70B、70G后,被传递至后续所对应的光阀LV1、LV2上。接着,光阀LV1、LV2再将这些对应的多个子照明光束70G、70B转换成多个影像光束80G、80B。Specifically, as shown in FIG. 12 , in this embodiment, the excitation light source 110 and the auxiliary light source AL are not turned on at the same time, but the auxiliary light beam 60R, the second color light 60B and the first color light 60Y of different colors can be formed in sequence. (or part of the first color light 60G). Next, as shown in FIG. 12 , in this embodiment, the splitting and combining unit DC is located on the transmission path of the illuminating beam 70 and is suitable for converting the illuminating beam 70 into a plurality of sub-illuminating beams 70R, 70G, 70B. For example, as shown in FIG. 12 , the light splitting and combining unit DC may include a dichroic mirror DMB having a blue light reflecting function and a red light reflecting dichroic mirror DMR. In this way, when the excitation light source 110 is turned on, the illumination beam 70 having the second color light 60B and part of the first color light 60G can be sequentially divided into sub-illumination beams 70B and 70G when passing through the dichroic mirror DMB, and then delivered to subsequent on the corresponding light valves LV1 and LV2. Then, the light valves LV1 , LV2 convert the corresponding plurality of sub-illumination beams 70G, 70B into a plurality of image beams 80G, 80B.

另一方面,当辅助光源AL开启时,辅助光束60R则会穿透分合光单元DC的分色镜DMB而形成子照明光束70R并被传递至后续的其中一光阀LV1上。接着,光阀LV1再将子照明光束70R转换成对应的影像光束80R,这些影像光束80R、80G、80B接续透过分合光单元DC的分色镜DMR合并并传递至投影镜头PL。并且,投影镜头PL位于这些影像光束80R、80G、80B的传递路径上,且用于将多个影像光束80R、80G、80B转换成一投影光束90,并投影至一屏幕(未绘示)上,因此,所被投影出的影像画面便能够成为彩色画面。On the other hand, when the auxiliary light source AL is turned on, the auxiliary light beam 60R will pass through the dichroic mirror DMB of the light splitting unit DC to form a sub-illumination light beam 70R and be transmitted to one of the subsequent light valves LV1 . Next, the light valve LV1 converts the sub-illumination light beam 70R into corresponding image light beams 80R, and these image light beams 80R, 80G, 80B pass through the dichroic mirror DMR of the splitting unit DC to combine and transmit to the projection lens PL. Moreover, the projection lens PL is located on the transmission path of these image beams 80R, 80G, 80B, and is used to convert the plurality of image beams 80R, 80G, 80B into a projection beam 90, and project it onto a screen (not shown), Therefore, the projected video image can become a color image.

在本实施例中,投影装置1200亦采用了前述照明系统200A及其所采用的波长转换模块120的结构,因此投影装置1200能达到与前述的投影装置100类似的效果与优点,在此就不再赘述。并且,前述具有辅助光源AL的照明系统200B、200C、300B、300C、600A、600B、600C、700A、800A、1000A、1100B亦能取代本实施例的照明系统200A,而应用至投影装置1200,而亦能使投影装置1200达到类似的效果与优点,在此就不再赘述。In this embodiment, the projection device 1200 also adopts the aforementioned lighting system 200A and the structure of the wavelength conversion module 120 used therein, so the projection device 1200 can achieve effects and advantages similar to those of the aforementioned projection device 100. Let me repeat. Moreover, the aforementioned lighting systems 200B, 200C, 300B, 300C, 600A, 600B, 600C, 700A, 800A, 1000A, 1100B with auxiliary light sources AL can also replace the lighting system 200A of this embodiment and be applied to the projection device 1200, and The projection device 1200 can also achieve similar effects and advantages, which will not be repeated here.

综上所述,本发明的实施例至少具有以下其中一个优点或功效。在本发明的实施例中,照明系统与投影装置借由波长转换模块的环状波长转换区的配置,可使来自同一激发光源的激发光束的一部分被转换为第一色光,同时另一部分形成第二色光。如此,将可使得照明系统与投影装置在只需配置一激发光源的情况下,即可形成蓝、绿、红三种色光,而具有简单的结构以及简洁的光路布局。并且,由于照明系统以及投影装置的光路布局能被有效简化,因此亦可同时增加系统中其他构件的布局弹性。此外,由于照明系统与投影装置只需配置一激发光源,因此光源能量会被集中于一处,而能使得散热模块的设计复杂度降低,亦可有助于增加系统布局的设计弹性。此外,照明系统与投影装置借由辅助光源的配置,将能增加照明光束中的红光比例,而能提升投影画面的红色色彩表现。In summary, the embodiments of the present invention have at least one of the following advantages or effects. In the embodiment of the present invention, the lighting system and the projection device can convert part of the excitation light beam from the same excitation light source into the first color light through the configuration of the ring-shaped wavelength conversion region of the wavelength conversion module, while the other part forms Second shade. In this way, the lighting system and the projection device can form blue, green, and red colors of light with only one exciting light source, and have a simple structure and a concise optical path layout. Moreover, since the light path layout of the lighting system and the projection device can be effectively simplified, the layout flexibility of other components in the system can also be increased at the same time. In addition, since the lighting system and the projection device only need to be equipped with one exciting light source, the energy of the light source will be concentrated in one place, which can reduce the design complexity of the cooling module and help increase the design flexibility of the system layout. In addition, the lighting system and the projection device can increase the proportion of red light in the lighting beam through the configuration of the auxiliary light source, thereby improving the red color performance of the projection screen.

惟以上所述者,仅为本发明之较佳实施例而已,当不能以此限定本发明实施之范围,即所有依本发明权利要求书及发明内容所作之简单的等效变化与修改,皆仍属本发明专利涵盖之范围内。另外本发明的任一实施例或权利要求不须达成本发明所揭露之全部目的或优点或特点。此外,摘要和题目仅是用来辅助专利文件搜索之用,并非用来限制本发明之权利范围。此外,本说明书或权利要求书中提及的“第一”、“第二”等用语仅用以命名元件(element)的名称或区别不同实施例或范围,而并非用来限制元件数量上的上限或下限。But the above is only a preferred embodiment of the present invention, and should not limit the scope of the present invention, that is, all simple equivalent changes and modifications made according to the claims of the present invention and the contents of the invention are all Still belong to the scope covered by the patent of the present invention. In addition, any embodiment or claim of the present invention does not need to achieve all the objects or advantages or features disclosed in the present invention. In addition, the abstract and title are only used to assist in the search of patent documents, and are not used to limit the scope of rights of the present invention. In addition, terms such as "first" and "second" mentioned in the specification or claims are only used to name elements or to distinguish different embodiments or ranges, and are not used to limit the number of elements. upper or lower limit.

符号说明:Symbol Description:

50:激发光束50: excitation beam

60R:辅助光束60R: auxiliary beam

60Y、60G:第一色光60Y, 60G: the first shade

60B:第二色光60B: Second color light

70:照明光束70: Lighting Beam

70R、70G、70B:子照明光束70R, 70G, 70B: Sub-illumination beams

80R、80G、80B:影像光束80R, 80G, 80B: image beam

90:投影光束90: projected beam

100、1200:投影装置100, 1200: projection device

100A、200A、200B、300A、300B、300C、500A、600A、600B、600C、700A、800A、900A、1000A、1100A、1100B:照明系统100A, 200A, 200B, 300A, 300B, 300C, 500A, 600A, 600B, 600C, 700A, 800A, 900A, 1000A, 1100A, 1100B: lighting system

110:激发光源110: excitation light source

120、420A、420C、420D、420E、420F、420G、520、520D、520F、920、920D:波长转换模块120, 420A, 420C, 420D, 420E, 420F, 420G, 520, 520D, 520F, 920, 920D: wavelength conversion module

121、521:基板121, 521: Substrate

122、522:环状散光层122, 522: annular astigmatism layer

123、423A、423C、423F、423G、523F:环状波长转换层123, 423A, 423C, 423F, 423G, 523F: circular wavelength conversion layer

130:第一分色元件130: The first color separation element

140、941:光传递模块140, 941: optical transmission module

150:光均匀化元件150: Light homogenizing element

241:第二分色元件241: Second color separation element

540:曲面反射元件540: Surface reflective element

550A:第一光均匀化元件550A: The first light homogenizing element

550B:第二光均匀化元件550B: Second light homogenizing element

640:第三分色元件640: The third color separation element

700A照明系统700A lighting system

730:第四分色元件730: Fourth color separation element

730A:第一区730A: Zone 1

730B:第二区730B: Second District

900A:照明系统900A: Lighting system

922:镜反射层922: mirror reflection layer

930A:第五分色元件930A: Fifth color separation element

930B:第六分色元件930B: Sixth color separation element

940A:第一聚光透镜组940A: The first condenser lens group

940B:第二聚光透镜组940B: Second condenser lens group

AL:辅助光源AL: auxiliary light source

CA:空隙CA: void

DC:分合光单元DC: split light unit

DM1、DM2、DMB、DMR:分色镜DM1, DM2, DMB, DMR: dichroic mirrors

DA:点状微结构DA: dotted microstructure

F1、F2:焦点F1, F2: focus

IE:入光端IE: light input end

LV、LV1、LV2、LV3:光阀LV, LV1, LV2, LV3: light valve

NT:非转换区NT: non-transition area

OD1:第一环状散光区OD1: first annular astigmatism zone

OD2:第二环状散光区OD2: second annular astigmatism

OR1:第一环状反射区OR1: the first annular reflection area

OR2:第二环状反射区OR2: the second annular reflection area

OT:环状波长转换区OT: annular wavelength conversion region

PL:投影镜头PL: projection lens

RL:反射层RL: reflective layer

SP:光斑SP: spot

TR1、TR2:光通过区。TR1, TR2: Light passing regions.

Claims (24)

1.一种照明系统,用于提供照明光束,其特征在于,所述照明系统包括激发光源以及波长转换模块,其中,1. An illumination system for providing an illumination beam, characterized in that the illumination system comprises an excitation light source and a wavelength conversion module, wherein, 所述激发光源用于发出激发光束;以及The excitation light source is used to emit an excitation beam; and 所述波长转换模块位于所述激发光束的传递路径上,且具有环状波长转换区,当所述激发光束被传递至所述波长转换模块时,所述激发光束于所述波长转换模块上形成光斑,至少部分所述光斑位于所述环状波长转换区上,且第一部分的所述激发光束入射于所述环状波长转换区而转换为第一色光,第二部分的所述激发光束入射于所述波长转换模块而形成第二色光,其中所述第一色光与所述第二色光同时自所述波长转换模块出光,而所述照明光束包括所述第一色光与所述第二色光,且所述第二部分的所述激发光束与所述激发光束的比例数值范围介于5%至30%。The wavelength conversion module is located on the transmission path of the excitation beam and has an annular wavelength conversion region. When the excitation beam is transmitted to the wavelength conversion module, the excitation beam is formed on the wavelength conversion module. A light spot, at least part of the light spot is located on the ring-shaped wavelength conversion region, and the first part of the excitation beam is incident on the ring-shaped wavelength conversion region and converted into the first color light, and the second part of the excitation beam Incident to the wavelength conversion module to form a second color light, wherein the first color light and the second color light are emitted from the wavelength conversion module at the same time, and the illumination light beam includes the first color light and the The second color light, and the ratio of the exciting light beam to the exciting light beam in the second part ranges from 5% to 30%. 2.根据权利要求1所述的照明系统,其特征在于,所述波长转换模块包括:2. The lighting system according to claim 1, wherein the wavelength conversion module comprises: 基板;以及substrate; and 环状波长转换层,位于所述基板上,且对应于所述环状波长转换区设置。The ring-shaped wavelength conversion layer is located on the substrate and arranged corresponding to the ring-shaped wavelength conversion region. 3.根据权利要求2所述的照明系统,其特征在于,所述波长转换模块还具有非转换区,其中至少部分所述光斑位于所述非转换区上,且所述第二部分的所述激发光束入射于所述非转换区而形成所述第二色光。3. The lighting system according to claim 2, wherein the wavelength conversion module further has a non-conversion area, wherein at least part of the light spot is located on the non-conversion area, and the second part of the The excitation light beam is incident on the non-conversion area to form the second color light. 4.根据权利要求3所述的照明系统,其特征在于,所述波长转换模块包括第一环状散光区与第二环状散光区,所述第一环状散光区及所述第二环状散光区位于所述基板上且对应于所述非转换区,其中所述环状波长转换层位于所述第一环状散光区与所述第二环状散光区之间,且所述环状波长转换层围绕所述第一环状散光区,并被所述第二环状散光区所围绕。4. The lighting system according to claim 3, wherein the wavelength conversion module comprises a first annular astigmatism area and a second annular astigmatism area, and the first annular astigmatism area and the second annular astigmatism area A shaped astigmatism region is located on the substrate and corresponds to the non-converting region, wherein the annular wavelength conversion layer is located between the first annular astigmatism region and the second annular astigmatism region, and the annular A wavelength conversion layer surrounds the first annular astigmatism region and is surrounded by the second annular astigmatism region. 5.根据权利要求3所述的照明系统,其特征在于,所述环状波长转换层具有多个点状微结构,所述多个点状微结构由波长转换材料构成,所述多个点状微结构之间具有不配置波长转换材料的空隙且所述多个空隙对应所述非转换区,其中所述第二部分的所述激发光束通过所述基板的所述非转换区后而形成所述第二色光。5. The lighting system according to claim 3, wherein the ring-shaped wavelength conversion layer has a plurality of point-like microstructures, the plurality of point-like microstructures are composed of wavelength conversion materials, and the plurality of point-like microstructures are formed of wavelength conversion materials. There are gaps without wavelength conversion material between the microstructures and the plurality of gaps correspond to the non-conversion region, wherein the second part of the excitation light beam is formed after passing through the non-conversion region of the substrate the second color light. 6.根据权利要求2所述的照明系统,其特征在于,当所述环状波长转换层满足吸光条件时,所述第二部分的所述激发光束在通过所述环状波长转换层后形成所述第二色光,所述吸光条件为所述环状波长转换层中波长转换材料的体积浓度介于30%至85%之间,或是所述环状波长转换层的厚度介于0.03mm至0.3mm之间。6. The lighting system according to claim 2, wherein when the ring-shaped wavelength conversion layer satisfies the light absorption condition, the second part of the excitation light beam is formed after passing through the ring-shaped wavelength conversion layer For the second color light, the light absorption condition is that the volume concentration of the wavelength conversion material in the ring-shaped wavelength conversion layer is between 30% and 85%, or the thickness of the ring-shaped wavelength conversion layer is between 0.03mm to 0.3mm. 7.根据权利要求3所述的照明系统,其特征在于,所述波长转换模块还包括第一环状反射区与第二环状反射区,所述第一环状反射区与所述第二环状反射区位于所述基板上且对应于所述非转换区,其中所述环状波长转换层位于所述第一环状反射区与所述第二环状反射区之间,且所述环状波长转换层围绕所述第一环状反射区,并被所述第二环状反射区所围绕。7. The lighting system according to claim 3, wherein the wavelength conversion module further comprises a first annular reflective area and a second annular reflective area, the first annular reflective area and the second annular reflective area The annular reflective area is located on the substrate and corresponds to the non-conversion area, wherein the annular wavelength conversion layer is located between the first annular reflective area and the second annular reflective area, and the The annular wavelength conversion layer surrounds the first annular reflective area and is surrounded by the second annular reflective area. 8.根据权利要求2所述的照明系统,其特征在于,所述环状波长转换层的外径边缘与所述基板的外径边缘切齐。8. The lighting system according to claim 2, wherein the outer diameter edge of the annular wavelength conversion layer is aligned with the outer diameter edge of the substrate. 9.根据权利要求1所述的照明系统,其特征在于,所述第二色光与所述激发光束的颜色相同,且所述照明系统还包括:9. The lighting system according to claim 1, wherein the second color light is the same color as the exciting light beam, and the lighting system further comprises: 第一分色元件,位于所述激发光源与所述波长转换模块之间,所述激发光源的所述激发光束经由所述第一分色元件而传递至所述波长转换模块,所述波长转换模块将所述第一色光反射至所述第一分色元件;以及The first dichroic element is located between the excitation light source and the wavelength conversion module, the excitation light beam of the excitation light source is transmitted to the wavelength conversion module through the first dichroic element, and the wavelength conversion the module reflects the first color light to the first dichroic element; and 光传递模块,位于所述第二色光的传递路径上,用于将自所述波长转换模块出射的所述第二色光传递至所述第一分色元件。The light transmission module is located on the transmission path of the second color light, and is used for transmitting the second color light emitted from the wavelength conversion module to the first color separation element. 10.根据权利要求9所述的照明系统,其特征在于,还包括:10. The lighting system according to claim 9, further comprising: 辅助光源,用于发出辅助光束,所述辅助光束的波段与所述第一色光的波段至少部分重叠,其中第二分色元件位于所述第二色光及所述辅助光束的传递路径上,且所述辅助光束、所述第一色光以及所述第二色光经过所述第一分色元件及所述第二分色元件后合并形成所述照明光束。an auxiliary light source, configured to emit an auxiliary light beam, the wavelength band of the auxiliary light beam at least partially overlaps with the wavelength band of the first color light, wherein the second dichroic element is located on the transmission path of the second color light and the auxiliary light beam, And the auxiliary light beam, the first color light and the second color light are combined to form the illumination light beam after passing through the first color separation element and the second color separation element. 11.根据权利要求2所述的照明系统,其特征在于,所述基板为反射基板,所述第二色光与所述激发光束的颜色相同,且所述照明系统还包括:11. The lighting system according to claim 2, wherein the substrate is a reflective substrate, the second color light is the same color as the excitation light beam, and the lighting system further comprises: 曲面反射元件,位于所述激发光源与所述波长转换模块之间,其中来自所述激发光源的所述激发光束通过所述曲面反射元件上的光通过区后,传递至所述波长转换模块;以及A curved reflective element, located between the excitation light source and the wavelength conversion module, wherein the excitation light beam from the excitation light source is transmitted to the wavelength conversion module after passing through the light passing area on the curved reflective element; as well as 第一光均匀化元件,其中来自所述波长转换模块的所述第一色光与所述第二色光经由所述曲面反射元件被传递至所述第一光均匀化元件的入光端。The first light homogenizing element, wherein the first color light and the second color light from the wavelength conversion module are delivered to the light incident end of the first light homogenizing element via the curved reflective element. 12.根据权利要求11所述的照明系统,其特征在于,所述曲面反射元件为椭圆反射元件,来自所述激发光源的所述激发光束通过所述曲面反射元件的所述光通过区而汇聚至所述曲面反射元件的焦点,所述波长转换模块位于所述焦点上,所述第一光均匀化元件的所述入光端位于所述曲面反射元件的另一焦点。12. The lighting system according to claim 11, wherein the curved reflective element is an elliptical reflective element, and the excitation light beam from the excitation light source is converged through the light passing area of the curved reflective element To the focal point of the curved reflective element, the wavelength conversion module is located at the focal point, and the light incident end of the first light homogenizing element is located at another focal point of the curved reflective element. 13.根据权利要求11所述的照明系统,其特征在于,还包括:13. The lighting system according to claim 11, further comprising: 辅助光源,用于发出辅助光束,所述辅助光束的波段与所述第一色光的波段至少部分重叠,其中所述辅助光束通过所述曲面反射元件上后,传递至所述第一光均匀化元件的所述入光端。The auxiliary light source is used to emit an auxiliary light beam, the wavelength band of the auxiliary light beam overlaps at least partly with the wavelength band of the first color light, wherein the auxiliary light beam passes through the curved surface reflective element, and then transmits to the first light uniform The light incident end of the chemical element. 14.根据权利要求11所述的照明系统,其特征在于,还包括:14. The lighting system according to claim 11, further comprising: 辅助光源,用于发出辅助光束,所述辅助光束的波段与所述第一色光的波段至少部分重叠;an auxiliary light source, configured to emit an auxiliary light beam, the wavelength band of the auxiliary light beam at least partially overlaps with the wavelength band of the first color light; 第二光均匀化元件,位于所述辅助光束的传递路径上,用于均匀化所述辅助光束;以及a second light homogenizing element, located on the delivery path of the auxiliary light beam, for homogenizing the auxiliary light beam; and 第三分色元件,位于所述辅助光束的传递路径上,其中来自所述第一光均匀化元件的所述第一色光与所述第二色光以及来自所述第二光均匀化元件的所述辅助光束在经过所述第三分色元件后形成所述照明光束。The third dichroic element is located on the transmission path of the auxiliary light beam, wherein the first color light and the second color light from the first light homogenizing element and the light from the second light homogenizing element The auxiliary beam forms the illumination beam after passing through the third dichroic element. 15.根据权利要求2所述的照明系统,其特征在于,所述基板为反射基板,所述第二色光与所述激发光束的颜色相同,且所述照明系统还包括:15. The lighting system according to claim 2, wherein the substrate is a reflective substrate, the second color light is the same color as the excitation light beam, and the lighting system further comprises: 第四分色元件,位于所述激发光源与所述波长转换模块之间,其中所述第四分色元件具有第一区与第二区,所述第二区环绕所述第一区。The fourth dichroic element is located between the exciting light source and the wavelength conversion module, wherein the fourth dichroic element has a first area and a second area, and the second area surrounds the first area. 16.根据权利要求15所述的照明系统,其特征在于,所述第四分色元件的所述第一区能使所述激发光束穿透而反射所述第一色光,所述第二区能反射来自所述波长转换模块的所述第一色光及所述第二色光。16. The lighting system according to claim 15, characterized in that, the first region of the fourth dichroic element can allow the excitation light beam to pass through and reflect the first color light, and the second A region is capable of reflecting the first color light and the second color light from the wavelength conversion module. 17.根据权利要求15所述的照明系统,其特征在于,所述第四分色元件的所述第一区能反射所述激发光束且使所述第一色光穿透,所述第二区能使来自所述波长转换模块的所述第一色光及所述第二色光穿透。17. The lighting system according to claim 15, wherein the first region of the fourth dichroic element can reflect the excitation beam and allow the first color light to pass through, and the second A region is capable of transmitting the first color light and the second color light from the wavelength conversion module. 18.根据权利要求15所述的照明系统,其特征在于,还包括:18. The lighting system according to claim 15, further comprising: 辅助光源,用于发出辅助光束,所述辅助光束的波段与所述第一色光的波段至少部分重叠,其中所述辅助光束、所述第一色光以及所述第二色光在经过所述第四分色元件后合并形成所述照明光束。an auxiliary light source, configured to emit an auxiliary light beam, the wavelength band of the auxiliary light beam at least partially overlaps with the wavelength band of the first color light, wherein the auxiliary light beam, the first color light and the second color light pass through the The fourth dichroic elements are then combined to form the illumination beam. 19.根据权利要求7所述的照明系统,其特征在于,所述基板为反射基板,所述第二色光与所述激发光束的颜色相同,且所述照明系统还包括:第五分色元件、第六分色元件、第一聚光透镜组以及第二聚光透镜组;其中,19. The lighting system according to claim 7, wherein the substrate is a reflective substrate, the second color light is the same color as the excitation light beam, and the lighting system further comprises: a fifth dichroic element , the sixth dichroic element, the first condenser lens group and the second condenser lens group; wherein, 所述第五分色元件位于所述激发光源与所述波长转换模块之间;The fifth dichroic element is located between the excitation light source and the wavelength conversion module; 所述第一聚光透镜组位于所述第五分色元件、所述第六分色元件与所述波长转换模块之间,所述第六分色元件能使部分的所述第二色光穿透,并反射另一部分的所述第二色光,其中,The first condensing lens group is located between the fifth dichroic element, the sixth dichroic element, and the wavelength conversion module, and the sixth dichroic element can allow part of the second color light to pass through transmits, and reflects another part of said second color light, wherein, 来自所述激发光源的所述激发光束借由所述第五分色元件导引至所述第一聚光透镜组,再经由所述第一聚光透镜组斜向入射至所述波长转换模块后形成所述第一色光与所述第二色光;The excitation light beam from the excitation light source is guided to the first condensing lens group by the fifth dichroic element, and then obliquely incident on the wavelength conversion module through the first condensing lens group Then forming the first colored light and the second colored light; 来自所述波长转换模块的所述第一色光斜向入射至所述第一聚光透镜组且经过所述第五分色元件及所述第六分色元件后传递至所述第二聚光透镜组;The first color light from the wavelength conversion module obliquely enters the first condensing lens group and passes through the fifth dichroic element and the sixth dichroic element before being transmitted to the second condensing lens group. optical lens group; 来自波长转换模块的所述第二色光斜向入射至所述第一聚光透镜组;经过所述第六分色元件后部分的所述第二色光传递至所述第五分色元件后再传递至所述第二聚光透镜组,而另一部分的所述第二色光传递至所述第二聚光透镜组;The second color light from the wavelength conversion module is obliquely incident on the first condenser lens group; the second color light after passing through the sixth dichroic element is transmitted to the fifth dichroic element and then transmitted to the second condensing lens group, and another part of the second color light is transmitted to the second condensing lens group; 所述第二聚光透镜组用于会聚来自所述第五分色元件以及所述第六分色元件的所述第二色光以及所述第一色光。The second condensing lens group is used to condense the second color light and the first color light from the fifth dichroic element and the sixth dichroic element. 20.根据权利要求19所述的照明系统,其特征在于,还包括:光传递模块,位于所述第二色光的传递路径上,其中来自所述第六分色元件的部分的所述第二色光经由所述光传递模块依序被传递至所述第五分色元件及所述第二聚光透镜组。20. The lighting system according to claim 19, further comprising: a light transmission module, located on the transmission path of the second color light, wherein the second color light from the part of the sixth color separation element The colored light is sequentially transmitted to the fifth dichroic element and the second condenser lens group through the light transmission module. 21.根据权利要求19所述的照明系统,其特征在于,还包括:21. The lighting system according to claim 19, further comprising: 辅助光源,用于发出辅助光束,所述辅助光束的波段与所述第一色光的波段至少部分重叠,其中所述第五分色元件能反射所述激发光束、所述第二色光及所述辅助光束并使所述第一色光穿透,所述第六分色元件位于所述辅助光束的传递路径上,且所述第六分色元件能使部分的所述辅助光束穿透并反射另一部分的所述辅助光束,其中来自所述第五分色元件、所述第六分色元件的所述辅助光束、所述第二色光以及所述第一色光在经过所述第二聚光透镜组后合并形成所述照明光束。An auxiliary light source, used to emit an auxiliary light beam, the wavelength band of the auxiliary light beam at least partially overlaps with the wavelength band of the first color light, wherein the fifth dichroic element can reflect the excitation light beam, the second color light and the the auxiliary light beam and make the first color light pass through, the sixth dichroic element is located on the transmission path of the auxiliary light beam, and the sixth dichroic element can make part of the auxiliary light beam pass through and reflecting another part of the auxiliary light beam, wherein the auxiliary light beam from the fifth dichroic element, the sixth dichroic element, the second color light and the first color light pass through the second The condensing lens groups are combined to form the illumination beam. 22.根据权利要求20所述的照明系统,其特征在于,还包括:22. The lighting system according to claim 20, further comprising: 辅助光源,用于发出辅助光束,所述辅助光束的波段与所述第一色光的波段至少部分重叠,其中所述第五分色元件与所述第六分色元件位于所述辅助光束的传递路径上且使所述辅助光束穿透,所述第五分色元件能使所述激发光束、所述第二色光及所述辅助光束穿透而反射所述第一色光,且所述光传递模块能使辅助光束穿透并反射所述第二色光,其中来自所述第五分色元件、所述第六分色元件的所述辅助光束、所述第二色光以及所述第一色光在经过所述第二聚光透镜组后合并形成所述照明光束。an auxiliary light source, configured to emit an auxiliary light beam, the wavelength band of the auxiliary light beam at least partially overlaps with the wavelength band of the first color light, wherein the fifth dichroic element and the sixth dichroic element are located between the auxiliary light beam on the transmission path and make the auxiliary light beam penetrate, the fifth dichroic element can make the exciting light beam, the second color light and the auxiliary light beam pass through and reflect the first color light, and the The light transmission module can make the auxiliary light beam penetrate and reflect the second color light, wherein the auxiliary light beam from the fifth dichroic element, the sixth dichroic element, the second color light and the first color light The colored lights combine to form the illumination light beam after passing through the second condenser lens group. 23.根据权利要求1所述的照明系统,其特征在于,所述波长转换模块包括:23. The lighting system according to claim 1, wherein the wavelength conversion module comprises: 基板;Substrate; 环状波长转换层,位于所述基板上,且对应于所述环状波长转换区设置;以及a ring-shaped wavelength conversion layer located on the substrate and disposed corresponding to the ring-shaped wavelength conversion region; and 反射层,设置于所述环状波长转换层与所述基板之间。The reflection layer is arranged between the annular wavelength conversion layer and the substrate. 24.一种投影装置,其特征在于,包括:根据权利要求1所述的照明系统、分合光单元、至少二光阀以及投影镜头;其中,24. A projection device, characterized in that it comprises: the lighting system according to claim 1, a light splitting and combining unit, at least two light valves, and a projection lens; wherein, 所述分合光单元位于所述照明光束的传递路径上,且用于将照明光束转换成多个子照明光束;The light splitting unit is located on the transmission path of the illumination beam, and is used to convert the illumination beam into a plurality of sub-illumination beams; 所述至少二光阀位于所述多个子照明光束的传递路径上且用于将对应的所述多个子照明光束转换成多个影像光束;以及The at least two light valves are located on the delivery paths of the plurality of sub-illumination beams and are configured to convert the corresponding plurality of sub-illumination beams into a plurality of image beams; and 所述投影镜头位于所述多个影像光束的传递路径上且用于将所述多个影像光束转换成一投影光束,其中所述多个影像光束经由所述分合光单元传递至所述投影镜头。The projection lens is located on the transmission path of the plurality of image beams and is used to convert the plurality of image beams into a projection beam, wherein the plurality of image beams are transmitted to the projection lens through the splitting and combining unit .
CN201910150598.5A 2018-06-25 2019-02-28 Lighting system and projection device Pending CN110632814A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/392,587 US10948811B2 (en) 2018-06-25 2019-04-23 Illumination system and projection apparatus
TW108121937A TWI690765B (en) 2018-06-25 2019-06-24 Illumination system and projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810660762 2018-06-25
CN2018106607622 2018-06-25

Publications (1)

Publication Number Publication Date
CN110632814A true CN110632814A (en) 2019-12-31

Family

ID=68968531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910150598.5A Pending CN110632814A (en) 2018-06-25 2019-02-28 Lighting system and projection device

Country Status (3)

Country Link
US (1) US10948811B2 (en)
CN (1) CN110632814A (en)
TW (1) TWI690765B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138525A (en) * 2020-01-20 2021-07-20 苏州佳世达光电有限公司 Projection device
CN113156752A (en) * 2020-01-22 2021-07-23 精工爱普生株式会社 Wavelength conversion element, method for manufacturing the same, light source device, and projector
CN114488666A (en) * 2020-11-13 2022-05-13 中强光电股份有限公司 Display unit and projection device
CN114690519A (en) * 2020-12-29 2022-07-01 中强光电股份有限公司 Illumination system and projection apparatus
US11520220B2 (en) 2019-11-08 2022-12-06 Coretronic Corporation Wavelength conversion module and projection device
US11709419B2 (en) 2020-10-14 2023-07-25 Coretronic Corporation Display unit including display panels, wavelength conversion element, and light combining element and projection device
WO2024087701A1 (en) * 2022-10-28 2024-05-02 青岛海信激光显示股份有限公司 Projection light source and projection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561836B (en) * 2016-07-01 2019-10-25 深圳光峰科技股份有限公司 A kind of light source and optical projection system
CN116009342A (en) 2021-10-21 2023-04-25 台达电子工业股份有限公司 Light source module
CN216748426U (en) * 2021-12-17 2022-06-14 中强光电股份有限公司 Wavelength conversion module and projection device
TWI820789B (en) * 2022-07-07 2023-11-01 台達電子工業股份有限公司 Light source device
TWI823539B (en) * 2022-08-29 2023-11-21 中強光電股份有限公司 Projection apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650814A (en) * 2011-12-11 2012-08-29 深圳市光峰光电技术有限公司 Light source system and projection device
CN103328885A (en) * 2011-01-21 2013-09-25 欧司朗股份有限公司 Internally cooled fluorescent device and reflector lamp arrangement comprising said fluorescent device
CN103777447A (en) * 2012-10-17 2014-05-07 深圳市绎立锐光科技开发有限公司 A light source system, wavelength conversion device and related projection system
CN104749865A (en) * 2013-12-27 2015-07-01 中强光电股份有限公司 Wavelength conversion device and projector
CN106371278A (en) * 2016-11-28 2017-02-01 广景视睿科技(深圳)有限公司 Bidirectional excitation color wheel and light source system thereof
CN206671745U (en) * 2017-03-14 2017-11-24 深圳市光峰光电技术有限公司 Light supply apparatus and optical projection system
CN107515511A (en) * 2014-06-23 2017-12-26 深圳市绎立锐光科技开发有限公司 Light-source system and projector equipment
CN209373344U (en) * 2018-06-25 2019-09-10 中强光电股份有限公司 Lighting system and projection device

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792603B1 (en) 1998-06-05 2008-01-09 세이코 엡슨 가부시키가이샤 Light source device and display device
TW460723B (en) 1999-10-14 2001-10-21 Ind Tech Res Inst Time sequential color projection display system
US20030090012A1 (en) 2001-09-27 2003-05-15 Allen Richard Charles Methods of making polarization rotators and articles containing the polarization rotators
JP2006023436A (en) 2004-07-07 2006-01-26 Olympus Corp Illuminating apparatus and projector
TWI260923B (en) 2005-06-02 2006-08-21 Benq Corp Projector and color filtering device thereof
US8172399B2 (en) 2005-12-21 2012-05-08 International Business Machines Corporation Lumen optimized stereo projector using a plurality of polarizing filters
CN101126889A (en) 2006-08-18 2008-02-20 精碟科技股份有限公司 Stereo projection system and polarizing color wheel
TWI370316B (en) 2007-07-27 2012-08-11 Aixin Technologies Llc Illumination system
GB2453751B (en) 2007-10-17 2012-09-26 Au Optronics Corp Stereoscopic display apparatus
JP4900736B2 (en) * 2009-03-31 2012-03-21 カシオ計算機株式会社 Light source device and projector
JP5491888B2 (en) 2010-02-05 2014-05-14 日立コンシューマエレクトロニクス株式会社 Projection display
JP5617288B2 (en) 2010-03-18 2014-11-05 セイコーエプソン株式会社 Lighting device and projector
JP5770433B2 (en) 2010-06-18 2015-08-26 ソニー株式会社 Light source device and image projection device
CN201852981U (en) 2010-10-29 2011-06-01 浙江水晶光电科技股份有限公司 Color wheel in projection machine
US20120138874A1 (en) 2010-12-02 2012-06-07 Intematix Corporation Solid-state light emitting devices and signage with photoluminescence wavelength conversion and photoluminescent compositions therefor
EP2650593B1 (en) 2010-12-08 2018-11-28 Appotronics Corporation Limited Light source
JP2012159603A (en) 2011-01-31 2012-08-23 Minebea Co Ltd Light source device and projector
JP5429574B2 (en) 2011-03-07 2014-02-26 カシオ計算機株式会社 Light source device and projector
JP5842162B2 (en) * 2011-03-23 2016-01-13 パナソニックIpマネジメント株式会社 Light source device and image display device using the same
CN102707551B (en) 2011-08-04 2015-04-29 深圳市光峰光电技术有限公司 Lighting and Projectors
US9612511B2 (en) * 2011-08-25 2017-04-04 Appotronics Corporation Limited Projection system using excitable wavelength conversion material in the light source
CN105549311B (en) 2011-08-27 2018-11-13 深圳市光峰光电技术有限公司 Optical projection system and its light-emitting device
US9195123B2 (en) 2011-10-13 2015-11-24 Texas Instruments Corporated Projector light source and system, including configuration for display of 3D images
US9816683B2 (en) * 2011-10-20 2017-11-14 Appotronics Corporation Limited Light sources system and projection device using the same
CN102563410B (en) 2011-12-04 2014-08-06 深圳市光峰光电技术有限公司 Light emitting device, projection device and lighting device
JP2013162021A (en) * 2012-02-07 2013-08-19 Seiko Epson Corp Wavelength conversion element, light source device, and projector
JP2013250285A (en) 2012-05-30 2013-12-12 Hitachi Media Electoronics Co Ltd Light source device and image display unit
DE102012209426A1 (en) 2012-06-04 2013-12-05 Osram Gmbh Phosphor wheel for conversion of pumping light in lighting unit for e.g. projection apparatus, has phosphor parts separated from each other and arranged on wheel, where light of phosphor part exhibits same tint as light of phosphor part
DE102012211837A1 (en) 2012-07-06 2014-01-09 Osram Gmbh Illuminating device with luminous arrangement and laser
CN104267567B (en) 2012-09-28 2017-02-01 深圳市绎立锐光科技开发有限公司 Light source system and related projection system
CN103713454B (en) 2012-09-28 2016-12-07 深圳市绎立锐光科技开发有限公司 Light-emitting device and relevant projecting system
KR102061593B1 (en) 2012-11-29 2020-02-20 엘지전자 주식회사 Light source unit and image projection apparatus
JP5997077B2 (en) * 2013-03-07 2016-09-21 日立マクセル株式会社 Light source device
CN104049445B (en) 2013-03-11 2016-12-28 深圳市绎立锐光科技开发有限公司 Light-emitting device and optical projection system
US9664989B2 (en) 2013-05-23 2017-05-30 Texas Instruments Incorporated Multi-spatial light modulator image display projector architectures using solid state light sources
WO2014196079A1 (en) * 2013-06-07 2014-12-11 Necディスプレイソリューションズ株式会社 Light source apparatus and projection display apparatus provided with same
CN104238248B (en) 2013-06-08 2016-07-20 中强光电股份有限公司 Light source module and projection device
JP6268798B2 (en) 2013-08-05 2018-01-31 セイコーエプソン株式会社 Lighting device and projector
TWI512385B (en) 2013-10-07 2015-12-11 中強光電股份有限公司 Optical wavelength conversion module, illumination system and projection apparatus
TWI540377B (en) 2014-01-29 2016-07-01 台達電子工業股份有限公司 Optical wavelength converter and illumination system using same
JP2015184407A (en) 2014-03-24 2015-10-22 パナソニック株式会社 Lighting device and video display device
CN105022212B (en) 2014-04-23 2018-11-06 深圳市光峰光电技术有限公司 Light source system, projection system and method
US10732495B2 (en) 2014-05-02 2020-08-04 Coretronic Corporation Illumination system, projection apparatus and method for driving illumination system
TWI504832B (en) 2014-05-02 2015-10-21 Coretronic Corp Illumination system and projection apparatus
TWI530749B (en) 2014-06-06 2016-04-21 台達電子工業股份有限公司 Illumination module and manufacturing method of color wheel
CN105319819B (en) 2014-07-28 2019-09-20 深圳光峰科技股份有限公司 Lighting device and projection system
CN204593250U (en) 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 A kind of light guide member and light supply apparatus
CN105093795B (en) 2015-06-03 2017-06-16 海信集团有限公司 A kind of two-color laser light source
CN204759006U (en) 2015-06-08 2015-11-11 深圳市绎立锐光科技开发有限公司 Projecting system , light source system and light source subassembly
CN106412535B (en) 2015-07-31 2019-03-01 深圳光峰科技股份有限公司 A kind of image display control system and its image display control method
CN105137610A (en) 2015-10-22 2015-12-09 海信集团有限公司 Laser dissipation spot path, two-color and three-color laser source
TWI605295B (en) 2015-12-02 2017-11-11 中強光電股份有限公司 Projector and wavelength conversion device
CN105353578B (en) 2015-12-07 2017-08-18 杨阳 Light-source system and its application
CN107203088B (en) 2016-03-18 2019-10-22 中强光电股份有限公司 Wavelength conversion structure and projection device
CN108107658B (en) 2016-11-25 2019-10-25 深圳光峰科技股份有限公司 Light-source system, optical projection system and lighting device
CN108132576B (en) 2016-12-01 2021-04-23 中强光电股份有限公司 Light source module, projection device and driving method thereof
TWM547687U (en) 2017-05-09 2017-08-21 揚明光學股份有限公司 Projector
CN109976075B (en) 2017-12-27 2021-05-07 中强光电股份有限公司 wavelength conversion device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328885A (en) * 2011-01-21 2013-09-25 欧司朗股份有限公司 Internally cooled fluorescent device and reflector lamp arrangement comprising said fluorescent device
CN102650814A (en) * 2011-12-11 2012-08-29 深圳市光峰光电技术有限公司 Light source system and projection device
CN103777447A (en) * 2012-10-17 2014-05-07 深圳市绎立锐光科技开发有限公司 A light source system, wavelength conversion device and related projection system
CN104749865A (en) * 2013-12-27 2015-07-01 中强光电股份有限公司 Wavelength conversion device and projector
CN107515511A (en) * 2014-06-23 2017-12-26 深圳市绎立锐光科技开发有限公司 Light-source system and projector equipment
CN106371278A (en) * 2016-11-28 2017-02-01 广景视睿科技(深圳)有限公司 Bidirectional excitation color wheel and light source system thereof
CN206671745U (en) * 2017-03-14 2017-11-24 深圳市光峰光电技术有限公司 Light supply apparatus and optical projection system
CN209373344U (en) * 2018-06-25 2019-09-10 中强光电股份有限公司 Lighting system and projection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11520220B2 (en) 2019-11-08 2022-12-06 Coretronic Corporation Wavelength conversion module and projection device
CN113138525A (en) * 2020-01-20 2021-07-20 苏州佳世达光电有限公司 Projection device
CN113138525B (en) * 2020-01-20 2024-03-22 苏州佳世达光电有限公司 Projection device
CN113156752A (en) * 2020-01-22 2021-07-23 精工爱普生株式会社 Wavelength conversion element, method for manufacturing the same, light source device, and projector
US11709419B2 (en) 2020-10-14 2023-07-25 Coretronic Corporation Display unit including display panels, wavelength conversion element, and light combining element and projection device
CN114488666A (en) * 2020-11-13 2022-05-13 中强光电股份有限公司 Display unit and projection device
CN114488666B (en) * 2020-11-13 2023-06-06 中强光电股份有限公司 Display unit and projection device
CN114690519A (en) * 2020-12-29 2022-07-01 中强光电股份有限公司 Illumination system and projection apparatus
CN114690519B (en) * 2020-12-29 2023-03-17 中强光电股份有限公司 Lighting system and projection device
WO2024087701A1 (en) * 2022-10-28 2024-05-02 青岛海信激光显示股份有限公司 Projection light source and projection device

Also Published As

Publication number Publication date
US20190391470A1 (en) 2019-12-26
US10948811B2 (en) 2021-03-16
TW202001403A (en) 2020-01-01
TWI690765B (en) 2020-04-11

Similar Documents

Publication Publication Date Title
CN110632814A (en) Lighting system and projection device
CN209373344U (en) Lighting system and projection device
US9228719B2 (en) Illumination system and projection apparatus
TWI687754B (en) Illumination system and projection apparatus
JP2019061237A (en) Illumination system and projection apparatus using illumination system
US20130088689A1 (en) Light source module and projection apparatus
US11347140B2 (en) Illumination system and projection device
CN209265161U (en) Lighting system and projection device
CN207817393U (en) Illumination system and projection device
CN106814528B (en) Projection device and illumination system thereof
JP2020003785A (en) Illumination system and projection device
CN114488671B (en) Projection device and lighting system
CN211086896U (en) Wavelength conversion module and projection device
US11327294B2 (en) Projection device
US11378875B2 (en) Illumination system and projection apparatus
TW201833655A (en) Light source apparatus
CN209373338U (en) Lighting system and projection device
CN112782918B (en) Wavelength conversion module and projection device
US11143945B2 (en) Lens module and projection device
US11917338B2 (en) Light source system and display apparatus
CN114911122A (en) Laser light source system and projection equipment
CN114296308A (en) Lighting system and method of making the same
CN114563903A (en) Projection device and illumination system
CN115016212B (en) Projection device
US11796901B2 (en) Illumination system and projection device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191231