CN110646490A - An ion-sensitive field effect transistor sensor based on tungsten diselenide and its preparation method - Google Patents
An ion-sensitive field effect transistor sensor based on tungsten diselenide and its preparation method Download PDFInfo
- Publication number
- CN110646490A CN110646490A CN201910939655.8A CN201910939655A CN110646490A CN 110646490 A CN110646490 A CN 110646490A CN 201910939655 A CN201910939655 A CN 201910939655A CN 110646490 A CN110646490 A CN 110646490A
- Authority
- CN
- China
- Prior art keywords
- ion
- wse
- field effect
- effect transistor
- sensitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4146—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了一种基于二维材料二硒化钨(WSe2)的离子敏场效应晶体管传感器及其制备方法。包括以下步骤:第一步,在p++‑Si/SiO2衬底上机械剥离WSe2样品,获得合适厚度的WSe2片层;第二步,在WSe2上制备漏、源金属电极;第三步:对WSe2沟道进行臭氧等离子体预氧化处理,之后再进行原子层沉积,形成氧化物敏感膜;第四步:对WSe2的离子敏场效应晶体管进行封装。本发明有效利用二维材料WSe2优异的电学性能以及巧妙地对WSe2进行氧化处理形成离子敏感层,所制备的WSe2离子敏场效应晶体管具有灵敏度高,响应快,体积小,制备简单,能够在产业上进行推广,对实现便携式低成本的离子检测具有深远意义。
The invention discloses an ion-sensitive field effect transistor sensor based on two-dimensional material tungsten diselenide (WSe 2 ) and a preparation method thereof. It includes the following steps: the first step is to mechanically lift off the WSe 2 sample on the p++‑Si/SiO 2 substrate to obtain a WSe 2 sheet with a suitable thickness; the second step, the drain and source metal electrodes are prepared on the WSe 2 ; the third step Step: perform ozone plasma pre-oxidation treatment on the WSe 2 channel, and then perform atomic layer deposition to form an oxide sensitive film; Step 4: encapsulate the ion-sensitive field effect transistor of WSe 2 . The invention effectively utilizes the excellent electrical properties of the two-dimensional material WSe 2 and skillfully oxidizes the WSe 2 to form an ion-sensitive layer. The prepared WSe 2 ion-sensitive field effect transistor has high sensitivity, fast response, small size, and simple preparation. It can be popularized in the industry and has far-reaching significance for realizing portable and low-cost ion detection.
Description
[技术领域][Technical field]
本发明属于微电子技术领域,更具体地,涉及一种基于二硒化钨的离子敏场效应晶体管传感器及其制备方法。The invention belongs to the technical field of microelectronics, and more particularly, relates to an ion-sensitive field effect transistor sensor based on tungsten diselenide and a preparation method thereof.
[背景技术][Background technique]
随着移动互联的蓬勃发展,智能硬件、大数据和云计算等新技术不断涌现,人类社会逐渐步入物联网信息时代。传感技术作为现代信息系统和各种装备必需的信息采集手段,是物联网时代核心技术之一。其中,在医疗健康领域,准确、实时地检测生物流体中的各离子浓度为即时获悉生理健康状况发挥着至关重要的作用。With the vigorous development of mobile Internet, new technologies such as intelligent hardware, big data and cloud computing continue to emerge, and human society has gradually entered the Internet of Things information age. Sensing technology is one of the core technologies in the Internet of Things era, as a necessary information acquisition method for modern information systems and various equipment. Among them, in the medical and health field, accurate and real-time detection of the concentration of each ion in biological fluids plays a crucial role in instantly learning the physiological health status.
当前研究的离子传感器中,基于场效应晶体管的电学离子敏传感器由于其小型化、易集成、高灵敏度和快响应速度等优点引起了极大关注。1970年,Piet Bergveld首次提出与CMOS工艺兼容的离子敏场效应晶体管(ISFET)。为了提升传感器性能,科学家研究了传统硅材料、氧化物和有机物半导体等沟道材料。其中,一维半导体材料如碳纳米管、硅纳米线等由于大的比表面积、良好的尺寸兼容性以及高的灵敏度而受到广泛关注。然而,它们的制备工艺苛刻,很难实现大规模生产,故而阻碍了其实际应用。二维过渡金属硫族化合物二硫化钨(WSe2)因其具有较高的载流子迁移率,较大的比表面积、电子噪声低、响应速度快、无需标记检测等特性,并且拥有优良机械柔韧性以及良好热稳定性,在传感器领域表现出巨大应用潜力。因此,将具有超韧性二维WSe2应用到ISFET中,有望实现高灵敏度、快响应度、易集成、便携式离子传感器。然而,由于二维WSe2表面并无悬挂键,导致直接在其表面生长氧化物离子敏感层较为困难。因此,研究如何结合二维材料WSe2优异的电学性能以及引入有效的氧化敏感层,对新型离子传感器的发展具有重要意义。Among the ion sensors currently studied, electrical ion-sensitive sensors based on field effect transistors have attracted great attention due to their advantages of miniaturization, easy integration, high sensitivity and fast response speed. In 1970, Piet Bergveld first proposed ion-sensitive field-effect transistors (ISFETs) compatible with CMOS processes. To improve sensor performance, scientists have studied channel materials such as traditional silicon materials, oxides, and organic semiconductors. Among them, one-dimensional semiconductor materials such as carbon nanotubes and silicon nanowires have received extensive attention due to their large specific surface area, good size compatibility, and high sensitivity. However, their preparation process is harsh and it is difficult to achieve large-scale production, thus hindering their practical application. Two-dimensional transition metal chalcogenide tungsten disulfide (WSe 2 ) has the characteristics of high carrier mobility, large specific surface area, low electronic noise, fast response speed, no label detection, and excellent mechanical properties. Flexibility and good thermal stability show great application potential in the field of sensors. Therefore, the application of ultra-tough 2D WSe into ISFETs is expected to achieve high sensitivity, fast responsivity, easy integration, and portable ion sensors. However, since there are no dangling bonds on the surface of 2D WSe 2 , it is difficult to directly grow oxide ion-sensitive layers on its surface. Therefore, it is of great significance to study how to combine the excellent electrical properties of the two -dimensional material WSe2 and introduce an effective oxidation-sensitive layer for the development of novel ion sensors.
目前所研究的二维材料场效应晶体管离子传感器还较少,并且大多氧化敏感层为直接在二维材料上生长,氧化层质量有待提高。因此,随着科学研究的不断深入,实现有效二维材料WSe2表面氧化是发展高性能场效应晶体管离子敏传感器的关键。At present, there are few ion sensors of two-dimensional material field effect transistors, and most of the oxidation-sensitive layers are grown directly on the two-dimensional material, and the quality of the oxide layer needs to be improved. Therefore, with the continuous deepening of scientific research, the realization of effective surface oxidation of two-dimensional material WSe 2 is the key to the development of high-performance field effect transistor ion-sensitive sensors.
[发明内容][Content of the Invention]
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于二维材料WSe2的高性能敏场效应晶体管离子传感器,其目的在于改善离子敏传感器的性能,实现灵敏度高,稳定性好的场效应晶体管离子敏传感器。In view of the above defects or improvement requirements of the prior art, the present invention provides a high-performance sensitive field effect transistor ion sensor based on two-dimensional material WSe 2 , the purpose of which is to improve the performance of the ion-sensitive sensor, achieve high sensitivity and good stability field effect transistor ion sensitive sensor.
本发明提供了一种基于二硒化钨的离子敏场效应晶体管传感器,包括p++-Si衬底和SiO2衬底,所述p++-Si衬底的上一层为SiO2衬底,还包括WSe2纳米片层,所述WSe2纳米片层在所述SiO2衬底上一层,在所述WSe2纳米片层上方还设有离子敏感氧化层,所述WSe2纳米片层和离子敏感氧化层的左右分别设置有漏源区,位于漏源区和离子敏感氧化层的左右上方分别设有保护层,所述保护层的上方为PDMS腔,还包括参比电极,所述参比电极位于PDMS腔的几何中心位置。The invention provides an ion-sensitive field effect transistor sensor based on tungsten diselenide, comprising a p++-Si substrate and a SiO2 substrate, wherein the upper layer of the p++-Si substrate is a SiO2 substrate, and further includes WSe 2 nanosheet layer, the WSe 2 nanosheet layer is a layer on the SiO 2 substrate, and an ion-sensitive oxide layer is also provided above the WSe 2 nanosheet layer, and the WSe 2 nanosheet layer and the ion Drain-source regions are arranged on the left and right of the sensitive oxide layer, and protective layers are respectively provided on the left and right upper parts of the drain-source region and the ion-sensitive oxide layer. Above the protective layer is a PDMS cavity, and a reference electrode is also included. The electrodes are located at the geometric center of the PDMS cavity.
更进一步地,所述Se2纳米片层的厚度为2nm~20nm。Further, the thickness of the Se 2 nanosheet layer is 2 nm˜20 nm.
更进一步地,所述漏源区的金属为Cr/Au,其厚度为Cr:3-10nm,Au:45nm-100nm。Further, the metal of the drain-source region is Cr/Au, and its thickness is Cr: 3-10 nm, Au: 45 nm-100 nm.
更进一步地,所述的WSe2纳米片层采用臭氧等离子体预氧化处理形成一层薄的WOx中间层,其中温度为50-60℃,时间为30-60s。Furthermore, the WSe 2 nanosheet layer is pre-oxidized by ozone plasma to form a thin WO x intermediate layer, wherein the temperature is 50-60° C. and the time is 30-60 s.
更进一步地,所述离子敏感氧化层为Al2O3和HfO2中的一种,其中离子敏感氧化层的厚度为10nm~30nm。Further, the ion-sensitive oxide layer is one of Al 2 O 3 and HfO 2 , wherein the thickness of the ion-sensitive oxide layer is 10 nm˜30 nm.
更进一步地,对WSe2离子敏场效应晶体管传感器采用SU8进行封装以防止漏源区出现漏电现象,还包括PDMS腔,所述PDMS腔为采用PDMS制备的液体测试腔。Further, the WSe 2 ion-sensitive field effect transistor sensor is packaged with SU8 to prevent leakage in the drain-source region, and a PDMS cavity is also included, and the PDMS cavity is a liquid test cavity prepared by using PDMS.
另一方面,本发明还提供了一种制备上述的离子敏场效应晶体管传感器的方法,包括下述步骤:On the other hand, the present invention also provides a method for preparing the above-mentioned ion-sensitive field effect transistor sensor, comprising the following steps:
S1:在p++-Si衬底和SiO2衬底上剥离二维WSe2纳米片层;S1: 2D WSe nanosheets were exfoliated on p++ - Si and SiO substrates;
S2:在二维WSe2纳米片层上制备漏源区金属电极;S2: Preparation of drain-source metal electrodes on two-dimensional WSe 2 nanosheets;
S3:对二维WSe2纳米片层表面进行臭氧等离子体氧化预处理,并采用ALD进行氧化层沉积,形成离子敏感氧化层;S3: Ozone plasma oxidation pretreatment was performed on the surface of the two-dimensional WSe 2 nanosheets, and ALD was used for oxide layer deposition to form an ion-sensitive oxide layer;
S4:对二维WSe2器件进行退火处理;S4: annealing the two-dimensional WSe 2 device;
S5:采用SU8对离子敏场效应晶体管封装,并采用PDMS制备液体测试腔。S5: SU8 is used to encapsulate ion-sensitive field effect transistors, and PDMS is used to prepare a liquid test cavity.
更进一步地,在步骤S1中,所述WSe2纳米片层厚度为2nm-20nm。Further, in step S1, the thickness of the WSe 2 nanosheet layer is 2nm-20nm.
更进一步地,在步骤S2中,制备漏源区是采用电子束光刻(EBL)技术在WSe2上制备,并采用蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr:3-10nm,Au:45nm-100nm,随后进行lift-off处理。Further, in step S2, the drain-source region is prepared by using electron beam lithography (EBL) technology on WSe 2 , and the electrode Cr/Au is evaporated by means of evaporation, and its thickness is Cr: 3-10nm , Au: 45nm-100nm, followed by lift-off treatment.
更进一步地,在步骤S3中,所述氧化层为Al2O3或HfO2,其中Al2O3沉积温度为120-150℃,HfO2沉积温度为150-180℃,所述离子敏感氧化层的厚度为10nm~30nm。Further, in step S3, the oxide layer is Al 2 O 3 or HfO 2 , wherein the deposition temperature of Al 2 O 3 is 120-150° C., and the deposition temperature of HfO 2 is 150-180° C. The ion-sensitive oxidation The thickness of the layer is 10 nm to 30 nm.
更进一步地,在步骤S4中,所述退火处理具体为:在200-250℃的温度下Ar/H2(5%/95%)气氛中,退火1.5-2h。Further, in step S4, the annealing treatment is specifically: annealing in an Ar/H 2 (5%/95%) atmosphere at a temperature of 200-250° C. for 1.5-2 hours.
本发明公开的基于二硒化钨(WSe2)的离子敏场效应晶体管传感器,采用在WSe2表面进行臭氧预处理实现了二维材料WSe2表面高质量氧化层生长;另外,引入p++-Si衬底和参比电极形成双栅结构以调控离子敏场效应晶体管传感器的灵敏度,有益于实现高灵敏度、高稳定性的离子敏场效应晶体管传感器。The ion-sensitive field effect transistor sensor based on tungsten diselenide (WSe 2 ) disclosed in the invention adopts ozone pretreatment on the surface of WSe 2 to realize the growth of a high-quality oxide layer on the surface of two-dimensional material WSe 2 ; in addition, p++-Si is introduced. The substrate and the reference electrode form a double gate structure to adjust the sensitivity of the ion-sensitive field effect transistor sensor, which is beneficial to realize the ion-sensitive field effect transistor sensor with high sensitivity and high stability.
[附图说明][Description of drawings]
图1是本发明实施例提供的基于二硒化钨(WSe2)的离子敏场效应晶体管传感器的剖面结构示意图。FIG. 1 is a schematic cross-sectional structure diagram of an ion-sensitive field effect transistor sensor based on tungsten diselenide (WSe 2 ) provided by an embodiment of the present invention.
图2是本发明实施例的晶体管传感器立体图。FIG. 2 is a perspective view of a transistor sensor according to an embodiment of the present invention.
图3是本发明制备方法的流程图。Figure 3 is a flow chart of the preparation method of the present invention.
其中,1为硅p++-Si衬底、2为SiO2衬底、3为WSe2纳米片层、4为漏源区、5为离子敏感氧化层、6为保护层、7为PDMS腔、8为参比电极。Among them, 1 is silicon p++-Si substrate, 2 is SiO2 substrate, 3 is WSe2 nanosheet layer, 4 is drain source region, 5 is ion-sensitive oxide layer, 6 is protective layer, 7 is PDMS cavity, 8 is parameter than the electrode.
[具体实施方式][Detailed ways]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
如图1、2所示,图1为本发明实施例提供的基于二硒化钨(WSe2)的离子敏场效应晶体管传感器的剖面结构,包括重掺杂的硅p++-Si衬底1、90nm厚的二氧化硅SiO2衬底2、在p++-Si/SiO2衬底剥离的WSe2纳米片层3、漏源区4、离子敏感氧化层5,漏源区4的源极与漏极分别位于离子敏感氧化层5的两相对侧、位于漏源区4和离子敏感氧化层5的左右上方分别设有保护层6、PDMS腔7以及参比电极8。p++-Si衬底1和参比电极8分别作为顶栅结构或底栅结构形成双栅结构。As shown in FIGS. 1 and 2, FIG. 1 is a cross-sectional structure of an ion-sensitive field effect transistor sensor based on tungsten diselenide (WSe 2 ) provided by an embodiment of the present invention, including a heavily doped silicon p++-
本发明实施例提供的基于二硒化钨WSe2的离子敏场效应晶体管传感器中WSe2纳米片层3采用机械剥离的方式获得;其厚度可以为2nm到20nm。薄的WSe2纳米片层3作为沟道层有利于提高晶体管的调控能力,获得高的晶体管开关比;过厚的会导致晶体管难以关断。In the ion-sensitive field effect transistor sensor based on tungsten diselenide WSe 2 provided by the embodiment of the present invention, the WSe 2 nanosheet layer 3 is obtained by mechanical exfoliation; its thickness may be 2 nm to 20 nm. The thin WSe 2 nanosheet layer 3 as the channel layer is beneficial to improve the control ability of the transistor and obtain a high transistor on-off ratio; too
本发明实施例提供的基于二硒化钨WSe2的离子敏场效应晶体管传感器在沉积氧化物离子敏感层5之前对WSe2采用了臭氧等离子体预氧化处理形成一层薄的WOx中间层,其中温度控制在50-60℃,时间为30-60s。过高的温度以及过长的臭氧等离子体预处理时间将会导致WSe2过度氧化以及表面引入很多的缺陷;而过低的温度以及过短的臭氧等离子体预处理时间则会导致中间氧化层形成不充分,不利于后续ALD沉积氧化物离子敏感层。此外,采用高介电常数的氧化层,如HfO2和Al2O3,可减小WSe2晶体管的亚阈值摆幅以及提高离子敏传感器的灵敏度,从而获得高性能二维WSe2离子敏场效应晶体管传感器。其中,氧化敏感层Al2O3和HfO2的厚度为10nm~30nm,过薄容易导致晶体管击穿,而过厚则会导致晶体管的调控性能减弱。在氧化敏感层沉积过程中,Al2O3沉积温度为120-150℃,HfO2沉积温度为150-180℃。In the ion-sensitive field effect transistor sensor based on tungsten diselenide WSe 2 provided by the embodiment of the present invention, before depositing the oxide ion-
本发明实施例提供的基于二硒化钨WSe2的离子敏场效应晶体管传感器中氧化层沉积之后的后退火处理温度控制在200-250℃的温度,气体为Ar/H2(比例为5%/95%),退火时间为1.5-2h。In the tungsten diselenide WSe 2 -based ion-sensitive field effect transistor sensor provided by the embodiment of the present invention, the post-annealing temperature after the oxide layer is deposited is controlled at a temperature of 200-250° C., and the gas is Ar/H 2 (the ratio is 5% /95%), the annealing time is 1.5-2h.
如图3所示,上述基于二硒化钨WSe2的离子敏场效应晶体管传感器的具体制备方法包括下述步骤:As shown in Figure 3, the specific preparation method of the above-mentioned ion-sensitive field effect transistor sensor based on tungsten diselenide WSe 2 comprises the following steps:
(1)在p++-Si衬底1和SiO2衬底2上剥离WSe2纳米片层3,选取2nm-20nm的合适WSe2纳米片层3作为晶体管沟道层。(1) The WSe 2 nanosheet layer 3 was peeled off on the p++-
(2)采用电子束光刻(EBL)技术在WSe2上制备漏源区,并采用蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr(3-10nm),Au(45nm-100nm),随后进行lift-off处理。(2) The drain-source region was prepared on WSe 2 by electron beam lithography (EBL) technology, and the electrode Cr/Au was evaporated by evaporation, and its thickness was Cr (3-10nm), Au (45nm-100nm) , followed by lift-off treatment.
(3)对二维WSe2纳米片层3表面进行臭氧等离子体氧化预处理,随后采用原子层沉积(ALD)进行氧化层沉积,氧化层可以是Al2O3和HfO2,其中氧化敏感层5的厚度为10nm~30nm;(3) Ozone plasma oxidation pretreatment is performed on the surface of the two-dimensional WSe 2 nanosheet 3, followed by atomic layer deposition (ALD) for oxide layer deposition. The oxide layer can be Al 2 O 3 and HfO 2 , wherein the oxidation
(4)采用SU8对WSe2离子敏场效应晶体管传感器进行封装以防止漏源区4出现漏电现象,并采用PDMS制备液体测试腔7。(4) SU8 is used to encapsulate the WSe 2 ion-sensitive field effect transistor sensor to prevent leakage in the drain-
为了更进一步的说明本发明实施例提供的二硒化钨WSe2的离子敏场效应晶体管传感器,现详述如下:In order to further illustrate the ion-sensitive field effect transistor sensor of tungsten diselenide WSe 2 provided by the embodiment of the present invention, the details are as follows:
在p++-Si层1和SiO2衬底层2上用胶带机械剥离WSe2纳米片层3,选取2nm-20nm的WSe2纳米片层作为晶体管沟道层;采用电子束光刻技术在WSe2上制备漏源区4,并采用蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr(3-10nm),Au(45nm-100nm),采用工艺可以是电子束蒸镀或者热蒸镀,随后在丙酮溶液中进行lift-off处理;对二维WSe2沟道层表面采用臭氧等离子体进行氧化预处理,其中温度为50-60℃,时间为30-60s;之后采用原子层沉积(ALD)进行沉积离子敏氧化层5,氧化层可以是Al2O3和HfO2,其中氧化敏感层5的厚度为10nm~30nm,Al2O3沉积温度为120-150℃,HfO2沉积温度为150-180℃;进行后退火处理,温度控制在200-250℃的温度,气体为Ar/H2(比例为5%/95%),退火时间为1.5-2h;采用SU8作为保护层6对WSe2离子敏场效应晶体管传感器进行封装以防止漏源区4出现漏电现象,采用激光直写的方式确定SU8的区域,最后采用PDMS制备液体测试腔7并引入参比电极8实现传感器测试。On the p++-Si layer 1 and the SiO2 substrate layer 2 , the WSe2 nanosheet layer 3 was mechanically peeled off with tape, and the 2nm-20 nm WSe2 nanosheet layer was selected as the transistor channel layer; electron beam lithography was used on the WSe2 The drain source region 4 is prepared, and the electrode Cr/Au is evaporated by means of evaporation, and its thickness is Cr (3-10nm), Au (45nm-100nm), the process can be electron beam evaporation or thermal evaporation, and then Carry out lift-off treatment in acetone solution; oxidize the surface of the two-dimensional WSe 2 channel layer by ozone plasma, where the temperature is 50-60 °C and the time is 30-60 s; then atomic layer deposition (ALD) is used The ion-sensitive oxide layer 5 is deposited, and the oxide layer can be Al 2 O 3 and HfO 2 , wherein the thickness of the oxide-sensitive layer 5 is 10 nm to 30 nm, the deposition temperature of Al 2 O 3 is 120-150 ° C, and the deposition temperature of HfO 2 is 150 -180°C; post-annealing treatment, the temperature is controlled at 200-250°C, the gas is Ar/H 2 (the ratio is 5%/95%), and the annealing time is 1.5-2h; SU8 is used as the protective layer 6 to WSe 2. The ion-sensitive field effect transistor sensor is packaged to prevent leakage in the drain-source area 4. The area of SU8 is determined by laser direct writing. Finally, PDMS is used to prepare a
现借助具体实施实例进一步详细说明本发明提供的基于二硒化钨WSe2的离子敏场效应晶体管传感器的制备方法:Now, the preparation method of the ion-sensitive field effect transistor sensor based on tungsten diselenide WSe 2 provided by the present invention is further described in detail with the help of specific implementation examples:
实施例1:Example 1:
(1)清洗p++-Si衬底1和SiO2衬底2;(1) Cleaning the p++-
(2)在p++-Si/SiO2衬底剥离WSe2纳米片层3,选取5nm左右的厚度的WSe2纳米片层作为晶体管沟道层;(2) peel off the WSe 2 nanosheet layer 3 on the p++-Si/SiO 2 substrate, and select the WSe 2 nanosheet layer with a thickness of about 5 nm as the transistor channel layer;
(3)采用电子束光刻(EBL)技术在WSe2上制备漏源区4;(3) using electron beam lithography (EBL) technology to prepare the drain-
(4)并采用热蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr(3nm),Au(45nm);(4) And the electrode Cr/Au is evaporated by thermal evaporation, and its thickness is Cr (3nm), Au (45nm);
(5)在丙酮中进行lift-off处理,时间为1h。(5) Carry out lift-off treatment in acetone for 1h.
(6)对二维WSe2纳米片层3表面进行臭氧等离子体氧化预处理;温度为50℃,时间为30s;(6) Ozone plasma oxidation pretreatment is performed on the surface of the two-dimensional WSe 2 nanosheet layer 3; the temperature is 50 °C, and the time is 30 s;
(7)采用原子层沉积(ALD)进行Al2O3氧化层5沉积,Al2O3厚度为10nm,沉积温度为120℃;(7) Al 2 O 3 oxide layer 5 is deposited by atomic layer deposition (ALD), the thickness of Al 2 O 3 is 10 nm, and the deposition temperature is 120° C.;
(8)在Ar/H2气氛中退火处理,使金属和半导体间形成良好接触,退火温度为200℃,退火时间为1.5h。(8) Annealing treatment in Ar/H 2 atmosphere to form a good contact between the metal and the semiconductor, the annealing temperature is 200°C, and the annealing time is 1.5h.
(9)采用SU8光刻胶对WSe2离子敏场效应晶体管传感器进行封装;(9) Using SU8 photoresist to encapsulate the WSe 2 ion-sensitive field effect transistor sensor;
(10)采用PDMS制备液体测试腔7;(10) using PDMS to prepare the
(11)引入参比电极8进行离子检测。(11) The
实施例2:Example 2:
(1)清洗p++-Si衬底1和SiO2衬底2;(1) Cleaning the p++-
(2)在p++-Si/SiO2衬底剥离WSe2纳米片层3,选取10nm左右的厚度的WSe2纳米片层作为晶体管沟道层;(2) peel off the WSe 2 nanosheet layer 3 on the p++-Si/SiO 2 substrate, and select the WSe 2 nanosheet layer with a thickness of about 10 nm as the transistor channel layer;
(3)采用电子束光刻(EBL)技术在WSe2上制备漏源区4;(3) using electron beam lithography (EBL) technology to prepare the drain-
(4)并采用热蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr(5nm),Au(50nm);(4) And the electrode Cr/Au is evaporated by thermal evaporation, and its thickness is Cr (5nm), Au (50nm);
(5)在丙酮中进行lift-off处理,时间为1h。(5) Carry out lift-off treatment in acetone for 1h.
(6)对二维WSe2沟道层表面进行臭氧等离子体氧化预处理;温度为60℃,时间为30s;(6) Ozone plasma oxidation pretreatment was performed on the surface of the two-dimensional WSe 2 channel layer; the temperature was 60 °C, and the time was 30 s;
(7)采用原子层沉积(ALD)进行HfO2氧化层5沉积,HfO2厚度为10nm,沉积温度为150℃;(7) HfO 2 oxide layer 5 is deposited by atomic layer deposition (ALD), the thickness of HfO 2 is 10 nm, and the deposition temperature is 150 °C;
(8)在Ar/H2气氛中退火处理,使金属和半导体间形成良好接触,退火温度为250℃,退火时间为2h。(8) Annealing treatment in Ar/H 2 atmosphere to form a good contact between the metal and the semiconductor, the annealing temperature is 250°C, and the annealing time is 2h.
(9)采用SU8光刻胶对WSe2离子敏场效应晶体管传感器进行封装;(9) Using SU8 photoresist to encapsulate the WSe 2 ion-sensitive field effect transistor sensor;
(10)采用PDMS制备液体测试腔;(10) Use PDMS to prepare a liquid test chamber;
(11)引入参比电极8进行离子检测。(11) The
实施例3:Example 3:
(1)清洗p++-Si衬底1和SiO2衬底2;(1) Cleaning the p++-
(2)在p++-Si/SiO2衬底剥离WSe2纳米片层3,选取15nm左右的厚度的WSe2纳米片层作为晶体管沟道层;(2) peel off the WSe 2 nanosheet layer 3 on the p++-Si/SiO 2 substrate, and select the WSe 2 nanosheet layer with a thickness of about 15 nm as the transistor channel layer;
(3)采用电子束光刻(EBL)技术在WSe2上制备漏源区4;(3) using electron beam lithography (EBL) technology to prepare the drain-
(4)并采用热蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr(10nm),Au(60nm);(4) And the electrode Cr/Au is evaporated by thermal evaporation, and its thickness is Cr (10nm), Au (60nm);
(5)在丙酮中进行lift-off处理,时间为1h。(5) Carry out lift-off treatment in acetone for 1h.
(6)对二维WSe2沟道层表面进行臭氧等离子体氧化预处理;温度为60℃,时间为45s;(6) Ozone plasma oxidation pretreatment was performed on the surface of the two-dimensional WSe 2 channel layer; the temperature was 60 °C, and the time was 45 s;
(7)采用原子层沉积(ALD)进行HfO2氧化层5沉积,HfO2厚度为20nm,沉积温度为180℃;(7) HfO 2 oxide layer 5 is deposited by atomic layer deposition (ALD), the thickness of HfO 2 is 20 nm, and the deposition temperature is 180 °C;
(8)在Ar/H2气氛中退火处理,使金属和半导体间形成良好接触,退火温度为200℃,退火时间为2h。(8) Annealing treatment in Ar/H 2 atmosphere to form a good contact between the metal and the semiconductor, the annealing temperature is 200°C, and the annealing time is 2h.
(9)采用SU8光刻胶对WSe2离子敏场效应晶体管传感器进行封装;(9) Using SU8 photoresist to encapsulate the WSe 2 ion-sensitive field effect transistor sensor;
(10)采用PDMS制备液体测试腔;(10) Use PDMS to prepare a liquid test chamber;
(11)引入参比电极8进行离子检测。(11) The
实施例4:Example 4:
(1)清洗p++-Si衬底1和SiO2衬底2;(1) Cleaning the p++-
(2)在p++-Si/SiO2衬底剥离WSe2纳米片层3,选取20nm左右的厚度的WSe2纳米片层作为晶体管沟道层;(2) peel off the WSe 2 nanosheet layer 3 on the p++-Si/SiO 2 substrate, and select the WSe 2 nanosheet layer with a thickness of about 20 nm as the transistor channel layer;
(3)采用电子束光刻(EBL)技术在WSe2上制备漏源区4;(3) using electron beam lithography (EBL) technology to prepare the drain-
(4)并采用热蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr(5nm),Au(60nm);(4) And the electrode Cr/Au is evaporated by thermal evaporation, and its thickness is Cr (5nm), Au (60nm);
(5)在丙酮中进行lift-off处理,时间为1h。(5) Carry out lift-off treatment in acetone for 1h.
(6)对二维WSe2沟道层表面进行臭氧等离子体氧化预处理;温度为50℃,时间为60s;(6) Ozone plasma oxidation pretreatment was performed on the surface of the two-dimensional WSe 2 channel layer; the temperature was 50 °C, and the time was 60 s;
(7)采用原子层沉积(ALD)进行HfO2氧化层5沉积,HfO2厚度为30nm,沉积温度为150℃;;(7) HfO 2 oxide layer 5 is deposited by atomic layer deposition (ALD), the thickness of HfO 2 is 30 nm, and the deposition temperature is 150 °C;
(8)在Ar/H2气氛中退火处理,使金属和半导体间形成良好接触,退火温度为200℃,退火时间为1.5h。(8) Annealing treatment in Ar/H 2 atmosphere to form a good contact between the metal and the semiconductor, the annealing temperature is 200°C, and the annealing time is 1.5h.
(9)采用SU8光刻胶对WSe2离子敏场效应晶体管传感器进行封装;(9) Using SU8 photoresist to encapsulate the WSe 2 ion-sensitive field effect transistor sensor;
(10)采用PDMS制备液体测试腔;(10) Use PDMS to prepare a liquid test chamber;
(11)引入参比电极8进行离子检测。(11) The
实施例5:Example 5:
(1)清洗p++-Si衬底1和SiO2衬底2;(1) Cleaning the p++-
(2)在p++-Si/SiO2衬底剥离WSe2纳米片层3,选取2nm左右的厚度的WSe2纳米片层作为晶体管沟道层;(2) peel off the WSe 2 nanosheet layer 3 on the p++-Si/SiO 2 substrate, and select the WSe 2 nanosheet layer with a thickness of about 2 nm as the transistor channel layer;
(3)采用电子束光刻(EBL)技术在WSe2上制备漏源区4;(3) using electron beam lithography (EBL) technology to prepare the drain-
(4)并采用热蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr(8nm),Au(100nm);(4) And the electrode Cr/Au is evaporated by thermal evaporation, and its thickness is Cr (8nm), Au (100nm);
(5)在丙酮中进行lift-off处理,时间为1h。(5) Carry out lift-off treatment in acetone for 1h.
(6)对二维WSe2沟道层表面进行臭氧等离子体氧化预处理;温度为60℃,时间为45s;(6) Ozone plasma oxidation pretreatment was performed on the surface of the two-dimensional WSe 2 channel layer; the temperature was 60 °C, and the time was 45 s;
(7)采用原子层沉积(ALD)进行Al2O3氧化层5沉积,Al2O3厚度为30nm,沉积温度为150℃;(7) Al 2 O 3 oxide layer 5 is deposited by atomic layer deposition (ALD), the thickness of Al 2 O 3 is 30 nm, and the deposition temperature is 150° C.;
(8)在Ar/H2气氛中退火处理,使金属和半导体间形成良好接触,退火温度为200℃,退火时间为1.5h。(8) Annealing treatment in Ar/H 2 atmosphere to form a good contact between the metal and the semiconductor, the annealing temperature is 200°C, and the annealing time is 1.5h.
(9)采用SU8光刻胶对WSe2离子敏场效应晶体管传感器进行封装;(9) Using SU8 photoresist to encapsulate the WSe 2 ion-sensitive field effect transistor sensor;
(10)采用PDMS制备液体测试腔;(10) Use PDMS to prepare a liquid test chamber;
(11)引入参比电极8进行离子检测。(11) The
实施例6:Example 6:
(1)清洗p++-Si衬底1和SiO2衬底2;(1) Cleaning the p++-
(2)在p++-Si/SiO2衬底剥离WSe2纳米片层3,选取15nm厚度的WSe2纳米片层作为晶体管沟道层;(2) peel off the WSe 2 nanosheet layer 3 on the p++-Si/SiO 2 substrate, and select the WSe 2 nanosheet layer with a thickness of 15 nm as the transistor channel layer;
(3)采用电子束光刻(EBL)技术在WSe2上制备漏源区4;(3) using electron beam lithography (EBL) technology to prepare the drain-
(4)并采用热蒸镀的方式蒸镀电极Cr/Au,其厚度为Cr(10nm),Au(50nm);(4) And the electrode Cr/Au is evaporated by thermal evaporation, and its thickness is Cr (10nm), Au (50nm);
(5)在丙酮中进行lift-off处理,时间为1h。(5) Carry out lift-off treatment in acetone for 1h.
(6)对二维WSe2沟道层表面进行臭氧等离子体氧化预处理;温度为50℃,时间为30s;(6) Ozone plasma oxidation pretreatment was performed on the surface of the two-dimensional WSe 2 channel layer; the temperature was 50 °C, and the time was 30 s;
(7)采用原子层沉积(ALD)进行Al2O3氧化层5沉积,Al2O3厚度为20nm,沉积温度为130℃;(7) Al 2 O 3 oxide layer 5 is deposited by atomic layer deposition (ALD), the thickness of Al 2 O 3 is 20 nm, and the deposition temperature is 130° C.;
(8)在Ar/H2气氛中退火处理,使金属和半导体间形成良好接触,退火温度为250℃,退火时间为2h。(8) Annealing treatment in Ar/H 2 atmosphere to form a good contact between the metal and the semiconductor, the annealing temperature is 250°C, and the annealing time is 2h.
(9)采用SU8光刻胶对WSe2离子敏场效应晶体管传感器进行封装;(9) Using SU8 photoresist to encapsulate the WSe 2 ion-sensitive field effect transistor sensor;
(10)采用PDMS制备液体测试腔;(10) Use PDMS to prepare a liquid test chamber;
(11)引入参比电极8进行离子检测。(11) The
由上述制备方法获得的基于WSe2的离子敏场效应晶体管传感器包括p++-Si/SiO2衬底,在Si/SiO2衬底上剥离的WSe2纳米片层,在WSe2纳米片层制备的漏源区,以及在WSe2进行的氧化预处理和采用ALD制备的离子敏氧化层,离子敏场效应晶体管的封装;有效利用二维材料WSe2优异的电学性能以及巧妙地对WSe2进行氧化处理形成离子敏感层,该结构可以使制备的WSe2离子敏场效应晶体管具有灵敏度高,响应快,体积小,制备简单,能够在产业上进行推广,为高性能离子敏场效应晶体管传感器提供了技术支持,对实现便携式低成本的离子检测具有深远意义。The WSe 2 -based ion-sensitive field effect transistor sensor obtained by the above preparation method includes a p++-Si/SiO 2 substrate, a WSe 2 nanosheet layer exfoliated on the Si/SiO 2 substrate, and a
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910939655.8A CN110646490A (en) | 2019-09-30 | 2019-09-30 | An ion-sensitive field effect transistor sensor based on tungsten diselenide and its preparation method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910939655.8A CN110646490A (en) | 2019-09-30 | 2019-09-30 | An ion-sensitive field effect transistor sensor based on tungsten diselenide and its preparation method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN110646490A true CN110646490A (en) | 2020-01-03 |
Family
ID=69011983
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910939655.8A Pending CN110646490A (en) | 2019-09-30 | 2019-09-30 | An ion-sensitive field effect transistor sensor based on tungsten diselenide and its preparation method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110646490A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111307912A (en) * | 2020-03-05 | 2020-06-19 | 苏州微湃医疗科技有限公司 | Field-effect tube biosensor and preparation method thereof |
| CN113816426A (en) * | 2021-10-15 | 2021-12-21 | 东南大学 | Two-dimensional material crystal structure regulation and control method induced by electron beam irradiation |
| CN115663057A (en) * | 2022-10-28 | 2023-01-31 | 安徽大学 | Multilayer WSe based on hydrogen-argon mixed plasma mild treatment 2 Thin film photoelectric detector and preparation method thereof |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW544752B (en) * | 2002-05-20 | 2003-08-01 | Univ Nat Yunlin Sci & Tech | Method for producing SnO2 gate ion sensitive field effect transistor (ISFET), and method and device for measuring the temperature parameters, drift and hysteresis values thereof |
| TWM305339U (en) * | 2006-06-19 | 2007-01-21 | Univ Nat Sun Yat Sen | pH-ISFET device and system for measuring pH value in a solution using the same |
| US20070155037A1 (en) * | 2006-01-04 | 2007-07-05 | National Yunlin University Of Science And Technology | Reference PH sensor, preparation and application thereof |
| US20110018038A1 (en) * | 2009-07-21 | 2011-01-27 | Jer-Liang Andrew Yeh | Ion sensitive field effect transistor and production method thereof |
| CN103293209A (en) * | 2013-05-06 | 2013-09-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | Ion sensitive sensor and manufacturing method thereof |
| CN103940884A (en) * | 2014-03-18 | 2014-07-23 | 复旦大学 | Ion sensitive field effect transistor and preparation method thereof |
| CN104422726A (en) * | 2013-08-29 | 2015-03-18 | 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 | Ion-sensitive layer structure for an ion-sensitive sensor and method for manufacturing same |
| CN106226377A (en) * | 2016-07-06 | 2016-12-14 | 无锡盈芯半导体科技有限公司 | A kind of field-effect transistor biosensor based on Graphene and preparation method thereof |
| CN107449812A (en) * | 2016-06-01 | 2017-12-08 | 张家港万众芯生物科技有限公司 | A kind of biochemical sensor under CMOS standard technologies |
| CN108732225A (en) * | 2017-04-19 | 2018-11-02 | 中芯国际集成电路制造(上海)有限公司 | Ion-sensitive field effect transistor and forming method thereof |
| CN109540987A (en) * | 2018-11-09 | 2019-03-29 | 中山大学 | Based on groove structure without reference electrode GaN base pH sensor and preparation method thereof |
-
2019
- 2019-09-30 CN CN201910939655.8A patent/CN110646490A/en active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW544752B (en) * | 2002-05-20 | 2003-08-01 | Univ Nat Yunlin Sci & Tech | Method for producing SnO2 gate ion sensitive field effect transistor (ISFET), and method and device for measuring the temperature parameters, drift and hysteresis values thereof |
| US20070155037A1 (en) * | 2006-01-04 | 2007-07-05 | National Yunlin University Of Science And Technology | Reference PH sensor, preparation and application thereof |
| TWM305339U (en) * | 2006-06-19 | 2007-01-21 | Univ Nat Sun Yat Sen | pH-ISFET device and system for measuring pH value in a solution using the same |
| US20110018038A1 (en) * | 2009-07-21 | 2011-01-27 | Jer-Liang Andrew Yeh | Ion sensitive field effect transistor and production method thereof |
| CN103293209A (en) * | 2013-05-06 | 2013-09-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | Ion sensitive sensor and manufacturing method thereof |
| CN104422726A (en) * | 2013-08-29 | 2015-03-18 | 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 | Ion-sensitive layer structure for an ion-sensitive sensor and method for manufacturing same |
| CN103940884A (en) * | 2014-03-18 | 2014-07-23 | 复旦大学 | Ion sensitive field effect transistor and preparation method thereof |
| CN107449812A (en) * | 2016-06-01 | 2017-12-08 | 张家港万众芯生物科技有限公司 | A kind of biochemical sensor under CMOS standard technologies |
| CN106226377A (en) * | 2016-07-06 | 2016-12-14 | 无锡盈芯半导体科技有限公司 | A kind of field-effect transistor biosensor based on Graphene and preparation method thereof |
| CN108732225A (en) * | 2017-04-19 | 2018-11-02 | 中芯国际集成电路制造(上海)有限公司 | Ion-sensitive field effect transistor and forming method thereof |
| CN109540987A (en) * | 2018-11-09 | 2019-03-29 | 中山大学 | Based on groove structure without reference electrode GaN base pH sensor and preparation method thereof |
Non-Patent Citations (2)
| Title |
|---|
| LEE, HAE WON ET AL.: "Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe2) Biosensors", 《ACS APPLIED MATERIALS & INTERFACES》 * |
| NAM, HONGSUK ET AL.: "Fabrication and comparison of MoS2 and WSe2 field-effect transistor biosensors", 《JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B》 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111307912A (en) * | 2020-03-05 | 2020-06-19 | 苏州微湃医疗科技有限公司 | Field-effect tube biosensor and preparation method thereof |
| CN111307912B (en) * | 2020-03-05 | 2022-08-09 | 苏州微湃医疗科技有限公司 | Field-effect tube biosensor and preparation method thereof |
| CN113816426A (en) * | 2021-10-15 | 2021-12-21 | 东南大学 | Two-dimensional material crystal structure regulation and control method induced by electron beam irradiation |
| CN115663057A (en) * | 2022-10-28 | 2023-01-31 | 安徽大学 | Multilayer WSe based on hydrogen-argon mixed plasma mild treatment 2 Thin film photoelectric detector and preparation method thereof |
| CN115663057B (en) * | 2022-10-28 | 2025-03-28 | 安徽大学 | A multilayer WSe2 thin film photodetector based on mild treatment of hydrogen-argon mixed plasma and its preparation method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI397184B (en) | Oxide semiconductor thin film transistor | |
| CN113241376B (en) | A full-surround channel field-effect transistor, its preparation method and application | |
| CN108231901A (en) | Field-effect transistor, biosensor based on negative capacitance and preparation method thereof | |
| CN108831928B (en) | Two-dimensional semiconductor material negative capacitance field effect transistor and preparation method thereof | |
| CN106910776B (en) | Large area molybdenum disulfide field effect transistor and its preparation based on high-k gate dielectric | |
| CN104934481B (en) | A kind of thin film transistor (TFT) and preparation method thereof | |
| CN110646490A (en) | An ion-sensitive field effect transistor sensor based on tungsten diselenide and its preparation method | |
| CN114709257B (en) | Field effect transistor device based on two-dimensional interlayer sliding ferroelectric semiconductor and preparation method thereof | |
| WO2011143887A1 (en) | Metal oxide thin film transistor and manufacturing method thereof | |
| CN103325836A (en) | Graphene field effect transistor and preparation method thereof | |
| CN111446288B (en) | NS (non-volatile) stacked transistor based on two-dimensional material and preparation method thereof | |
| Zhang et al. | Balanced performance improvement of a-InGaZnO thin-film transistors using ALD-derived Al2O3-passivated high-k HfGdOx dielectrics | |
| CN107238648A (en) | The method of low temperature preparation two-dimension flexible ion sensing fet | |
| CN103839821B (en) | Transistor and manufacture method thereof | |
| Lin et al. | Comparison between performances of In2O3 and In2TiO5-based EIS biosensors using post plasma CF4 treatment applied in glucose and urea sensing | |
| CN108417636A (en) | A two-dimensional phase-change field-effect transistor and its preparation method | |
| CN205140990U (en) | Molybdenum disulfide film field effect transistor with stress structure | |
| Wang et al. | Performance enhancement of solution-processed p-type CuI TFTs by self-assembled monolayer treatment | |
| CN107644878B (en) | Phase inverter and preparation method thereof | |
| Rawat et al. | Role of ultrathin Ti3C2Tx MXene layer for developing solution-processed high-performance low voltage metal oxide transistors | |
| Liu et al. | Investigation of AlGaZnO pH sensors fabricated by using cosputtering system | |
| CN108400165A (en) | Low-power consumption gallium nitride base negative capacitance field-effect transistor and preparation method | |
| CN108878516A (en) | A kind of two-dimensional material field effect transistor of transverse structure and its preparation method and application | |
| CN115621322A (en) | Two-dimensional semiconductor material transistor and preparation method thereof | |
| CN103545377A (en) | A kind of oxide thin film transistor and its manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200103 |